WorldWideScience

Sample records for random porous materials

  1. Random-walk diffusion and drying of porous materials

    Science.gov (United States)

    Mehrafarin, M.; Faghihi, M.

    2001-12-01

    Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.

  2. Experimental analysis of the flow near the boundary of random porous media

    Science.gov (United States)

    Wu, Zhenxing; Mirbod, Parisa

    2018-04-01

    The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.

  3. Light scattering in porous materials: Geometrical optics and stereological approach

    International Nuclear Information System (INIS)

    Malinka, Aleksey V.

    2014-01-01

    Porous material has been considered from the point of view of stereology (geometrical statistics), as a two-phase random mixture of solid material and air. Considered are the materials having the refractive index with the real part that differs notably from unit and the imaginary part much less than unit. Light scattering in such materials has been described using geometrical optics. These two – the geometrical optics laws and the stereological approach – allow one to obtain the inherent optical properties of such a porous material, which are basic in the radiative transfer theory: the photon survival probability, the scattering phase function, and the polarization properties (Mueller matrix). In this work these characteristics are expressed through the refractive index of the material and the random chord length distribution. The obtained results are compared with the traditional approach, modeling the porous material as a pack of particles of different shapes. - Highlights: • Porous material has been considered from the point of view of stereology. • Properties of a two-phase random mixture of solid material and air are considered. • Light scattering in such materials has been described using geometrical optics. • The inherent optical properties of such a porous material have been obtained

  4. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  5. Synthesis, Characterization and Application of Multiscale Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hussami, Linda

    2010-07-01

    This thesis work brings fresh insights and improved understanding of nano scale materials through introducing new hybrid composites, 2D hexagonal in MCM-41 and 3D random interconnected structures of different materials, and application relevance for developing fields of science, such as fuel cells and solar cells. New types of porous materials and organometallic crystals have been prepared and characterized in detail. The porous materials have been used in several studies: as hosts to encapsulate metal-organic complexes; as catalyst supports and electrode materials in devices for alternative energy production. The utility of the new porous materials arises from their unique structural and surface chemical characteristics as demonstrated here using various experimental and theoretical approaches. New single crystal structures and arene-ligand exchange properties of f-block elements coordinated to ligand arene and halogallates are described in Paper I. These compounds have been incorporated into ordered 2D-hexagonal MCM-41 and polyhedral silica nano foam (PNF-SiO{sub 2}) matrices without significant change to the original porous architectures as described in Paper II and III. The resulting inorganic/organic hybrids exhibited enhanced luminescence activity relative to the pure crystalline complexes. A series of novel polyhedral carbon nano foams (PNF-C's) and inverse foams were prepared by nano casting from PNF-SiO{sub 2}'s. These are discussed in Paper IV. The synthesis conditions of PNF-C's were systematically varied as a function of the filling ratio of carbon precursor and their structures compared using various characterization methods. The carbonaceous porous materials were further tested in Paper V and VI as possible catalysts and catalyst supports in counter- and working electrodes for solar- and fuel cell applications

  6. Sound Transmission Through Multi-Panel Structures Lined with Elastic Porous Materials

    Science.gov (United States)

    Bolton, J. S.; Shiau, N.-M.; Kang, Y. J.

    1996-04-01

    Theory and measurements related to sound transmission through double panels lined with elastic porous media are presented. The information has application to the design of noise control barriers and to the optimization of aircraft fuselage transmission loss, for example. The major difference between the work described here and earlier research in this field relates to the treatment of the porous material that is used to line the cavity between the two panels of the double panel structure. Here we have used the porous material theory proposed by Biot since it takes explicit account of all the wave types known to propagate in elastic porous materials. As a result, it is possible to use the theory presented here to calculate the transmission loss of lined double panels at arbitrary angles of incidence; results calculated over a range of incidence angles may then be combined to yield the random incidence transmission loss. In this paper, the equations governing wave propagation in an elastic porous material are first considered briefly and then the general forms for the stresses and displacements within the porous material are given. Those solutions are expressed in terms of a number of constants that can be determined by application of appropriate boundary conditions. The boundary conditions required to model double panels having linings that are either directly attached to the facing panels or separated?!from them by air gaps are presented and discussed. Measurements of the random incidence transmission loss of aluminium double-panel structures lined with polyurethane foam are presented and have been found to be in good agreement with theoretical predictions. Both the theoretical predictions and the measured results have shown that the method by which an elastic porous lining material is attached to the facing panels can have a profound influence on the transmission loss of the panel system. It has been found, for example, that treatments in which the lining material

  7. Positronium chemistry in porous materials

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Ito, K.; Oka, T.; Hirata, K.

    2007-01-01

    Porous materials have fascinated positron and positronium chemists for over decades. In the early 1970s it was already known that ortho-positronium (o-Ps) exhibits characteristic long lifetimes in silica gels, porous glass and zeolites. Since then, our understanding of Ps formation, diffusion and annihilation has been drastically deepened. Ps is now well recognized as a powerful porosimetric and chemical probe to study the average pore size, pore size distribution, pore connectivity and surface properties of various porous materials including thin films. In this paper, developments of Ps chemistry in porous materials undertaken in the past some 40 yr are surveyed and problems to be addressed in future are briefly discussed

  8. Disorder-induced stiffness degradation of highly disordered porous materials

    Science.gov (United States)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  9. Porous material neutron detector

    Science.gov (United States)

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  10. Geometry and topology of porous materials

    International Nuclear Information System (INIS)

    Cohen, M.H.

    1985-01-01

    A very general definition of porous materials is given. The method of Lin and Cohen for the simple but exact description of the topology of porous materials is reviewed. The method leads to a precise definition of chambers, channels, and throats in the pore space. The power and utility of the method is illustrated via a discussion of the remarkable morphological features of porous rocks. These are enumerated and explained

  11. Global sensitivity analysis of multiscale properties of porous materials

    Science.gov (United States)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  12. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  13. Constitutive model for porous materials

    International Nuclear Information System (INIS)

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments

  14. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    Science.gov (United States)

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  15. Computational materials chemistry for carbon capture using porous materials

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Malani, Ateeque; Huang, Runhong; Babarao, Ravichandar

    2017-01-01

    Control over carbon dioxide (CO 2 ) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO 2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO 2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO 2 capture are discussed. (topical review)

  16. Interaction of random wave-current over uneven and porous bottoms

    International Nuclear Information System (INIS)

    Suo Yaohong; Zhang Zhonghua; Zhang Jiafan; Suo Xiaohong

    2009-01-01

    Starting from linear wave theory and applying Green's second identity and considering wave-current interaction for porous bottoms and variable water depth, the comprehensive mild-slope equation model theory of wave-current interaction is developed, then paying attention to the effect of random waves, by use of Kubo et al.'s method, a model theory of the interaction between random waves and current over uneven and porous bottoms is established. Finally the characteristics of the random waves are discussed numerically from both the geometric-optics approximation and the target spectrum.

  17. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  18. Hydrogen storage by physisorption on porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Panella, B.

    2006-09-13

    A great challenge for commercializing hydrogen powered vehicles is on-board hydrogen storage using economic and secure systems. A possible solution is hydrogen storage in light-weight solid materials. Here three principle storage mechanisms can be distinguished: i) absorption of hydrogen in metals ii) formation of compounds with ionic character, like complex hydrides and iii) physisorption (or physical adsorption) of hydrogen molecules on porous materials. Physical adsorption exhibits several advantages over chemical hydrogen storage as for example the complete reversibility and the fast kinetics. Two classes of porous materials were investigated for physical hydrogen storage, i.e. different carbon nanostructures and crystalline metal-organic frameworks possessing extremely high specific surface area. Hydrogen adsorption isotherms were measured using a Sieverts' apparatus both at room temperature and at 77 K at pressures up to the saturation regime. Additionally, the adsorption sites of hydrogen in these porous materials were identified using thermal desorption spectroscopy extended to very low temperatures (down to 20 K). Furthermore, the adsorbed hydrogen phase was studied in various materials using Raman spectroscopy at different pressures and temperatures. The results show that the maximum hydrogen storage capacity of porous materials correlates linearly with the specific surface area and is independent of structure and composition. In addition the pore structure of the adsorbent plays an important role for hydrogen storage since the adsorption sites for H2 could be assigned to pores possessing different dimensions. Accordingly it was shown that small pores are necessary to reach high storage capacities already at low pressures. This new understanding may help to tailor and optimize new porous materials for hydrogen storage. (orig.)

  19. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1999-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...

  20. Measurement of Emissivity of Porous Ceramic Materials

    OpenAIRE

    BÜYÜKALACA, Orhan

    1998-01-01

    In this study, measurements of spectral and total emissivities of seven different porous ceramic materials and one ceramic fibre material are reported. Measurements were made for wavelength range from 1.2 µm to 20 µm and temperature range from 200 °C to 700 °C. It was found that total emissivity increases with increase of pore size but decreases with increase of temperature. The results showed all the porous ceramic materials tested to be much better than ceramic fibre in terms of total em...

  1. Capillary condensation of adsorbates in porous materials.

    Science.gov (United States)

    Horikawa, Toshihide; Do, D D; Nicholson, D

    2011-11-14

    Hysteresis in capillary condensation is important for the fundamental study and application of porous materials, and yet experiments on porous materials are sometimes difficult to interpret because of the many interactions and complex solid structures involved in the condensation and evaporation processes. Here we make an overview of the significant progress in understanding capillary condensation and hysteresis phenomena in mesopores that have followed from experiment and simulation applied to highly ordered mesoporous materials such as MCM-41 and SBA-15 over the last few decades. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    Science.gov (United States)

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  3. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  4. Assessment of porous material anisotropy and its effect on gas permeability

    Science.gov (United States)

    Wałowski, Grzegorz

    2017-10-01

    The results of experimental research upon the assessment of porous material anisotropy and its effect on gas permeability of porous materials with respect to the gas flow. The conducted research applied to natural materials with an anisotropic gap-porous structure and - for comparative purposes - to model materials such as coke, pumice and polyamide agglomerates. The research was conducted with the use of a special test stand that enables measuring the gas permeability with respect to three flow orientations compared with symmetric cubic-shaped samples. The research results show an explicit impact of the flow direction on the permeability of materials porous, which results from their anisotropic internal structures. The anisotropy coefficient and permeability effective coefficient of such materials was determined and an experimental evaluation of the value of this coefficient was conducted with respect to the gas stream and the total pressure drop across the porous deposit. The process of gas permeability was considered in the category of hydrodynamics of gas flow through porous deposits. It is important to broaden the knowledge of gas hydrodynamics assessment in porous media so far unrecognised for the development of a new generation of clean energy sources, especially in the context of biogas or raw gas production.

  5. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. FACADE SYSTEM MADE OF POROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The proposed multi-component façade system is made of porous concretes employed both as bearing structures and for heat insulation and fireproofing purposes. The authors also provide their recommendations in respect of the mounting of the proposed façade system. The façade system considered in the article is composed of wall foam concrete blocks reinforced by basalt fibers (bearing elements of the structure, cellular concrete polystyrene (thermal insulation, and porous concrete (fireproofing and thermal insulation. Retained shuttering (in the fireproofing sections represents chrysolite cement sheets attached to the structures composed of glass-fiber plastic elements. The application of insulating porous concrete as a fireproofing material is based on the principle of adjustable stress-strained states of materials in the environment of variable pressure. This technology was developed at Moscow State University of Civil Engineering, and it was initially designated for the manufacturing of tailor-made products. The above concrete is also designated for retained shuttering and modified cavity masonry walls. Porous concrete that expands inside the fireproofing cavity ensures a tight contact both with the basic material and thermal insulation plates. The use of materials of the same origin (Portland cement means the formation of strong transition zones connecting the system components in the course of its hardening and further operation. The results of the thermotechnical calculation demonstrate that the thermal resistance registered on the surface of the wall that is 3 meters high (that has a 0.4 m fireproofing cavity is equal to 3.98 sq. m. C/Wt. The value of the coefficient of thermotechnical heterogeneity (r is equal to 0.86 with account for the thickness and thermal conductivity of point and linear elements. If the thermotechnical heterogeneity is taken into consideration, the thermal resistance of the proposed wall is equal to 3.42 m2 С/Wt.

  7. Electrokinetic desalination of porous building materials

    NARCIS (Netherlands)

    Kamran, K.

    2012-01-01

    The deterioration of porous building materials and structures by the crystallization of water soluble salts is a well known phenomenon. The threats posed by salts to building materials can be minimized either by controlling the environment or by removing the salts from the deteriorated zone. In

  8. Porous polymeric materials for hydrogen storage

    Science.gov (United States)

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  9. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  10. Porous Materials - Structure and Properties

    DEFF Research Database (Denmark)

    Nielsen, Anders

    1997-01-01

    The paper presents some viewpoints on the description of the pore structure and the modelling of the properties of the porous building materials. Two examples are given , where it has been possible to connect the pore structure to the properties: Shrinkage of autoclaved aerated concrete...

  11. Testing of porous materials using ion beam techniques

    International Nuclear Information System (INIS)

    Szilagyi, E.; Asrama, M.; Paszti, F.; Battistig, G.; Hajnal, Z.

    1999-01-01

    Porous materials were examined by backscattering spectrometry and oxygen resonance measurements. The material was a porous silicon (PS) sample. The BS data were evaluated by simulation, using the RBX program, and a comparison was made with measured data. The PS sample was also investigated using the 16 O(α,α) 16 O reaction, and the resonance spectra were evaluated. The data yielded useful information on porosity, mean pore diameter, mean pore distance, and structure ordering. (R.P.)

  12. ELECTROKINETIC DEVICE AND METHOD FOR CONSOLIDATING POROUS MATERIALS

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a device and an associated electrokinetic method which allows the pores (superficial and deep) of a porous material to be filled, by forcing the precipitation therein of a product of low solubility in water by creating an electric field which will mobilise the cations...... and anions supplied by previously selected solutions. This method comprises two phases. In the first phase, the pores located at a specified distance from the surface of contact between the porous material and the anodic or cathodic compartment are plugged. In a second phase, the rest of the pores, mainly...... those which are on the surface level, are collapsed. As a result of the designed device and the plugging system contained therein, the porous material is not affected at any moment by chemical alteration processes caused by contact with extreme pH values. This device allows the treatment to be applied...

  13. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  14. Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm

    International Nuclear Information System (INIS)

    Liu, Minghua; Shi, Yong; Yan, Jiashu; Yan, Yuying

    2017-01-01

    Highlights: • A numerical capability combining the lattice Boltzmann method with simulated annealing algorithm is developed. • Digitized representations of random porous media are constructed using limited but meaningful statistical descriptors. • Pore-scale flow and heat transfer information in random porous media is obtained by the lattice Boltzmann simulation. • The effective properties at the representative elementary volume scale are well specified using appropriate upscale averaging. - Abstract: In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contrast to previous studies which simplify porous media as arrays of regularly shaped objects or effective pore networks, the LB + SA method in this article can model statistically meaningful random porous structures in irregular morphology, and simulate pore-scale transport processes inside them. Pore-scale isothermal flow and heat conduction in a set of constructed random porous media characterized by statistical descriptors were then simulated through use of the LB + SA method. The corresponding averages over the computational volumes and the related effective transport properties were also computed based on these pore scale numerical results. Good agreement between the numerical results and theoretical predictions or experimental data on the representative elementary volume scale was found. The numerical simulations in this article demonstrate combination of the LB method with the SA algorithm is a viable and powerful numerical strategy for simulating transport phenomena in random porous media in complex geometries.

  15. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  16. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  17. Development of porous materials for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Shinji Oshima; Osamu Kato; Takeshi Kataoka; Yoshihiro Kobori; Michiaki Adachi [Hydrogen and New Energy Research Laboratory Nippon Oil Corporation 8, Chidoricho, Naka-ku, Yokohama, 231-0815 (Japan)

    2006-07-01

    To achieve hydrogen storage of more than 5 mass%, we are focusing on porous materials that consist of light elements. At WHEC 15, we reported that KOH-activated bamboo charcoal showed 0.79 mass% hydrogen uptake at 9.5 MPa and 303 K. After examining various carbon materials, we found that carbonized and KOH-activated polyacrylonitrile fibers showed 1.0 mass% hydrogen uptake at 9.5 MPa and 303 K. When the pressure was raised to 35 MPa, this material showed 1.5 mass% hydrogen uptake at 303 K. Besides porous carbon, other materials, such as coordination polymers, were examined. Since these materials contain elements other than carbon, different adsorption phenomena may be expected. Although the values of their hydrogen uptakes are still lower than those of carbon materials, a coordination polymer which showed 0.38 mass% hydrogen uptake at 9.5 MPa and 303 K was revealed to give an adsorption density of 47 kg/m{sup 3} at 0.1 MPa and 77 K, the highest value reported for a coordination polymer. (authors)

  18. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  19. Improvements in or relating to method of preparing porous material/synthetic polymer composites

    International Nuclear Information System (INIS)

    Hills, P.R.; McGahan, D.J.

    1976-01-01

    A method for preparing a composite material is described comprising polymerising a monoethylenically unsaturated monomer of a mixture of copolymerisable monoethylenically unsaturated monomers in a porous material, excluding a porous natural cellulosic fibre material, the polymerisable liquid being admixed in the porous material with a saturated aliphatic hydrocarbon or a halogen derivative thereof. It is preferable that the polymerisable liquid and the hydrocarbon or halogen derivative are present in the porous material. Impregnation may be carried out by a vacuum technique or by simple immersion. The monomers that may be used are listed, but a mixture of styrene and acrylonitrile is preferred in the proportions 60 : 40 by volume. Polymerisation may be effected by irradiation, preferably with 60 Co γ-radiation. Suitable porous materials include concrete, stone, and fibreboard. If concrete is used the composite material may be used for pressure pipes and other articles normally made of steel. Examples of the application of the process are given. (U.K.)

  20. Thermodynamic Damping in Porous Materials with Spherical Cavities

    Directory of Open Access Journals (Sweden)

    Sofia D. Panteliou

    1997-01-01

    Full Text Available When a material is subjected to an alternating stress field, there are temperature fluctuations throughout its volume due to the thermoelastic effect. The resulting irreversible heat conduction leads to entropy production that in turn is the cause of thermoelastic damping. An analytical investigation of the entropy produced during a vibration cycle due to the reciprocity of temperature rise and strain yielded the change of the material damping factor as a function of the porosity of the material. A homogeneous, isotropic, elastic bar of cylindrical shape is considered with uniformly distributed spherical cavities under alternating uniform axial stress. The analytical calculation of the dynamic characteristics of the porous structure yielded the damping factor of the bar and the material damping factor. Exsperimental results on porous metals are in good correlation with an analysis.

  1. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  2. Simplified method to solve sound transmission through structures lined with elastic porous material.

    Science.gov (United States)

    Lee, J H; Kim, J

    2001-11-01

    An approximate analysis method is developed to calculate sound transmission through structures lined with porous material. Because the porous material has both the solid phase and fluid phase, three wave components exist in the material, which makes the related analysis very complicated. The main idea in developing the approximate method is very simple: modeling the porous material using only the strongest of the three waves, which in effect idealizes the material as an equivalent fluid. The analysis procedure has to be conducted in two steps. In the first step, sound transmission through a flat double panel with a porous liner of infinite extents, which has the same cross sectional construction as the actual structure, is solved based on the full theory and the strongest wave component is identified. In the second step sound transmission through the actual structure is solved modeling the porous material as an equivalent fluid while using the actual geometry of the structure. The development and validation of the method are discussed in detail. As an application example, the transmission loss through double walled cylindrical shells with a porous core is calculated utilizing the simplified method.

  3. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    Science.gov (United States)

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  4. Methods for removing contaminant matter from a porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  5. Morphological characterization of shocked porous material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan, X F; Zhang Ping; Zhu Jianshi

    2009-01-01

    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and the topology of the pixelized map of a state variable like temperature. The relevance to thermodynamical properties of a material is revealed and various experimental conditions are simulated. Numerical results indicate that the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area A roughly gives the velocity D of a compressive-wave series. When a velocity D is mentioned, the corresponding threshold contour level of the state variable, such as temperature, should also be stated. When the threshold contour level increases, D becomes smaller. The area A increases parabolically with time t during the initial period. The A(t) curve goes back to being linear in the following three cases: (i) when the porosity δ approaches 1, (ii) when the initial shock becomes stronger and (iii) when the contour level approaches the minimum value of the state variable. The area with high temperature may continue to increase even after the early compressive waves have arrived at the downstream free surface and some rarefactive waves have come back into the target body. In the case of energetic material needing a higher temperature for initiation, a higher porosity is preferred and the material may be initiated after the precursory compressive waves have scanned the entire target body. In some cases we need scattered hot spots, but in others we need connected ones. One may desire the fabrication of a porous body and choose the appropriate shock strength according to what is needed. With the Minkowski measures, the dependence on experimental conditions is reflected simply by a few coefficients. They may be used as order parameters to classify the maps of physical variables in a similar way to thermodynamic phase transitions.

  6. Guideline for Adopting the Local Reaction Assumption for Porous Absorbers in Terms of Random Incidence Absorption Coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the assumption of local reaction always underestimates the random incidence absorption coefficient and the local reaction models give...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material...

  7. Statistical Inference for Porous Materials using Persistent Homology.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chul [Univ. of Georgia, Athens, GA (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability, anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.

  8. Functional Biomass Carbons with Hierarchical Porous Structure for Supercapacitor Electrode Materials

    International Nuclear Information System (INIS)

    Chen, Hao; Liu, Duo; Shen, Zhehong; Bao, Binfu; Zhao, Shuyan; Wu, Limin

    2015-01-01

    Highlights: • We successfully prepared bamboo-derived porous carbon with B and N co-doping. • This novel carbon exhibits significantly enhanced specific capacitance and energy density. • The highest specific capacitance exceeds those of most similar carbon materials. • Asymmetric supercapacitor based on this carbon shows satisfactory capacitive performance. - Abstract: This paper presents nitrogen and boron co-doped KOH-activated bamboo-derived carbon as a porous biomass carbon with utility as a supercapacitor electrode material. Owing to the high electrochemical activity promoted by the hierarchical porous structure and further endowed by boron and nitrogen co-doping, electrodes based on the as-obtained material exhibit significantly enhanced specific capacitance and energy density relative to those based on most similar materials. An asymmetric supercapacitor based on this novel carbon material demonstrated satisfactory energy density and electrochemical cycling stability.

  9. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2017-06-01

    Full Text Available In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C.

  11. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  12. SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head

    International Nuclear Information System (INIS)

    Siefken, L. J.

    1998-01-01

    Designs are described for implementing models for calculating the movement of melted material through the interstices in a matrix of porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head during a severe accident in a Light Water Reactor. Currently, the COUPLE model has no capability to model the movement of material that melts within a matrix of porous material. The COUPLE model also does not have the capability to model the movement of liquefied core plate material that slumps onto a porous debris bed in the lower head. In order to advance beyond the assumption the liquefied material always remains stationary, designs are developed for calculations of the movement of liquefied material through the interstices in a matrix of porous material. Correlations are identified for calculating the permeability of the porous debris and for calculating the rate of flow of liquefied material through the interstices in the debris bed. Correlations are also identified for calculating the relocation of solid debris that has a large amount of cavities due to the flowing away of melted material. Equations are defined for calculating the effect on the temperature distribution in the debris bed of heat transported by moving material and for changes in effective thermal conductivity and heat capacity due to the movement of material. The implementation of these models is expected to improve the calculation of the material distribution and temperature distribution of debris in the lower head for cases in which the debris is porous and liquefied material is present within the porous debris

  13. Numerical investigation of porous materials composites reinforced with natural fibers

    Science.gov (United States)

    Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.

    2018-05-01

    The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.

  14. A new equation of state for porous materials with ultra-low densities

    CERN Document Server

    Geng Hua Yun; Wu Qiang

    2002-01-01

    A thermodynamic equation of state is derived which is appropriate for investigating the thermodynamic variations along isobaric paths to predict compression behaviours of porous materials. This equation-of-state model is tested on porous iron, copper, lead and tungsten with different initial densities. The calculated Hugoniots are in good agreement with the corresponding experimental data published previously. This shows that this model can satisfactorily predict the Hugoniots of porous materials with wide porosity and pressure ranges.

  15. Vibro-acoustics of porous materials - waveguide modeling approach

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey V.

    2016-01-01

    The porous material is considered as a compound multi-layered waveguide (i.e. a fluid layer surrounded with elastic layers) with traction free boundary conditions. The attenuation of the vibro-acoustic waves in such a material is assessed. This approach is compared with a conventional Biot's mode...

  16. Method of model reduction and multifidelity models for solute transport in random layered porous media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Tartakovsky, Alexandre M.

    2017-09-01

    This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersion initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.

  17. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-based Materials

    Directory of Open Access Journals (Sweden)

    Saptadi Darmawan

    2016-02-01

    Full Text Available Lignocellulosic biomass is a potential raw material that can be used in the synthesis (manufacture of porous carbon stuffs. The properties of such porous carbon products are affected by the species of the raw material and the manufacturing process, among other things. This paper scrutinizes the related characteristics of lignocellulosic raw materials that indicate potential for the production of porous carbon. Three species were used: pine (Pinus merkusii wood, mangium (Acacia mangium wood, and candlenut (Aleurites moluccana shells, representing softwoods, hardwoods, and non-wood stuffs, respectively. Analyses of their chemical compounds and proximate contents were carried out. Additionally, nano scale scrutiny of the lignocellulosic biomass was also conducted using the nano capable instruments, which consisted of SEM, EDS, XRD, FTIR, and DSC. Results revealed that pine wood had the most potential to produce porous carbon. Morphologically, pine wood afforded the best permeability, whereby at the structure of monoclinic cellulose crystals, there were cellulose-I(alpha structures, which contained less cellulose-I(beta structures. Furthermore, pine wood exhibited greater volatile matter content, as confirmed through the FTIR, which greatly assisted the forming of porosity inside its corresponding carbon.

  18. Preparation of porous materials for radionuclides capture

    International Nuclear Information System (INIS)

    Bajzikova, Anna; Smrcek, Stanislav; Kozempel, Jan; Vlk, Martin; Barta, Jan

    2015-01-01

    Porous materials showing promise for radionuclide capture from water at contaminated sites were prepared. Nanoporous materials (size of pores 1-100 nm) and some polymers are well suited to this purpose owing their affinity for selected radionuclides. Nanoporous metal oxides and silica gel with styrene-divinylbenzene-TODGA-modified surface were prepared, characterized and tested for radionuclide ( 227 Ac, 227 Th, 223 Ra) capture efficiency. (orig.)

  19. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    Science.gov (United States)

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.

  20. Modeling of heat transfer within porous multi-constituent materials

    International Nuclear Information System (INIS)

    Niezgoda, M.

    2012-01-01

    The CEA works a great deal with porous materials - carbon composites, ceramics - and aims to optimize their properties for specific uses. These materials can be composed of several constituents and generally has a complex structure with pore size of several tens of micrometers. It is used in large-scale systems that are bigger than its own characteristic scale in which they are considered as equivalent to a homogeneous medium for the simulation of its behavior in its using environment without taking into account its local morphology. We are especially interested in the effective thermal diffusivity of heterogeneous materials that we estimate as a function of temperature with the help of an inverse method by considering they are homogeneous. The identification of the diffusivity of porous and/or semi-transparent materials is made difficult because of the strong conducto-radiative coupling can quickly occur when the temperature increases. We have thus modeled the coupled conductive and radiative heat transfer as a function of the temperature within porous multi-constituent materials from their morphology discretized into a set of homogeneous voxels. We have developed a methodology that consists in starting from a 3D-microstructure of the studied materials obtained by tomography. The microstructures constitute the numerical support to this modeling that renders it possible, on the one hand, to simulate any kind of numerical thermal experiments, especially the flash method whose the results render it possible to estimate the thermal diffusivity, and on the other hand, to reproduce the thermal behavior of our materials in their using conditions. (author) [fr

  1. Positronium formation in porous materials for antihydrogen production

    International Nuclear Information System (INIS)

    Ferragut, R; Calloni, A; Dupasquier, A; Consolati, G; Giammarchi, M G; Quasso, F; Trezzi, D; Egger, W; Ravelli, L; Petkov, M P; Jones, S M; Wang, B; Yaghi, O M; Jasinska, B; Chiodini, N; Paleari, A

    2010-01-01

    Positronium (Ps) formation measurements in several porous materials as: Vycor, germanate Xerogel, Metal-Organic Frameworks MOF-177 and Aerogel with two densities (20 and 150 mg/cm 3 ), were performed by means of a variable energy positron beam provided with a Ge detector and a positron lifetime spectrometer. An efficient formation of cooled Ps atoms is a requisite for the production of antihydrogen, with the aim of a direct measurement of the Earth gravitational acceleration g of antimatter, which is a primary scientific goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy). Porous materials are necessary to form a high yield of Ps atoms as well as to cool Ps through collisions with the inner walls of the pores. The different materials were characterized and produce Ps into the pores. Lifetime measurements give an estimation of the typical pores dimension of the substances. A comparative study of the positron lifetime and the Ps fraction values in the above mentioned materials indicates that silica Aerogel, with the appropriate density, is an excellent candidate for an efficient formation of cold Ps atoms for the AEGIS project.

