WorldWideScience

Sample records for random photonic crystal

  1. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  2. Two-dimensional coherent random laser in photonic crystal fiber with dye-doped nematic liquid crystal.

    Science.gov (United States)

    Nagai, Yusuke; Shao-Chieh, Chen; Kajikawa, Kotaro

    2017-11-10

    A random laser of a photonic crystal fiber (PCF) with holes filled with laser dye-doped nematic liquid crystal (NLC) is reported. When the excitation polarization was along the PCF axis, the measured laser threshold was 80  μJ/mm(2) per pulse, which is much lower than the previously reported random laser of PCF filled with laser dye-doped organic solvent. This low threshold is due to the high refractive index of the NLC, which produces a greater scattering efficiency. In contrast, when the excitation polarization is perpendicular to the PCF axis, the threshold was much higher or the laser oscillation was absent. This is because of the lower refractive index of the NLC for the perpendicular polarization. The laser oscillation was absent in the isotropic phase because of a low fluorescence efficiency at high temperatures.

  3. Effects of random and systematic perturbations in a one-dimensional photonic crystal wavelength converter.

    Science.gov (United States)

    Bragheri, F; Faccio, D; Romagnoli, M; Krauss, T; Roberts, J

    2004-01-01

    We study the problem of the tolerance to fabrication errors in one-dimensional photonic crystal wavelength converters. In particular we consider the case of wavelength conversion obtained via quasiphase matching (QPM) based on a periodic amplitude modulation of the fundamental wave (Bloch-mode-QPM). Both numerical simulations of a waveguide-based structure and experimental results in an AlGaAs thin-film multilayer show that the proposed QPM mechanism is extremely tolerant to both systematic and random errors in the periodicity and duty cycle of the grating.

  4. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic......This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...

  5. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  6. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  7. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic...

  8. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  9. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    bandgap structures and thoughts of inspiration from microstructures in nature, as well as classification of the various photonic crystal fibres, theoretical tools for analysing the fibres and methods of their production. Finally, the book points toward some of the many future applications, where photonic......Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  10. Hybrid photonic crystal fiber

    National Research Council Canada - National Science Library

    Arismar Cerqueira S. Jr; F. Luan; C. M. B. Cordeiro; A. K. George; J. C. Knight

    2006-01-01

    We present a hybrid photonic crystal fiber in which a guided mode is confined simultaneously by modified total internal reflection from an array of air holes and antiresonant reflection from a line...

  11. PHOTONIC CRYSTAL WAVEGUIDE BIOSENSOR

    Directory of Open Access Journals (Sweden)

    A. A. ZANISHEVSKAYA

    2013-04-01

    Full Text Available The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.

  12. Surface Plasmon Resonance Temperature Sensor Based on Photonic Crystal Fibers Randomly Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Nannan Luan

    2014-08-01

    Full Text Available We propose a temperature sensor design based on surface plasmon resonances (SPRs supported by filling the holes of a six-hole photonic crystal fiber (PCF with a silver nanowire. A liquid mixture (ethanol and chloroform with a large thermo-optic coefficient is filled into the PCF holes as sensing medium. The filled silver nanowires can support resonance peaks and the peak will shift when temperature variations induce changes in the refractive indices of the mixture. By measuring the peak shift, the temperature change can be detected. The resonance peak is extremely sensitive to temperature because the refractive index of the filled mixture is close to that of the PCF material. Our numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform. Moreover, the maximal sensitivity is relatively stable with random filled nanowires, which will be very convenient for the sensor fabrication.

  13. Photonic crystals and metamaterials

    Science.gov (United States)

    Lourtioz, Jean-Michel

    2008-01-01

    Recent results obtained on semiconductor-based photonic crystal devices are of great promise for future developments of photonic crystals and their applications to 'all-photonic' integrated circuits. Device performance mostly relies on the strong confinement of light thanks to photonic bandgap effects, but photonic crystals also exhibit remarkable dispersion properties in their transmission bands, thus opening the perspective of new optical functionalities. Slow light, supercollimation, superprism, and negative refraction effects are among the fascinating phenomena which strongly motivate the community. Studies in these directions parallel those on metamaterials, which are expected to provide a simultaneous control of the dielectric permittivity and of the magnetic permeability. In this article, we briefly review some important advances on photonic crystals and metamaterials, as these two topics received a particular attention during the "Nanosciences et Radioélectricité" workshop organized by CNFRS in Paris on the 20th and 21st of March 2007. To cite this article: J.-M. Lourtioz, C. R. Physique 9 (2008).

  14. Magnetic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lyubchanskii, I L [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Dadoenkova, N N [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Lyubchanskii, M I [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 72, R. Luxemburg St., 83114 Donetsk (Ukraine); Shapovalov, E A [Department of Physics, Donetsk National University, 24, Universitetskaya St., 83055 Donetsk (Ukraine); Rasing, Th [NSRIM Institute, University of Nijmegen, 6525 ED, Nijmegen (Netherlands)

    2003-09-21

    In this paper we outline a new direction in the area of photonic crystals (PCs), or photonic band gap materials, i.e. one-, two-, or three-dimensional superstructures with periods that are comparable with the wavelengths of electromagnetic radiation. The main (and principal) characteristic of this new class of PCs is the presence of magnetically ordered components (or external magnetic field). The linear and nonlinear optical properties of such magnetic PCs are discussed. (topical review)

  15. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  16. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  17. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  18. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  19. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  20. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  1. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    of photonic crystals to control electromagnetic radiation, study of photonic band gaps in photonic crystals is a must. The photonic band gaps in photonic crystals depend upon the arrangement of the constituent air holes/dielectric rods, fill factor and dielectric contrast of the two mediums used in forming photonic crystals. In.

  2. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  3. Photonic crystal optofluidic biolaser

    Science.gov (United States)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  4. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  5. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  6. Manufacturing method of photonic crystal

    Science.gov (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  7. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... reflection, which may described by an effective refractive index which is lower in the cladding than in the core (index guiding fibre). By solving Maxwell's equations, under the conditions defined by the geometry of the fibre structure, we may predict the properties of the fibre. In all but rare cases...