  2. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  3. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    Science.gov (United States)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  4. Porous Silicon–Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes

    International Nuclear Information System (INIS)

    Sohn, Myungbeom; Kim, Dae Sik; Park, Hyeong-Il; Kim, Jae-Hun; Kim, Hansu

    2016-01-01

    Highlights: • A porous Si–C anode is obtained by alkaline etching of a non-porous Si–C composite. • The pores in the carbon frame are created by simultaneous etching of Si and carbon. • The cycle life is greatly improved after the alkaline treatment. • The porous Si–C composite electrode shows high dimensional stability during cycling. - Abstract: Porous silicon–carbon (Si–C) composite materials have attracted a great deal of attention as high-performance anode materials for Li-ion batteries (LIBs), but their use suffers from the complex and limited synthetic routes for their preparation. Herein we demonstrate a scalable and nontoxic method to synthesize porous Si–C composite materials by means of simultaneous chemical etching of Si and carbon phases using alkaline solution. The resulting porous Si–C composite material showed greatly improved cycle performance, good rate capability, and high dimensional stability during cycling. Porous Si–C electrode showed an expansion of the height by about 22% after the first lithiation and only 16% after the first cycle. The material synthesis concept and scalable simultaneous etching approach presented here represent a means of improving the electrochemical properties of Si-based porous anode materials for use in commercial LIBs.

  5. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    Science.gov (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  6. A multi-scale homogenization model for fine-grained porous viscoplastic polycrystals: II - Applications to FCC and HCP materials

    Science.gov (United States)

    Song, Dawei; Ponte Castañeda, P.

    2018-06-01

    In Part I of this work (Song and Ponte Castañeda, 2018a), a new homogenization model was developed for the macroscopic behavior of three-scale porous polycrystals consisting of random distributions of large pores in a fine-grained polycrystalline matrix. In this second part, the model is used to investigate both the instantaneous effective behavior and the finite-strain macroscopic response of porous FCC and HCP polycrystals for axisymmetric loading conditions. The stress triaxiality and Lode parameter are found to have significant effects on the evolution of the substructure, which in turn have important implications for the overall hardening/softening behavior of the porous polycrystal. The intrinsic effect of the texture evolution of the polycrystalline matrix is inferred by appropriate comparisons with corresponding results for porous isotropic materials, and found to be significant, especially at low triaxialities. In particular, the predictions of the model identify, for the first time, two disparate regimes for the macroscopic response of porous polycrystals: a porosity-controlled regime at high triaxialities, and a texture-controlled regime at low triaxialities. The transition between these two regimes is found to be quite sharp, taking place between triaxialities of 1 and 2.

  7. Fabrication of 3-Dimensional Porous Graphene Materials for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jiang, Yu; Jiang, Zhong-Jie; Cheng, Shuang; Liu, Meilin

    2014-01-01

    A simple two-step procedure involving hydrothermal reaction and subsequent calcination has been employed to synthesis porous graphene material, which exhibits significantly high electrochemical performance when used as the anode in lithium ion batteries. - Highlights: • A PGM been synthesized by a simple two-step process involving hydrothermal reaction and subsequent calcination. • The PGM exhibits exhibit a significantly high specific surface area. • The PGM can deliver large capacities and excellent cycling performance when used in LIBs. • The high electrochemical performance of the PGM is attributed to its unique porous structure with more disordered carbon atoms. - Abstract: A 3-dimensional porous graphene material (PGM) has been synthesized using a simple two-step process: hydrothermal reaction and calcination. Hydrothermal reaction of graphene oxide (GO) in the presence of resorcinol and glutaraldehyde leads to covalent grafting of partially reduced GO with glutaraldehyde and the deposition of phenolic resin. Subsequent calcination of the composite consisting of phenolic resin deposited on partially reduced GO in the presence of KOH produces structurally stable, highly porous graphene material with a specific surface area of ∼1,066 ± 2 m 2 g −1 . When used as an active electrode material in a lithium battery, the PGM exhibits an initial discharge capacity of ∼1,538 mAh g −1 , which is significantly higher than those of graphite and other carbonaceous materials reported previously. More importantly, when cycled at higher discharge/charge rates, the PGM-based electrodes still deliver large capacities and excellent cycling performance, demonstrating great potential for high-performance lithium-ion batteries. The attractive electrochemical performance of the PGM is attributed to its unique porous structure with large specific surface area and the presence of more disordered carbon atoms produced by the KOH activation

  8. Capillary condensation in porous materials. Hysteresis and interaction mechanism without pore blocking/percolation process.

    Science.gov (United States)

    Grosman, Annie; Ortega, Camille

    2008-04-15

    We have performed measurements of boundary hysteresis loops, reversal curves, and subloops in p+-type porous silicon, a porous material composed of straight non-interconnected pores. These data show that a strong interaction mechanism exists between the pores. The pores of porous silicon are non-independent, whereas they are not interconnected. This hysteretic behavior is very similar to that observed in porous glass, which consists of cavities connected to each other by constrictions. This questions the so-called pore blocking/percolation model developed to explain the behavior of fluid in porous glass. More generally, if we disregard the shape of the boundary hysteresis loops which depends on the porous material (H1 for MCM-41 and SBA-15, H2 for porous glass and p+-type porous silicon), the hysteretic features inside the main loop are qualitatively the same for all these porous systems. This shows that none of these systems are composed of independent pores. A coupling between the pores is always present whether they are interconnected or not and whatever the shape of the main loop is.

  9. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Van Soestbergen, M.; Pel, L.

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  10. Electrokinetic salt removal from porous building materials using ion exchange membranes

    NARCIS (Netherlands)

    Kamran, K.; Soestbergen, van M.; Pel, L.

    2012-01-01

    The removal of salt from porous building materials under the influence of an applied voltage gradient normally results in high pH gradients due to the formation of protons and hydroxyl ions at the electrodes. The formed acidic and alkaline regions not only lead to disintegration of the porous

  11. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  12. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Science.gov (United States)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  13. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  14. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  15. Structural properties of porous materials and powders used in different fields of science and technology

    CERN Document Server

    Volfkovich, Yury Mironovich; Bagotsky, Vladimir Sergeevich

    2014-01-01

    This book provides a comprehensive and concise description of most important aspects of experimental and theoretical investigations of porous materials and powders, with the use and application of these materials in different fields of science, technology, national economy and environment. It allows the reader to understand the basic regularities of heat and mass transfer and adsorption occurring in qualitatively different porous materials and products, and allows the reader to optimize the functional properties of porous and powdered products and materials. Written in an straightforward and transparent manner, this book is accessible to both experts and those without specialist knowledge, and it is further elucidated by drawings, schemes and photographs. Porous materials and powders with different pore sizes are used in many areas of industry, geology, agriculture and science. These areas include (i) a variety of devices and supplies; (ii) thermal insulation and building materials; (iii) oil-bearing geologic...

  16. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    OpenAIRE

    Fidancevska E.; Mangutova B.; Milosevski D.; Milosevski M.; Bossert J.

    2003-01-01

    Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss) of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  17. Novel polymeric nanocomposites and porous materials prepared using organogels

    International Nuclear Information System (INIS)

    Lai, Wei-Chi; Tseng, Shen-Chen

    2009-01-01

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  18. Novel polymeric nanocomposites and porous materials prepared using organogels

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chi; Tseng, Shen-Chen, E-mail: wclai@mail.tku.edu.t [Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan (China)

    2009-11-25

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  19. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Science.gov (United States)

    Martisek, Dalibor; Prochazkova, Jana

    2017-12-01

    The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  20. The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials

    Directory of Open Access Journals (Sweden)

    Martisek Dalibor

    2017-12-01

    Full Text Available The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.

  1. Zirconia-hydroxyapatite composite material with micro porous structure.

    Science.gov (United States)

    Matsumoto, Takuya Junior; An, Sang-Hyun; Ishimoto, Takuya; Nakano, Takayoshi; Matsumoto, Takuya; Imazato, Satoshi

    2011-11-01

    Titanium plates and apatite blocks are commonly used for restoring large osseous defects in dental and orthopedic surgery. However, several cases of allergies against titanium have been recently reported. Also, sintered apatite block does not possess sufficient mechanical strength. In this study, we attempted to fabricate a composite material that has mechanical properties similar to biocortical bone and high bioaffinity by compounding hydroxyapatite (HAp) with the base material zirconia (ZrO(2)), which possesses high mechanical properties and low toxicity toward living organisms. After mixing the raw material powders at several different ZrO(2)/HAp mixing ratios, the material was compressed in a metal mold (8 mm in diameter) at 5 MPa. Subsequently, it was sintered for 5 h at 1500°C to obtain the ZrO(2)/HAp composite. The mechanical property and biocompatibility of materials were investigated. Furthermore, osteoconductivity of materials was investigated by animal studies. A composite material with a minute porous structure was successfully created using ZrO(2)/HAp powders, having different particle sizes, as the starting material. The material also showed high protein adsorption and a favorable cellular affinity. When the mixing ratio was ZrO(2)/HAp=70/30, the strength was equal to cortical bone. Furthermore, in vivo experiments confirmed its high osteoconductivity. The composite material had strength similar to biocortical bones with high cell and tissue affinities by compounding ZrO(2) and HAp. The ZrO(2)/HAp composite material having micro porous structure would be a promising bone restorative material. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Obtaining of dense and highly porous ceramic materials from metallurgical slag

    Directory of Open Access Journals (Sweden)

    Fidancevska E.

    2003-01-01

    Full Text Available Glass-ceramics in a dense and highly porous form can be obtained from metallurgical slag and waste glass of TV monitors. Using polyurethane foam as pore creator, a highly porous system with porosity of 65 ± 5 %, E-modulus and flexural strength of 8 ± 3 GPa and 13 ± 3.5 MPa respectively can be obtained. This porous material had durability (mass loss of 0.03 % in 0.1 M HCl that is identical with the durability of a dense composite.

  3. Two-dimensional hierarchical porous carbon composites derived from corn stalks for electrode materials with high performance

    International Nuclear Information System (INIS)

    Xu, Haitao; Zhang, Huijuan; Ouyang, Ya; Liu, Li; Wang, Yu

    2016-01-01

    Highlights: • Novel 2D porous carbon sheets from cornstalks are obtained for the first time. • The hierarchical porous carbon nansheets are gained by chemical activation. • The porous structure facilitates ion transfer and Li-ion absorption. • The strategy are applied to both cathode and anode electrode materials. • The porous nanocomposites exhibit excellent electrochemical performance. - Abstract: Herein, we propose a novel and green strategy to convert crop stalks waste into hierarchical porous carbon composites for electrode materials of lithium-ion batteries. In the method, the sustainable crop stalks, an abundant agricultural byproduct, is recycled and treated by a simple and clean chemical activation process. Afterwards, the obtained porous template is adopted for large-scale production of high-performance anode and cathode materials for lithium-ion batteries. Due to the large surface area, hierarchical porous structures and subsize of the functional particles, the electrode materials manifest excellent electrochemical performance. In particular, the prepared TiO 2 /C composite presents a reversible specific capacity of 203 mAh g −1 after 200 cycles. Our results demonstrate that the sheetlike composites show remarkable cycling stability, high specific capacity and excellent rate ability, and thus hold promise for commercializing the high-performance electrode materials as the advanced lithium-ion batteries.

  4. Structural control in the synthesis of inorganic porous materials

    Science.gov (United States)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals

  5. Synthesis of hierarchical porous materials with ZSM-5 structures via template-free sol–gel method

    Directory of Open Access Journals (Sweden)

    Wei Han et al

    2007-01-01

    Full Text Available Interests are focused on preparation of hierarchical porous materials with zeolite structures by using soft or rigid templates in order to solve diffusion and mass transfer limitations resulting from the small pore sizes of zeolites. Here we develop a convenient template-free sol–gel method to synthesize hierarchical porous materials with ZSM-5 structures. This method involves hydrothermal recrystallization of the xerogel converted from uniform ZSM-5 sol by a vacuum drying process. By utilizing this method we can manipulate the size of zeolite nanocrystals as building units of porous structures based on controlling temperature of recrystallization, consequently obtain hierarchical porous materials with different intercrystalline pore sizes and ZSM-5 structures.

  6. Artificial 3D hierarchical and isotropic porous polymeric materials

    KAUST Repository

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana Pereira

    2018-01-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  7. Artificial 3D hierarchical and isotropic porous polymeric materials

    KAUST Repository

    Chisca, Stefan

    2018-05-11

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  8. Artificial 3D hierarchical and isotropic porous polymeric materials.

    Science.gov (United States)

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana P

    2018-05-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene- b -poly( t -butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  9. Characterization of porous materials by small-angle scattering

    Indian Academy of Sciences (India)

    With the availability of ultra small-angle scattering instruments, one can investigate porous materials in the sub-micron length scale. Because of the increased accessible length scale vis-a-vis the multiple scattering effect, conventional data analysis procedures based on single scattering approximation quite often fail.

  10. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  11. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    Science.gov (United States)

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  12. Physicomechanical properties of porous fiber materials and prediction of them

    International Nuclear Information System (INIS)

    Kostornov, A.G.; Galstyan, L.G.

    1985-01-01

    A comparison is presented of the experimentally determined values of certain properties of porous fiber materials obtained by the optimum method from monodisperse fibers of copper, nickel, and Nichrome of different diameters with the corresponding theoretical values. The electrical conductivity, tensile strength, and modulus of elasticity, the basic properties of a porous body, which are determined both by the structural characteristics of the elements and by the condition of the interparticle contacts, were considered

  13. On strength of porous material - simple systems and densified systems

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus Of Rupture) of materials have been established in order to control...

  14. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    Science.gov (United States)

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  15. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  16. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    Science.gov (United States)

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  17. Anomalous water absorption in porous materials

    CERN Document Server

    Lockington, D A

    2003-01-01

    The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuentz and Lavallee (2001) discuss the anomalous b...

  18. SCDAP/RELAP5 modeling of movement of melted material through porous debris in lower head

    International Nuclear Information System (INIS)

    Siefken, L. J.; Harvego, E. A.

    2000-01-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head

  19. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  20. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  1. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    Science.gov (United States)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  2. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  3. Cellular and Porous Materials Thermal Properties Simulation and Prediction

    CERN Document Server

    Öchsner, Andreas; de Lemos, Marcelo J S

    2008-01-01

    Providing the reader with a solid understanding of the fundamentals as well as an awareness of recent advances in properties and applications of cellular and porous materials, this handbook and ready reference covers all important analytical and numerical methods for characterizing and predicting thermal properties. In so doing it directly addresses the special characteristics of foam-like and hole-riddled materials, combining theoretical and experimental aspects for characterization purposes.

  4. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2015-07-01

    Full Text Available Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  5. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane.

    Science.gov (United States)

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2015-07-21

    Hydrogen storage is still one of the most significant issues hindering the development of a "hydrogen energy economy". Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane.

  6. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    OpenAIRE

    I. I. Kuzhelivsky; M. A. Akselrov; L. A. Sitko

    2015-01-01

    The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  7. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Stability of quasi-steady deflagrations in confined porous energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Telengator; Stephen B. Margolis; Forman A. Williams

    2000-03-01

    Previous analyses have shown that unconfined deflagrations propagating through both porous and nonporous energetic materials can exhibit a thermal/diffusive instability that corresponds to the onset of various oscillatory modes of combustion. For porous materials, two-phase-flow effects, associated with the motion of the gas products relative to the condensed material, play a significant role that can shift stability boundaries with respect to those associated with the nonporous problem. In the present work, additional significant effects are shown to be associated with confinement, which produces an overpressure in the burned-gas region that leads to reversal of the gas flow and hence partial permeation of the hot gases into the unburned porous material. This results in a superadiabatic effect that increases the combustion temperature and, consequently, the burning rate. Under the assumption of gas-phase quasi-steadiness, an asymptotic model is presented that facilitates a perturbation analysis of both the basic solution, corresponding to a steadily propagating planar combustion wave, and its stability. The neutral stability boundaries collapse to the previous results in the absence of confinement, but different trends arising from the presence of the gas-permeation layer are predicted for the confined problem. Whereas two-phase-flow effects are generally destabilizing in the unconfined geometry, the effects of increasing overpressure and hence combustion temperature associated with confinement are shown to be generally stabilizing with respect to thermal/diffusive instability, analogous to the effects of decreasing heat losses on combustion temperature and stability in single-phase deflagrations.

  9. Advances in design and modeling of porous materials

    Science.gov (United States)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  10. Thermal performance of circular convective–radiative porous fins with different section shapes and materials

    International Nuclear Information System (INIS)

    Hatami, M.; Ganji, D.D.

    2013-01-01

    Graphical abstract: - Highlights: • LSM is an accurate technique for simulating heat transfer in circular porous fins. • Rectangular, convex, triangular and exponential variable sections are considered. • Radiation and convection from porous fin are considered. • Effects of material and geometry on heat transfer from fins are studied. - Abstract: In this study, heat transfer and temperature distribution equations for circular convective–radiative porous fins are presented. It’s assumed that the thickness of circular fins varies with radius so four different shapes, rectangular, convex, triangular and exponential, are considered. The heat transfer through porous media is simulated using passage velocity from the Darcy’s model. After deriving equation for each geometry, Least Square Method (LSM) and fourth order Runge–Kutta method (NUM) are applied for predicting the temperature distribution in the porous fins. The selected porous fin’s materials are Al, SiC, Cu and Si 3 N 4 . Results reveal that LSM has very effective and accurate in comparison with the numerical results. As a main outcome, Si 3 N 4 -exponential section fin has the maximum amount of transferred heat among other fins

  11. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    pressure and weight data can be "translated" to pore geometry by known physical relationships. In this context, analytical descriptions are important which can relate moisture condensation in pore structures to ambient vapor pressure. Such a description, the extended BET-relation, is presented...... physical parameters, the so-called BET-parameters: The heat property factor, C, and the pore surface, SBET (derived from the so-called uni-molecular moisture content uBET). A software ‘SORP07’ has been developed to handle any calculations made in the paper. For readers who have a special interest...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  12. Continuous time random walk analysis of solute transport in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  13. OSTEOCALCIN DINAMIC OF DISTROPHICAL BONE KISTS BY TITANIUM NIKELID POROUS MATERIALS IMPLANTATION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    I. I. Kuzhelivsky

    2015-01-01

    Full Text Available The article presents results of bone kists treatment by porous granular titanium nikelid materials and dynamic of osteokalcin. A comparative examination with standard treatment technology group demonstrated high efficiency of a proposed method. Porous granular titanium nikelid materials possess mechanical strength, optimization of regeneration at the expense of osteoinductivity by osteokalcin and allow you to effectively fill the cavity with a complex anatomical structure. 

  14. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    Science.gov (United States)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  15. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Cheng [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Qi, Li; Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin Province (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-07-01

    The capacitive characteristics of micro- and meso-porous carbon materials have been compared in cyclic voltammetric studies and galvanostatic charge-discharge tests. Meso-porous carbon can keep certain high capacitance values at high scan rates, whereas micro-porous carbon possesses very high capacitance values at low scan rates but fades quickly as the scan rate rises up. For better performance of electric double-layer capacitors (EDLCs), the cooperative application of both kinds of carbon materials has been proposed in the following two ways: mixing both kinds of carbons in the same electrode or using the asymmetric configuration of carbon electrodes in the same EDLC. The cooperative effect on the electrochemical performance has also been addressed. (author)

  16. IL 14: Radiolysis of water confined in nano-porous materials

    International Nuclear Information System (INIS)

    Renault, J.P.; Pommeret, S.; Musat, R.; Le Caer, S.; Alam, M.; Mialocq, J.C.

    2010-01-01

    Radiolysis of water in nano-porous media has raised a lot of interest and involved research in the recent years, with respect to concerns arising from the storage of nuclear waste. In the civil nuclear industry, storing for a long time nuclear wastes requires safety evaluations in order to test the durability of the materials involved. Among these materials, concrete and clays are a complex heterogeneous material that traps important quantities of interstitial water. Irradiation that arises from the nuclear wastes stored in these materials may lead to the radiolysis of the interstitial water, and the formation of radiolytic products, such as H 2 , O 2 or H 2 O 2 that may cause the breaking or the corrosion of the confining matrix. This communication will describe the possible impacts of confinement on the radiolysis of water. We will especially discuss the current knowledge about the evolution of radiolytic yields of primary species (hydroxyl radical, dihydrogen, aqueous electron) as a function of the degree of confinement and of the nature of the confining material. SEM picture of a nano-porous gold sample used to study the radiolysis of confined water The yield enhancement observed in many cases revealed original energy and charge transfer phenomena that we tried to decipher. (authors)

  17. Porous Na2O-B2O3-Nd2O3 material

    Energy Technology Data Exchange (ETDEWEB)

    De Villiers, D R; Res, M A; Richter, P W

    1986-12-01

    Substitution of SiO2 by Nd2O3 in the sodium borosilicate system produced glasses containing up to 50 mass% Nd2O3. Sodium borate was leached out of some of the materials to produce either a porous Nd2O3-rich glass or a porous glass-ceramic containing NdBO3, depending on the starting material. Surface areas of up to 190 mS g- were measured. Powder X-ray diffraction (XRD) revealed the NdBO3 to be the high-temperature form with low symmetry.

  18. High-Throughput Characterization of Porous Materials Using Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihan; Martin, Richard L.; Rübel, Oliver; Haranczyk, Maciej; Smit, Berend

    2012-05-08

    We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH$_{4}$ and CO$_{2}$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.

  19. Meso-scale modelling of the heat conductivity effect on the shock response of a porous material

    Science.gov (United States)

    Resnyansky, A. D.

    2017-06-01

    Understanding of deformation mechanisms of porous materials under shock compression is important for tailoring material properties at the shock manufacturing of advanced materials from substrate powders and for studying the response of porous materials under shock loading. Numerical set-up of the present work considers a set of solid particles separated by air representing a volume of porous material. Condensed material in the meso-scale set-up is simulated with a viscoelastic rate sensitive material model with heat conduction formulated from the principles of irreversible thermodynamics. The model is implemented in the CTH shock physics code. The meso-scale CTH simulation of the shock loading of the representative volume reveals the mechanism of pore collapse and shows in detail the transition from a high porosity case typical for abnormal Hugoniot response to a moderate porosity case typical for conventional Hugoniot response. Results of the analysis agree with previous analytical considerations and support hypotheses used in the two-phase approach.

  20. Modelling critical degrees of saturation of porous building materials subjected to freezing

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1996-01-01

    of SCR based on fracture mechanics and phase geometry of two-phase materials has been developed.The degradation is modelled as being caused by different eigenstrains of the pore phase and the solid phase when freezing, leading to stress concentrations and crack propagation. Simplifications are made......Frost resistance of porous materials can be characterized by the critical degree of saturation, SCR, and the actual degree of saturation, SACT. An experimental determination of SCR is very laborious and therefore only seldom used when testing frost resistance. A theoretical model for prediction...... to describe the development of stresses and the pore structure, because a mathematical description of the physical theories explaining the process of freezing of water in porous materials is lacking.Calculations are based on porosity, modulus of elasticity and tensile strength, and parameters characterizing...

  1. Numerical modelling of porous cement-based materials by superabsorbent polymers

    DEFF Research Database (Denmark)

    Viejo, Ismael; Esteves, Luis Pedro; Laspalas, Manuel

    2016-01-01

    The development of new cementitious materials raises new challenges with regard to structural design. One of the potential applications of superabsorbent polymers (SAP) is to deliver well-defined porosity to cement systems. This is particularly interesting for the development of porous cement...

  2. A fast random walk algorithm for computing diffusion-weighted NMR signals in multi-scale porous media: A feasibility study for a Menger sponge

    International Nuclear Information System (INIS)

    Grebenkov, Denis S.; Nguyen, Hang T.; Li, Jing-Rebecca

    2013-01-01

    A fast random walk (FRW) algorithm is adapted to compute diffusion-weighted NMR signals in a Menger sponge which is formed by multiple channels of broadly distributed sizes and often considered as a model for soils and porous materials. The self-similar structure of a Menger sponge allows for rapid simulations that were not feasible by other numerical techniques. The role of multiple length scales on diffusion-weighted NMR signals is investigated. (authors)

  3. Porous organic cages

    Science.gov (United States)

    Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.

    2009-12-01

    Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.

  4. THE STRUCTURE ANALYTICAL RESEARCH OF POROUS PERMEABLE WIRE MATERIAL (in Russian

    Directory of Open Access Journals (Sweden)

    Andrzej JAKUBOWSKI

    2016-04-01

    Full Text Available The details of making technology of porous permeable material with use of wire are allowed to carry out the analytical research of structure and structural characteristics of wire winding body. Its permit for prognostication the final proper-ties of material, that is produced by the following deformation treatment (diameter reduction. Due to the regular orga-nized arrangement of wire, the coil of winding body is considered as a multispan continuous beam, but a contact of coils – as interaction of two cylinders. Possibility of exactly calculation of the contacts between coils is allowed to go over the single fragment displacements into deformation of whole winding body. During research of deformation processes in regards of winding body geometry and used wire mechanical properties, the structural characteristics of porous permea-ble wire material are expected. The optimal number of winding layers, eliminating the distortion of organized final struc-ture, is established. The material pressure–compactness relation is obtained in order to control the technological condi-tions of winding and drafting for guarantee the product required properties.

  5. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  6. Acoustics of multiscale sorptive porous materials

    Science.gov (United States)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  7. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  8. Metal-Matrix Composites and Porous Materials: Constitute Models, Microstructure Evolution and Applications

    National Research Council Canada - National Science Library

    Castafieda, P

    2000-01-01

    Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...

  9. Salinization effects on the water sorption of porous building materials

    NARCIS (Netherlands)

    Brocken, H.J.P.; Rook, W.; Adan, O.C.G.

    1999-01-01

    The interaction of salt transport and moisture transport plays a crucial role in some deterioration mechanisms of porous building materials. For this reason it has been an important research subject for mant' years. Yet most research was still complicated by the lack of experimental techniques

  10. Ceramic porous material and method of making same

    Science.gov (United States)

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  11. Permeability of model porous medium formed by random discs

    Science.gov (United States)

    Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.

    2018-03-01

    Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.

  12. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    Science.gov (United States)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  13. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Barpaga, Dushyant [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zheng, Jian [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Sabale, Sandip [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Patel, Rajankumar L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; McGrail, B. Peter [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Motkuri, Radha Kishan [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which led to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.

  14. Design, preparation, and application of ordered porous polymer materials

    International Nuclear Information System (INIS)

    Liu, Qingquan; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua; Shen, Shaohua; Duan, Yinxiang

    2014-01-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template

  15. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A

    2018-03-01

    In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  17. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  18. Effect of particle size distribution on permeability in the randomly packed porous media

    Science.gov (United States)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  19. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  20. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    International Nuclear Information System (INIS)

    Luca, V.

    2013-01-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  1. The micro and meso-porous materials. Characterization; Les materiaux micro et mesoporeux. Caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Starzyk, F.

    2004-10-01

    The micro and meso-porous materials, called zeolites, are very important in the modern chemical industry and in petrochemistry. This book deals in particular with the study and the characterization of zeolites. Its aim is to give to generalist chemists the tools for approaching experimentally these particular materials. The main methods of study and characterization are gathered in eight chapters, and the authors stress on the specificities due to the porous system: -structural analysis by the diffraction methods; -infrared spectroscopy; -NMR; -micro-calorimetry; -adsorption thermodynamics; -methods using the programed temperature; -modeling; -reactivity: kinetics and chemical engineering. This book appeals to students, engineers or searchers, without previous knowledge on these materials, but having a bachelor's degree or a master degree in general chemistry. (O.M.)

  2. Multiscale modelling for better hygrothermal prediction of porous building materials

    Directory of Open Access Journals (Sweden)

    Belarbi Rafik

    2018-01-01

    Full Text Available The aim of this work is to understand the influence of the microstructuralgeometric parameters of porous building materials on the mechanisms of coupled heat, air and moisture transfers, in order to predict behavior of the building to control and improve it in its durability. For this a multi-scale approach is implemented. It consists of mastering the dominant physical phenomena and their interactions on the microscopic scale. Followed by a dual-scale modelling, microscopic-macroscopic, of coupled heat, air and moisture transfers that takes into account the intrinsic properties and microstructural topology of the material using X-ray tomography combined with the correlation of 3D images were undertaken. In fact, the hygromorphicbehavior under hydric solicitations was considered. In this context, a model of coupled heat, air and moisture transfer in porous building materials was developed using the periodic homogenization technique. These informations were subsequently implemented in a dynamic computation simulation that model the hygrothermalbehaviourof material at the scale of the envelopes and indoor air quality of building. Results reveals that is essential to consider the local behaviors of materials, but also to be able to measure and quantify the evolution of its properties on a macroscopic scale from the youngest age of the material. In addition, comparisons between experimental and numerical temperature and relative humidity profilesin multilayers wall and in building envelopes were undertaken. Good agreements were observed.

  3. Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms

    Czech Academy of Sciences Publication Activity Database

    Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016

  4. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  5. Preparation of steel slag porous sound-absorbing material using coal powder as pore former.

    Science.gov (United States)

    Sun, Peng; Guo, Zhancheng

    2015-10-01

    The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50% (wt.%), percentage of coal powder of 30% (wt.%), sintering temperature of 1130°C, and sintering time of 6.0hr, which were determined by analyzing the properties of the sound-absorbing material. Copyright © 2015. Published by Elsevier B.V.

  6. Computer design of porous active materials at different dimensional scales

    Science.gov (United States)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  7. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  8. METHOD OF IMPREGNATING A POROUS MATERIAL

    Science.gov (United States)

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  9. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  10. Effect of Pressing Parameters on the Structure of Porous Materials Based on Cobalt and Nickel Powders

    Science.gov (United States)

    Shustov, V. S.; Rubtsov, N. M.; Alymov, M. I.; Ankudinov, A. B.; Evstratov, E. V.; Zelensky, V. A.

    2018-03-01

    Porous materials with a bulk porosity of more than 68% were synthesized by powder metallurgy methods from a cobalt-nickel mixture. The effect of the ratio of nickel and cobalt powders used in the synthesis of this porous material (including cases when either nickel or cobalt alone was applied) and the conditions of their compaction on structural parameters, such as open and closed porosities and pose size, was established.

  11. Pore-Scale Simulation for Predicting Material Transport Through Porous Media

    International Nuclear Information System (INIS)

    Goichi Itoh; Jinya Nakamura; Koji Kono; Tadashi Watanabe; Hirotada Ohashi; Yu Chen; Shinya Nagasaki

    2002-01-01

    Microscopic models of real-coded lattice gas automata (RLG) method with a special boundary condition and lattice Boltzmann method (LBM) are developed for simulating three-dimensional fluid dynamics in complex geometry. Those models enable us to simulate pore-scale fluid dynamics that is an essential part for predicting material transport in porous media precisely. For large-scale simulation of porous media with high resolution, the RLG and LBM programs are designed for parallel computation. Simulation results of porous media flow by the LBM with different pressure gradient conditions show quantitative agreements with macroscopic relations of Darcy's law and Kozeny-Carman equation. As for the efficiency of parallel computing, a standard parallel computation by using MPI (Message Passing Interface) is compared with the hybrid parallel computation of MPI-node parallel technique. The benchmark tests conclude that in case of using large number of computing node, the parallel performance declines due to increase of data communication between nodes and the hybrid parallel computation totally shows better performance in comparison with the standard parallel computation. (authors)

  12. Hysteretic capillary condensation in a porous material

    International Nuclear Information System (INIS)

    Lilly, M.P.; Hallock, R.B.

    1995-01-01

    The authors report on the behavior of hysteresis subloops in the capillary condensation of 4 He in the porous material Nuclepore. For hysteretic systems composed of many independent elements, the Preisach model may be used to predict the behavior of the resulting hysteresis. One prediction is that subloops with common chemical potential endpoints will be congruent. The observations of such subloops show that the prediction of congruence fails for this capillary condensation system. To understand deviations from Preisach behavior the authors modify the model to account for intersections among the pores. The modified model is in close agreement with the experimental results

  13. Molecular simulation strategy for mechanical modeling of amorphous/porous low-dielectric constant materials

    NARCIS (Netherlands)

    Yuan, C.A.; Sluis, van der O.; Zhang, G.Q.; Ernst, L.J.; Driel, van W.D.; Flower, A.E.; Silfhout, van R.B.R.

    2008-01-01

    We propose an amorphous/porous molecular connection network generation algorithm for simulating the material stiffness of a low-k material (SiOC:H). Based on a given concentration of the basic building blocks, this algorithm will generate an approximate and large amorphous network. The molecular

  14. Contribution to research on the elastic and elastoplastic behavior of porous materials

    International Nuclear Information System (INIS)

    Frappier, J.-C.

    1979-11-01

    This three-part study concerns the mechanical behavior of porous materials. Part one, a bibliographical survey on the mechanical properties of porous materials, deals in turn with the following subjects: elastic properties, elasto-plastic boundary, plastic flow laws, fracture behavior and characterization methods. Part two is devoted to elastic behavior, giving the results of an experimental study on the elastic properties of a sintered nickel within a wide porosity range (5% to 55%) and establishing a theoretical law for the prediction of such characteristics; apart from the total porosity fraction and the elastic properties of the matrix this law can integrate parameters which represent the morphology of the material and may be determined empirically or by a modelisation, also proposed, of the structure of the material. Part three describes elastoplastic, behavior and includes experimental results obtained on sintered nickel in cases of simple mechanical stress, the demonstration - based on energy considerations of a theoretical plasticity criterion accounting for the substance, a theoretical definition of the plastic Poisson's ratio and the establishment of flow laws associated with this criterion [fr

  15. Interaction of a high-power laser pulse with supercritical-density porous materials

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Rozanov, Vladislav B; Caruso, A; Strangio, C

    2000-01-01

    The properties of a nonequilibrium plasma produced by high-power laser pulses with intensities I L ∼ 10 14 -10 15 W cm -2 irradiating plane targets made of a porous material are investigated. The mean density of matter in targets was substantially higher than the critical plasma density corresponding to a plasma resonance. The density of porous material was ρ a ∼ 1 - 20 mg cm -3 , whereas the critical density at the wavelength of incident radiation was ρ cr ∼ 3 mg cm -3 . An anomalously high absorption (no less than 80%) of laser radiation inside a target was observed. Within the first 3 - 4 ns of interaction, the plasma flow through the irradiated target surface in the direction opposite of the direction of the laser beam was noticeably suppressed. Only about 5% of absorbed laser energy was transformed into the energy of particles in this flow during the laser pulse. Absorbed energy was stored as the internal plasma energy at this stage (the greenhouse effect). Then, this energy was transformed, similar to a strong explosion, into the energy of a powerful hydrodynamic flow of matter surrounding the absorption region. The specific features of the formation and evolution of a nonequilibrium laser-produced plasma in porous media are theoretically analysed. This study allows the results of experiments to be explained. In particular, we investigated absorption of laser radiation in the bulk of a target, volume evaporation of porous material, the expansion of a laser-produced plasma inside the pores, stochastic collisions of plasma flows, and hydrothermal energy dissipation. These processes give rise to long-lived oscillations of plasma density and lead to the formation of an internal region where laser radiation is absorbed. (invited paper)

  16. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.; Odedairo, T.; Balasamy, R. J.

    2012-01-01

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro

  17. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    Science.gov (United States)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  18. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-01-01

    Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.

  19. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    Science.gov (United States)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  20. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  1. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  2. PuMA: the Porous Microstructure Analysis software

    Science.gov (United States)

    Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.

    2018-01-01

    The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.

  3. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  4. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    Science.gov (United States)

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  5. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  6. Dual-energy X-ray absorptiometry for the simultaneous determination of Density and Moisture Content in Porous Structural Materials

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Signe Kamp; Gerward, Leif

    1999-01-01

    The paper describes the dual-energy x-ray equipment, which consists of a x-ray source, filters and a detector. The x-ray beam can be moved automatically in two dimensions relative to a fixed specimen. The purpose of the equipment is to measure simultaneously the density and moisture content...... in porous materials relevant for the building industry. The theory of dual-energy x-ray absorptiometry (DEXA) is presented. DEXA results on two combinations of aluminium and acrylic plastic are compared with corresponding values calculated from the geometry of the experimental setup. The results from the x......-ray measurements show good agreement with results from the two standard materials which imitate water in a porous material. On this background the dual-energy x-ray absorptiometry measurement principle can be used on porous structural materials....

  7. Porous Polyethylene Coated with Functionalized Hydroxyapatite Particles as a Bone Reconstruction Material

    Directory of Open Access Journals (Sweden)

    H. Fouad

    2018-03-01

    Full Text Available In this study, porous polyethylene scaffolds were examined as bone substitutes in vitro and in vivo in critical-sized calvarial bone defects in transgenic Sprague-Dawley rats. A microscopic examination revealed that the pores appeared to be interconnected across the material, making them suitable for cell growth. The creep recovery behavior of porous polyethylene at different loads indicated that the creep strain had two main portions. In both portions, strain increased with increased applied load and temperature. In terms of the thermographic behavior of the material, remarkable changes in melting temperature and heat fusion were revealed with increased the heating rates. The tensile strength results showed that the material was sensitive to the strain rate and that there was adequate mechanical strength to support cell growth. The in vitro cell culture results showed that human bone marrow mesenchymal stem cells attached to the porous polyethylene scaffold. Calcium sulfate–hydroxyapatite (CS–HA coating of the scaffold not only improved attachment but also increased the proliferation of human bone marrow mesenchymal stem cells. In vivo, histological analysis showed that the study groups had active bone remodeling at the border of the defect. Bone regeneration at the border was also evident, which confirmed that the polyethylene acted as an osteoconductive bone graft. Furthermore, bone formation inside the pores of the coated polyethylene was also noted, which would enhance the process of osteointegration.

  8. Carbon Nanotube Templated Microfabrication of Porous Silicon-Carbon Materials

    Science.gov (United States)

    Song, Jun; Jensen, David; Dadson, Andrew; Vail, Michael; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2010-10-01

    Carbon nanotube templated microfabrication (CNT-M) of porous materials is demonstrated. Partial chemical infiltration of three dimensional carbon nanotube structures with silicon resulted in a mechanically robust material, precisely structured from the 10 nm scale to the 100 micron scale. Nanoscale dimensions are determined by the diameter and spacing of the resulting silicon/carbon nanotubes while the microscale dimensions are controlled by lithographic patterning of the CNT growth catalyst. We demonstrate the utility of this hierarchical structuring approach by using CNT-M to fabricate thin layer chromatography (TLC) separations media with precise microscale channels for fluid flow control and nanoscale porosity for high analyte capacity.

  9. Effective diffusion coefficients of 3H2O in several porous materials

    International Nuclear Information System (INIS)

    Terashima, Yutaka; Kumaki, Toru.

    1976-01-01

    Diffusion coefficients of radionuclides in some porous structural materials and porous components of earth stratum are important as the basis for the safety evaluation of the storage and disposal of radioactive wastes. In our previous works, the method of analysis and experiment using a permeative type diffusion cell for measurement of effective diffusion coefficient was established, and experimental results were reported. In this paper, effective diffusion coefficients of 3 H 2 O in mortar, concrete, brick, clay layer, and sand layer were measured, and characteristics of these pore structure were discussed on the basis of tourtusity factor. (auth.)

  10. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...

  11. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed; Guillerm, Vincent; Weselinski, Lukasz Jan; Alkordi, Mohamed H.; Mohideen, Mohamed Infas Haja; Belmabkhout, Youssef

    2015-01-01

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  12. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  13. Mechanical Properties of Ti-6Al-4V Octahedral Porous Material Unit Formed by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Jianfeng Sun

    2012-01-01

    Full Text Available The Ti-6Al-4V octahedral porous material unit is designed to calculate its load. In this paper, ANSYS is adopted for the load simulation of the unit. And a simplified model of dimensional theoretical calculation is established, by which the analytical equation of the fracture load is obtained and the calculation of the load of Ti-6Al-4V is completed. Moreover, selective laser melting is adopted in processing the Ti-6Al-4V porous material unit. The experimental value of fracture load of this material is obtained through compression experiment. The results show that the simulation curves approximate the variation tendency of the elastic deformation of the compression curves; the curves of theoretical calculation approximate the general variation tendency; and the experimental value of fracture load is very close to the theoretical value. Therefore, the theoretical prediction accuracy of fracture load is high, which lays the foundation for the mechanical properties of the octahedral porous material.

  14. Porous graphene for high capacity lithium ion battery anode material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yusheng, E-mail: xxwysheng@163.com [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Qiaoli; Jia, Min; Yang, Dapeng [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Wang, Jianjun; Li, Meng [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Zhang, Jing [College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 (China); Sun, Qiang [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Jia, Yu, E-mail: jiayu@zzu.edu.cn [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-02-15

    Graphical abstract: - Highlights: • Porous graphene sheet as Li storage media. • Excellent mobility both along in-plane and out-plane directions. • The interactions can be easily tuned by an applied strain. - Abstract: Based on density functional theory calculations, we studied the Li dispersed on porous graphene (PG) for its application as Li ion battery anode material. The hybridization of Li atoms and the carbon atoms enhanced the interaction between Li atoms and the PG. With holes of specific size, the PG can provide excellent mobility with moderate barriers of 0.37–0.39 eV. The highest Li storage composite can be LiC{sub 0.75}H{sub 0.38} which corresponds to a specific capacity of 2857.7 mA h/g. Both specific capacity and binding energy are significantly larger than the corresponding value of graphite, this makes PG a promising candidate for the anode material in battery applications. The interactions between the Li atoms and PG can be easily tuned by an applied strain. Under biaxial strain of 16%, the binding energy of Li to PG is increased by 17% compared to its unstrained state.

  15. Material transport through porous media: a finite-element Galerkin model

    International Nuclear Information System (INIS)

    Duguid, J.O.; Reeves, M.

    1976-03-01

    A two-dimensional transient model for flow of a dissolved constituent through porous media has been developed. Mechanisms for advective transport, hydrodynamic dispersion, chemical absorption, and radioactive decay are included in the mathematical formulation. Implementations of quadrilateral finite elements, bilinear spatial interpolation, and Gaussian elimination are used in the numerical formulation. The programming language FORTRAN IV is used exclusively in the computer implementation. A listing of the program is included. This material-transport model is completely compatible with our moisture-transport model (Reeves and Duguid, 1975) for predicting advective Darcy velocities for porous media which may be partly unsaturated. In addition to a description of the mathematical formulation, the numerical treatment and the computer implementation results of two computer simulations are included in this document. One is a comparison with a well-known analytical treatment (Lapidus and Amundson, 1952) and is intended as a partial validation. The other simulation, a seepage-pond problem, is a more realistic demonstration of the capabilities of the computer model. Complete listings of input and output are given in the appendices so that this simulation may be used for check-out purposes. A comprehensive description of the material-transport computer model is given

  16. Impact of physicochemical properties of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond on drug loading and release behavior

    Science.gov (United States)

    Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras

    2017-02-01

    The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.

  17. Pore structure, mechanical properties and polymer characteristics of porous materials impregnated with methylmethacrylate

    International Nuclear Information System (INIS)

    Hastrup, K.

    1976-05-01

    The pore structure of porous materials plays a decisive role with regard to many properties of the materials. One therefore expects property improvement due to impregnation to be mostly brought about as a result of pore structure modification. This supposition formed the basis for the project here presented, which had the main aim of investigating polymer impregnation in relation to pore structure. Objectives were: 1) to examine the pore structure of hardened cement paste, beech wood and porous glass before and after gas-phase impregnation with methyl-methacrylate monomer and in situ polymerization, 2) to investigate the influence of the pore structure on the molecular weight of the polymer, 3) to investigate the influence of the degree of pore filling on the elastic modulus, damping coefficient and bending strength. (author)

  18. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    Science.gov (United States)

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    Science.gov (United States)

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simulation of uncompressible fluid flow through a porous media

    International Nuclear Information System (INIS)

    Ramirez, A.; Gonzalez, J.L.; Carrillo, F.; Lopez, S.

    2009-01-01

    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  1. A fast random walk algorithm for computing the pulsed-gradient spin-echo signal in multiscale porous media.

    Science.gov (United States)

    Grebenkov, Denis S

    2011-02-01

    A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  3. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  4. Influence of corn flour as pore forming agent on porous ceramic material based mullite: Morphology and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ayala-Landeros J.G.

    2016-01-01

    Full Text Available Porous material was processed by the mixing, molding and pressing the ceramic material, afterward burnout and sintering; through the forming porous, using corn flour at different concentration (10, 15 and 20 wt.% as a pore forming agent; in order to determinate the influence of porous on the mechanical, morphological and structural properties. The effect of the volume fraction of corn flour in the mullite matrix, at various sintering temperature from 1100, 1200, 1300 and 1500°C were tested by Diffraction X ray, showing changes in crystalline phases of mullite (3Al2O3-2SiO2, as result of sintered temperatures. Presence of talcum powder in formula, also cause the formation of the cordierite and cristobalite crystalline phases, giving stability and adhesion to the structure of ceramic material. When sintering at temperatures between 1300 to 1500°C, and it was used the concentration of corn flour 15-20 wt.% as forming agent porous, it was found the better mechanical properties. The scanning electron microscopy analysis shows the presence of open porosity and anisotropy.

  5. In silico design of porous polymer networks: high-throughput screening for methane storage materials.

    Science.gov (United States)

    Martin, Richard L; Simon, Cory M; Smit, Berend; Haranczyk, Maciej

    2014-04-02

    Porous polymer networks (PPNs) are a class of advanced porous materials that combine the advantages of cheap and stable polymers with the high surface areas and tunable chemistry of metal-organic frameworks. They are of particular interest for gas separation or storage applications, for instance, as methane adsorbents for a vehicular natural gas tank or other portable applications. PPNs are self-assembled from distinct building units; here, we utilize commercially available chemical fragments and two experimentally known synthetic routes to design in silico a large database of synthetically realistic PPN materials. All structures from our database of 18,000 materials have been relaxed with semiempirical electronic structure methods and characterized with Grand-canonical Monte Carlo simulations for methane uptake and deliverable (working) capacity. A number of novel structure-property relationships that govern methane storage performance were identified. The relationships are translated into experimental guidelines to realize the ideal PPN structure. We found that cooperative methane-methane attractions were present in all of the best-performing materials, highlighting the importance of guest interaction in the design of optimal materials for methane storage.

  6. THE COMPLEX USE OF LOCAL TYPES OF FUEL IN THE POROUS CONSTRUCTION MATERIALS PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. P. Voronova

    2014-01-01

    Full Text Available The article presents a comprehensive low-waste technology is the use of local fuels, which can be used in the technology of some porous building materials. Also provides new methods of preparation of porous building materials based on aggloporite using local fuels and waste energy on the basis of milled peat, fuel briquettes and wood chips allow to replace expensive imported components that comprise the raw mixtures (coal, anthracite.On the basis of mathematical modeling of cooling in reheat furnaces pusher drive developed a method of engineering calculation mode batch hardening in agglomeration. Submitted constructive solution for the development of the cooling charge with thermophysical rational justification cooling modes. A study of the temperature distribution within the charge depending on the different speeds of the belt sintering machine, and hence on the cooling time.The characteristics of the raw material deposits "Fanipol" and the optimal composition of the charge which includes loam, coal, milled peat. In industrial research obtained aggloporite this formulation has shown positive results in strength and density. Established that by decreasing the particle size of the fuel increases the redox potential of the combustion products, which reduces the height of the oxidizing zone and the speed of the sintering raw mix. These processes increase the productivity of sinter machine.Technology is implemented on the "Minsk factory of building materials". The tests analyzed production technology porous construction materials using milled peat with the addition of sawdust. The study results recommend further use of sapropel, which cost significantly lower raw material mixture of submissions and in their physical and mechanical properties much closer to the properties of milled peat.

  7. A porous carbon material from pyrolysis of fructus cannabis’s shells for supercapacitor electrode application

    Science.gov (United States)

    Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin

    2018-02-01

    The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.

  8. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

    Directory of Open Access Journals (Sweden)

    Tzia Ming Onn

    2018-03-01

    Full Text Available Atomic layer deposition (ALD offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

  9. Preparation and Gas Adsorption of Porous Materials from Molecular Precursors

    DEFF Research Database (Denmark)

    Hu, Xinming

    with bimodal porosity are produced via cyclotrimerization of two aromatic tetranitriles and in situ carbonization in molten ZnCl2. The carbonization occurs by decomposition of triazine rings, which results in complete loss of nitrogen and formation of substantial mesopores. The resulting materials possess...... surface areas above 1200 m2 g−1 and exhibit exceptionally high H2 uptake (up to 2.34 wt% at 77 K and 1 bar) but low CO2 uptake capacity. In Chapter 4, a nitrogen-rich porous carbon is prepared via cyclotrimerization of a perfluorinated aromatic nitrile and in situ carbonization in molten ZnCl2......), and H2 (2.0 wt%, 77 K and 1.0 bar). Chapters 5, 6, and 7 deal with the construction of triazatriangulenium (TATA)-based ionic porous frameworks. A variety of polycondensation reactions have been applied, but only FeCl3-promoted oxidative polymerization of thiophene-/carbazolefunctionalized TATAs...

  10. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...

  11. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor

    Science.gov (United States)

    Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui

    2017-09-01

    Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.

  12. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  13. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  14. Improvements in or relating to method of preparing porous material/synthetic polymer composites

    International Nuclear Information System (INIS)

    Hills, P.R.; McGahan, D.J.

    1976-01-01

    Monomers in a porous natural material, e.g. cellulose fibre, wood, are polymerized with gamma radiation. Addition of a chlorinated hydrocarbon to the monomer improves fire resistance, brittleness and friction coefficient and reduces the radiation dose required for polymerization. (U.K.)

  15. INVESTIGATION OF HEAT CONDUCTION AND SPECIFIC ELECTRIC IMPEDANCE OF POROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    E. S. Golubtsova

    2004-01-01

    Full Text Available In this article there was investigated the influence of porosity and temperature change on heat condition and electrical resistance of porous iron (PZh4M nickel and steel 14X17H2. There are received the adequate equations of regression, establishing connection between heat conduction and electrical resistance of the investigated materials with their porosity and temperature.

  16. Simulation of uncompressible fluid flow through a porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)

    2009-02-28

    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  17. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  18. Random walk-percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation

    Science.gov (United States)

    Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Ghaedi, Mojtaba

    2014-07-01

    Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The method is applied to a well-defined model reservoir in which the breakthrough time distributions are estimated. The results of this method and the conventional simulation are then compared. The effect of the net to gross ratio on the breakthrough time distribution is studied in terms of Shannon entropy. Use of the entropy plot allows one to assign the appropriate net to gross ratio to any porous medium.

  19. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  20. An improved electrokinetic method to consolidate porous materials

    DEFF Research Database (Denmark)

    Feijoo, Jorge; Ottosen, Lisbeth M.; Nóvoa, X. R.

    2017-01-01

    the consolidation using commercial products have some limitations, such as: (1) low penetrability; (2) no chemical and mineralogical affinity with the material to treat and (3) release of toxic compounds (VOCs), during the solvent evaporation. In the last years, a new consolidation method based on electrokinetic...... the pH of the solutions in contact with the porous material, which can damage it and (2) it is difficult to determine in which area the consolidation takes place. In this study an electrokinetic consolidation method, which has two steps between which the current is reversed, is proposed to solve all...... techniques was developed. This method allows filling some pores by the precipitation of an inorganic compound. As a result the method allows increasing the penetration depth of current consolidation treatments. However, this method needs to be improved since: (1) no special care is taking in controlling...

  1. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  2. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  3. MINIMUM SOLID AREA MODELS FOR THE EFFECTIVE PROPERTIES OF POROUS MATERIALS - A REFUTATION

    Directory of Open Access Journals (Sweden)

    Willi Pabst

    2015-09-01

    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  4. Small angle scattering methods to study porous materials under high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Sylvie, E-mail: sylvie.le-floch@univ-lyon1.fr; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)

    2015-02-15

    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  5. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene

    KAUST Repository

    Cui, X.; Chen, K.; Xing, H.; Yang, Q.; Krishna, R.; Bao, Z.; Wu, H.; Zhou, W.; Dong, Xinglong; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B.

    2016-01-01

    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination

  6. Frost induced damages within porous materials - from concrete technology to fuel cells technique

    Science.gov (United States)

    Palecki, Susanne; Gorelkov, Stanislav; Wartmann, Jens; Heinzel, Angelika

    2017-12-01

    Porous media like concrete or layers of membrane electrode assemblies (MEA) within fuel cells are affected by a cyclic frost exposure due to different damage mechanisms which could lead to essential degradation of the material. In general, frost damages can only occur in case of a specific material moisture content. In fuel cells, residual water is generally available after shut down inside the membrane i.e. the gas diffusion layer (GDL). During subsequent freezing, this could cause various damage phenomena such as frost heaves and delamination effects of the membrane electrode assembly, which depends on the location of pore water and on the pore structure itself. Porous materials possess a pore structure that could range over several orders of magnitudes with different properties and freezing behaviour of the pore water. Latter can be divided into macroscopic, structured and pre-structured water, influenced by surface interactions. Therefore below 0 °C different water modifications can coexist in a wide temperature range, so that during frost exposure a high amount of unfrozen and moveable water inside the pore system is still available. This induces transport mechanisms and shrinkage effects. The physical basics are similar for porous media. While the freezing behaviour of concrete has been studied over decades of years, in order to enhance the durability, the know-how about the influence of a frost attack on fuel cell systems is not fully understood to date. On the basis of frost damage models for concrete structures, an approach to describe the impact of cyclic freezing and thawing on membrane electrode assemblies has been developed within this research work. Major aim is beyond a better understanding of the frost induced mechanisms, the standardization of a suitable test procedure for the assessment of different MEA materials under such kind of attack. Within this contribution first results will be introduced.

  7. Porous ceramics out of oxides

    International Nuclear Information System (INIS)

    Bakunov, V.S.; Balkevich, V.L.; Vlasov, A.S.; Guzman, I.Ya.; Lukin, E.S.; Poluboyarinov, D.N.; Poliskij, R.Ya.

    1977-01-01

    A review is made of manufacturing procedures and properties of oxide ceramics intended for high-temperature thermal insulation and thermal protection applications. Presented are structural characteristics of porous oxide refractories and their properties. Strength and thermal conductivity was shown to depend upon porosity. Described is a procedure for manufacturing porous ceramic materials from aluminium oxide, zirconium dioxide, magnesium oxide, beryllium oxide. The thermal resistance of porous ceramics from BeO is considerably greater than that of other high-refractoriness oxides. Listed are areas of application for porous materials based on oxides

  8. System level permeability modeling of porous hydrogen storage materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  9. Facile Fabrication of 3D Hierarchically Porous Carbon Foam as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Yunfang Gao

    2018-04-01

    Full Text Available A hierarchically porous 3D starch-derived carbon foam (SCF with a high specific surface area (up to 1693 m2·g−1 was first prepared by a facile solvothermal treatment, in which Na2CO3 is used as both the template and activating agent. The hierarchically porous structure and high specific area endow the SCF with favorable electrochemical properties such as a high specific capacitance of 179.6 F·g−1 at 0.5 A·g−1 and a great rate capability and cycling stability, which suggest that the material can be a promising candidate for energy storage applications.