  8. Dirac directional emission in anisotropic zero refractive index photonic crystals

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-01-01

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  9. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    NARCIS (Netherlands)

    Vos, Willem L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.

    2015-01-01

    This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic

  10. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  11. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...

  12. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  13. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    This thesis describes the design, fabrication and characterization of photonic crystal slab lasers. The main focus is on coupled photonic crystal cavity lasers which are examined in great detail. The cavity type which is mainly explored consists of a defect formed by a single missing hole....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...

  14. Photonic Crystals Physics and Practical Modeling

    CERN Document Server

    Sukhoivanov, Igor A

    2009-01-01

    The great interest in photonic crystals and their applications in the past decade requires a thorough training of students and professionals who can practically apply the knowledge of physics of photonic crystals together with skills of independent calculation of basic characteristics of photonic crystals and modelling of various photonic crystal elements for application in all-optical communication systems. This book combines basic backgrounds in fiber and integrated optics with detailed analysis of mathematical models for 1D, 2D and 3D photonic crystals and microstructured fibers, as well as with descriptions of real algorithms and codes for practical realization of the models.

  15. Photonic crystals with controlled disorder

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P. D.; Sapienza, R.; Lopez, C. [Instituto de Ciencia de Materiales de Madrid (CSIC) and Unidad Asociada CSIC-UVigo, Cantoblanco E-28049, Madrid (Spain); Toninelli, C.; Wiersma, D. S. [European Laboratory for Nonlinear Spectroscopy and CNR-INO, 50019 Sesto Fiorentino, Florence (Italy)

    2011-08-15

    Photonic crystals are extremely sensitive to structural disorder even to the point of completely losing their functionalities. While, on one side, this can be detrimental for applications in traditional optical devices, on the other side, it gives also rise to very interesting new physics and maybe even new applications. We propose a route to introduce disorder in photonic crystals in a controlled way by creating a certain percentage of vacancies in the lattice. We show how the method works and what type of materials can be obtained this way. Also, we use this system to probe the role of disorder on the resulting transport properties from various points of view, including measurements of the transport and scattering mean free path and the diffusion constant.

  16. Photonic crystals with controlled disorder

    Science.gov (United States)

    García, P. D.; Sapienza, R.; Toninelli, C.; López, C.; Wiersma, D. S.

    2011-08-01

    Photonic crystals are extremely sensitive to structural disorder even to the point of completely losing their functionalities. While, on one side, this can be detrimental for applications in traditional optical devices, on the other side, it gives also rise to very interesting new physics and maybe even new applications. We propose a route to introduce disorder in photonic crystals in a controlled way by creating a certain percentage of vacancies in the lattice. We show how the method works and what type of materials can be obtained this way. Also, we use this system to probe the role of disorder on the resulting transport properties from various points of view, including measurements of the transport and scattering mean free path and the diffusion constant.

  17. Photonic Crystals on the Wing

    Science.gov (United States)

    2009-04-30

    center stage of the optical sciences. Information and communication technology, applied coloration science, and even the cosmetics and garment...spectral properties [1-5]. Technical production of photonic crystals is still in its infancy, but clear demonstrations of the feasibility have recently...beetles. The optical origin of these beautiful reflections is well understood, also owing to our recent contributions [3-5]. The beetles feature stacks

  18. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  19. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  20. Photonic Crystals: Physics and Technology

    CERN Document Server

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  1. Colloidal photonic crystals: from lasing to microfluidics

    Science.gov (United States)

    Clays, Koen; Zhong, Kuo; Song, Kai

    2017-08-01

    Colloidal photonic crystals are photonic crystals made by bottom-up physical chemistry strategies from monodisperse colloidal particles. The self-assembly process is automatically leading to inherently three-dimensional structures with their optical properties determined by the periodicity, induced by this ordering process, in the dielectric properties of the colloidal material. The best-known optical effect is the photonic band gap, the range of energies, or wavelengths, that is forbidden for photons to exist in the structure. This photonic band gap is similar to the electronic band gap of electronic semiconductor crystals. We have previously shown how with the proper photonic band gap engineering, we can insert allowed pass band defect modes and use the suppressing band gap in combination with the transmitting pass band to induce spectral narrowing of emission. We show now how with a high-quality narrow pass band in a broad stop band, it is possible to achieve photonic crystal lasing in self-assembled colloidal photonic crystals with a planar defect. In addition, with proper surface treatment in combination with patterning, we prepare for addressable integrated photonics. Finally, by incorporating a water in- and outlet, we can create optomicrofluidic structures on a photonic crystal allowing the optical probing of microreactors or micro-stopped-flow in the lab-on-an-optical-chip.

  2. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  3. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  4. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  5. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre is demo...

  6. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  7. Photonic crystals physics, fabrication and applications

    CERN Document Server

    Ohtaka, Kazuo

    2004-01-01

    "Photonic Crystals" details recent progress in the study of photonic crystals, ranging from fundamental aspects to up-to-date applications, in one unified treatment It covers most of the worldwide frontier fields in photonic crystals, including up-to-date fabrication techniques, recent and future technological applications, and our basic understanding of the various optical properties of photonic crystals Brand-new theoretical and experimental data are also presented The book is intended for graduate course students and specialists actively working in this field, but it will also be useful for newcomers, especially the extensive chapter dealing with fundamental aspects of photonic crystals, which paves the way to a full appreciation of the other topics addressed

  8. Twisting Light by Nonlinear Photonic Crystals

    Science.gov (United States)

    Bloch, Noa Voloch; Shemer, Keren; Shapira, Asia; Shiloh, Roy; Juwiler, Irit; Arie, Ady

    2012-06-01

    We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a Gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex’s structure and polarization.

  9. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  10. Biased liquid crystal infiltrated photonic bandgap fiber

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Scolari, Lara

    2009-01-01

    partial differential equations. From the liquid crystal alignment the full tensorial dielectric permittivity in the capillaries is derived. The transmission spectrum for the photonic crystal fiber is obtained by solving the generalized eigenvalue problem deriving from Maxwell’s equations using a vector......A simulation scheme for the transmission spectrum of a photonic crystal fiber infiltrated with a nematic liquid crystal and subject to an external bias is presented. The alignment of the biased liquid crystal is simulated using the finite element method to solve the relevant system of coupled...