  10. Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries

    International Nuclear Information System (INIS)

    Lai, Yanqing; Chen, Wei; Zhang, Zhian; Qu, Yaohui; Gan, Yongqing; Li, Jie

    2016-01-01

    Graphical abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene are prepaed by a one-step carbonization process, with MOF as the structure-directing agent. The method provides a simple and scalable route for preparing 3-D porous graphene materials.The as-prepared material possesses an excellent bi-functional electrocatalytic activity. While applied as the cathode materials of Li–O 2 batteries, the cell exihibits high capacity and considerable rate capability. - Highlights: • A facile simple strategy is employed to in-situ fabricate Fe/Fe 3 C decorated 3-D porous nitrogen-doped graphene. • MIL-100(Fe), a kind of metal-organic framework, is proved playing a structure-directing role in this advanced synthesis route. • This material possesses excellent bi-functional electro-catalytic activity for ORR and OER and shows good electrochemical performance while used as cathode material for Li–O 2 batteries. • The MOF-assisted synthesis method would be a promising new strategy for the synthesis of 3-D porous graphene materials. - Abstract: Fe/Fe 3 C decorated 3-D porous N-doped graphene (F-PNG) is designed and synthesized via a one-step carbonization route. During the process, MIL-100(Fe), a kind of metal organic frameworks (MOFs) plays a structure-directing role. It is found that F-PNG with 3-D porous structure is constituted by N-doped graphene and extremely small Fe/Fe 3 C particles uniformly distribute on the surface of graphene. This rationally designed F-PNG possesses excellent oxygen reduction reaction and oxygen evolution reaction bifunctional electrocatalytic activity. While the material is explored as a cathode of Li–O 2 batteries, it exhibits excellent electrochemical performances, delivering a discharge voltage platform of ∼2.91 V and a charge voltage platform of ∼3.52 V at 0.1 mA cm −2 , showing a good cycle performance and having a discharge capacity of ∼7150 mAh g −1 carbon+catalyst at 0.1 mA cm −2 . The excellent performance of

  11. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  12. Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xin-Jing; Zhang, Juan; Qi, Gong-Wei; Dai, Xiao-Hui; Zhou, Jun-Ping [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); Zhang, Shu-Yong, E-mail: syzhang@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); National Key Lab of Crystal, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China)

    2015-08-15

    Highlights: • Electrochemical performance of Fe{sub 3}O{sub 4} is improved by combining different approaches. • Porous Cu substrate is used to enlarge surface area and improve conductivity. • MWCNT is used to reinforce the electrode structure and change morphology of Fe{sub 3}O{sub 4}. • Reversible capacity, capacity retention and high-rate performance are improved. - Abstract: Multi-walled carbon nanotube-reinforced porous iron oxide (Fe{sub 3}O{sub 4}/MWCNT) is synthesized by a two-step approach with porous Cu substrate serving as current collector. Porous Cu substrate is prepared through electroless deposition with hydrogen bubble serving as template. Fe{sub 3}O{sub 4}/MWCNT composites are prepared by the electrodeposition of Fe{sub 3}O{sub 4} in the presence of dispersed MWCNTs from a Fe{sub 2}(SO{sub 4}){sub 3} solution with MWCNT suspension. Results showed that Fe{sub 3}O{sub 4} forms granular nanoparticles on the porous Cu substrate with several MWCNTs embedded in it. Adding MWCNTs changes the morphology of Fe{sub 3}O{sub 4}. Smooth Fe{sub 3}O{sub 4}, smooth Fe{sub 3}O{sub 4}/MWCNT, and porous Fe{sub 3}O{sub 4} composites are also prepared for comparison. When used as anode materials, porous Fe{sub 3}O{sub 4}/MWCNT composites have a reversible capacity of approximately 601 mA h g{sup −1} at the 60th cycle at a cycling rate of 100 mA g{sup −1}. This value is higher than that of the other materials. The reversible capacity at a cycling rate of 10,000 mA g{sup −1} is approximately 50% of that at 100 mA g{sup −1}. Therefore, the MWCNT-reinforced porous Fe{sub 3}O{sub 4} composite exhibits much better reversible capacity, capacity retention, and high-rate performance than the other samples. This finding can be ascribed to the porous structure of Fe{sub 3}O{sub 4}, better conductivity of porous Cu substrate and MWCNTs, and the morphology change of Fe{sub 3}O{sub 4} nanoparticles upon the addition of MWCNTs.

  13. Use of natural aluminosilicates and porous ceramic materials for the inclusion of radioactive wastes

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Shashukov, E.A.; Kuznetsov, Yu.V.; Lyubtsev, R.I.

    1979-01-01

    Data on using the porous inorganic materials, such as diatomite and shamote, for the incorporation of radioactive wastes are presented. In laboratory-scale experiments on simulated liquid wastes it has been shown that the operations of solution absorption by porous materials, drying and calcination of salts in pores, and the subsequent conversion into glassy phosphate-silicate products seem to be promising from a technological point of view. This product is characterized by a sodium leaching rate of the order of 10 -5 g/cm 2 . d and good resistance to crystallization. The content of various oxides in the wastes can attain 15 to 20 wt %. The data on the dependence of plasticity and open porosity of the clay-like products on Na 2 O, SrO, ZrO 2 , and MnO 2 content are also given. 3 figures, 3 tables

  14. Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials

    International Nuclear Information System (INIS)

    Yan, Litao; Xu, Yun; Zhou, Meng; Chen, Gen; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei; Zou, Guifu

    2015-01-01

    The controllable synthesis of strongly coupled inorganic materials/carbon nanotubes (CNTs) hybrids represents a long-standing challenge for developing advanced catalysts and energy-storage materials. Here we report a simple sol-gel method for facile synthesis of TiO 2 /CNTs hybrid. The porous anatase TiO 2 nanoparticles are uniformly coated on the CNTs conducting network, which leads to remarkably improved electrochemical performances such as exceptional cycling stability, good high rate durability, and reduced resistance. This hybrid exhibits a reversible capacity as high as 200 mA·h g −1 at a current density of 0.1 A g −1 as an anode in lithium-ion battery (LIB). As a supercapacitor (SC), it shows a specific supercapacitance of 145 F g −1 in 0.5 M H 2 SO 4 electrolyte, higher than that of the previously reported TiO 2 based supercapacitors. Moreover, this hybrid also exhibits excellent durability after 1000 cycles for both LIBs and SCs. Such superior performance and cycling durability demonstrate the reinforced synergistic effects between the porous TiO 2 and interweaved CNTs network, indicating a great application potential for such hybrid materials in high power LIBs and SCs

  15. DIFFERENTIAL ANALYSIS OF VOLUMETRIC STRAINS IN POROUS MATERIALS IN TERMS OF WATER FREEZING

    Directory of Open Access Journals (Sweden)

    Rusin Z.

    2013-06-01

    Full Text Available The paper presents the differential analysis of volumetric strain (DAVS. The method allows measurements of volumetric deformations of capillary-porous materials caused by water-ice phase change. The VSE indicator (volumetric strain effect, which under certain conditions can be interpreted as the minimum degree of phase change of water contained in the material pores, is proposed. The test results (DAVS for three materials with diversified microstructure: clinker brick, calcium-silicate brick and Portland cement mortar were compared with the test results for pore characteristics obtained with the mercury intrusion porosimetry.

  16. Scaling impact and shock-compression response for porous materials: Application to planetary formation

    Science.gov (United States)

    Jeanloz, R.

    2016-12-01

    A thermodynamic model based on the Mie-Grüneisen equation of state does a good job of describing the response of porous materials to impact, so can provide insights into the accretion and cohesion of planetesimals too small to be significantly held together by gravity (e.g., tens of km or less in average diameter). The model identifies an offset in Hugoniot pressure (ΔPH) due to porosity that is found to be in agreement with experimental shock-compression measurements for samples having a wide range of initial porosities. Assuming the Grüneisen parameter (γ) is proportional to volume (γ/V = constant), the relative offset in Hugoniot pressure as a function of initial porosity (φ = 1 - V0/V0por) and compression (η = 1 - V/V0) is ΔPH/PH = γ0 φ/[2(1 - φ) - γ0 (φ + η(1 - φ))] where subscripts 0 and por represent zero-pressure (non-porous) conditions and a porous sample, respectively. This additional thermal pressure at a given volume is due to the extra internal energy and corresponding temperature increase associated with collapsing pores (Fig. 1: near-identical curves for φ = 0.001 and 0.01). This result can be interpreted as indicating that upon collapse individual pores create hot spots with temperatures of order 103-104K above the background, suggesting that impact into an initially porous target can result in cohesion due to partial melting and vaporization. Moreover, the waste heat associated with pore closure far exceeds the dissipation in shock loading of non-porous material, reflecting the ability of a porous target to absorb and dissipate impact energy. The Mie-Grüneisen model along with analysis of waste heat thus provides a scaling for planetesimal impact that might explain how rock and regolith accrete into a gravitationally bound planet. Fig. 1. Porosity-induced anomaly in Hugoniot temperature per unit of porosity, shown as a function of compression for samples with initial porosity φ = 0.001 (green), 0.01 (blue) and 0.1 (gold) assuming

  17. Effective diffusion coefficients of /sup 3/H/sub 2/O in several porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, Y [Kyoto Univ. (Japan). Faculty of Engineering; Kumaki, T

    1976-12-01

    Diffusion coefficients of radionuclides in some porous structural materials and porous components of earth stratum are important as the basis for the safety evaluation of the storage and disposal of radioactive wastes. In our previous works, the method of analysis and experiment using a permeative type diffusion cell for measurement of effective diffusion coefficient was established, and experimental results were reported. In this paper, effective diffusion coefficients of /sup 3/H/sub 2/O in mortar, concrete, brick, clay layer, and sand layer were measured, and characteristics of these pore structure were discussed on the basis of tourtusity factor.

  18. Correlation between the Microstructure of Porous Materials and the Adsorption Properties of H2 and D2

    International Nuclear Information System (INIS)

    Krkljus, Ivana Biljana

    2011-01-01

    One of the most challenging tasks toward the full implementation of the hydrogen based economy is the reversible storage of hydrogen for portable applications. Three main approaches have been investigated to store the hydrogen, storage as a compressed gas or a liquid, or through a direct chemical bond between the hydrogen atom and the material. The alternative approach, the most recently investigated, is the storage of hydrogen at cryogenic conditions. Storage by physisorption within porous adsorbents has particular advantages of complete reversibility, the fast refueling time, the low heat evolution, and above all increased safety. The nature of interaction of hydrogen, deuterium, and gas mixtures with porous adsorbents was exploited by performing thermal desorption spectroscopy (TDS) measurements. This sensitive experimental technique gives qualitative information about the different adsorption sites, which show different desorption temperatures depending on the interaction energy. After an appropriate calibration the amount of gas desorbed may be quantified. To gain a more fundamental insight into the available adsorption sites multiple TDS spectra were recorded, corresponding to different surface coverages (in the pressure range of 1 to 700 mbar), and different heating regimes. Different kind of porous adsorbents, conventional carbon-based materials and novel Metal Organic Framework Materials (MOFs), were used to investigate the hydrogen/deuterium physisorption mechanism. For carbon materials an increase in the hydrogen interaction potential was observed for adsorbents with narrow pore size. The confined geometry, where hydrogen simultaneously interacts with all the surrounding adsorbent walls, strengthens the interaction potential with the adsorbate molecule, thus, maximizing the total van der Waals force on the adsorbate. Crystalline MOFs are a new class of porous materials assembled from discrete metal centers, which act as framework nodes, and organic

  19. Elliptic random-walk equation for suspension and tracer transport in porous media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Bedrikovetsky, P. G.

    2008-01-01

    . The new theory predicts delay of the maximum of the tracer, compared to the velocity of the flow, while its forward "tail" contains much more particles than in the solution of the classical parabolic (advection-dispersion) equation. This is in agreement with the experimental observations and predictions......We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time...... of the CTRW theory. (C) 2008 Elsevier B.V. All rights reserved....

  20. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors

    Science.gov (United States)

    Abudu, Patiman; Wang, Luxiang; Xu, Mengjiao; Jia, Dianzeng; Wang, Xingchao; Jia, Lixia

    2018-06-01

    In this work, a honeycomb-like carbon material derived from petroleum pitch was synthesized by a simple one-step carbonization/activation method using silica nanospheres as the hard templates. The obtained hierarchical porous carbon materials (HPCs) with a large specific surface area and uniform macropore distribution provide abundant active sites and sufficient ion migration channels. When used as an electrode material for supercapacitors, the HPCs exhibit a high specific capacitance of 341.0 F g-1 at 1 A g-1, excellent rate capability with a capacitance retention of 55.6% at 50 A g-1 (189.5 F g-1), and outstanding cycling performance in the three-electrode system.

  1. PRODUCTION OF POROUS POWDER MATERIALS OF SPHERICAL POWDERS OF CORROSION-RESISTANT STEEL

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevskij

    2012-01-01

    Full Text Available Production of porous powder materials from spherical powders of corrosion-resistant steel 12Х18н10Т with formation at low pressures 120–140 mpa in the mold with the subsequent activated sintering became possible due to increase of duration of process of spattering and formation of condensate particles (Si–C or (Mo–Si on surface.

  2. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  3. Porous media modeling and micro-structurally motivated material moduli determination via the micro-dilatation theory

    Science.gov (United States)

    Jeong, J.; Ramézani, H.; Sardini, P.; Kondo, D.; Ponson, L.; Siitari-Kauppi, M.

    2015-07-01

    In the present contribution, the porous material modeling and micro-structural material parameters determination are scrutinized via the micro-dilatation theory. The main goal is to take advantage of the micro-dilatation theory which belongs to the generalized continuum media. In the first stage, the thermodynamic laws are entirely revised to reach the energy balance relation using three variables, deformation, porosity change and its gradient underlying the porous media as described in the micro-dilatation theory or so-called void elasticity. Two experiments over cement mortar specimens are performed in order to highlight the material parameters related to the pore structure. The shrinkage due to CO2 carbonation, porosity and its gradient are calculated. The extracted values are verified via 14C-PMMA radiographic image method. The modeling of swelling phenomenon of Delayed Ettringite Formation (DEF) is studied later on. This issue is performed via the crystallization pressure application using the micro-dilatation theory.

  4. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naveen, A. Nirmalesh, E-mail: nirmalesh.naveen@gmail.com; Selladurai, S. [Ionics Laboratory, Department of Physics, Anna University, Chennai-600025 (India)

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  5. Synthesis of Hierarchically Porous Sandwich-Like Carbon Materials for High-Performance Supercapacitors.

    Science.gov (United States)

    Li, Yiju; Chen, Chaoji; Gao, Tingting; Zhang, Dongming; Huang, Xiaomei; Pan, Yue; Ye, Ke; Cheng, Kui; Cao, Dianxue; Wang, Guiling

    2016-11-14

    For the first time, hierarchically porous carbon materials with a sandwich-like structure are synthesized through a facile and efficient tri-template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich-like structure has a relatively high specific surface (1235 m 2  g -1 ), large pore volume (1.30 cm 3  g -1 ), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g -1 at 0.2 A g -1 and satisfying rate performance (87.7 % retention from 1 to 20 A g -1 ). More importantly, the symmetric supercapacitor with two identical as-prepared carbon samples shows a superior energy density of 18.47 Wh kg -1 at a power density of 179.9 W kg -1 . The asymmetric supercapacitor based on as-obtained carbon sample and its composite with manganese dioxide (MnO 2 ) can reach up to an energy density of 25.93 Wh kg -1 at a power density of 199.9 W kg -1 . Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei; Gehrig, Dominik; Zhang, Fan; Lu, Chenbao; Zhang, Chao; Cai, Ming; Wang, Yuanyuan; Laquai, Fré dé ric; Zhuang, Xiaodong; Feng, Xinliang

    2016-01-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  7. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei

    2016-10-11

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  8. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-01-01

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  9. Novel Techniques to Characterize Pore Size of Porous Materials

    KAUST Repository

    Alabdulghani, Ali J.

    2016-04-24

    Porous materials are implemented in several industrial applications such as water desalination, gas separation and pharmaceutical care which they are mainly governed by the pore size and the PSD. Analyzing shale reservoirs are not excluded from these applications and numerous advantages can be gained by evaluating the PSD of a given shale reservoir. Because of the limitations of the conventional characterization techniques, novel methods for characterizing the PSD have to be proposed in order to obtain better characterization results for the porous materials, in general, and shale rocks in particular. Thus, permporosimetry and evapoporometry (EP) technologies were introduced, designed and utilized for evaluating the two key parameters, pore size and pore size distribution. The pore size and PSD profiles of different shale samples from Norway and Argentina were analyzed using these technologies and then confirmed by mercury intrusion porosimeter (MIP). Norway samples showed an average pore diameter of 12.94 nm and 19.22 nm with an average diameter of 13.77 nm and 23.23 nm for Argentina samples using permporosimetry and EP respectively. Both techniques are therefore indicative of the heterogeneity of the shales. The results from permporosimetry are in good agreement with those obtained from MIP technique, but EP for most part over-estimates the average pore size. The divergence of EP results compared to permporosimetry results is referred to the fact that the latter technique measures only the active pores which is not the case with the former technique. Overall, both techniques are complementary to each other which the results from both techniques seem reasonable and reliable and provide two simple techniques to estimate the pore size and pore size distributions for shale rocks.

  10. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  11. Hierarchical porous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials for supercapacitors

    Science.gov (United States)

    Su, Aldwin D.; Zhang, Xiang; Rinaldi, Ali; Nguyen, Son T.; Liu, Huihui; Lei, Zhibin; Lu, Li; Duong, Hai M.

    2013-03-01

    Hierarchical porous carbon anode and metal oxide cathode are promising for supercapacitor with both high energy density and high power density. This Letter uses NiO and commercial carbon nanotubes (CNTs) as electrode materials for electrochemical capacitors with high energy storage capacities. Experimental results show that the specific capacitance of the electrode materials for 10%, 30% and 50% CNTs are 279, 242 and 112 F/g, respectively in an aqueous 1 M KOH electrolyte at a charge rate of 0.56 A/g. The maximum specific capacitance is 328 F/g at a charge rate of 0.33 A/g.

  12. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  13. Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhang, Zhongshen; Xing, Wei; Yu, Jing; Han, Guoxing; Si, Weijiang; Zhuo, Shuping

    2015-01-01

    Graphical abstract: N-doped hierarchical porous carbons with high rate capacitive performance are prepared by a combination method of nano-SiO 2 template/KOH activation. - Highlights: • A mass produced nano-SiO 2 is used to prepared hierarchical porous carbon. • N-doped hierarchical porous carbon materials are easily prepared. • The NHPCs materials exhibit a very high capacitance of up to 260.5 F g −1 . • The NHPC-800 sample shows very high rate capability. • Hierarchical porosity and N-doping synergistically enhances the whole capacitance. - Abstract: In this work, nitrogen-doped hierarchical porous carbon materials (NHPCs) are prepared by a two-step method combined of a hard template process and KOH-activation treatment. Low cost and large-scale commercial nano-SiO 2 are used as a hard template. The hierarchical porosity, structure and nitrogen-doped surface chemical properties are proved by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. When the prepared NHPCs materials are used as the electrode materials for supercapacitors in KOH electrolyte, they exhibit very high specific capacitance, good power capability and excellent cyclic stability. NHPC-800 carbon shows a high capacitance of 114.0 F g −1 at the current density of 40 A g −1 , responding to a high energy and power densities of 4.0 Wh kg −1 and 10 000 W kg −1 , and a very short drain time of 1.4 s. The excellent capacitive performance may be due to the synergistic effect of the hierarchical porosity, high effective surface area and heteroatom doping, resulting in both electrochemical double layer and Faradaic capacitance contributions

  14. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  15. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity].

    Science.gov (United States)

    Zhang, Yumin; Li, Baoxing; Li, Ji

    2007-02-01

    To fabricate a novel porous bioactive composite biomaterial consisting of poly lactic acid (PLA)-bone matrix gelatin (BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3 : 1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100-200 microm in diameter for the porosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblast-like MC3T3-E1 cells were cultured in the dulbecco's modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 microl of the MC3T3-E1 cell suspensions containing 2 X 10(6) cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 microg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 microg of the crushed PLA material was contained in each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis on the calcification area was performed by the staining of the alizarin red S. The co-cultured cells were harvested and lysated in 1 ml of 0. 2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. The porous PLA-BMG composite material showed a good homological porosity with a pore diameter of 50-150 microm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in

  16. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Doroszko, M., E-mail: m.doroszko@pb.edu.pl; Seweryn, A., E-mail: a.seweryn@pb.edu.pl

    2017-03-24

    Microtomographic devices have limited imaging accuracy and are often insufficient for proper mapping of small details of real objects (e.g. elements of material mesostructures). This paper describes a new method developed to compensate the effect of X-ray computed microtomography (micro-CT) inaccuracy in numerical modelling of the deformation process of porous sintered 316 L steel. The method involves modification of microtomographic images where the pore shapes are separated. The modification consists of the reconstruction of fissures and small pores omitted by micro-CT scanning due to the limited accuracy of the measuring device. It enables proper modelling of the tensile deformation process of porous materials. In addition, the proposed approach is compared to methods described in the available literature. As a result of numerical calculations, stress and strain distributions were obtained in deformed sintered 316 L steel. Based on the results, macroscopic stress-strain curves were received. Maximum principal stress distributions obtained by the proposed calculation model, indicated specific locations, where the stress reached a critical value, and fracture initiation occurred. These are bridges with small cross sections and notches in the shape of pores. Based on calculation results, the influence of the deformation mechanism of the material porous mesostructures on their properties at the macroscale is described.

  17. A new numerical modelling method for deformation behaviour of metallic porous materials using X-ray computed microtomography

    International Nuclear Information System (INIS)

    Doroszko, M.; Seweryn, A.

    2017-01-01

    Microtomographic devices have limited imaging accuracy and are often insufficient for proper mapping of small details of real objects (e.g. elements of material mesostructures). This paper describes a new method developed to compensate the effect of X-ray computed microtomography (micro-CT) inaccuracy in numerical modelling of the deformation process of porous sintered 316 L steel. The method involves modification of microtomographic images where the pore shapes are separated. The modification consists of the reconstruction of fissures and small pores omitted by micro-CT scanning due to the limited accuracy of the measuring device. It enables proper modelling of the tensile deformation process of porous materials. In addition, the proposed approach is compared to methods described in the available literature. As a result of numerical calculations, stress and strain distributions were obtained in deformed sintered 316 L steel. Based on the results, macroscopic stress-strain curves were received. Maximum principal stress distributions obtained by the proposed calculation model, indicated specific locations, where the stress reached a critical value, and fracture initiation occurred. These are bridges with small cross sections and notches in the shape of pores. Based on calculation results, the influence of the deformation mechanism of the material porous mesostructures on their properties at the macroscale is described.

  18. Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Guo, Rong; Zhao, Li; Yue, Wenbo

    2015-01-01

    As potential anode materials for lithium-ion batteries, mesoporous carbons such as CMK-3 and CMK-8 usually show stable cycling performances but only slightly higher reversible capacities than commercial graphite. Graphene has much higher theoretical capacity than that of graphite in theory. However, its electrochemical behavior is not as good as expected due to the aggregation of graphene nanosheets. Herein we describe a novel strategy for the preparation of core–shell structured porous carbon–graphene composites. Compared to pure porous carbons or pure graphene nanosheets, these novel composites exhibit superior electrochemical performances including higher reversible capacities and better cycle/rate performances. This core–shell structure can avoid the aggregation of graphene nanosheets as well as may stabilize the mesostructure of porous carbon, which is beneficial to improving the electrochemical performances of the composites

  19. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    Science.gov (United States)

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  20. Computational homogenization of sound propagation in a deformable porous material including microscopic viscous-thermal effects

    NARCIS (Netherlands)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2016-01-01

    Porous materials like acoustic foams can be used for acoustic shielding, which is important for high-tech systems and human comfort. In this paper, a homogenization model is proposed to investigate the relation between the microstructure and the resulting macroscopic acoustic properties. The

  1. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  2. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  3. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  4. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.

    Science.gov (United States)

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar

    2015-01-01

    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  6. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    Science.gov (United States)

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  7. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  8. Deep convolutional neural networks for estimating porous material parameters with ultrasound tomography

    Science.gov (United States)

    Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.

    2018-02-01

    We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.

  9. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  10. Ab initio model of porous periclase

    International Nuclear Information System (INIS)

    Drummond, Neil D.; Swift, Damian C.; Ackland, Graeme J.

    2004-01-01

    A two-phase equilibrium equation of state (EOS) for periclase (MgO) was constructed using ab initio quantum mechanics, including a rigorous calculation of quasiharmonic phonon modes. Much of the shock wave data reported for periclase is on porous material. We compared the theoretical EOS with porous data using a simple 'snowplough' treatment and also a model using finite equilibration rates suitable for continuum mechanics simulations. (This model has been applied previously to various heterogeneous explosives as well as other porous materials.) The results were consistent and matched the data well at pressures above the regime affected by strength - and ramp-wave formation - during compaction. Ab initio predictions of the response of porous material have been cited recently as a novel and advanced capability; we feel that this is a fairly routine extension to established ab initio techniques

  11. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    Science.gov (United States)

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  12. Suitability of various materials for porous filters in diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, David; Vidal, Miquel; Rigol, Anna [Univ. de Barcelona (Spain). Dept. de Quimica Analitica; Glaus, Martin; Van Loon, Luc [Paul Scherrer Institut, Villigen PSI (Switzerland). Lab. for Waste Management; Leupin, Olivier [Nagra, Wettingen (Switzerland)

    2014-10-01

    The suitability of different porous materials (stainless steel, VYCOR {sup registered} glass, Al{sub 2}O{sub 3} and PEEK) for use as confining filters in diffusion experiments was evaluated by measuring the effective diffusion coefficients (D{sub e}) of neutral (HTO) and ionic solutes (Na{sup +}, Cs{sup +}, Sr{sup 2+}, Cl{sup -}, SeO{sub 4}{sup 2-}) in the materials in through-diffusion experiments. For stainless steel filters, the D{sub e} values of the target solutes correlated satisfactorily with their bulk diffusion coefficient in water (D{sub w}); thus, the diffusion process in the stainless steel filters was primarily controlled by the diffusivity of the solvated ions. For the remaining materials, the D{sub e} and D{sub w} values were also correlated for the target solutes, and the geometric factors were in the sequence: VYCOR {sup registered} glass < Al{sub 2}O{sub 3} < PEEK. Stainless steel and VYCOR {sup registered} glass were the most appropriate materials because of their high D{sub e} values, but a specific interaction of caesium with VYCOR {sup registered} glass was hypothesised because the D{sub e} values obtained for this solute were slightly higher than expected.

  13. Frequency-Dependent Streaming Potential of Porous Media—Part 2: Experimental Measurement of Unconsolidated Materials

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2012-01-01

    Full Text Available Frequency-dependent streaming potential coefficient measurements have been made upon Ottawa sand and glass bead packs using a new apparatus that is based on an electromagnetic drive. The apparatus operates in the range 1 Hz to 1 kHz with samples of 25.4 mm diameter up to 150 mm long. The results have been analysed using theoretical models that are either (i based upon vibrational mechanics, (ii treat the geological material as a bundle of capillary tubes, or (iii treat the material as a porous medium. The best fit was provided by the Pride model and its simplification, which is satisfying as this model was conceived for porous media rather than capillary tube bundles. Values for the transition frequency were derived from each of the models for each sample and were found to be in good agreement with those expected from the independently measured effective pore radius of each material. The fit to the Pride model for all four samples was also found to be consistent with the independently measured steady-state permeability, while the value of the streaming potential coefficient in the low-frequency limit was found to be in good agreement with other steady-state streaming potential coefficient data.

  14. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials

    CSIR Research Space (South Africa)

    Malan, AG

    2011-08-01

    Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...

  15. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  16. Towards a more effective and reliable salt crystallization test for porous building materials: state of the art

    Czech Academy of Sciences Publication Activity Database

    Lubelli, B.; Cnudde, V.; Diaz-Goncalves, T.; Franzoni, E.; van Hees, R.; Ioannou, I.; Menéndez, B.; Nunes, Cristiana Lara; Siedel, H.; Stefanidou, M.; Verges-Belmin, V.; Viles, H.

    2018-01-01

    Roč. 51, č. 2 (2018), č. článku 55. ISSN 1359-5997 Keywords : literature review * salt damage * salt crystallization test * porous materials * RILEM Subject RIV: AL - Art, Architecture, Cultural Heritage OBOR OECD: Materials engineering Impact factor: 2.607, year: 2016 https://link.springer.com/article/10.1617/s11527-018-1180-5

  17. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  18. Gas permeability of ice-templated, unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  19. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  20. Optimization of process for creating porous structure of materials from industrial waste

    International Nuclear Information System (INIS)

    Mangutova-Stoilkovska, Bianka

    2005-01-01

    Republic of Macedonia, as many European countries, possesses great quantities of industrial waste materials from thermo electrical power stations and metallurgical capacities. The powder from waste fly ash and metallurgical slag was specified from chemical, geometrical, structural and thermochemical aspects. After the consolidation, the compacts were specified from structural, mechanical and thermophysical aspects. Using three kinds of waste glasses (TV glass, window and flask), the sintering temperature was significantly reduced and ecologically risky components were fixed molecularly in the matrix based on fly ash and metallurgical slag. The glass was characterized from chemical, geometrical and thermophysical point of view. The amount of glass in the composites varied from 10%-50%. The mechanical and thermal expansion properties of the sintered compacts, in the temperature region from 800 o -1200 o C were determined. The thermodynamic stability, mechanical properties and chemical inertness have been used as criterion for selection of the consolidated compacts. Special attention was given to the creation of highly porous structure. For the purpose to obtain a high joint porous structure, several types of porosity have been used: polyurethane foam, hydrogen peroxide, limestone, carbon ash and carbon fibres. The obtained glass-ceramic materials could be used in the building industry, for making filters for gases and liquids as well as diffusers for waste water aeration. (Author)

  1. One-dimensional scanning of moisture in heated porous building materials with NMR.

    Science.gov (United States)

    van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K

    2011-02-01

    In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  3. Method for modeling the gradual physical degradation of a porous material

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Greg [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-20

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  4. Method for modeling the gradual physical degradation of a porous material

    International Nuclear Information System (INIS)

    Flach, Greg

    2017-01-01

    Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded condition can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.

  5. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  6. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  7. Analysis of electroperforated materials using the quadrat counts method

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E; Garzon, C; Garcia-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); MartInez-Cisneros, C; Alonso, J, E-mail: enrique.miranda@uab.cat [Departament de Quimica AnalItica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-06-23

    The electroperforation distribution in thin porous materials is investigated using the quadrat counts method (QCM), a classical statistical technique aimed to evaluate the deviation from complete spatial randomness (CSR). Perforations are created by means of electrical discharges generated by needle-like tungsten electrodes. The objective of perforating a thin porous material is to enhance its air permeability, a critical issue in many industrial applications involving paper, plastics, textiles, etc. Using image analysis techniques and specialized statistical software it is shown that the perforation locations follow, beyond a certain length scale, a homogeneous 2D Poisson distribution.

  8. Porous titanium bases for osteochondral tissue engineering

    Science.gov (United States)

    Nover, Adam B.; Lee, Stephanie L.; Georgescu, Maria S.; Howard, Daniel R.; Saunders, Reuben A.; Yu, William T.; Klein, Robert W.; Napolitano, Anthony P.; Ateshian, Gerard A.

    2015-01-01

    Tissue engineering of osteochondral grafts may offer a cell-based alternative to native allografts, which are in short supply. Previous studies promote the fabrication of grafts consisting of a viable cell-seeded hydrogel integrated atop a porous, bone-like metal. Advantages of the manufacturing process have led to the evaluation of porous titanium as the bone-like base material. Here, porous titanium was shown to support the growth of cartilage to produce native levels of Young’s modulus, using a clinically relevant cell source. Mechanical and biochemical properties were similar or higher for the osteochondral constructs compared to chondral-only controls. Further investigation into the mechanical influence of the base on the composite material suggests that underlying pores may decrease interstitial fluid pressurization and applied strains, which may be overcome by alterations to the base structure. Future studies aim to optimize titanium-based tissue engineered osteochondral constructs to best match the structural architecture and strength of native grafts. Statement of Significance The studies described in this manuscript follow up on previous studies from our lab pertaining to the fabrication of osteochondral grafts that consist of a bone-like porous metal and a chondrocyte-seeded hydrogel. Here, tissue engineered osteochondral grafts were cultured to native stiffness using adult chondrocytes, a clinically relevant cell source, and a porous titanium base, a material currently used in clinical implants. This porous titanium is manufactured via selective laser melting, offering the advantages of precise control over shape, pore size, and orientation. Additionally, this manuscript describes the mechanical influence of the porous base, which may have applicability to porous bases derived from other materials. PMID:26320541

  9. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media.

    Science.gov (United States)

    Crevillén-García, D; Power, H

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  10. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media

    Science.gov (United States)

    Crevillén-García, D.; Power, H.

    2017-08-01

    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  11. Porous alkali activated materials with slow alkali release dynamic. Role of composition

    International Nuclear Information System (INIS)

    Bumanis, G.; Bajare, D.

    2018-01-01

    Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM. [es

  12. Graphene synthesized on porous silicon for active electrode material of supercapacitors

    Science.gov (United States)

    Su, B. B.; Chen, X. Y.; Halvorsen, E.

    2016-11-01

    We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm2 while that without catalyst layer was 145μF/cm2. We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors.

  13. Electron tomography of porous materials and magnetic nanoparticles

    International Nuclear Information System (INIS)

    Uusimäki, T.

    2015-01-01

    Electron tomography, as carried out in a transmission electron microscope is a method to reveal the three dimensional structure of the sample at the nanometer scale. It is based on tilting the sample and recording subsequent images at different projections angles. Using specific reconstruction algorithms the density distribution of the sample can then be reproduced. In this thesis, electron tomography has been implemented for material science specimens and more rigorously to porous media infiltrated with magnetic nanoparticles. The volume and spatial distribution along with the knowledge of the demagnetizing factors were then used within a magnetic Monte Carlo simulation to predict the magnetic response of the nanoparticle assembly. The local curvature of nanoparticles within the template, known to be a critical geometrical parameter influencing material properties, was extracted with two distinctive methods. Furthermore, new capabilities needed for image analysis and processing of the tilt series had to be implemented for improved alignments and segmentation. A new method to align the tilt series without depending on markers was written for obtaining high quality reconstructions. Also a comparison was made between different scanning TEM acquisition modes such as incoherent bright field and high angle annular dark field imaging modes with respect to resolution and contrast changes. (author) [de

  14. Porous materials based on foaming solutions obtained from industrial waste

    Science.gov (United States)

    Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.

    2018-03-01

    This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.

  15. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  16. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    Science.gov (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  17. CO₂ Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues.

    Science.gov (United States)

    Bermúdez, José M; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-10-18

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO₂ adsorption properties, with interestingly high gas selectivities for CO₂ (α > 200 at a gas composition of 15% CO₂/85% N₂, 273K, 1 bar) and capacities (>2 mmol·g -1 at 273 K). Both CO₂ isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO₂ which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  18. Graphene synthesized on porous silicon for active electrode material of supercapacitors

    International Nuclear Information System (INIS)

    Su, B B; Chen, X Y; Halvorsen, E

    2016-01-01

    We present graphene synthesized by chemical vapour deposition under atmospheric pressure on both porous nanostructures and flat wafers as electrode scaffolds for supercapacitors. A 3nm thin gold layer was deposited on samples of both porous and flat silicon for exploring the catalytic influence during graphene synthesis. Micro-four-point probe resistivity measurements revealed that the resistivity of porous silicon samples was nearly 53 times smaller than of the flat silicon ones when all the samples were covered by a thin gold layer after the graphene growth. From cyclic voltammetry, the average specific capacitance of porous silicon coated with gold was estimated to 267 μF/cm 2 while that without catalyst layer was 145μF/cm 2 . We demonstrated that porous silicon based on nanorods can play an important role in graphene synthesis and enable silicon as promising electrodes for supercapacitors. (paper)

  19. Tritium transport in lithium ceramics porous media

    International Nuclear Information System (INIS)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs

  20. Multiphase radon generation and transport in porous materials

    International Nuclear Information System (INIS)

    Rogers, V.C.; Nielson, K.K.

    1991-01-01

    Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222 Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications

  1. Experimental study on method for heat transfer enhancement using a porous material

    International Nuclear Information System (INIS)

    Shimura, Takuya; Takeda, Tetsuaki

    2011-01-01

    There are several methods for enhancement of heat transfer; for example, there are attaching various fins on the heat transfer surface, processing the surface roughly, and so on. When cooling high temperature circular or rectangular channels by forced convection of gas, there are several methods for enhancement of heat transfer such as attaching radial or spiral fins on the channel surface or inserting twisted tape in the channel. In the case of the gas heating type steam reformer, disk type fins are attached on the outside surface of the reformer tube, and the tube is inserted into the guide tube to increase an amount of heat transferred from the high temperature gas. However, it has to take into consideration the deterioration of the structure strength by attaching the fins on the tube surface with the design of the steam reformer. The objective of this study is to clarify performances of a method for heat transfer enhancement using porous material with high porosity. The experiment has been performed using an apparatus which simulated the passage structure of the steam reformer to obtain characteristics of heat transfer and pressure drop. From the results obtained in this experiment, the heat transfer rate by this method showed a good performance in the laminar flow region. It was also found that the method for heat transfer enhancement using porous material with high porosity is further improved under the high temperature condition as compared with the other methods for heat transfer enhancement. (author)

  2. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    Directory of Open Access Journals (Sweden)

    Sylvain Deville

    2010-03-01

    Full Text Available The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  3. Additive manufacturing technologies of porous metal implants

    Directory of Open Access Journals (Sweden)

    Yang Quanzhan

    2014-06-01

    Full Text Available Biomedical metal materials with good corrosion resistance and mechanical properties are widely used in orthopedic surgery and dental implant materials, but they can easily cause stress shielding due to the significant difference in elastic modulus between the implant and human bones. The elastic modulus of porous metals is lower than that of dense metals. Therefore, it is possible to adjust the pore parameters to make the elastic modulus of porous metals match or be comparable with that of the bone tissue. At the same time, the open porous metals with pores connected to each other could provide the structural condition for bone ingrowth, which is helpful in strengthening the biological combination of bone tissue with the implants. Therefore, the preparation technologies of porous metal implants and related research have been drawing more and more attention due to the excellent features of porous metals. Selective laser melting (SLM and electron beam melting technology (EBM are important research fields of additive manufacturing. They have the advantages of directly forming arbitrarily complex shaped metal parts which are suitable for the preparation of porous metal implants with complex shape and fine structure. As new manufacturing technologies, the applications of SLM and EBM for porous metal implants have just begun. This paper aims to understand the technology status of SLM and EBM, the research progress of porous metal implants preparation by using SLM and EBM, and the biological compatibility of the materials, individual design and manufacturing requirements. The existing problems and future research directions for porous metal implants prepared by SLM and EBM methods are discussed in the last paragraph.

  4. Antimony Anchored with Nitrogen-Doping Porous Carbon as a High-Performance Anode Material for Na-Ion Batteries.

    Science.gov (United States)

    Wu, Tianjing; Hou, Hongshuai; Zhang, Chenyang; Ge, Peng; Huang, Zhaodong; Jing, Mingjun; Qiu, Xiaoqing; Ji, Xiaobo

    2017-08-09

    Antimony represents a class of unique functional materials in sodium-ion batteries with high theoretical capacity (660 mA h g -1 ). The utilization of carbonaceous materials as a buffer layer has been considered an effective approach to alleviate rapid capacity fading. Herein, the antimony/nitrogen-doping porous carbon (Sb/NPC) composite with polyaniline nanosheets as a carbon source has been successfully achieved. In addition, our strategy involves three processes, a tunable organic polyreaction, a thermal annealing process, and a cost-effective reduction reaction. The as-prepared Sb/NPC electrode demonstrates a great reversible capacity of 529.6 mA h g -1 and an outstanding cycling stability with 97.2% capacity retention after 100 cycles at 100 mA g -1 . Even at 1600 mA g -1 , a superior rate capacity of 357 mA h g -1 can be retained. Those remarkable electrochemical performances can be ascribed to the introduction of a hierarchical porous NPC material to which tiny Sb nanoparticles of about 30 nm were well-wrapped to buffer volume expansion and improve conductivity.

  5. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  6. Structure and Stability of Deflagrations in Porous Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  7. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  8. Superior performance of nanoscaled Fe3O4 as anode material promoted by mosaicking into porous carbon framework

    Science.gov (United States)

    Wan, Wang; Wang, Chao; Zhang, Weidong; Chen, Jitao; Zhou, Henghui; Zhang, Xinxiang

    2014-01-01

    A nanoscale Fe3O4/porous carbon-multiwalled carbon nanotubes (MWCNTs) composite is synthesized through a simple hard-template method by using Fe2O3 nanoparticles as the precursor and SiO2 nanoparticles as the template. The composite shows good cycle performance (941 mAh g-1 for the first cycle at 0.1 C, with 106% capacity retention at the 80th cycle) and high rate capability (71% capacity retained at 5 C rate). Its excellent electrical properties can be attributed to the porous carbon framework structure, which is composed of carbon and MWCNTs. In this composite, the porous structure provides space for the change in Fe3O4 volume during cycling and shortens the lithium ion diffusion distance, the MWCNTs increase the electron conductivity, and the carbon coating reduces the risk of side reactions. The results provide clear evidences for the utility of porous carbon framework to improve the electrochemical performances of nanosized transition-metal oxides as anode materials for lithium-ion batteries.

  9. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    Science.gov (United States)

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  10. Sound transmission through double panel constructions lined with elastic porous materials

    Science.gov (United States)

    Bolton, J. S.; Green, E. R.

    1986-07-01

    Attention is given to a theory governing one-dimensional wave motion in elastic porous materials which is capable of reproducing experimental transmission measurements for unfaced polyurethane foam layers. Calculations of the transmission loss of fuselage-like foam-lined double panels are presented and it is shown that the foam/panel boundary conditions have a large effect on the panel performance; a hybrid arrangement whereby the foam is bonded directly to one panel and separated from the other by a thin air gap appears to be the most advantageous under practical circumstances. With this configuratiom, the mass-air-mass resonance is minimized and increased low-frequency performance is offered.

  11. Simulation Study of Shock Reaction on Porous Material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan Xiaofei; Zhu Jianshi

    2009-01-01

    Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation. (general)

  12. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials

    NARCIS (Netherlands)

    Remij, E.W.; Remmers, J.J.C.; Huyghe, J.M.R.J.; Smeulders, D.M.J.

    2015-01-01

    In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields across the fracture as a strong

  13. Influence of ferrocyanide inhibitors on the transport and crystrallization processes of sodium chloride in porous building materials

    NARCIS (Netherlands)

    Gupta, S.; Terheiden, K.H; Pel, L.; Sawdy - Heritage, A.M.

    2012-01-01

    Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building materials. In order to reduce the impact of this, effective treatment methods are required. The use of crystallization inhibitors to mitigate salt damage has been proposed in the past; however, to

  14. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  15. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  16. Application of porous materials in oil substances separation from water

    Science.gov (United States)

    Gołub, Adam; Piekutin, Janina

    2017-11-01

    The aim of the study was to determine the ability of the four porous materials: birch bark, cork, glass wool, and polyurethane foam to reduce the mineral oil index and the concentration of n-alkanes C7H16-C38H78 as well as to select the most efficient materials. Model solutions of gasoline, diesel oil, and distilled water with the following values of mineral oil index were prepared to tests: 52 μg/dm3, 68 μg/dm3 and 73 μg/dm3. Then, studies were carried out using a dynamic method, wherein the columns were filled with adsorbents tested, and in each of three testing series, 500 mL of the model solution at constant bed load of 1,0551 m3/m2h was filtered through the column. After filtration, the collected sample had volume of 250 mL. The collected samples were subject to determination of mineral oil index and concentrations of n-alkanes from C7H16 to C38H78. Studies have shown that the most effective materials to lower the mineral oil index and the concentrations of n-alkanes in water are birch bark and glass wool.

  17. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  18. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  19. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography

    Directory of Open Access Journals (Sweden)

    Yong Tae Kim

    2018-03-01

    Full Text Available We have developed a sequential stereolithographic co-printing process using two different resins for fabricating porous barriers in microfluidic devices. We 3D-printed microfluidic channels with a resin made of poly(ethylene glycol diacrylate (MW = 258 (PEG-DA-258, a UV photoinitiator, and a UV sensitizer. The porous barriers were created within the microchannels in a different resin made of either PEG-DA (MW = 575 (PEG-DA-575 or 40% (w/w in water PEG-DA (MW = 700 (40% PEG-DA-700. We showed selective hydrogen ion diffusion across a 3D-printed PEG-DA-575 porous barrier in a cross-channel diffusion chip by observing color changes in phenol red, a pH indicator. We also demonstrated the diffusion of fluorescein across a 3D-printed 40% PEG-DA-700 porous barrier in a symmetric-channel diffusion chip by measuring fluorescence intensity changes across the porous barrier. Creating microfluidic chips with integrated porous barriers using a semi-automated 3D printing process shortens the design and processing time, avoids assembly and bonding complications, and reduces manufacturing costs compared to micromolding processes. We believe that our digital manufacturing method for fabricating selective porous barriers provides an inexpensive, simple, convenient and reproducible route to molecule delivery in the fields of molecular filtration and cell-based microdevices.

  20. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  1. Micro-configuration Observation of Porous Bioceramic for Sliding on Intestinal Mucus Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus ftlm are observed in 2D and 3 D by digital microscopy. We describe how much mucus enters and stays within different pores, and how the porous material with rough/porous surface contacts with the mucus film ( elastic surface/gel). The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.

  2. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  3. Simple method to generate and fabricate stochastic porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Nan, E-mail: y79nzw@163.com; Gao, Lilan; Zhou, Kuntao

    2015-11-01

    Considerable effort has been made to generate regular porous structures (RPSs) using function-based methods, although little effort has been made for constructing stochastic porous structures (SPSs) using the same methods. In this short communication, we propose a straightforward method for SPS construction that is simple in terms of methodology and the operations used. Using our method, we can obtain a SPS with functionally graded, heterogeneous and interconnected pores, target pore size and porosity distributions, which are useful for applications in tissue engineering. The resulting SPS models can be directly fabricated using additive manufacturing (AM) techniques. - Highlights: • Random porous structures are constructed based on their regular counterparts. • Functionally graded random pores can be constructed easily. • The scaffolds can be directly fabricated using additive manufacturing techniques.

  4. Application of computational methods to the design and characterisation of porous molecular materials.

    Science.gov (United States)

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  5. Influence of kaolin and firing temperature on the mullite formation in porous mullite-corundum materials

    International Nuclear Information System (INIS)

    Mahnicka, L; Svinka, R; Svinka, V

    2011-01-01

    The refractory ceramics became very important in both the traditional and the advanced materials applications as it has outstanding thermal and mechanical properties. The refractoriness of ceramics can be achieved by getting the mullite-corundum. Refractory ceramics with high porosity serve as a heat insulator and constructional material. Three series of porous mullite-corundum ceramic samples were prepared from Al 2 O 3 (Nabalox, Germany) and pure SiO 2 in 2.57:1 ratio that was conformed to mullite compositions (3Al 2 O 3 ·2SiO 2 ). α-Al 2 O 3 (d 50 = 4 μm) and γ-Al 2 O 3 (d 50 = 80 μm) were in 1:3 ratio. Quantity of kaolin (MEKA, Germany) was 10, 20 and 30 wt.%. Porous materials were prepared by slip casting of suspension of raw materials, where the aluminium paste (0.18 wt.%) was used as a pore former. Water content in the suspensions was 38-40 wt.%. Pore formation occured in result of hydrogen formation in chemical reaction between aluminium paste and water. The samples were sintered at 1650, 1700 and 1750°C temperature for one hour. SiO 2 and γ-Al 2 O 3 on the contrary reduced mechanical properties, but decreased shrinkage. Using of α-, γ-Al 2 O 3 , SiO 2 and kaolin in corresponding ratios the samples with open porosity of 30 to 54 vol% were acquired. The relative amounts of pores depended on the initial content of kaolin and on firing temperature.

  6. Porous silicon in drug delivery devices and materials☆

    Science.gov (United States)

    Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.

    2009-01-01

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154

  7. Novel nitrogen-doped hierarchically porous coralloid carbon materials as host matrixes for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Yang, Jing; Wang, Shuyuan; Ma, Zhipeng; Du, Zhiling; Li, Chunying; Song, Jianjun; Wang, Guiling; Shao, Guangjie

    2015-01-01

    Highlights: • Nitrogen-doped hierarchically porous coralloid carbon/sulfur composites were prepared • Nitrogen atoms were introduced to improve electrochemical properties • The intriguing structural features benefited discharge capacity and cycling stability - Abstract: Nitrogen-doped hierarchically porous coralloid carbon/sulfur composites (N-HPCC/S) served as attractive cathode materials for lithium–sulfur (Li–S) batteries were fabricated for the first time. The nitrogen-doped hierarchically porous coralloid carbon (N-HPCC) with an appropriate nitrogen content (1.29 wt%) was synthesized via a facile hydrothermal approach, combined with subsequent carbonization–activation. The N-HPCC/S composites prepared by a simple melt–diffusion method displayed an excellent electrochemical performance. With a high sulfur content (58 wt%) in the total electrode weight, the N-HPCC/S cathode delivered a high initial discharge capacity of 1626.8 mA h g −1 and remained high up to 1086.3 mA h g −1 after 50 cycles at 100 mA g −1 , which is about 1.86 times as that of activated carbon. Particularly, the reversible discharge capacity still maintained 607.2 mA h g −1 after 200 cycles even at a higher rate of 800 mA g −1 . The enhanced electrochemical performance was attributed to the synergetic effect between the intriguing hierarchically porous coralloid structure and appropriate nitrogen doping, which could effectively trap polysulfides, alleviate the volume expansion, enhance the electronic conductivity and improve the surface interaction between the carbon matrix and polysulfides

  8. Molecular simulation of adsorption and transport in hierarchical porous materials.

    Science.gov (United States)

    Coasne, Benoit; Galarneau, Anne; Gerardin, Corine; Fajula, François; Villemot, François

    2013-06-25

    Adsorption and transport in hierarchical porous solids with micro- (~1 nm) and mesoporosities (>2 nm) are investigated by molecular simulation. Two models of hierarchical solids are considered: microporous materials in which mesopores are carved out (model A) and mesoporous materials in which microporous nanoparticles are inserted (model B). Adsorption isotherms for model A can be described as a linear combination of the adsorption isotherms for pure mesoporous and microporous solids. In contrast, adsorption in model B departs from adsorption in pure microporous and mesoporous solids; the inserted microporous particles act as defects, which help nucleate the liquid phase within the mesopore and shift capillary condensation toward lower pressures. As far as transport under a pressure gradient is concerned, the flux in hierarchical materials consisting of microporous solids in which mesopores are carved out obeys the Navier-Stokes equation so that Darcy's law is verified within the mesopore. Moreover, the flow in such materials is larger than in a single mesopore, due to the transfer between micropores and mesopores. This nonzero velocity at the mesopore surface implies that transport in such hierarchical materials involves slippage at the mesopore surface, although the adsorbate has a strong affinity for the surface. In contrast to model A, flux in model B is smaller than in a single mesopore, as the nanoparticles act as constrictions that hinder transport. By a subtle effect arising from fast transport in the mesopores, the presence of mesopores increases the number of molecules in the microporosity in hierarchical materials and, hence, decreases the flow in the micropores (due to mass conservation). As a result, we do not observe faster diffusion in the micropores of hierarchical materials upon flow but slower diffusion, which increases the contact time between the adsorbate and the surface of the microporosity.

  9. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  10. Exploring Trianglamine Derivatives and Trianglamine Coordination Complexes as Porous Organic Materials

    KAUST Repository

    Eziashi, Magdalene

    2018-05-01

    Trianglamines are triangular chiral macrocycles that were first synthesized by Gawronski’s group in Poland in the year 2000.1 Despite their unique properties; triangular pore shape, chirality, symmetric structure and tunable pore size, they are still a poorly researched class of macrocycles today. Trianglamines have yet a role to play as porous organic molecules for separation processes, as macrocyclic precursors to build increasingly complex supramolecular assemblies and as building blocks for caged porous organic structures. The aim of the Thesis work is to explore trianglamine, its derivatives, and assemblies as viable porous organic molecules for potential gas capture and separation.

  11. Evaluation of diffusion parameters of radon in porous material by flow-through diffusion experiment

    International Nuclear Information System (INIS)

    Chunnan Hsu; Shihchin Tsai; Shihming Liang

    1994-01-01

    The effectiveness of a material in reducing the fluence rate of Rn from soil was assessed in this study by using a flow-through diffusion experiment to evaluate the diffusion parameters -apparent diffusion coefficient and capacity factor - of radon (Rn) in a porous material. An improved method based on the nonlinear least-squares and Marquardt's method (NLSM method) was proposed to provide more reliable analyses of experimental data than the graphical method. The NLSM method was confirmed by the experimental results to be capable of estimating the diffusion parameters, even if the process was transient. This method was also demonstrated to correlate sufficiently with the results by the conventional method while the process had already reached steady-state. Natural mordenite was employed in this study as a testing material because it has more effective sorption for noble gas than any other earthen material. (author)

  12. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Directory of Open Access Journals (Sweden)

    Ana Arenillas

    2013-10-01

    Full Text Available Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar and capacities (>2 mmol·g−1 at 273 K. Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes.

  13. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    Science.gov (United States)

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  14. Flow, transport and diffusion in random geometries II: applications

    KAUST Repository

    Asinari, Pietro

    2015-01-07

    Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.

  15. Flow, transport and diffusion in random geometries II: applications

    KAUST Repository

    Asinari, Pietro; Ceglia, Diego; Icardi, Matteo; Prudhomme, Serge; Tempone, Raul

    2015-01-01

    Multilevel Monte Carlo (MLMC) is an efficient and flexible solution for the propagation of uncertainties in complex models, where an explicit parametrization of the input randomness is not available or too expensive. We present several applications of our MLMC algorithm for flow, transport and diffusion in random heterogeneous materials. The absolute permeability and effective diffusivity (or formation factor) of micro-scale porous media samples are computed and the uncertainty related to the sampling procedures is studied. The algorithm is then extended to the transport problems and multiphase flows for the estimation of dispersion and relative permeability curves. The impact of water drops on random stuctured surfaces, with microfluidics applications to self-cleaning materials, is also studied and simulated. Finally the estimation of new drag correlation laws for poly-dispersed dilute and dense suspensions is presented.

  16. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    Science.gov (United States)

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of 0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  17. Advances in Porous Biomaterials for Dental and Orthopaedic Applications

    Directory of Open Access Journals (Sweden)

    Arndt F. Schilling

    2010-04-01

    Full Text Available The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.

  18. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  19. Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.

    Science.gov (United States)

    Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin

    2017-07-01

    The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization and antibacterial properties of porous fibers containing silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Nantong Textile Institute of Soochow University, 58 Chong-chuan Road, Nantong 226018 (China)

    2016-11-30

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag{sup +} porous fibers were investigated. • The antibacterial effects of PLA/Ag{sup +} porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  1. Characterization and antibacterial properties of porous fibers containing silver ions

    International Nuclear Information System (INIS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-01-01

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag + porous fibers were investigated. • The antibacterial effects of PLA/Ag + porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  2. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    Science.gov (United States)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  3. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    Science.gov (United States)

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    Science.gov (United States)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  5. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors.