  11. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  12. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  13. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  14. Photonic crystal laser-driven accelerator structures

    CERN Document Server

    Cowan, Benjamin

    2005-01-01

    We discuss simulated photonic crystal structure designs, including two- and three-dimensional planar structures and fibers. The discussion of 2D structures demonstrates guiding of a speed-of-light accelerating mode by a defect in a photonic crystal lattice and reveals design considerations and trade-offs. With a three-dimensional lattice, we introduce a candidate geometry and discuss beam dynamics, coupling, and manufacturing techniques for that structure. In addition we discuss W-band scale tests of photonic crystal structures. The computational methods are also discussed.

  15. Helically twisted photonic crystal fibres

    Science.gov (United States)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  16. Helically twisted photonic crystal fibres.

    Science.gov (United States)

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  17. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  18. A novel photonic crystal fibre switch

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Hermann, D.S.; Broeng, Jes

    2003-01-01

    A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB.......A new thermo-optic fibre switch is demonstrated, which utilizes the phase transitions of a thermochromic liquid crystal inside a photonic crystal fibre. We report an extinction ratio of 60 dB and an insertion loss of 1 dB....

  19. Tailoring quantum structures for active photonic crystals

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda

    This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy......; in particular, the emission control of SAG QW matched the operating wavelength of photonic crystals. A strong photoluminescence signal in the slow light regime with the group index of 18 was demonstrated....

  20. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  1. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  2. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  3. Photonic crystal fibers: fundamentals to emerging applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard

    2005-01-01

    A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers.......A review of the fundamental properties of photonic crystal fibers is presented. Special focus is held on the emerging fields of application within areas such as actively controlled fiber devices and high-power fiber lasers....

  4. Photonic crystal fiber modelling and applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Libori, Stig E. Barkou

    2001-01-01

    Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented.......Photonic crystal fibers having a microstructured air-silica cross section offer new optical properties compared to conventional fibers for telecommunication, sensor, and other applications. Recent advances within research and development of these fibers are presented....

  5. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...... region. The invention also relates to optical devices comprising planar optical waveguides and methods of making waveguides and optical devices....

  6. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission is h...

  7. Fabrication of photonic crystals and Nanocavities

    NARCIS (Netherlands)

    Woldering, L.A.

    2008-01-01

    The fabrication of three-dimensional inverse woodpile photonic crystals is highly desirable because of their predicted large photonic band gap, their conceptual ease of fabrication, and their robustness to withstand deviations from the ideal geometry that are intrinsic to nanofabrication. In this

  8. Photonic crystal biosensors towards on-chip integration.

    Science.gov (United States)

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...

  10. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...... topological imperfections such as sidewall roughness on a sub-nm scale becomes essential. In this paper we use atomic force microscopy (AFM) on tilted samples to obtain the most detailed sidewall roughness measurements yet on nanophotonic structures....

  11. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    of this Thesis we discuss a novel type of photonic crystal waveguide and show its applications for on-chip quantum information processing. This structure was designed for the ecient mapping of two orthogonal circular dipole transitions to dierent propagation paths of the emitted photon, i.e. exhibits chiral...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  12. Progress in 2D photonic crystal Fano resonance photonics

    Science.gov (United States)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  13. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  14. Photonic band-gap optimisation in inverted FCC photonic crystals

    NARCIS (Netherlands)

    Doosje, M; Hoenders, BJ; Knoester, J; Lenstra, D; Visser, TD; Leeuwen, KAH

    2000-01-01

    We present results of band-structure calculations for inverted photonic crystal structures. We consider a structure of air spheres in a dielectric background, arranged in an FCC lattice, with cylindrical tunnels connecting each pair of neighbouring spheres. The width of the band gap is optimised by

  15. Shear ordering in polymer photonic crystals.

    Science.gov (United States)

    Snoswell, D R E; Kontogeorgos, A; Baumberg, J J; Lord, T D; Mackley, M R; Spahn, P; Hellmann, G P

    2010-02-01

    Optical scattering spectra are recorded in situ on flowing colloidal polymeric nanocomposites which are sheared into photonic crystals at 150 degrees C using a high-pressure quartz-cell multipass rheometer. Broadband spectroscopy of the resonant Bragg scattering peak allows the direct observation of crystal formation and melting of monodisperse core-shell particles. A range of flow conditions of this solventless, highly viscous melt reveals four distinct regimes of crystal growth and decay which match a simple rheological model. Extraction of crystal thickness, order and lattice spacing are validated by one-dimensional electromagnetic simulations.

  16. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  17. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  18. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  19. Photonic crystal-adaptive optical devices

    DEFF Research Database (Denmark)

    Buss, Thomas

    through windows into the room. It is shown that gratings with disorder introduced to the period effectively modify the diffraction characteristics from distinct sharp and wavelength dependent orders into a broad distributions over large angular range and with sufficient mixing such that color effects...... are minimized, thus allowing a homogeneous, glare-free, white-light daylighting into the room. Even more functionality can be achieved when the optical effects are tunable or reconfigurable. This is investigated with photonic crystal dye lasers. These lasers combine a photonic crystal resonator with a dye...

  20. Quantum random walks circuits with photonic waveguides

    NARCIS (Netherlands)

    Peruzzo, Alberto; Matthews, Jonathan; Politi, Alberto; Lobino, Mirko; Zhou, Xiao-Qi; Thompson, Mark G.; O'Brien, Jeremy; Matsuda, Nobuyuki; Ismail, N.; Worhoff, Kerstin; Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron

    2010-01-01

    Arrays of 21 evanescently coupled waveguides are fabricated to implement quantum random walks and a generalised form of two-photon non-classical interference, which observed via two photon correlation.

  1. Chaotic behaviour of photonic crystals resonators

    KAUST Repository

    Di Falco, A.