    Science.gov (United States)

    Liu, Ying; Zhou, Jinyuan; Chen, Lulu; Zhang, Peng; Fu, Wenbin; Zhao, Hao; Ma, Yufang; Pan, Xiaojun; Zhang, Zhenxing; Han, Weihua; Xie, Erqing

    2015-10-28

    Highly flexible porous carbon nanofibers (P-CNFs) were fabricated by electrospining technique combining with metal ion-assistant acid corrosion process. The resultant fibers display high conductivity and outstanding mechanical flexibility, whereas little change in their resistance can be observed under repeatedly bending, even to 180°. Further results indicate that the improved flexibility of P-CNFs can be due to the high graphitization degree caused by Co ions. In view of electrode materials for high-performance supercapacitors, this type of porous nanostructure and high graphitization degree could synergistically facilitate the electrolyte ion diffusion and electron transportation. In the three electrodes testing system, the resultant P-CNFs electrodes can exhibit a specific capacitance of 104.5 F g(-1) (0.2 A g(-1)), high rate capability (remain 56.5% at 10 A g(-1)), and capacitance retention of ∼94% after 2000 cycles. Furthermore, the assembled symmetric supercapacitors showed a high flexibility and can deliver an energy density of 3.22 Wh kg(-1) at power density of 600 W kg(-1). This work might open a way to improve the mechanical properties of carbon fibers and suggests that this type of freestanding P-CNFs be used as effective electrode materials for flexible all-carbon supercapacitors.

  6. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    Science.gov (United States)

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.

    2016-04-01

    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  7. Functional porous composites by blending with solution-processable molecular pores.

    Science.gov (United States)

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  8. Elaboration of porous gehlenite and anorthite based ceramics using low price raw materials

    Directory of Open Access Journals (Sweden)

    F. Zenikheri

    Full Text Available Abstract Porous ceramics of good quality cost a lot in the world market, which has limited their use in developing countries. This is why this work was mainly devoted to prepare low-cost and good quality ceramics, using kaolin (DD2 type and calcite (CaCO3 available in abundance in Algeria. Based on previous results, 28 wt% CaCO3 ceramic was selected. The presence of CaCO3 favors to achieve porous samples characterized by a high percentage of porosity due to the CO2 release and CaO formation during its calcination at about 700 °C. The choice of these raw materials is based on their natural abundance (low price. It has been found that the samples had interesting characteristics: average pore size between 2.87 and 6.50 μm and porosity between 53 and 57%. It has also been found that the manufactured membrane supports are mainly constituted of gehlenite and anorthite phases. Moreover, the pore size distribution was mono-modal type. The surface and cross-section morphologies observed through a scanning electron microscope were also homogeneous and do not present any possible macro-defects (cracks, etc..

  9. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  10. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  11. Dynamic behavior of porous concretes under drop weight impact testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete is used as a construction material in various applications mainly as a permeable cementitious material. However, its response under impact loading is generally not considered. Due to the high percentage of its intentional meso-size air pores, porous concrete has a moderate static

  12. Lighting emitting microstructures in porous silicon

    International Nuclear Information System (INIS)

    Squire, E.

    1999-01-01

    Experimental and theoretical techniques are used to examine microstructuring effects on the optical properties of single layer, multilayer, single and multiple microcavity structures fabricated from porous silicon. Two important issues regarding the effects of the periodic structuring of this material are discussed. Firstly, the precise role played by this microstructuring, given that the luminescence is distributed throughout the entire structure and the low porosity layers are highly absorbing at short wavelengths. The second issue examined concerns the observed effects on the optical spectra of the samples owing to the emission bandwidth of the material being greater than the optical stopband of the structure. Measurements of the reflectivity and photoluminescence spectra of different porous silicon microstructures are presented and discussed. The results are modelled using a transfer matrix technique. The matrix method has been modified to calculate the optical spectra of porous silicon specifically by accounting for the effects of dispersion, absorption and emission within the material. Layer thickness and porosity gradients have also been included in the model. The dielectric function of the two component layers (i.e. silicon and air) is calculated using the Looyenga formula. This approach can be adapted to suit other porous semiconductors if required. Examination of the experimental results have shown that the emitted light is strongly controlled by the optical modes of the structures. Furthermore, the data display an interplay of a wide variety of effects dependent upon the structural composition. Comparisons made between the experimental and calculated reflectivity and photoluminescence spectra of many different porous silicon microstructures show very good agreement. (author)

  13. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Science.gov (United States)

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  14. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  15. A gravitational procedure to measure the diffusion coefficient of mater in porous materials : a case study on concrete

    NARCIS (Netherlands)

    Zanden, van der A.J.J.; Taher, A.

    2014-01-01

    A new procedure is presented with which the diffusion coefficient of water in partially saturated porous materials can be measured. The first step in the procedure is the creation of a non-equilibrium situation inside a sample by placing it into a centrifuge. In the second step, the mass of the

  16. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  17. Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x−yFe2O4 Magnetic Materials

    International Nuclear Information System (INIS)

    Qi Xin; Zhou Xin; Shu Di; Zhao Jing-Jing; Wang Wei; Chen Juan

    2011-01-01

    We deal with the preparation of NiMgZnFe III -SO 4 layered double hydroxides (LDHs) with the layered precursor method and introduce excessive ZnO into the NiMgZnFe III -SO 4 LDHs to produce Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites that contain massive ZnO. Then the Ni x Mg y Zn 1−x−y Fe 2 O 4 ferrites are treated with NaOH solution to remove ZnO to produce the porous Ni x Mg y Zn 1−x−y Fe 2 O 4 magnetic material: when y = 0, porous NiZnFe 2 O 4 ferrite magnetic materials are obtained; when y ≠ 0, porous NiMgZnFe 2 O 4 ferrite magnetic materials are obtained. From analyses of these two ferrites, their pore-forming mechanism and comparison of their properties before and after they undergo the alkali treatment, we find that after being treated by the NaOH solution, NiZnFe 2 O 4 /NiMgZnFe 2 O 4 have better uniform-structure pores, which will greatly expand their pore volume, widen their application scope and improve their magnetic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  19. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.

    Science.gov (United States)

    Chen, Li-Feng; Zhang, Xu-Dong; Liang, Hai-Wei; Kong, Mingguang; Guan, Qing-Fang; Chen, Ping; Wu, Zhen-Yu; Yu, Shu-Hong

    2012-08-28

    Supercapacitors (also known as ultracapacitors) are considered to be the most promising approach to meet the pressing requirements of energy storage. Supercapacitive electrode materials, which are closely related to the high-efficiency storage of energy, have provoked more interest. Herein, we present a high-capacity supercapacitor material based on the nitrogen-doped porous carbon nanofibers synthesized by carbonization of macroscopic-scale carbonaceous nanofibers (CNFs) coated with polypyrrole (CNFs@polypyrrole) at an appropriate temperature. The composite nanofibers exhibit a reversible specific capacitance of 202.0 F g(-1) at the current density of 1.0 A g(-1) in 6.0 mol L(-1) aqueous KOH electrolyte, meanwhile maintaining a high-class capacitance retention capability and a maximum power density of 89.57 kW kg(-1). This kind of nitrogen-doped carbon nanofiber represents an alternative promising candidate for an efficient electrode material for supercapacitors.

  20. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  1. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  2. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing.

    Science.gov (United States)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Some micromechanical models of elastoplastic behaviors of porous geomaterials

    Directory of Open Access Journals (Sweden)

    W.Q. Shen

    2017-02-01

    Full Text Available Some micromechanics-based constitutive models are presented in this study for porous geomaterials. These micro-macro mechanical models focus on the effect of porosity and the inclusions on the macroscopic elastoplastic behaviors of porous materials. In order to consider the effect of pores and the compressibility of the matrix, some macroscopic criteria are presented firstly for ductile porous medium having one population of pores with different types of matrix (von Mises, Green type, Mises–Schleicher and Drucker–Prager. Based on different homogenization techniques, these models are extended to the double porous materials with two populations of pores at different scales and a Drucker–Prager solid phase at the microscale. Based on these macroscopic criteria, complete constitutive models are formulated and implemented to describe the overall responses of typical porous geomaterials (sandstone, porous chalk and argillite. Comparisons between the numerical predictions and experimental data with different confining pressures or different mineralogical composites show the capabilities of these micromechanics-based models, which take into account the effects of microstructure on the macroscopic behavior and significantly improve the phenomenological ones.

  4. Multi-scale porous materials: from adsorption and poro-mechanics properties to energy and environmental applications

    International Nuclear Information System (INIS)

    Pellenq, Roland J.M.

    2012-01-01

    Document available in extended abstract form only. 'Multi-scale Porous Materials under the Nano-scope'. Setting up the stage, one can list important engineering problems such as hydrogen storage for transportation applications, electric energy storage in batteries, CO 2 sequestration in used coal mines, earthquake mechanisms, durability of nuclear fuels, stability of soils and sediment and cements and concrete cohesive properties in the context of sustainability. With the exception of health, these are basically the challenging engineering problems of the coming century that address energy, environment and natural hazards. Behind all those problems are complex multi-scale porous materials that have a confined fluid in their pore void: water in the case of clays and cement, an electrolyte in the case of batteries and super-capacitors, weakly interacting molecular fluids in the case of hydrogen storage devices, gas-shale and nuclear fuel bars. So what do we mean by 'under the nano-scope'? The nano-scope does not exist as a single experimental technique able of assessing the 3D texture of complex multi-scale material. Obviously techniques such as TEM are part of the answer but are not the 'nano-scope' in itself. In our idea, the 'nano-scope' is more than a technique producing images. It is rather a concept that links a suite of modeling techniques coupled with experiments (electron and X-rays microscopies, tomography, nano-indentation, nano-scratching...). Fig 1 gives an outline of this strategy for cement. It allows accessing material texture, their chemistry, their mechanical behavior, their adsorption/condensation behavior at all scales starting from the nano-scale upwards. The toolbox of the simulation aspect of the 'nano-scope' is akin to a statistical physics description of material texture and properties including the thermodynamics and dynamics of the fluids confined to their pore voids as a means to linking atomic scale properties to macroscopic properties

  5. The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures

    Science.gov (United States)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-12-01

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.

  6. Double Soft-Template Synthesis of Nitrogen/Sulfur-Codoped Hierarchically Porous Carbon Materials Derived from Protic Ionic Liquid for Supercapacitor.

    Science.gov (United States)

    Sun, Li; Zhou, Hua; Li, Li; Yao, Ying; Qu, Haonan; Zhang, Chengli; Liu, Shanhu; Zhou, Yanmei

    2017-08-09

    Heteroatom-doped hierarchical porous carbon materials derived from the potential precursors and prepared by a facile, effective, and low-pollution strategy have recently been particularly concerned in different research fields. In this study, the interconnected nitrogen/sulfur-codoped hierarchically porous carbon materials have been successfully obtained via one-step carbonization of the self-assembly of [Phne][HSO 4 ] (a protic ionic liquid originated from dilute sulfuric acid and phenothiazine by a straightforward acid-base neutralization) and the double soft-template of OP-10 and F-127. During carbonization process, OP-10 as macroporous template and F-127 as mesoporous template were removed, while [Phne][HSO 4 ] not only could be used as carbon, nitrogen, and sulfur source, but also as a pore forming agent to create micropores. The acquired carbon materials for supercapacitor not only hold a large specific capacitance of 302 F g -1 even at 1.0 A g -1 , but also fine rate property with 169 F g -1 at 10 A g -1 and excellent capacitance retention of nearly 100% over 5000 circulations in 6 M KOH electrolyte. Furthermore, carbon materials also present eximious rate performance with 70% in 1 M Na 2 SO 4 electrolyte.

  7. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Science.gov (United States)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  8. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.

    Science.gov (United States)

    Kim, Jihan; Smit, Berend

    2012-07-10

    Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas-gas Ewald summation and both the direct and the reciprocal gas-host potential energy interactions are stored inside energy grids to reduce the wall time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas-gas Ewald summation, which does not impact the accuracy of the zeolite's adsorption characteristics. We utilize two-level density-biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units (GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload. As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a minute of total compute wall time.

  9. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  10. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Hao; Zhou, Shuxue; Wu, Limin

    2014-06-11

    This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.

  11. Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material

    International Nuclear Information System (INIS)

    Dan Yuanyuan; Lin Haibo; Liu Xiaolei; Lu Haiyan; Zhao Jingzhe; Shi Zhan; Guo Yupeng

    2012-01-01

    Highlights: ► We prepare nano-PbO 2 + Mn 3 O 4 composite material by composite deposition method. ► The nano-PbO 2 + Mn 3 O 4 composite has porous quasi three-dimensional structure. ► Maximum electrochemically effective area (R F ) of the composite is 72. ► The composite shows high specific capacitance up to ∼340 F g −1 . ► A general knowledge of the pesudocapacitance behavior of the composite is acquired. - Abstract: Nano-Mn 3 O 4 + PbO 2 composite electrode materials with different compositions are prepared by anodic composite electrodeposition in Pb 2+ plating solution containing suspended nano-Mn 3 O 4 particles (40–60 nm). The particles are synthesized via one-step homogeneous precipitation at low temperature. The composite materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The results indicate that the composite composed of γ-Mn 3 O 4 and β-PbO 2 is porous and quasi three-dimensional (3D), and its maximum electrochemically effective area ratio (R F ) is 72. The capacitance performance of the composite is determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge–discharge test. The composite shows a high specific capacitance up to 338 F g −1 .

  12. Synthesis of Nanoscale Lithium-Ion Battery Cathode Materials Using a Porous Polymer Precursor Method

    KAUST Repository

    Deshazer, H.D.

    2011-01-01

    Fine particles of metal oxides with carefully controlled compositions can be easily prepared by the thermal decomposition of porous polymers, such as cellulose, into which solutions containing salts of the desired cations have been dissolved. This is a simple and versatile method that can be used to produce a wide variety of materials with a range of particle sizes and carefully controlled chemical compositions. Examples of the use of this method to produce fine particles of LiCoO2 and Li(NiMnCo)1/3O2, which are used in the positive electrodes of lithium-ion batteries, are shown. Experiments have demonstrated that materials made using this method can have electrochemical properties comparable to those typically produced by more elaborate procedures. © 2011 The Electrochemical Society.

  13. Scattering characteristics from porous silicon

    Directory of Open Access Journals (Sweden)

    R. Sabet-Dariani

    2000-12-01

    Full Text Available   Porous silicon (PS layers come into existance as a result of electrochemical anodization on silicon. Although a great deal of research has been done on the formation and optical properties of this material, the exact mechanism involved is not well-understood yet.   In this article, first, the optical properties of silicon and porous silicon are described. Then, previous research and the proposed models about reflection from PS and the origin of its photoluminescence are reveiwed. The reflecting and scattering, absorption and transmission of light from this material, are then investigated. These experiments include,different methods of PS sample preparation their photoluminescence, reflecting and scattering of light determining different characteristics with respect to Si bulk.

  14. Book Review [Surfaces of Nanoparticles and Porous Materials. Edited by James A. Schwarz and Cristian I. Contescu. 1 999. Marcel Dekker, New York, USA. ISBN: 0824719336

    International Nuclear Information System (INIS)

    Gonzalez, Richard D

    1999-01-01

    The volume is organized into three sections. The first section deals with the preparation, characterization and transport properties of this unique class of materials. A total of twelve contributions are included in this section, ten of which are full reviews and two are essentially short papers. The topics include: the synthesis of polysilazane coatings on the surface of silica gel; preparation of molecular sieves by the pillaring of synthetic clays; the acid/base behavior of surfaces of porous materials; electro-optical spectroscopy of colloid systems; NMR studies of colloidal oxides; polymer surface dynamics via contact angle measurements; collagen fibers; the role of diffusion on adsorption on oxide surfaces; transport processes in microemulsions; electrokinetic phenomena in porous media, and structural effects on diffusivity within colloidal zirconia. The remaining two sections deal with the fundamental and practical utilization of nanostructured materials in gaseous and liquid environments. The second section addresses the former case. A total of seven well documented contributions are included in this section. The papers address studies in diverse areas: energetically heterogeneous surfaces as studied using experimental adsorption isotherms; computer simulations of adsorbed surface layers; the effect of surface heterogeneity on adsorption equilibria and kinetics; single and multicomponent adsorption; surface properties of modified porous silicas; heats of adsorption of pure gases; and nanodimensional magnetic assembly of confined oxygen. The final section includes a total of ten reviews that address adsorption from the liquid phase. The following topics are covered: surface chemistry of activated carbon; charge regulation at the surface of porous solids; surface ionization and complexation; ionic adsorbates on hydrophobic surfaces; adsorption of metals on humic acid surfaces; hydrated metal oxides as adsorbents for heavy metals; adsorption of ions on alumina

  15. Theoretical Study on Equation of State of Porous Mo and Sn

    International Nuclear Information System (INIS)

    Song Hai-Feng; Tian Ming-Feng; Liu Hai-Feng; Song Hong-Zhou; Zhang Gong-Mu

    2014-01-01

    We present a first-principles scheme to investigate the equation of state (EOS) of porous materials, based on our recently developed modified mean-field potential approach. By taking the effect of the structural parameters on the free energy into account, we calculate the total energy of materials with initial different densities and then study the EOS of porous Mo and Sn as a prototype. The calculated results are in good agreement with the experimental data available, which demonstrates that our scheme is suitable for investigating EOS of porous materials over a wide range of porosities and pressures

  16. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  17. Manganese Dioxide Supported on Porous Biomorphic Carbons as Hybrid Materials for Energy Storage Devices.

    Science.gov (United States)

    Gutierrez-Pardo, Antonio; Lacroix, Bertrand; Martinez-Fernandez, Julian; Ramirez-Rico, Joaquin

    2016-11-16

    A facile and low-cost method has been employed to fabricate MnO 2 /C hybrid materials for use as binder-free electrodes for supercapacitor applications. Biocarbon monoliths were obtained through pyrolysis of beech wood, replicating the microstructure of the cellulosic precursor, and serve as 3D porous and conductive scaffolds for the direct growth of MnO 2 nanosheets by a solution method. Evaluation of the experimental results indicates that a homogeneous and uniform composite material made of a carbon matrix exhibiting ordered hierarchical porosity and MnO 2 nanosheets with a layered nanocrystalline structure is obtained. The tuning of the MnO 2 content and crystallite size via the concentration of KMnO 4 used as impregnation solution allows to obtain composites that exhibit enhanced electrochemical behavior, achieving a capacitance of 592 F g -1 in electrodes containing 3 wt % MnO 2 with an excellent cyclic stability. The electrode materials were characterized before and after electrochemical testing.

  18. Comparison of salt solution and air drying methods for moisture fixation in highly porous building materials

    DEFF Research Database (Denmark)

    Antonov, Yovko Ivanov; Jensen, Rasmus Lund; Møldrup, Per

    2017-01-01

    In recent years, research has identified some bio-based, porous building materials as good or excellent regulators of moisture in buildings. The ability of a material to absorb, release and store moisture is described by vapour sorption isotherms. It is necessary input to simulations of indoor...... building materials by a standardized testing method, using saturated salt solutions. Furthermore, results from the standard method are compared to values of moisture content for the same materials, obtained by air-drying at different relative humidity. This is done with the aim to compare the findings from...... the two methods with respect to time and repeatability of the results. Derived isotherms are further used as direct input in the building simulation software BSim, which is capable of predicting indoor environment parameters by solving coupled, transient heat and moisture transport equations using finite...

  19. Sound transmission through panels and shells filled with porous material in the presence of external flow

    OpenAIRE

    Zhou, Jie

    2014-01-01

    With increasingly tighter regulations on noise exposure during flight, aircraft designers have been compelled to innovate structures that minimise noise transmission into the cabin space. Porous material is widely used as a passive noise control medium because of their light weight, low cost, and broad band sound abatement effectiveness. The present work, inspired by the need to be able to predict noise transmission characteristics for commonly used constructions, incorporates the effect of f...

  20. Introduction to porous media micro-mechanics; Introduction a la micromecanique des milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    Dormieux, L.; Bourgeois, E.

    2002-07-01

    The study of porous materials can be considered at two different scales: the microscopic scale characterized by the size of the pores and by the domains occupied by the solid and the fluids, and the macroscopic scale which is controlled by the size of the structures under study (backfilling, foundations, dams, oil reservoirs or sedimentary basins). An alternative way, explored since about 30 years, consists in searching the formulation of macroscopic laws in the framework of a scale change approach. This is the point of view considered in this book which proposes a micro-mechanical approach of the modeling of porous environments based on various techniques of homogenization of the heterogenous materials with a random or periodical microstructure: 1 - macroscopic description of porous environments (space scales, skeleton deformation and kinematics, kinematics of fluid components, conservation laws, internal stresses); 2 - scale change techniques (representative elementary volume, averaging operation, application to conservation laws); 3 - Darcy transport (phenomenological approach of the Darcy law, Darcy law interpretation at the microscopic scale, fluid and solid phases interaction, flows inside a rigid porous environment, application); 4 - diffusive transport of a fluid component (solute transport equation, modeling of the macroscopic diffusive flux by scale change, application to pollutant diffusion); 5 - linear poro-elastic behaviour (first approach: empty sphere model, generalisation, estimation of poro-elastic characteristics); 6 - evolution problems in poro-elasticity (problem formulation, resolution, study of poro-elastic consolidation, tide response of an underwater massif, modeling of the formation of a syncline, study of the folding back of a sheet, numerical resolution of coupled problems, realization of a Scilab script); 7 - conclusion. (J.S.)

  1. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    Science.gov (United States)

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  3. HRTEM analysis of the nanostructure of porous silicon

    International Nuclear Information System (INIS)

    Martin-Palma, R.J.; Pascual, L.; Landa-Canovas, A.R.; Herrero, P.; Martinez-Duart, J.M.

    2006-01-01

    The nanometric structure of porous silicon makes this material to be very suitable for its use in many different fields, including optoelectronics and biological applications. In the present work, the structure of porous silicon was investigated in detail by means of cross-sectional high-resolution transmission electron microscopy and digital image processing, together with electron energy loss spectroscopy. The structure of the Si/porous silicon interface and that of the silicon nanocrystals that compose porous silicon have been analyzed in detail. A strong strain contrast in the Si/porous silicon interface caused by high stresses was observed. Accordingly, dislocation pairs are found to be a possible mechanism of lattice matching between porous silicon and the Si substrate. Finally, high relative concentration of oxygen in the porous silicon layer was observed, together with low relative electron concentration in the conduction band when compared to Si

  4. Preparation of the Lentinus edodes-based porous biomass carbon by hydrothermal method for capacitive desalination

    Science.gov (United States)

    Yan, Junbin; Zhang, Hexuan; Xie, Zhengzheng; Liu, Jianyun

    2017-08-01

    Biomass carbon materials were prepared by hydrothermal method using Lentinus edodes, followed by activation by ZnCl2 at high carbonization temperature. SEM and contact angle test show that ZnCl2 has a significant effect on the surface morphology and properties of porous carbon materials. Using the porous carbon as electrodes of the capacitor, the specific capacitance of the porous carbon material was found to be 247.6 F/g. The desalination amount of porous carbon material in capacitor cell was 12.9 mg/g, being the 1.9 times of that of the commercial activated carbon.

  5. Properties of porous magnesium prepared by powder metallurgy.

    Science.gov (United States)

    Čapek, Jaroslav; Vojtěch, Dalibor

    2013-01-01

    Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Propagating discontinuities in ionized porous media

    NARCIS (Netherlands)

    Kraaijeveld, F.

    2009-01-01

    Ionized porous media swell or shrink under changing osmotic conditions. Examples of such materials are shales, clays, hydrogels and tissues. The materials are represented as a multi-phase material consisting of a solid part and a fluid part with fixed charges embedded in the solid matrix and counter

  7. Macroscopic properties of model disordered materials

    International Nuclear Information System (INIS)

    Knackstedt, M.A.; Roberts, A.P.

    1996-01-01

    Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed

  8. Synthesis, Properties and Potential Applications of Porous Graphene: A Review

    Institute of Scientific and Technical Information of China (English)

    Paola Russo; Anming Hu; Giuseppe Compagnini

    2013-01-01

    Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

  9. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  10. Investigation of beam effect on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kotai, E. E-mail: kotai@rmki.kfki.hu; Paszti, F.; Szilagyi, E

    2000-03-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction.

  11. Investigation of beam effect on porous silicon

    International Nuclear Information System (INIS)

    Kotai, E.; Paszti, F.; Szilagyi, E.

    2000-01-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction

  12. Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Linjing; Borong, Wu.; Ning, Li.; Feng, Wu.

    2014-01-01

    Graphical abstract: - Highlights: • The hierarchically porous micro-rod Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 material is prepared by a facile hydrothermal method. • This material exhibits good cycling performance. • It delivers discharge capacities of 280.7, 254.8, 232.3, 225.6, 201.7 and 172.7 mAh g −1 at 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C and 5 C rates, respectively. • Excellent rate capability and cycleability are obtained attributed to the hierarchically porous micro-rod structure. - Abstract: Lithium-rich cathode material Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 with hierarchically porous micro-rod structures has been synthesized using a facile hydrothermal method. The morphology and XRD patterns explain the formation mechanism of the sample. Micro-rod oxalates precursor with rough surface is formed during the hydrothermal reaction, and then the product with hierarchically porous structures constructed of nanoparticles is synthesized during the sintering process at high temperatures. The electrochemical performance results show that the as-prepared sample exhibits high capacities, good cycleability and outstanding rate capability. It delivers discharge capacities of 280.7, 254.8, 232.3, 225.6, 201.7 and 172.7 mAh g −1 at 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C and 5 C rates, respectively. The cycle voltammograms indicate the good reversibility of the as-prepared Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 material. The high onset temperature of the exothermal peak in the differential scanning calorimetry curve implies its good thermal stability. The good performance of the as-prepared material is endowed by its hierarchically porous structures

  13. Investigation of direct-injection via micro-porous injector

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; Goey, de L.P.H.

    2009-01-01

    The possibility to reduce soot emissions by means of injecting diesel fuel through a porous injector is investigated. From literature it is known that better oxygen entrainment into the fuel spray leads to lower soot emissions. By selection of porous material properties and geometry, the spray is

  14. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  15. The measurement of pore size in porous and microporous materials using resonant ion beam backscattering

    International Nuclear Information System (INIS)

    Armitage, B.H.; Ramsay, J.D.F.; Brady, F.P.

    1978-01-01

    Established methods for measuring the size of pores in porous materials include those of mercury porosimetry and gas adsorption. A disadvantage of these methods is that only one determination can be made for each prepared specimen. A property of the ion beam backscattering method is that each specimen can be probed over the surface and also as a function of depth. Furthermore for microporous samples (pore width less than 2 nm) mercury penetration methods cannot be used because the high pressures involved make unreasonable demands in terms of mechanical strength. At the same time gas adsoption techniques are considerably restricted because capillary condensation is no longer possible because of the small size of the pores. A description is given of the methods of calculation of pore size from resonant ion beam backscattering data, with various assumptions for the pore and interpore path length distributions. Examples are shown of results obtained with highly porous silica gels where good agreement with gas adsoption has been achieved. Finally, some results obtained by scanning silica gels of lower porosity are also given. (Auth.)

  16. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  17. Static friction of porous bioceramic beta-TCP on intestinal mucus films.

    Science.gov (United States)

    Wang, Xin-Yu; Han, Ying-Chao; Jiang, Xin; Dai, Hong-Lian; Li, Shi-Pu

    2006-09-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous beta-tricalcium phosphate (beta-TCP) and an artificial intestine mucus film. The effect of pore size of the beta-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous beta-TCP material.

  18. Static friction of porous bioceramic β-TCP on intestinal mucus films

    International Nuclear Information System (INIS)

    Wang Xinyu; Han Yingchao; Jiang Xin; Dai Honglian; Li Shipu

    2006-01-01

    The static friction behavior between a porous bioceramic material and an intestinal mucus film was investigated in order to develop a new intestine robotic endoscope. Here, the friction couple is porous β-tricalcium phosphate (β-TCP) and an artificial intestine mucus film. The effect of pore size of the β-TCP material on the friction behavior is investigated. The results illustrated that in this friction system there is a relatively small normal force upon the intestinal mucus film of the intestine wall during locomotion. The maximum static friction force in this friction couple varies with the pore size of the porous β-TCP material

  19. Porous graphitic materials obtained from carbonization of organic ...

    Indian Academy of Sciences (India)

    features such as pore diameter, hierarchical porous archi- tectures, surface ... bon xerogels seem to be promising candidates for liquid ... co-solvent to increase the solubility of furfural, whilst the .... 100 nm, thus Vt means the total volume of pores below c.a. ..... Wang Z, Zhang X, Liu X, Lv M, Yang K and Meng J 2011 Carbon.

  20. Semi-solid electrode cell having a porous current collector and methods of manufacture

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  1. FREEZE-THAW TEST RESULTS OF POROUS CONCRETE WITH CRUSHED SCALLOP SHELL MATERIAL ADDED

    OpenAIRE

    SUGIYAMA, Masashi

    2004-01-01

    This paper addresses the possibility of recycling an abundantly available byproduct of the fisheries industry, scallop shells, by adding it to porous concrete. If these shells, now discarded as refuse, can be used as an additive in porous concrete, this c

  2. Investigation of Direct-Injection via Micro-Porous Injector Nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; De Goey, L.P.H.

    2009-02-15

    The possibility to reduce soot emissions by means of injecting diesel fuel through a porous injector is investigated. From literature it is known that better oxygen entrainment into the fuel spray leads to lower soot emissions. By selection of porous material properties and geometry, the spray is tunable such that a maximum of air, present in the cylinder, is utilized. A numerical model has been created to predict the flow through the porous nozzle. Experiments are reported on the spray shape, flow rate and the durability of the porous injector under atmospheric circumstances.

  3. Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials

    Directory of Open Access Journals (Sweden)

    Daniele Ziegler

    2016-06-01

    Full Text Available This paper assesses the feasibility of two industrial wastes, fly ash (FA and rice husk ash (RHA, as raw materials for the production of geopolymeric pastes. Three typologies of samples were thus produced: (i halloysite activated with potassium hydroxide and nanosilica, used as the reference sample (HL-S; (ii halloysite activated with rice husk ash dissolved into KOH solution (HL-R; (iii FA activated with the alkaline solution realized with the rice husk ash (FA-R. Dense and porous samples were produced and characterized in terms of mechanical properties and environmental impact. The flexural and compressive strength of HL-R reached about 9 and 43 MPa, respectively. On the contrary, the compressive strength of FA-R is significantly lower than the HL-R one, in spite of a comparable flexural strength being reached. However, when porous samples are concerned, FA-R shows comparable or even higher strength than HL-R. Thus, the current results show that RHA is a valuable alternative to silica nanopowder to prepare the activator solution, to be used either with calcined clay and fly ash feedstock materials. Finally, a preliminary evaluation of the global warming potential (GWP was performed for the three investigated formulations. With the mix containing FA and RHA-based silica solution, a reduction of about 90% of GWP was achieved with respect to the values obtained for the reference formulation.

  4. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    ber of processes and porous media properties including convective transport .... existence of regions within the porous medium in which there is minimum advective flow. .... concentration at x = L. The initial and the exit boundary conditions can be .... rial was cleaned, washed and dried to ensure that the material free from ...

  5. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  6. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    International Nuclear Information System (INIS)

    Du Yucheng; Yan Jing; Meng Qi; Wang Jinshu; Dai Hongxing

    2012-01-01

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: ► Sb-doped SnO 2 (ATO)-coated diatomite materials with porous structures are prepared. ► Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. ► Porous ATO-coated diatomite materials show excellent conductive performance. ► The lowest resistivity of the porous ATO-coated diatomite sample is 10 Ω cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N 2 adsorption–desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 Ω cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 °C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  7. Streaming Potential and Electroosmosis Measurements to Characterize Porous Materials

    NARCIS (Netherlands)

    Luong, D.T.; Sprik, R.

    2013-01-01

    Characterizing the streaming potential and electroosmosis properties of porous media is essential in applying seismoelectric and electroseismic phenomena for oil exploration. Some parameters such as porosity, permeability, formation factor, pore size, the number of pores, and the zeta potential of

  8. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    Science.gov (United States)

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  9. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  10. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  11. Synthesis, Prop erties and Potential Applications of Porous Graphene:A Review

    Institute of Scientific and Technical Information of China (English)

    Paola Russo; Anming Hu; Giuseppe Compagnini

    2013-01-01

    Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other appli-cations. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be con-sidered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

  12. Graphene-Like 2D Porous Carbon Nanosheets Derived from Cornstalk Pith for Energy Storage Materials

    Science.gov (United States)

    Gao, Kezheng; Niu, Qingyuan; Tang, Qiheng; Guo, Yaqing; Wang, Lizhen

    2018-01-01

    Biomass materials from different organisms or different parts (even different periods) of the same organism have different microscopic morphologies, hierarchical pore structures and even elemental compositions. Therefore, carbon materials inheriting the unique hierarchical microstructure of different biomass materials may exhibit significantly different electrochemical properties. Cornstalk pith and cornstalk skin (dried by freeze-drying) exhibit significantly different microstructures due to their different biological functions. The cornstalk skin-based carbon (S-carbon) exhibits a thick planar morphology, and the Barrett-Emmett-Teller (BET) surface area is only about 332.07 m2 g-1. However, cornstalk pith-based carbon (P-carbon) exhibits a graphene-like 2D porous nanosheet structure with a rough, wrinkled morphology, and the BET surface area is about 805.17 m2 g-1. In addition, a P-carbon supercapacitor exhibits much higher specific capacitance and much better rate capability than an S-carbon supercapacitor in 6 M potassium hydroxide (KOH) electrolyte.

  13. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    Science.gov (United States)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  14. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  15. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers

    OpenAIRE

    Chen, Guojian; Zhou, Yu; Wang, Xiaochen; Li, Jing; Xue, Shuang; Liu, Yangqing; Wang, Qian; Wang, Jun

    2015-01-01

    In fields of materials science and chemistry, ionic-type porous materials attract increasing attention due to significant ion-exchanging capacity for accessing diversified applications. Facing the fact that porous cationic materials with robust and stable frameworks are very rare, novel tactics that can create new type members are highly desired. Here we report the first family of polyhedral oligomeric silsesquioxane (POSS) based porous cationic frameworks (PCIF-n) with enriched poly(ionic li...

  16. Fabrication and excellent conductive performance of antimony-doped tin oxide-coated diatomite with porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Du Yucheng, E-mail: ychengdu@bjut.edu.cn [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Yan Jing; Meng Qi; Wang Jinshu [Key Lab of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Dai Hongxing, E-mail: hxdai@bjut.edu.cn [Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2012-04-16

    Graphical abstract: Antimony-doped tin oxide (ATO)-coated diatomite with porous structures are fabricated using the co-precipitation method. The porous ATO-coated diatomite material shows excellent conductive performance. Highlights: Black-Right-Pointing-Pointer Sb-doped SnO{sub 2} (ATO)-coated diatomite materials with porous structures are prepared. Black-Right-Pointing-Pointer Sn/Sb ratio, ATO coating amount, pH value, and temperature influence resistivity. Black-Right-Pointing-Pointer Porous ATO-coated diatomite materials show excellent conductive performance. Black-Right-Pointing-Pointer The lowest resistivity of the porous ATO-coated diatomite sample is 10 {Omega} cm. - Abstract: Diatomite materials coated with antimony-doped tin oxide (ATO) were prepared by the co-precipitation method, and characterized by means of the techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, X-ray fluorescence spectroscopy, and N{sub 2} adsorption-desorption measurement. It was shown that the coated ATO possessed a tetragonal rutile crystal structure, and the ATO-coated diatomite materials had a multi-pore (micro- meso-, and macropores) architecture. The porous ATO-coated diatomite materials exhibited excellent electrical conductive behaviors. The best conductive performance (volume resistivity = 10 {Omega} cm) was achieved for the sample that was prepared under the conditions of Sn/Sb molar ratio = 5.2, Sn/Sb coating amount = 45 wt%, pH = 1.0, and reaction temperature = 50 Degree-Sign C. Such a conductive porous material is useful for the applications in physical and chemical fields.

  17. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    NARCIS (Netherlands)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous

  18. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    International Nuclear Information System (INIS)

    Ke Guizhen; Xie Huifang; Ruan Ruping; Yu Weidong

    2010-01-01

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  19. Microstructural and mechanical characteristics of porous iron prepared by powder metallurgy.

    Science.gov (United States)

    Capek, Jaroslav; Vojtěch, Dalibor

    2014-10-01

    The demand for porous biodegradable load-bearing implants has been increasing recently. Based on investigations of biodegradable stents, porous iron may be a suitable material for such applications. In this study, we prepared porous iron samples with porosities of 34-51 vol.% by powder metallurgy using ammonium bicarbonate as a space-holder material. We studied sample microstructure (SEM-EDX and XRD), flexural and compressive behaviors (universal loading machine) and hardness HV5 (hardness tester) of the prepared samples. Sample porosity increased with the amount of spacer in the initial mixtures. Only the pore surfaces had insignificant oxidation and no other contamination was observed. Increasing porosity decreased the mechanical properties of the samples; although, the properties were still comparable with human bone and higher than those of porous non-metallic biomaterials and porous magnesium prepared in a similar way. Based on these results, powder metallurgy appears to be a suitable method for the preparation of porous iron for orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    Science.gov (United States)

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  1. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 1, the calculation of sound speed of slurries and hardened porous material

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2011-01-01

    This article focuses on the computation of the sound velocity through slurries and hardened products. The purpose is to use the sound velocity to quantify the composition of the fresh slurry as well as the hardening and hardened - porous - material. Therefore the volumetric models for hydration of

  2. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    Science.gov (United States)

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J.; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-11-01

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the

  3. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    International Nuclear Information System (INIS)

    Wauthle, Ruben; Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Mulier, Michiel; Zadpoor, Amir Abbas; Weinans, Harrie; Van Humbeeck, Jan; Kruth, Jean-Pierre; Schrooten, Jan

    2015-01-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures

  4. Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wauthle, Ruben, E-mail: ruben.wauthle@3dsystems.com [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems - LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Ahmadi, Seyed Mohammad; Amin Yavari, Saber [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Mulier, Michiel [KU Leuven, Department of Orthopaedics, Weligerveld 1, 3212 Pellenberg (Belgium); Zadpoor, Amir Abbas [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Weinans, Harrie [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft (Netherlands); Department of Orthopedics & department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Van Humbeeck, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); Kruth, Jean-Pierre [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); Schrooten, Jan [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, PB 2450, 3001 Leuven (Belgium); KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, PB 813, O& N1, Herestraat 49, 3000 Leuven (Belgium)

    2015-09-01

    Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants. - Highlights: • The mechanical properties of CP Ti grade 1 porous structures are studied. • The results are compared with identical structures in Ti6Al4V ELI and tantalum. • Ti6Al4V ELI structures are about two times stronger under a static compressive load. • CP Ti structures deform continuously without fracture while loaded statically. • CP Ti structures have a higher fatigue life compared to Ti6Al4V ELI structures.

  5. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  6. Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds

    Directory of Open Access Journals (Sweden)

    Nurizzati Mohd Daud

    2014-10-01

    Full Text Available This paper describes degradation and cell–material interaction studies on hydroxyapatite (HA-coated biodegradable porous iron proposed for hard tissue scaffolds. Porous iron scaffolds are expected to serve as an ideal platform for bone regeneration. To couple their inherent mechanical strength, pure HA and HA/poly(ε-caprolactone (HA/PCL were coated onto porous iron using dip coating technique. The HA/PCL mixture was prepared to provide a more stable and flexible coating than HA alone. Degradation of the samples was evaluated by weight loss and potentiodynamic polarisation. Human skin fibroblast (HSF and human mesenchymal stem cells (hMSC were put in contact with the samples and their interaction was observed. Results showed that coated samples degraded ∼10 times slower (0.002 mm/year for HA/PCL-Fe, 0.003 mm/year for HA-Fe than the uncoated ones (0.031 mm/year, indicating an inhibition effect of the coating on degradation. Both HSF and hMSC maintained high viability when in contact with the coated samples (100–110% control for hMSC during 2–5 days of incubation, indicating the effect of HA in enhancing cytocompatibility of the surface. This study provided early evidence of the potential translation of biodegradable porous iron scaffolds for clinical use in orthopedic surgery. However, further studies including in vitro and in vivo tests are necessary.

  7. Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors.

    Science.gov (United States)

    Wang, Haoran; Yu, Shukai; Xu, Bin

    2016-09-20

    Hierarchical porous carbon materials with high surface areas and a localized graphitic structure were simply prepared from sucrose using nano-ZnO as a hard template, activation agent and graphitization catalyst simultaneously, which exhibit an outstanding high-rate performance and can endure an ultrafast scan rate of 20 V s -1 and ultrahigh current density of 1000 A g -1 .

  8. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    Science.gov (United States)

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  9. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...

  10. Overall viscoplastic behavior of non-irradiated porous nuclear ceramics

    International Nuclear Information System (INIS)

    Monerie, Yann; Gatt, Jean-Marie

    2006-01-01

    This paper deals with the overall behavior of nonlinear viscous and porous nuclear ceramics. Bi-viscous isotropic porous materials are considered: the matrix is subjected to two power-law viscosities with different exponents related to two stationary temperature-activated creeping mechanisms (scattering-creep and dislocation-creep), and this matrix contains a low porosity volume fraction. The overall behavior of these types of composite materials is obtained with the help of quadratic strain-rate potentials combined with experimental-based coupling function depending on stress and temperature. For each creeping mechanism, the hollow sphere model of [Michel, J.-C., Suquet, P., 1992. The constitutive law of nonlinear viscous and porous materials. Journal of the Mechanics and Physics of Solids 40, 783-812] is used. Mechanical parameters of the resulting model are identified and validated in the particular case of non-irradiated uranium dioxide nuclear ceramics. This model predicts, under pure thermo-mechanical loading, a variation of the material volume and a variation of the porosity volume fraction (the so-called densification or swelling). (authors)

  11. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  12. Porous Core-Shell Nanostructures for Catalytic Applications

    Science.gov (United States)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  13. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  14. Graphene materials having randomly distributed two-dimensional structural defects

    Science.gov (United States)

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  15. Porous calcium carbonate as a carrier material to increase the dissolution rate of poorly soluble flavouring compounds.

    Science.gov (United States)

    Lundin Johnson, Maria; Noreland, David; Gane, Patrick; Schoelkopf, Joachim; Ridgway, Cathy; Millqvist Fureby, Anna

    2017-04-19

    Two different food grade functionalised porous calcium carbonates (FCC), with different pore size and pore size distributions, were characterised and used as carrier materials to increase the dissolution rate of poorly soluble flavouring compounds in aqueous solution. The loading level was varied between 1.3% by weight (wt%) and 35 wt%, where the upper limit of 35 wt% was the total maximum loading capacity of flavouring compound in FCC based on the fraction of the total weight of FCC plus flavouring compound. Flavouring compounds (l-carvone, vanillin, and curcumin) were selected based on their difference in hydrophilicity and capacity to crystallise. Release kinetic studies revealed that all flavouring compounds showed an accelerated release when loaded in FCC compared to dissolution of the flavouring compound itself in aqueous medium. The amorphous state and/or surface enlargement of the flavouring compound inside or on FCC explains the faster release. The flavouring compounds capable of crystallising (vanillin and curcumin) were almost exclusively amorphous within the porous FCC material as determined by X-ray powder diffraction one week after loading and after storing the loaded FCC material for up to 9 months at room temperature. A small amount of crystalline vanillin and curcumin was detected in the FCC material with large pores and high flavouring compound loading (≥30 wt%). Additionally, two different loading strategies were evaluated, loading by dissolving the flavouring compound in acetone or loading by a hot melt method. Porosimetry data showed that the melt method was more efficient in filling the smallest pores (<100 nm). The main factor influencing the release rate appears to be the amorphous state of the flavouring compound and the increase in exposed surface area. The confinement in small pores prevents crystallisation of the flavouring compounds during storage, providing a stable amorphous form retaining high release rate also after storage.

  16. A stochastic multiscale framework for modeling flow through random heterogeneous porous media

    International Nuclear Information System (INIS)

    Ganapathysubramanian, B.; Zabaras, N.

    2009-01-01

    Flow through porous media is ubiquitous, occurring from large geological scales down to the microscopic scales. Several critical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as the limited information available to characterize the system. Any realistic modeling of these transport phenomena has to resolve two key issues: (i) the multi-length scale variations in permeability that these systems exhibit, and (ii) the inherently limited information available to quantify these property variations that necessitates posing these phenomena as stochastic processes. A stochastic variational multiscale formulation is developed to incorporate uncertain multiscale features. A stochastic analogue to a mixed multiscale finite element framework is used to formulate the physical stochastic multiscale process. Recent developments in linear and non-linear model reduction techniques are used to convert the limited information available about the permeability variation into a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial differential equations (SPDEs). The framework is applied to analyze flow through random heterogeneous media when only limited statistics about the permeability variation are given

  17. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  18. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  19. Characterization of nanoparticle and porous ultra low-k using positron beam

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Suzuki, R.; Ohdaira, T.; Mills, A.P. Jr.

    2003-01-01

    Nanoparticle materials are important because they exhibit unique properties due to size effects, quantum tunneling, and quantum confinement. As particle sizes are reduced to the nanometer scale, presence of vacancy clusters is expected to affect properties of nanomaterials. A combination of positron lifetime spectroscopy, which tells size of vacancy clusters, and coincidence Doppler broadening of annihilation radiation, which tell where vacancy clusters are located was used to study defect structures on nanomaterials of Au nanoparticles embedded in MgO. Vacancy clusters were found on the surfaces of Au nanoparticles. When the packing density between multilevel interconnects in microelectronic devices increases, a low dielectric constant material is needed to minimize RC delay. Porous oxide films are some of these new low-k materials that have been actively studied by the microelectronics industry. An ideal porous material would consist of a network of closed, small pores with narrow size distribution. However, large and interconnected pores, so called 'killer pores', result in high current leakage and poor mechanical strength. Clearly, characterization and understanding of pore size and interconnectivity are important to optimize the design of porous materials. Using positron beam, we have found that pore percolation in porous methyl-silsesquioxane (MSQ) films strongly depends on the molecular mass of pore generators. (author)

  20. Particulate-free porous silicon networks for efficient capacitive deionization water desalination.

    Science.gov (United States)

    Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L

    2016-04-22

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.

  1. Particulate-free porous silicon networks for efficient capacitive deionization water desalination

    Science.gov (United States)

    Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.

    2016-01-01

    Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809

  2. Mathematical modeling of deformation of a porous medium, considering its strengthening due to pore collapse

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru [Institute of Computational Modeling, SB RAS, Akademgorodok 50/44, 660036 Krasnoyarsk (Russian Federation)

    2015-10-28

    Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the pore size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.

  3. Vapor phase versus liquid phase grafting of meso-porous alumina

    NARCIS (Netherlands)

    Sripathi, V.G.P.; Mojet, Barbara; Nijmeijer, Arian; Benes, Nieck Edwin

    2013-01-01

    Functionalization of meso-porous c-alumina has been performed by grafting of 3-Aminopropyltrimethoxysilane (3APTMS) simultaneously from either the liquid phase or from the vapor phase. In both cases, after grafting nitrogen physisorption indicates that the materials remain meso-porous with

  4. Highlights from the Faraday Discussion on New Directions in Porous Crystalline Materials, Edinburgh, UK, June 2017.

    Science.gov (United States)

    Addicoat, Matthew A; Bennett, Thomas D; Stassen, Ivo

    2017-09-28

    A lively discussion on new directions in porous crystalline materials took place in June 2017, with the beautiful city of Edinburgh as a backdrop, in the context of the unique Faraday Discussions format. Here, 5 minute presentations were given on papers which had been submitted in advance of the conference, with copious time allocated for in-depth discussion of the work presented. Prof. Mircea Dincă (MIT), chair of the scientific committee, opened the conference by welcoming the many different nationalities attending, and outlining the format of discussions.

  5. Surface modification of porous titanium with rice husk as space holder

    Science.gov (United States)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  6. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  7. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    Science.gov (United States)

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD 200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  8. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.

    Science.gov (United States)

    Shen, Wei; Wang, Cong; Liu, Haimei; Yang, Wensheng

    2013-10-18

    A porous Na3 V2 (PO4 )3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol-gel method combined with a freeze-drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium-ion batteries, this porous Na3 V2 (PO4 )3 /C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7-4.0 V versus Na(+) /Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g(-1) at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g(-1) ), an initial capacity of 97.6 mA h g(-1) can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3 V2 (PO4 )3 /C suggest that this material is a promising cathode for large-scale sodium-ion rechargeable batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  10. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  11. Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries

    Science.gov (United States)

    Baji, Dona Susan; Jadhav, Harsharaj S.; Nair, Shantikumar V.; Rai, Alok Kumar

    2018-06-01

    Pyro synthesis is a method to coat nanoparticles by uniform layer of carbon without using any conventional carbon source. The resultant carbon coating can be evaporated in the form of CO or CO2 at high temperature with the creation of large number of nanopores on the sample surface. Hence, a porous MnCo2O4 is successfully synthesized here with the same above strategy. It is believed that the electrolyte can easily permeate through these nanopores into the bulk of the sample and allow rapid access of Li+ ions during charge/discharge cycling. In order to compare the superiority of the porous sample synthesized by pyro synthesis method, MnCo2O4 nanoparticles are also synthesized by sol-gel synthesis method at the same parameters. When tested as anode materials for lithium ion battery application, porous MnCo2O4 electrode shows high capacity with long lifespan at all the investigated current rates in comparison to MnCo2O4 nanoparticles electrode.

  12. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    Science.gov (United States)

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Multi-component acoustic characterization of porous media

    NARCIS (Netherlands)

    Van Dalen, K.N.

    2011-01-01

    The characterization of porous materials (e.g., sandstone) is very important for geotechnical and reservoir engineers. For this purpose, often use is made of acoustic waves that are sent through the medium. The desired material parameters can then be estimated from the measured signals. However,

  14. Additive Manufacturing of Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division. Polymers and Coatings

    2016-08-30

    Additive manufacturing has become a tool of choice for the development of customizable components. Developments in this technology have led to a powerful array of printers that t serve a variety of needs. However, resin development plays a crucial role in leading the technology forward. This paper addresses the development and application of printing hierarchical porous structures. Beginning with the development of a porous scaffold, which can be functionalized with a variety of materials, and concluding with customized resins for metal, ceramic, and carbon structures.

  15. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    Science.gov (United States)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  16. A KDE-Based Random Walk Method for Modeling Reactive Transport With Complex Kinetics in Porous Media

    Science.gov (United States)

    Sole-Mari, Guillem; Fernà ndez-Garcia, Daniel; Rodríguez-Escales, Paula; Sanchez-Vila, Xavier

    2017-11-01

    In recent years, a large body of the literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.

  17. Porous SiC/SiC composites development for industrial application

    International Nuclear Information System (INIS)

    Maeta, S.; Hinoki, T.

    2014-01-01

    Silicon carbide (SiC) is promising structural materials in nuclear fields due to an excellent irradiation resistance and low activation characteristics. Conventional SiC fibers reinforced SiC matrix (SiC/SiC composites) fabricated by liquid phase sintering (LPS-SiC/SiC composites) have been required high cost and long processing time. And microstructure and mechanical property data of finally obtained LPS-SiC/SiC composites are easily scattered, because quality of the composites depend on personal skill. Thus, conventional LPS-SiC/SiC composites are inadequate for industrial use. In order to overcome these issues, the novel “porous SiC/SiC composites” have been developed by means of liquid phase sintering fabrication process. The composites consist of porous SiC matrix and SiC fibers without conventional carbon interfacial layer. The composites don’t have concerns of the degradation interfacial layer at the severe accident. Porous SiC/SiC composites preform was prepared with a thin sheet shape of SiC, sintering additives and carbon powder mixture by tape casting process which was adopted because of productive and high yielding rate fabrication process. The preform was stacked with SiC fibers and sintered in hot-press at the high temperature in argon environment. The sintered preform was decarburized obtain porous matrix structure by heat-treatment in air. Moreover, mechanical property data scattering of the obtained porous SiC/SiC composites decreased. In the flexural test, the porous SiC/SiC composites showed pseudo-ductile behavior with sufficient strength even after heat treatment at high temperature in air. From these conclusions, it was proven that porous SiC/SiC composites were reliable material at severe environment such as high temperature in air, by introducing tape casting fabrication process that could produce reproducible materials with low cost and simple way. Therefore development of porous SiC/SiC composites for industrial application was

  18. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  19. Syntheses of carbon porous materials with varied pore sizes and their performances as catalyst supports during methanol oxidation reaction

    International Nuclear Information System (INIS)

    Lo, An-Ya; Hung, Chin-Te; Yu, Ningya; Kuo, Cheng-Tzu; Liu, Shang-Bin

    2012-01-01

    Highlights: ► CPMs with varied pore sizes (1–400 nm) were replicated from various porous silicas by CVI method. ► MOR activities of Pt/CPM electrocatalysts increase with increasing pore size of CPM support. ► Microporous CPMs are favorable supports for Pt in terms of catalytic performance and CO-tolerance. -- Abstract: Carbon porous materials (CPMs) with extended ranges of pore size and morphology were replicated using various porous silicas, such as zeolites, mesoporous silicas, and photonic crystals, as templates by means of chemical vapor infiltration (CVI) method. The micro-, meso-, and macro-porous carbons so fabricated were adopted as supports for the metal (Pt) catalyst for direct methanol fuel cells (DMFCs), and the supported Pt/CPM electrocatalysts were characterized by a variety of different spectroscopic/analytical techniques, viz. transmission electron microscopy (TEM), Raman, X-ray photoelectron spectroscopy (XPS), gas physisorption/chemisorption analyses, and cyclic voltammetry (CV). That these Pt/CPMs were found to exhibit superior electrocatalytic activities compared to the commercial Pt/XC-72 with a comparable Pt loading during methanol oxidation reaction (MOR) is attributed to the presence of Pt nanoparticles (NPs; typically 1–3 nm in size) that are highly dispersed in the CPMs, facilitating an improved tolerance for CO poisoning. While the MOR activity observed for various Pt/CPMs tend to increase with increasing pore size of the carbon supports, Pt catalyst supported on carbon substrates possessing microporosities was found to have superior stability in terms of tolerance for CO poisoning than those with greater pore size or having meso- and macroporosities.

  20. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material

    DEFF Research Database (Denmark)

    Hozjan, Tomaz; Svensson, Staffan

    2010-01-01

    Moisture transport in an open porous hygroscopic material such as wood is a complex system of coupled processes. For seasoned wood in natural climate three fully coupled processes active in the moisture transport are readily identified: (1) diffusion of vapor in pores; (2) phase change from one...... state to another, also called moisture sorption; and (3) diffusion of bound water in wood tissue (in the cell wall). A mathematical model for predicting moisture transport in wood for a given condition must at least consider the dominating active processes simultaneously to be considered accurate...... of the three processes on the outcome of the coupled model. Least significant is the bound water diffusion. Based on the results from the sensitivity analyses, a simplified model for moisture transport in wood is proposed....

  1. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Science.gov (United States)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  2. Human bone ingrowth into a porous tantalum acetabular cup

    Directory of Open Access Journals (Sweden)

    Gregory N. Haidemenopoulos

    2017-11-01

    Full Text Available Porous Tantalum is increasingly used as a structural scaffold in orthopaedic applications. Information on the mechanisms of human bone ingrowth into trabecular metal implants is rather limited. In this work we have studied, qualitatively, human bone ingrowth into a retrieved porous tantalum monoblock acetabular cup using optical microscopy, scanning electron microscopy and energy dispersive X-ray analysis. According to the results and taking into account the short operational life (4 years of the implant, bone ingrowth on the acetabular cup took place in the first two-rows of porous tantalum cells to an estimated depth of 1.5 to 2 mm. The bone material, grown inside the first raw of cells, had almost identical composition with the attached bone on the cup surface, as verified by the same Ca:P ratio. Bone ingrowth has been a gradual process starting with Ca deposition on the tantalum struts, followed by bone formation into the tantalum cells, with gradual densification of the bone tissue into hydroxyapatite. A critical step in this process has been the attachment of bone material to the tantalum struts following the topology of the porous tantalum scaffold. These results provide insight to the human bone ingrowth process into porous tantalum implants.