    2015-02-08

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  2. Visible stealth materials based on photonic crystals

    Science.gov (United States)

    Yao, Guozheng; Liu, Ying

    2014-08-01

    Optical thin film can be used for invisible cloak. As a kind of low-dimension photonic crystal, it is a candidate for metamaterial with designed Σ and μ. As a coating, it is convenient to be stacked to mimic continuous changing of electromagnetic media. Anti-reflection film is suitable for matching coating between layers of media.

  3. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability...

  4. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  5. Photonic crystal Fano lasers and Fano switches

    DEFF Research Database (Denmark)

    Mørk, Jesper; Yu, Yi; Bekele, Dagmawi Alemayehu

    2017-01-01

    We show that Fano resonances can be realized in photonic crystal membrane structures by coupling line-defect waveguides and point-defect nanocavities. The Fano resonance can be exploited to realize optical switches with very small switching energy, as well as Fano lasers, that can generate short...

  6. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity...

  7. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1...

  8. All-polymer photonic crystal slab sensor

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Sørensen, Kristian Tølbøl; Vannahme, Christoph

    2015-01-01

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5x10-6 RIU when measured...

  9. Control of resonances in photonic crystal waveguides

    NARCIS (Netherlands)

    Lian, Jin

    2016-01-01

    Photonic crystal waveguides (PhCWG) with intentional defects and unavoidable disorder exhibit high quality factor (Q) resonances. Single- and multi-resonance systems based on them are suitable for applications such as optical memories, delay lines and cavity QED. Therefore, characterization, control

  10. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results in ...

  11. Vectorial analysis of dielectric photonic crystal VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2009-01-01

    A new vertical-cavity surface-emitting laser structure employing a dielectric photonic crystal mirror has been suggested and been numerically investigated. The new structure has a smaller threshold gain, a moderate strength of single-transverse-mode operation, a high quality of emission beam free...

  12. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  13. Photonic crystal nanostructures for optical biosensing applications

    DEFF Research Database (Denmark)

    Dorfner, D.; Zabel, T.; Hürlimann, T.

    2009-01-01

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine...

  14. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  15. Polarization squeezing with photonic crystal fibers

    DEFF Research Database (Denmark)

    Milanovic, J.; Huck, Alexander; Heersink, J.

    2007-01-01

    We report on the generation of polarization squeezing by employing intense, ultrashort light pulses in a single pass method in photonic crystal fibers. We investigated the squeezing behavior near the zero-dispersion wavelength and in the anomalous dispersion regime by using two distinct fibers. We...

  16. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  17. Silicon photonic crystals and spontaneous emission

    NARCIS (Netherlands)

    Dood, Michiel Jacob Andries de

    2002-01-01

    Photonic crystals, i.e. materials that have a periodic variation in refractive index, form an interesting new class of materials that can be used to modify spontaneous emission and manipulate optical modes in ways that were impossible so far. This thesis is divided in three parts. Part I discusses

  18. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...... in semiconductormaterials, and attractive in, e.g., biological applications. For operation in the visibleregion, the photonic crystal waveguide must be realized with a 2D lattice of air holes thatare spaced with a period of ~ 300 nm. In this poster, we report on simulations of theoptical guiding in these structures...

  19. PFS photonic crystals for optical and electrochemical glucose sensing

    NARCIS (Netherlands)

    Folkertsma-Hendriks, Laura; Zhang, Kaihuan; Hempenius, Mark A.; Vancso, Gyula J.; van den Berg, Albert; Odijk, Mathieu

    2014-01-01

    We propose the construction of a biosensor based on photonic crystals of polyferrocenylsilane (PFS). The redox-activity of PFS, combined with the color of the photonic crystal, will allow for both optical and electrochemical readout. The photonic crystal will be directly written into a layer of

  20. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all...

  1. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...

  2. A plasma photonic crystal bandgap device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-04-18

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  3. Study on composite photonic crystal patch antenna

    Science.gov (United States)

    Lu, N. D.; Zhou, Y. Q.; Shen, T. G.; Ji, P. L.; Sun, J.; Yuan, B. G.; Yu, F. C.

    2009-09-01

    The paper investigated a composite photonic crystal patch antenna by using the method of finite difference time domain (FDTD). The results show that there exists a wave resonance state at 2.635GHz, where the real part of the permittivity and permeability are all negative; its refraction index is -1. The effect has largely enhanced the electromagnetic wave's resonance intensity, and has improved the localized extent of electromagnetic energy obviously in such photonic crystal structure (PBG), resulting in a higher antenna gain, a lower return loss, and a better improvement of the antenna's characteristics. Due to such the advantages, the use of patch antennas can be extended to such fields as mobile communication, satellite communication, aviation, etc.

  4. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...... with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  5. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  6. Nonreciprocal photonic crystal add-drop filter

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Keyu [THz Technical Research Center of Shenzhen University, Shenzhen 518067 (China); Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067 (China); College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067 (China); Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309 (United States); Xiao, Jun-Jun [College of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Yin, Xiaobo, E-mail: Xiaobo.Yin@Colorado.Edu [Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309 (United States); Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309 (United States)

    2014-11-24

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  7. Slow light engineering in photonic crystals

    OpenAIRE

    Baba, Toshihiko; Mori, Daisuke

    2007-01-01

    Light showing extremely slow propagation (known as slow light) provides various effects such as spatial compression of optical signals, buffering, convolution integral calculation, beam forming, and enhancement of optical absorption, gain, nonlinearity, and so on. To generate such light, very large material or structural dispersion is used. Photonic crystal waveguides are good candidates for many device applications since they can easily generate slow light at room temperature. This paper dis...

  8. Slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Moulin, G.; Jacobsen, Rune Shim; Lavrinenko, Andrei

    report on the first experiments where a direct measure of the group velocity is performed; this is done by measuring the time delay of modulated light propagating through a photonic crystal waveguide. The structure is fabricated in silicon-on-insulator (SOI). A group index (c/vg) of up to almost 200 has...... been measured. Such a high group index makes the light-matter interaction extremely efficient, opening for new opportunities in micrometer-sized integrated lightwave circuits....

  9. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  10. Chaotic behaviour of photonic crystals resonators

    OpenAIRE

    Di Falco, A.; Liu, C.; Krauss, T.F.; Fratalocchi, A.

    2015-01-01

    We acknowledge support from the EPSRC (ADF, Fellowships No. EP/I004602/1 and No. EP/J004200/1) and KAUST (AF, Grant No. CRG-1-2012-FRA-005). We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. Publisher PDF

  11. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission ....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  12. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre

    2015-01-01

    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....

  13. Photonic crystal fibres in the market

    DEFF Research Database (Denmark)

    Broeng, Jes; Laurila, Marko; Noordegraaf, Danny

    2011-01-01

    Photonic crystal fibres (PCFs) emerged as a research topic in the mid 1990'ies [1]. Today, 15 years later, these fibres are increasing deployed in various commercial markets. Here, we will address three of these markets; medical imaging, materials processing and sensors. We will describe how...... the PCFs provide radical improvements and illustrate the strong diversity in the evolution of PCFs to serve these different markets....

  14. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  15. Ultrashort silica liquid crystal photonic crystal fiber polarization rotator.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Obayya, Salah S A

    2014-02-15

    In this Letter, an ultra-compact polarization rotator (PR) based on silica photonic crystal fiber with liquid crystal core is introduced and analyzed using full-vectorial finite difference approaches. The analyzed parameters of the suggested PR are the conversion length, modal hybridness, power conversion and crosstalk. In addition, the fabrication tolerance analysis of the reported design is investigated in detail. The proposed PR has an ultra-compact device length of 4.085 μm and an almost 100% polarization conversion ratio.

  16. Feasibility of tunable MEMS photonic crystal devices.

    Science.gov (United States)

    Rajic, S; Corbeil, J L; Datskos, P G

    2003-01-01

    Periodic photonic crystal structures channel electromagnetic waves much as semiconductors/quantum wells channel electrons. Photonic bandgap crystals (PBC) are fabricated by arranging sub-wavelength alternating materials with high and low dielectric constants to produce a desired effective bandgap. Photons with energy within this bandgap cannot propagate through the structure. This property has made these structures useful for microwave applications such as frequency-selective surfaces, narrowband filters, and antenna substrates when the dimensions are on the order of millimeters. They are also potentially very useful, albeit much more difficult to fabricate, in the visible/near-infrared region for various applications when the smallest dimensions are at the edge of current micro-lithography fabrication tools. We micro-fabricated suspended free standing micro-structure bridge waveguides to serve as substrates for PBC features. These micro-bridges were fabricated onto commercial silicon-on-insulator wafers. Nanoscale periodic features were fabricated onto these micro-structure bridges to form a tunable system. When this combined structure is perturbed, such as mechanical deflection of the suspended composite structure at resonance, there can be a realtime shift in the material effective bandgap due to slight geometric alterations due to the induced mechanical stress. Extremely high resonance frequencies/device speeds are possible with these very small dimension MEMS.

  17. Photonic crystals: putting a new twist on light

    Science.gov (United States)

    Joannopoulos, J. D.; Villeneuve, Pierre R.; Fan, Shanhui

    1997-03-01

    Photonic crystals are materials patterned with a periodicity in dielectric constant, which can create a range of 'forbidden' frequencies called a photonic bandgap. Photons with energies lying in the bandgap cannot propagate through the medium. This provides the opportunity to shape and mould the flow of light for photonic information technology.

  18. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  19. Band structure peculiarities of magnetic photonic crystals

    Science.gov (United States)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  20. Ultracold molecule assembly with photonic crystals

    Science.gov (United States)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  1. Gaussian Filtering with Tapered Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2006-01-01

    We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm......We present a device based on a tapered Liquid Crystal Photonic Bandgap Fiber that allows active all-in-fiber filtering. The resulting Photonic Bandgap Fiber device provides a Gaussian filter covering the wavelength range 1200-1600 nm...

  2. Hydrogen sensor based on metallic photonic crystal slabs.

    Science.gov (United States)

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  3. Photonic crystal fibres with large nonlinear coefficients

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2004-01-01

    We investigate the upper limits on the nonlinear coefficients obtainable in various silica-based photonic crystal fibre designs. For a fixed wavelength, the highest nonlinearities are found to occur when a substantial part of the field energy resides in air. The case of a silica strand in air...... is found to constitute an upper bound on the nonlinear coefficients obtained; however, all the designs investigated allow nonlinear coefficients larger than 50% of this limiting value. On the other hand, the choice of fibre design is found to have a significant influence on the dispersion properties....

  4. Supercontinuum generation in photonic crystal fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    2007-01-01

    characterization, spectroscopy, optical communications, and optical coherence tomography (OCT). This thesis presents a study of SCG in photonic crystal fibre (PCF) using numerical modelling. The nonlinear physical mechanisms relevant for the thesis are reviewed. It is investigated how the SC spectrum can be shaped...... by self-phase modulation in the first millimetres of the fibre, followed by soliton red-shift. The soliton red-shift is limited by the higher ZDW and the generation of dispersive waves. The first observation of an apparent bright-bright soliton pair across the ZDW is also reported. For picosecond pumping...

  5. Graded index photonic crystals: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qingyi [School of Physical Electronics, University of Electronic Science and Technology, Chengdu (China); Department of Electronic Engineering, Sichuan Information Technology College, Sichuan (China); Jin, Lei; Fu, Yongqi [School of Physical Electronics, University of Electronic Science and Technology, Chengdu (China)

    2015-04-01

    A new type of photonic crystal (PC) named graded index (GRIN) PC was proposed by E. Centeno in 2005. It is obtained by appropriately modifying the parameters of a regular PC, thus resulting in gradual index variation. Many applications are inspired by this notion. This review will introduce different ways of designing GRIN PCs from both theoretical and experimental point of views. Some typical applications based on GRIN PCs are presented, followed by the focusing mechanism of GRIN PC. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications......We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally...

  7. Nonlinear waveguide optics and photonic crystal fibers.

    Science.gov (United States)

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas.