  3. Micromechanical analysis of porous SMA

    International Nuclear Information System (INIS)

    Sepe, V; Marfia, S; Sacco, E; Auricchio, F

    2015-01-01

    The present paper deals with computational micromechanical analyses of porous shape memory alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix including voids. A three-dimensional constitutive law is presented for the dense SMA able to reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for the different elastic properties of the austenite and martensite phases. Furthermore, a numerical procedure is developed and the overall behavior of the porous SMA is recovered studying a representative volume element. Comparisons between the numerical results, recovered using the proposed modeling, and experimental data available in the literature are presented. The case of closed and open porosity is investigated. Parametric studies have been conducted in order to investigate the influence of the porosity, the shape and orientation of the pores on the overall mechanical response and, mainly, on the energy absorption dissipation capability. (paper)

  4. Porous InP as piezoelectric matrix material in 1-3 magnetoelectric composite sensors

    International Nuclear Information System (INIS)

    Gerngross, M.-D.; Leisner, M.; Carstensen, J.; Foell, H.

    2011-01-01

    This work shows the results of the fabrication of semi-insulating piezoelectric porous InP structures by electrochemical etching and subsequent purely chemical post-etching in an isotropic HF, HNO 3 , EtOH and HAc containing electrolyte. The piezoelectric modulus d 14 of porous InP is measured to around |60| pm / V, which larger by a factor of 30 compared to bulk InP.

  5. Porous silicon: some new applications of this material with astonishing properties; Le silicium poreux: nouvelles applications de ce materiau aux proprietes remarquables

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Manuel, B. [Laboratoire FEMTO-ST, Dept. MN2S, CNRS UMR 6174, 25 - Besancon (France)

    2009-02-15

    Anodic oxidation of silicon wafer in fluor-hydric acid solution leads to a porous material with surprising properties. Structures at nano-metric scale are source of deep photoluminescence. The very large scale of pore size available and the high specific surface obtained allows optical and microfabrication applications. This paper describes the electrochemical process of this material, some characterization methods, and some new applications in the fields of micro-energy and molecular separation. (author)

  6. Fractal Model for Acoustic Absorbing of Porous Fibrous Metal Materials

    Directory of Open Access Journals (Sweden)

    Weihua Chen

    2016-01-01

    Full Text Available To investigate the changing rules between sound absorbing performance and geometrical parameters of porous fibrous metal materials (PFMMs, this paper presents a fractal acoustic model by incorporating the static flow resistivity based on Biot-Allard model. Static flow resistivity is essential for an accurate assessment of the acoustic performance of the PFMM. However, it is quite difficult to evaluate the static flow resistivity from the microstructure of the PFMM because of a large number of disordered pores. In order to overcome this difficulty, we firstly established a static flow resistivity formula for the PFMM based on fractal theory. Secondly, a fractal acoustic model was derived on the basis of the static flow resistivity formula. The sound absorption coefficients calculated by the presented acoustic model were validated by the values of Biot-Allard model and experimental data. Finally, the variation of the surface acoustic impedance, the complex wave number, and the sound absorption coefficient with the fractal dimensions were discussed. The research results can reveal the relationship between sound absorption and geometrical parameters and provide a basis for improving the sound absorption capability of the PFMMs.

  7. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics.

    Science.gov (United States)

    Ahmed, M J; Islam, Md Azharul; Asif, M; Hameed, B H

    2017-11-01

    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m 2 /g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. 3D printed porous stainless steel for potential use in medicine

    Science.gov (United States)

    Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Čapek, J.

    2017-02-01

    3D printing technologies like Selective Laser Melting (SLM) or Electron Beam Melting (EBM) produce components of very complicated shapes from various kinds of materials. In this work a highly porous (porosity of almost 90 vol. %) stainless steel component was manufactured by SLM. The material was characterized in terms of structure, surface chemistry and mechanical properties. It was observed that mechanical properties of the material were similar to those of trabecular human bone. The tests realized in this work confirmed suitability of the porous material prepared by SLM for the use in medicine, for example, for scaffolds designed to repair bone defects.

  9. Structural characterization of amorphous materials applied to low-k organosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Raymunt, Alexandra Cooper, E-mail: amc442@cornell.edu; Clancy, Paulette

    2014-07-01

    We present a methodology to create computational atomistic-level models of porous amorphous materials, in particular, an organosilicate structure for ultra-low dielectric constant (ULK) materials known as “SiCOH.” The method combines the ability to satisfy geometric and chemical constraints with subsequent molecular dynamics (MD) techniques as a way to capture the complexities of the porous and amorphous nature of these materials. The motivation for studying ULK materials arises from a desire to understand the origin of the material's weak mechanical properties. The first step towards understanding how these materials might behave under processing conditions that are intended to improve their mechanical properties is to develop a suitable computational model of the material and hence is the focus of this paper. We define the atomic-scale topology of ULK materials that have been produced by chemical vapor deposition-like experimental techniques. Specifically, we have developed a method of defining the initial atom configurations and interactions, as well as a method to rearrange these starting configurations into relaxed structures. The main advantage of our described approach is the ability of our structure generation method to maintain a random distribution of relevant structural motifs throughout the structure, without relying on large unit cells and periodic boundaries to approximate the behavior of this complex material. The minimization of the different models was accomplished using replica exchange molecular dynamics (REMD). Following the generation of the ‘equilibrium’ configurations that result from REMD for a ULK material of a pre-specified composition, we demonstrate that its structural properties, including bonding topology, porosity and pore size distribution are similar to experimentally used ULK materials. - Highlights: • Method for creating a model of a low dielectric constant organosilicate material • Method of defining porosity in

  10. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  11. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  12. Titanium Dioxide Supported on Different Porous Materials as Photocatalyst for the Degradation of Methyl Green in Wastewaters

    Directory of Open Access Journals (Sweden)

    Haithem Bel Hadjltaief

    2015-01-01

    Full Text Available TiO2 nanoparticles were immobilized on two porous materials used as catalyst supports, namely, activated carbon (AC and natural clay (NC, through an impregnation process using TiO2 (P25 as precursor. The so-prepared composite materials were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transition electron microscopy (TEM, and nitrogen physisorption, that is, Brunauer-Emmett-Teller (BET surface area determination. SEM and TEM observation evidenced that TiO2 was deposited on AC and NC surface. XRD results confirmed that TiO2 existed in a mixture of anatase and rutile phases. The specific surface area of photocatalysts decreased drastically in comparison with the original materials. The photocatalytic activity of these materials was assayed in the oxidation of Methyl Green (MG dye in aqueous medium under UV irradiation. TiO2/AC exhibited higher photocatalytic oxidation activity than TiO2 at neutral pH. Total mineralization of MG was confirmed by means of COD analysis, pointing to these materials as an efficient, cost-effective, and environment friendly alternative for water treatment.

  13. An experimental investigation of unsteady thermal processes on a pre-cooled circular cylinder of porous material in the wind

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil

    2014-01-01

    Roč. 77, October (2014), s. 906-914 ISSN 0017-9310 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA ČR(CZ) GBP105/12/G059 Institutional support: RVO:68378297 Keywords : circular cylinder * unsteady heat transfer * temperature distribution * wind tunnel experiment * porous material Subject RIV: JN - Civil Engineering Impact factor: 2.383, year: 2014 http://www.sciencedirect.com/science/article/pii/S0017931014005171

  14. Confocal imaging of protein distributions in porous silicon optical structures

    International Nuclear Information System (INIS)

    De Stefano, Luca; D'Auria, Sabato

    2007-01-01

    The performances of porous silicon optical biosensors depend strongly on the arrangement of the biological probes into their sponge-like structures: it is well known that in this case the sensing species do not fill the pores but instead cover their internal surface. In this paper, the direct imaging of labelled proteins into different porous silicon structures by using a confocal laser microscope is reported. The distribution of the biological matter in the nanostructured material follows a Gaussian behaviour which is typical of the diffusion process in the porous media but with substantial differences between a porous silicon monolayer and a multilayer such as a Bragg mirror. Even if semi-quantitative, the results can be very useful in the design of the porous silicon based biosensing devices

  15. Foamlike porous spinel Mn(x)Co(3-x)O4 material derived from Mn3[Co(CN)6]2⋅nH2O nanocubes: a highly efficient anode material for lithium batteries.

    Science.gov (United States)

    Hu, Lin; Zhang, Ping; Zhong, Hao; Zheng, Xinrui; Yan, Nan; Chen, Qianwang

    2012-11-19

    A new facile strategy has been designed to fabricate spinel Mn(x)Co(3-x)O(4) porous nanocubes, which involves a morphology-conserved and pyrolysis-induced transformation of Prussian Blue Analogue Mn(3)[Co(CN)(6)](2)⋅nH(2)O perfect nanocubes. Owing to the release of CO(2) and N(x)O(y) in the process of interdiffusion, this strategy can overcome to a large extent the disadvantage of the traditional ceramic route for synthesis of spinels, and Mn(x)Co(3-x)O(4) with foamlike porous nanostructure is effectively obtained. Importantly, when evaluated as an electrode material for lithium-ion batteries, the foamlike Mn(x)Co(3-x)O(4) porous nanocubes display high specific discharge capacity and excellent rate capability. The improved electrochemical performance is attributed to the beneficial features of the particular foamlike porous nanostructure and large surface area, which reduce the diffusion length for Li(+) ions and enhance the structural integrity with sufficient void space for buffering the volume variation during the Li(+) insertion/extraction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Drug delivery via porous silicon: a focused patent review.

    Science.gov (United States)

    Kulyavtsev, Paulina A; Spencer, Roxanne P

    2017-03-01

    Although silicon is more commonly associated with computer chips than with drug delivery, with the discovery that porous silicon is a viable biocompatible material, mesoporous silicon with pores between 2 and 50 nm has been loaded with small molecule and biomolecule therapeutics and safely implanted for controlled release. As porous silicon is readily oxidized, porous silica must also be considered for drug delivery applications. Since 2010, only a limited number of US patents have been granted, primarily for ophthalmologic and immunotherapy applications, in contrast to the growing body of technical literature in this area.

  17. Synthesis and characterization of porous microspheres bearing pyrrolidone units

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, M., E-mail: mmacieje@umcs.pl; Kołodyńska, D.

    2015-01-15

    Porous microspheres of glycydyl methacrylate (GMA) cross-linked with trimethylolpropane trimethacrylate (TRIM) were prepared with toluene as porogen by suspension-emulsion polymerization. With increasing molar ratio of the functional monomer to cross-linker, the epoxy group content increases significantly whereas the parameters of porous structure (specific surface area and total pore volume) decreases. In order to obtain adsorbents bearing functional groups the porous methacrylate network was modified by subsequent reaction with pyrrolidone. The materials were studied using elemental analysis, infrared spectroscopy, atomic force microscopy (AFM), attenuated total reflection (ATR) spectroscopy, Raman spectroscopy, thermal gravimetry. Additionally, polymers sorption capacity towards Cu(II) was investigated. - Highlights: • Porous microspheres with reactive epoxy group were synthesized. • Highly developed porous structure was created. • Pyrrolidone units were incorporated during ring–opening reaction. • Polymers sorption capacity towards Cu (II) was investigated.

  18. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.

    Science.gov (United States)

    Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-22

    In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high

  19. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    Science.gov (United States)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  20. Effective conductivity by fluid analogy for a porous insulator filled with a conductor

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    By combining of identities relating effective conductivity to tortuosity and tortuosity to induced mass, a general formula for the effective (electrical or thermal) conductivity of a porous insulator filled with a conductor is obtained. This formula depends on an induced-mass factor which arises by treating of the conducting material as an inviscid fluid. This induced-mass factor can be estimated with the use of an effective-medium theory. For random arrays of equal spheres, the estimates of conductivity obtained with the use of this fluid analogy are in good agreement with recent exact values derived for periodic arrays of insulating spheres to closest packing

  1. Characterization and microstructure of porous lead zirconate titanate ...

    Indian Academy of Sciences (India)

    Unknown

    need to have porous piezoelectric materials. These can be made by combining a PZT ceramic with a passive polymer or air phase. These materials greatly extend the range of properties offered by conventional PZT ceramics. More- over, porosity in the materials could reduce the effective acoustical impedance leading to an ...

  2. A new porous hybrid material derived from silica fume and alginate for sustainable pollutants reduction

    Science.gov (United States)

    Zanoletti, Alessandra; Vassura, Ivano; Venturini, Elisa; Monai, Matteo; Montini, Tiziano; Federici, Stefania; Zacco, Annalisa; Treccani, Laura; Bontempi, Elza

    2018-03-01

    In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities. In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.

  3. Impact of water mobility in some porous media on migration of radio isotopes to the geosphere

    International Nuclear Information System (INIS)

    AL-Hajji, E.

    2011-07-01

    The aim of this work is to study the behavior of the water state (bound /free water) in porous materials such as illite and bentonite. These materials are widely used in the storage of radioactive waste. The study was carried out using proton nuclear magnetic resonance technique (NMR). That permits to understand the mechanism of leakage of radioactive elements from these porous materials to the surrounding environment. Such a leakage may have very serious consequences like the contamination of groundwater. In addition, other porous materials like silica and alumina, the two main composite of bentonite, have been studied as well.(author)

  4. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  5. Influence of the ammonium hydroxide concentration in morphological control of meso porous silica particles

    International Nuclear Information System (INIS)

    Yoon, Sukbon; Jung, Chonghun; Yoon, Inho; Kim, Changki; Choi, Wangkyu; Moon, Jeikwon

    2012-01-01

    The discovery of new M41S meso porous silica families in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these meso porous silicas has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Meanwhile, many studies have been conducted on the application as catalysts, adsorbents, and packing materials for separation columns due to their unique properties such as high specific surface area, large pore volume, tuneable pore size, and narrow pore size distribution. The pore sizes of these materials can be easily controlled by changing the alkyl-chain length of the surfactant used. However, the control of the morphology and the pore structure is not so common. The morphological control of these materials in particular is one of the major challenges for their industrial application. Recently, the meso porous silica materials with various shapes such as fibers, films, polyhedral particles, and spheres have been reported. In our previous study, the core-shell nanoparticles with a silica core and a meso porous shell under basic conditions were synthesized using the silica nanoparticles as a core and tetraethyl orthosilicate (TEOS)-cetyltrimethylammonium bromide (CTABr)-NH 4 OH-H 2 O-C 2 H 5 OH system. In this work, we report the synthesis of the most well known hexagonal MCM-41 among three main mesophases in the M41S families using TEOS-CTABr-NH 4 OH-H 2 O system. Also, in the control of the morphology and pore structure of the meso porous silica materials, the influence of the NH 4 OH concentration was investigated

  6. Micro- and Nano- Porous Adsorptive Materials for Removal of Contaminants from Water at Point-of-Use

    Science.gov (United States)

    Yakub, Ismaiel

    Water is food, a basic human need and a fundamental human right, yet hundreds of millions of people around the world do not have access to clean drinking water. As a result, about 5000 people die each day from preventable water borne diseases. This dissertation presents the results of experimental and theoretical studies on three different types of porous materials that were developed for the removal of contaminants from water at point of use (household level). First, three compositionally distinct porous ceramic water filters (CWFs) were made from a mixture of redart clay and sieved woodchips and processed into frustum shape. The filters were tested for their flow characteristics and bacteria filtration efficiencies. Since, the CWFs are made from brittle materials, and may fail during processing, transportation and usage, the mechanical and physical properties of the porous clays were characterized, and used in modeling designed to provide new insights for the design of filter geometries. The mechanical/physical properties that were characterized include: compressive strength, flexural strength, facture toughness and resistance curve behavior, keeping in mind the anisotropic nature of the filter structure. The measured flow characteristics and mechanical/physical properties were then related to the underlying porosity and characteristic pore size. In an effort to quantify the adhesive interactions associated with filtration phenomena, atomic force microscopy (AFM) was used to measure the adhesion between bi-material pairs that are relevant to point-of-use ceramic water filters. The force microscopy measurements of pull-off force and adhesion energy were used to rank the adhesive interactions. Similarly, the adsorption of fluoride to hydroxyapatite-doped redart clay was studied using composites of redart clay and hydroxyapatite (C-HA). The removal of fluoride from water was explored by carrying out adsorption experiments on C-HA adsorbents with different ratios of

  7. The role of positron annihilation lifetime studies and nuclear sensors for characterising porous materials

    International Nuclear Information System (INIS)

    Mume, E; Smith, S V; Uedono, A; Mizunaga, G; Lynch, D E

    2011-01-01

    A series of nuclear sensors were designed to assess the chemistry within the nanopores of a porous material. The nuclear sensors of varying size, charge, and hydrophobicity were exposed to hollow silica shells (HSS) at varying pH. Uptake and release kinetics were studied over a 24 h period at room temperature. Preliminary study indicate positively charged nuclear sensors were selectively and rapidly (within 10 min) absorbed by the HSS at pH 7 to 9. PALS showed there were two types of pores (1.7 and 0.7 nm) present. The data suggest the nuclear sensors sit within the larger pore of the HSS. Both PALS and nuclear sensors are required to obtain an accurate insight into the nanoporosity of the hollow silica shells.

  8. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  9. The kinetics of ice-lens growth in porous media

    KAUST Repository

    Style, Robert W.

    2012-01-09

    Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an \\'interfacial resistance\\' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.

  10. Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

    Directory of Open Access Journals (Sweden)

    Elena Pastor

    2013-10-01

    Full Text Available The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500 with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

  11. Diffusion of oriented particles in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Haber, René [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Prehl, Janett [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Herrmann, Heiko [Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Hoffmann, Karl Heinz, E-mail: hoffmann@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2013-11-29

    Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.

  12. Diffusion of oriented particles in porous media

    International Nuclear Information System (INIS)

    Haber, René; Prehl, Janett; Herrmann, Heiko; Hoffmann, Karl Heinz

    2013-01-01

    Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.

  13. Supplementary Material for: Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-01-01

    We propose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States. Supplementary materials for this article are available online.

  14. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    Science.gov (United States)

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  15. Positron annihilation lifetime spectroscopy (PALS) application in metal barrier layer integrity for porous low- k materials

    CERN Document Server

    Simon, Lin; Gidley, D W; Wetzel, J T; Monnig, K A; Ryan, E T; Simon, Jang; Douglas, Yu; Liang, M S; En, W G; Jones, E C; Sturm, J C; Chan, M J; Tiwari, S C; Hirose, M

    2002-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) is a useful tool to pre-screen metal barrier integrity for Si-based porous low-k dielectrics. Pore size of low-k, thickness of metal barrier Ta, positronium (Ps) leakage from PALS, trench sidewall morphology, electrical test from one level metal (1LM) pattern wafer and Cu diffusion analysis were all correlated. Macro-porous low-k (pore size >=200 AA) and large scale meso-porous low-k (>50~200 AA) encounter both Ps leakage and Cu diffusion into low-k dielectric in the 0.25 mu mL/0.3 mu mS structures when using SEMATECH in-house PVD Ta 250 AA as barrier layer. For small scale meso-porous (>20~50 AA) and micro- porous (<=20 AA) low-k, no Ps leakage and no Cu diffusion into low-k were observed even with PVD Ta 50 AA, which is proved also owing to sidewall densification to seal all sidewall pores due to plasma etch and ash. For future technology, smaller pore size of porous Si-based low-k (=<50 AA) will be preferential for dense low-k like trench sidewall to...

  16. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    International Nuclear Information System (INIS)

    Lehua Pan; G.S. Bodvarsson

    2001-01-01

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions

  17. Electrospinning synthesis of 3D porous NiO nanorods as anode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Wei Kong Xiang

    2016-06-01

    Full Text Available Three-dimensional NiO nanorods were synthesized as anode material by electrospinning method. X-ray diffraction results revealed that the product sintered at 400 °C had impure metallic nickel phase which, however, became pure NiO phase as the sintering temperature rose. Nevertheless, the nanorods sintered at 400, 500 and 600 °C had similar diameters (∼200 nm.The NiO nanorod material sintered at 500 °C was chip-shaped with a diameter of 200 nm and it exhibited a porous 3D structure. The nanorod sintered at 500 °C had the optimal electrochemical performance. Its discharge specific capacity was 1127 mAh·g−1 initially and remained as high as 400 mAh·g−1 at a current density of 55 mA·g−1 after 50 cycles.

  18. Manufactured Porous Ambient Surface Simulants

    Science.gov (United States)

    Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul

    2016-01-01

    The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).

  19. Mechanics of adsorption-deformation coupling in porous media

    Science.gov (United States)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  20. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate

    NARCIS (Netherlands)

    Pieper, J.S.; Oosterhof, A.; Dijkstra, Pieter J.; Veerkamp, J.H.; van Kuppevelt, T.H.

    1999-01-01

    Porous collagen matrices with defined physical, chemical and biological characteristics are interesting materials for tissue engineering. Attachment of glycosaminoglycans (GAGs) may add to these characteristics and valorize collagen. In this study, porous type I collagen matrices were crosslinked

  1. Transport Phenomena in Porous Media Aspects of MicroMacro Behaviour

    CERN Document Server

    Ichikawa, Yasuaki

    2012-01-01

    This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms.  This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.

  2. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  3. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara; Thorat, Sanjay B.; La Rocca, Rosanna; Scarpellini, Alice; Salerno, Marco; Dante, Silvia; Das, Gobind

    2014-01-01

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  4. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  5. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    Science.gov (United States)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  6. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  7. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  8. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    Science.gov (United States)

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  9. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  10. Fabrication of polystyrene porous films with gradient pore structures

    International Nuclear Information System (INIS)

    Yan Hongwei; Zhang Lin; Li Bo; Yin Qiang

    2010-01-01

    Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula. (authors)

  11. Development and numerical investigation of novel gradient-porous heat sinks

    International Nuclear Information System (INIS)

    Wang, Baicun; Hong, Yifeng; Wang, Liang; Fang, Xudong; Wang, Pengfei; Xu, Zhongbin

    2015-01-01

    Highlights: • A novel design of gradient-porous heat sink (GPHS) was proposed in this work. • A 3D model was constructed to study the hydraulic and thermal performances of GPHS. • GPHS is capable of improving the hydraulic and thermal performances simultaneously. • GPHS with decreasing dp by Y can effectively suppress the bottom wall temperature. - Abstract: A novel design of gradient-porous heat sink (GPHS) was proposed and numerically studied in this work. Computational simulation was carried out to analyze the effects of gradient porous material (GPM) configuration on the hydraulic and thermal performances of heat sinks in comparison of homogeneous-porous heat sink (HPHS) serving as the control. Both gradient pore-size (dp) in the flow direction and the direction normal to flow direction were studied. It was found that, compared with conventional HPHS, GPHS can effectively improve the hydraulic and thermal performances simultaneously. Both the friction factor and overall thermal resistance of heat sinks with GPM configurations are considerably lowered. The Nusselt numbers of GPHS with gradient in flow direction are larger than those of homogeneous porous material (HPM) configurations. GPHS is also featured with the capabilities of effectively suppressing the bottom wall temperature and enhancing the convection performance.

  12. Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material

    Science.gov (United States)

    Panitz, Janda K.; Reed, Scott T.; Ashley, Carol S.; Neiser, Richard A.; Moffatt, William C.

    1999-01-01

    Electrophoretically active sol-gel processes to fill, seal, and/or density porous, flawed, and/or cracked coatings on electrically conductive substrates. Such coatings may be dielectrics, ceramics, or semiconductors and, by the present invention, may have deposited onto and into them sol-gel ceramic precursor compounds which are subsequently converted to sol-gel ceramics to yield composite materials with various tailored properties.

  13. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  14. Formation of nanosize poly(p-phenylene vinylene) in porous silicon substrate

    International Nuclear Information System (INIS)

    Le Rendu, P.; Nguyen, T.P.; Cheah, K.; Joubert, P.

    2003-01-01

    We report the results of optical investigations in porous silicon (PS)/poly(p-phenylene vinylene) (PPV) systems obtained by filling the pores of silicon wafers with polymer. By scanning electron microscopy (SEM), IR, and Raman spectroscopy, we observed that the porous silicon layer was thoroughly filled by the polymer with no significant change in the structure of the materials. This suggests that there is no interaction between the components. On the other hand, the photoluminescence (PL) spectra of the devices investigated at different temperatures (from 11 to 290 K) showed that both materials are active at low temperatures. Porous silicon has a band located at 398 nm while PPV has two bands at 528 and 570 nm. As the temperature increases, the PL intensity of porous silicon decreases and that PPV is blue shifted. A new band emerging at 473 nm may indicate an energy transfer from the porous silicon to PPV, involving short segments of the polymer. The band of PPV located at 515 nm becomes more dominant and indicates that the nanosize polymer films are formed in the pores of the silicon layer, in agreement with the results obtained by SEM, IR, and Raman analyses

  15. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  16. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  17. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    Science.gov (United States)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  18. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.

    Science.gov (United States)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-11-21

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

  19. Applicability of a geometrical model coupled to computed tomography to characterize the transport properties of porous materials: comparison with through diffusion experiments

    International Nuclear Information System (INIS)

    Chagneau, Aurelie; Claret, Francis; Made, Benoit; Tuckermann, Juergen; Enzmann, Frieder; Schaefer, Thorsten

    2012-01-01

    Document available in extended abstract form only. The main objective of the present study is to characterize the evolution of diffusion properties of porous materials as influenced by porosity changes. When under geochemical perturbation, the rocks porosity evolves with dissolution/precipitation processes. The impact of changes in porosity on the diffusion phenomena are implemented in most geochemical models using Archie's law: D e /D 0 = ε m where D e and D 0 are the effective diffusivity and the diffusivity of the element in water in m 2 s -1 , respectively, e is the overall porosity and m is the cementation factor. The factor m is a function of pores geometry and compaction. Depending on the rock considered, its value ranges from 1 to 3. Moreover, as the porosity decreases the connectivity of pores changes. At low overall porosity, the effective porosity is the determining parameter affecting effective diffusivity. Therefore, the Archie's law needs to be modified to accurately predict geochemical migration of pollutants such as radio-elements in a dynamic system. Our experimental approach is divided in two complementary parts: (i) diffusion experiments conducted in hot-laboratory using radiotracers and (ii) time-dependant monitoring of porosity evolution in three dimensions using computed tomography (CT). For the two approaches, simplified systems are used to define the co-evolution of porosity and diffusivity using a minimum number of parameters, in order to optimize the understanding of the basics and determining processes. For this purpose, three materials are used in diffusion columns: (i) rods of porous ceramic, (ii) artificial silica beads of different particle sizes (SiLi R ) and (iii) purified sea sand (Merck R ). The precipitation of simple salts, celestite (SrSO 4 ) and strontianite (SrCO 3 ), is forced in the porous material once placed in diffusion columns. Celestite and strontianite were chosen for their fast precipitation kinetics, and because

  20. Characterization of Elastic Properties of Porous Graphene Using an Ab Initio Study

    Directory of Open Access Journals (Sweden)

    Reza Ansari

    2016-12-01

    Full Text Available Importance of covalent bonded two-dimensional monolayer nanostructures and also hydrocarbons is undeniably responsible for creation of new fascinating materials like polyphenylene polymer, a hydrocarbon super honeycomb network, so-called porous graphene. The mechanical properties of porous graphene such as its Young’s modulus, Poisson’s ratio and the bulk modulus as the determinative properties are calculated in this paper using ab initio calculations. To accomplish this aim, the density functional theory on the basis of generalized gradient approximation and the Perdew–Burke–Ernzerhof exchange correlation is employed. Density functional theory calculations are used to calculate strain energy of porous graphene with respect to applied strain. Selected numerical results are then presented to study the properties of porous graphene. Comparisons are made between the properties of porous graphene and those of other analogous nanostructures. The results demonstrated lower stiffness of porous graphene than those of graphene and graphyne, and higher stiffness than that of graphdyine and other graphyne families. Unlikely, Poisson’s ratio is observed to be more than that of graphene and also less than that of graphyne. It is further observed that the presence of porosity and also formation of C-H bond in the pore sites is responsible for these discrepancies. Porous graphene is found to behave as the isotropic material.