  8. Electrically Driven Photonic Crystal Nanocavity Devices

    Science.gov (United States)

    2012-01-01

    improved versus similar quantum well (QW) systems [32]. Fig. 2 shows a simplified schematic diagram of the lateral junction photonic crystal fabrication...down by a small amount likely due to strain from the GaAs/ AlGaAs interface. (b) EL spectrum for a nanobeam device at a forward bias of 5 μA. The...optical properties of p-doped and undoped InAs/ InGaAs dots-in-a- well structures,” J. Appl. Phys., vol. 104, p. 033522, 2008. [38] Y. H. Lee, B. Tell, K

  9. Tuning quantum correlations with intracavity photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta [IFISC, Institute for Cross-Disciplinary Physics and Complex Systems (CSIC-UIB), Campus UIB, E-07122 Palma de Mallorca (Spain); Garcia-March, Miguel Angel [Department of Physics, Colorado School of Mines, Golden, Colorado 80401 (United States)

    2011-09-15

    We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.

  10. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    Science.gov (United States)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-12

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  11. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems......, such as a photonic crystal slab. In this case, all three bands exhibit a bound state in the continuum in close proximity of the Γ point. These results may lead to new designs of small photonic-crystal-based lasers exhibiting high-quality factors....

  12. Porous photonic crystal external cavity laser biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinglan [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Peh, Jessie; Hergenrother, Paul J. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  13. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  14. Novel fluorescence adjustable photonic crystal materials

    Science.gov (United States)

    Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.

  15. Fused combiners for photonic crystal bers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny

    The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed-through in th......The work presented in this Ph.D. thesis focuses on the fabrication of fused combiners for high-power fiber lasers and amplifiers. The main focus of the Ph.D. project was to further develop the fused pump combiners for airclad photonic crystal bers (PCFs), and implement a signal feed......-through in these combiners. Such a pump/signal combiner enables the fabrication of all spliced fiber amplifier systems based on the PCFs technology. Amplifier systems interfaced only by standard multi-mode (MM) and single-mode (SM) fibers are easy to use, since all-spliced systems can be made and bulk optics are avoided...... into an ensemble of SM fibers enables filtering with advancedfi ber Bragg gratings (FBGs)....

  16. Mode conversion in magneto photonic crystal fibre

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, Hamza, E-mail: otmanih@yahoo.fr [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Bouchemat, Mohamed [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Hocini, Abdesselam [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Département d' Electronique, Faculté de Technologie, Université de M’sila, BP 166, Route Ichebilia, M’sila 28000 (Algeria); Boumaza, Touraya; Benmerkhi, Ahlem [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria)

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  17. Threshold Characteristics of Slow-Light Photonic Crystal Lasers.

    Science.gov (United States)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2016-02-12

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced reduction of the mirror loss and slow-light enhancement of disorder-induced losses.

  18. Gallium nitride based logpile photonic crystals.

    Science.gov (United States)

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  19. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  20. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  1. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    Science.gov (United States)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  2. Mid-IR characterization of photonic bands in 2D photonic crystals on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kral, Zdenek [NePhoS, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Ferre-Borrull, Josep [NePhoS, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)], E-mail: josep.ferre@urv.cat; Trifonov, Trifon [MNT, Universitat Politecnica de Catalunya, Campus Nord, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Marsal, Lluis F. [NePhoS, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Rodriguez, Angel [MNT, Universitat Politecnica de Catalunya, Campus Nord, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Pallares, Josep [NePhoS, Universitat Rovira i Virgili, Campus Sescelades, Avda. Paisos Catalans 26, 43007 Tarragona (Spain); Alcubilla, Ramon [MNT, Universitat Politecnica de Catalunya, Campus Nord, c/ Jordi Girona 1-3, 08034 Barcelona (Spain)

    2008-09-30

    We report the characterization of two-dimensional silicon photonic crystals using angular-dependent reflectivity in the mid-IR. The photonic crystals are obtained by electrochemical etching of an ordered array of holes into silicon. The measurements are compared with the theoretical calculations of the corresponding model based on the interaction of the incident light with the photonic crystal sample. A good agreement between the measurements and the calculations is achieved.

  3. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    Science.gov (United States)

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  4. Bragg gratings in index-guiding photonic crystal fibres

    DEFF Research Database (Denmark)

    Riishede, Jesper; Hougaard, Kristian G.; Libori, S.E. Barkou

    2002-01-01

    A numerical investigation of coupling coefficients of Bragg-gratings in index-guiding photonic crystal fibres is presented. It is shown that index-guiding photonic crystal fibres have larger coupling coefficients for fibres with small core areas than step-index fibres....

  5. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores ove...... an extremely broad (octave-spanning) frequency range....

  6. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and

  7. High-speed photodetectors in a photonic crystal platform

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Semenova, Elizaveta; Schubert, Martin

    2012-01-01

    We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented.......We demonstrate a fast photodetector (f3dB > 40GHz) integrated into a high-index contrast photonic crystal platform. Device design, fabrication and characterization are presented....

  8. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.

    2008-01-01

    The authors present the fabrication and optical investigation of Silicon on Insulator photonic crystal drop-filters for use as refractive index sensors. Two types of defect nanocavities (L3 and H1-r) are embedded between two W1 photonic crystal waveguides to evanescently route light at the cavity...

  9. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  10. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  11. Coherent Cherenkov radiation and laser oscillation in a photonic crystal

    CERN Document Server

    Denis, T; Lee, J H H; van der Meer, R; Strooisma, A; van der Slot, P J M; Vos, W L; Boller, K J

    2016-01-01

    We demonstrate that photonic crystals can be used to generate powerful and highly coherent laser radiation when injecting a beam of free electrons. Using theoretical investigations we present the startup dynamics and coherence properties of such laser, in which gain is provided by matching the optical phase velocity in the photonic crystal to the velocity of the electron beam.

  12. Optical Properties of a One-Dimensional Photonic Crystal Containing a Twisted Nematic Liquid Crystal Defect Layer

    Science.gov (United States)

    Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    We analyze the optical properties of a one-dimensional photonic crystal containing a twisted nematic liquid crystal (NLC) defect layer. For randomly polarized light incidence, two photonic defect modes were found to appear in the photonic band gap of the one-dimensional photonic crystal, and were associated either with the molecular long axis experiencing the averaged extraordinary refractive index or the molecular short axis experiencing the averaged ordinary refractive index, of the defect NLC layer. Numerical analyses also revealed that the transmitted light at the defect mode is linearly-polarized light at an angle which is determined both from the twist angle of the twisted NLC and the resulting optical rotatory power. When the thickness of the defect layer is sufficiently thin, optical rotation can be ignored and the output polarization angle is at half the twist angle for the long axis mode and at 90 degrees to that for the short axis mode.

  13. Inexpensive photonic crystal spectrometer for colorimetric sensing applications.

    Science.gov (United States)

    Bryan, Kurt M; Jia, Zhang; Pervez, Nadia K; Cox, Marshall P; Gazes, Michael J; Kymissis, Ioannis

    2013-02-25

    Photonic crystal spectrometers possess significant size and cost advantages over traditional grating-based spectrometers. In a previous work [Pervez, et al, Opt. Express 18, 8277 (2010)] we demonstrated a proof of this concept by implementing a 9-element array photonic crystal spectrometer with a resolution of 20 nm. Here we demonstrate a photonic crystal spectrometer with improved performance. The dependence of the spectral recovery resolution on the number of photonic crystal arrays and the width of the response function from each photonic crystal is investigated. A mathematical treatment, regularization based on known information of the spectrum, is utilized in order to stabilize the spectral estimation inverse problem and achieve improved spectral recovery. Colorimetry applications, the measurement of CIE 1931 chromaticities and the color rendering index, are demonstrated with the improved spectrometer.

  14. All-polymer photonic crystal slab sensor.

    Science.gov (United States)

    Hermannsson, Pétur G; Sørensen, Kristian T; Vannahme, Christoph; Smith, Cameron L C; Klein, Jan J; Russew, Maria-Melanie; Grützner, Gabi; Kristensen, Anders

    2015-06-29

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5 × 10(-6) RIU when measured in conjunction with a spectrometer of 12 pm/pixel resolution. The device is a two-layer structure, composed of a low refractive index polymer with a periodically modulated surface height, covered with a smooth upper-surface high refractive index inorganic-organic hybrid polymer modified with ZrO2based nanoparticles. Furthermore, it is fabricated using inexpensive vacuum-less techniques involving only UV nanoreplication and polymer spin-casting, and is thus well suited for single-use biological and refractive index sensing applications.

  15. Mode conversion in magneto photonic crystal fibre

    Science.gov (United States)

    otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.

  16. Enhanced photoacoustic detection using photonic crystal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunfei; Liu, Kaiyang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); McClelland, John [Ames Laboratory-USDOE, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011 (United States); Lu, Meng, E-mail: menglu@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  17. Photonic crystal based polarization insensitive flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-07-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a/λ  =  0.280 and a/λ  =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25λ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  18. Photonic Crystal Waveguides in Terahertz Regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huaiwu, E-mail: hwzhang@uestc.edu.cn [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2011-02-01

    Using the finite difference time domain method, the electromagnetic field distribution of THz waves in photonic crystals (PCs) T-splitters and Y-splitters had been simulated. The simulation results show that those different T-splitters and Y-splitters can divide the power in an input wave guide equally between two output waveguides. By the improved T-splitter with a rod in the junction, we achieved the 84% amplitude- frequency characteristics consistency of pass-band from 1.12 THz to 1.22 THz, and surpass the 76% consistency of common T-splitter. The improved Y-splitter with a rod in the junction and without rod in the corners has widest -3db bandwidth 0.224 THz, and the amplitude reaches 1655.727. The improved Y-splitter has better performance than other Y-splitters. Introducing the photonic band gap structure with L-type defect composed of three defects. Three high-Q resonant frequencies appeared simultaneously in some monitor coordinates. The wavelength-add-drop properties of L-type defects may be used in multi-carrier communication and multi-frequency-monitoring for the THz regime. Also, a carefully designed PCs can be used as high Q narrowband filter in THz band. These results provide a useful guide and a theoretical basis for the developments of THz functional components.

  19. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  20. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  1. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single......-photons from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...... veries the single-photon nature of the quantum-dot. Furthermore correlationmeasurement between the outputs of the power divider conrms the passive separation of the singlephotonemission.A scheme for post-emission entanglement generation between single-photons from an efficientsource is discussed...

  2. Air-guiding photonic bandgap fiber with improved triangular air-silica photonic crystal cladding

    OpenAIRE

    Yan, M.; Shum, P

    2005-01-01

    We introduce a small-core air-guiding photonic crystal fiber whose cladding is made of improved air-silica photonic crystal with non-circular air holes placed in triangular lattice. The fiber achieves un-disturbed bandgap guidance over 350nm wavelength range.

  3. Transmission measurement of the photonic band gap of GaN photonic crystal slabs

    NARCIS (Netherlands)

    Caro, J.; Roeling, E.M.; Rong, B.; Nguyen, H.M.; Van der Drift, E.W.J.M.; Rogge, S.; Karouta, F.; Van der Heijden, R.W.; Salemink, H.W.M.

    2008-01-01

    A high-contrast-ratio (30 dB) photonic band gap in the near-infrared transmission of hole-type GaN two-dimensional photonic crystals (PhCs) is reported. These crystals are deeply etched in a 650 nm thick GaN layer grown on sapphire. A comparison of the measured spectrum with finite difference time

  4. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...... permittivity is calculated and used in finite element mode simulations. The suitability of liquid crystal photonic bandgap fiber devices for filters, waveplates or sensors is highly dependent on the tunability of the transmission spectrum. In this contribution we investigate how the bandgap tunability...... is determined by the parameters of the liquid crystals. This enables us to identify suitable liquid crystals for tunable photonic bandgap fiber devices...

  5. Optical switching in nonlinear photonic crystals lightly doped with nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2008-01-14

    A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.

  6. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  7. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  8. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    in the most important for applications plasmonic and photonic regimes are numerically investigated. We also demonstrate fabrication of photonic crystal membranes, high-quality transfer of large area chemically vapor deposited graphene on them and their comprehensive Raman, AFM and FTIR experimental...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors....

  9. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  10. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    Ningfang Song

    2017-10-01

    Full Text Available A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10−5 deg/√h.

  11. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  12. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...

  13. Photonic crystal fiber long-period gratings for biochemical sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Jensen, Jesper Bo; Dufva, Hans Martin

    2006-01-01

    -period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has......We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long...

  14. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped...

  15. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Three dimensional reflectance properties of superconductor-dielectric photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey@amity.edu; Sancheti, Bhagyashree [Department of Physics, Amity Institute of Applied Sciences, Amity University, Noida (U.P.) (India); Pandey, J. P.; Pandey, U. K. [Department of Physics, M.L.K. P.G.College, Balrampur (U.P.) (India); Ojha, S. P. [Department of Physics, IIT, BHU, Varanasi-(UP) (India)

    2016-05-06

    In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.

  17. High-Q photonic crystal cavities in all-semiconductor photonic crystal heterostructures

    Science.gov (United States)

    Bushell, Z. L.; Florescu, M.; Sweeney, S. J.

    2017-06-01

    Photonic crystal cavities enable the realization of high Q-factor and low mode-volume resonators, with typical architectures consisting of a thin suspended periodically patterned layer to maximize confinement of light by strong index guiding. We investigate a heterostructure-based approach comprising a high refractive index core and lower refractive index cladding layers. While confinement typically decreases with decreasing index contrast between the core and cladding layers, we show that, counterintuitively, due to the confinement provided by the photonic band structure in the cladding layers, it becomes possible to achieve Q factors >104 with only a small refractive index contrast. This opens up opportunities for implementing high-Q factor cavities in conventional semiconductor heterostructures, with direct applications to the design of electrically pumped nanocavity lasers using conventional fabrication approaches.

  18. Hybrid photonic crystal fiber in chemical sensing.

    Science.gov (United States)

    Asaduzzaman, Sayed; Ahmed, Kawsar; Bhuiyan, Touhid; Farah, Tanjila

    2016-01-01

    In this article, a hybrid photonic crystal fiber has been proposed for chemical sensing. A FEM has been applied for numerical investigation of some propagation characteristics of the PCF at a wider wavelength from 0.7 to 1.7 µm. The geometrical parameters altered to determine the optimized values. The proposed PCF contains three rings of circular holes in the cladding where the core is formulated with microstructure elliptical holes. The simulation result reveals that our proposed PCF exhibits high sensitivity and low confinement loss for benzene, ethanol and water than the prior PCFs. We have also shown that our proposed PCF shows high birefringence for benzene 1.544 × 10(-3), for ethanol 1.513 × 10(-3) and for water 1.474 × 10(-3) at λ = 1.33 µm. The proposed PCF is simple with three rings which can be used for the sensing applications of industrially valuable lower indexed chemicals.

  19. Time evolution of absorption process in nonlinear metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Second Harmonic Generation in Subdiffractive Two-Dimensional Photonic Crystals

    CERN Document Server

    Nistor, Cristian

    2013-01-01

    The PhD thesis is devoted to the study of second harmonic generation of narrow beams in photonic crystals. The basic idea is that if both frequencies, the fundamental and second harmonics are in the region of self-collimation, then the second harmonics of narrow beams can be very efficient. The beams do not spread diffractively during propagation and interaction. The phase matching is ensured for all components of the interacting beams. This allows to enhance the nonlinear interaction efficiency several times. The thesis rewises the theory of self-collimation of narrow beams in photonic crystals, and presents the theory of second harmonics in photonic crystals. Calculations in photonic crystals of different configurations are presented, and the recommendations to experimental realisations are given.

  1. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission spec...

  2. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  3. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...... deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  4. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  5. Optical sensors based on photonic crystal: a new route

    Science.gov (United States)

    Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.

    2017-05-01

    The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.

  6. Improving nanocavity switching using Fano resonances in photonic crystal structures

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Elesin, Yuriy

    2013-01-01

    We present a simple design for achieving Fano resonances in photonic crystal coupled waveguide-cavity structures. A coupled mode theory analysis shows an order of magnitude reduction in switching energy compared to conventional Lorentz resonances....

  7. Few-quantum-dot lasing in photonic crystal nanocavities

    DEFF Research Database (Denmark)

    Liu, Jin; Ates, Serkan; Stobbe, Søren

    2012-01-01

    A very smooth lasing transition in photonic crystal nanocavities with embedded quantum dots is observed and compared to the theory. Decay rate measurements reveal that only a few quantum dots are feeding the cavity....

  8. Photonic Crystal Fibres - the State-of-the-Art

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Hansen, K. P.; Hansen, Theis Peter

    2002-01-01

    Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed.......Photonic crystal fibres having microstructured air-silica cross sections offer new optical properties compared to conventional fibres. These include novel guiding mechanisms, unique spectral properties and nonlinear possibilities. Recent results within the field are reviewed....

  9. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  10. Simulation of Nonlinear Gain Saturation in Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2012-01-01

    In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated.......In this paper we present a theoretical analysis of slowlight enhanced traveling wave amplification in an active semiconductor Photonic crystal waveguides. The impact of group index on nonlinear modal gain saturation is investigated....

  11. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  12. Self-assembled Tunable Photonic Hyper-crystals

    Science.gov (United States)

    2014-07-16

    a cobalt nanoparticle-based ferrofluid . Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid . Unique spectral...smoly@umd.edu) SCIENTIFIC REPORTS | 4 : 5706 | DOI: 10.1038/srep05706 1 4 Figure 1 | (A) Experimental geometry of the ferrofluid based hyperbolic

  13. Nonlocal gap soliton in liquid infiltrated photonic crystal fibres

    DEFF Research Database (Denmark)

    Bennet, F.H.; Rosberg, C.R.; Rasmussen, Per Dalgaard

    We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure.......We report on the observation of nonlocal gap solitons in infiltrated photonic crystal fibres. We employ the thermal defocusing nonlinearity of the liquid to study soliton existence and effect of boundaries of the periodic structure....

  14. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  15. Use of a photonic crystal for optical amplifier gain control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shawn-Yu [Albuquerque, NM; Fleming, James G [Albuquerque, NM; El-Kady, Ihab [Albuquerque, NM

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  16. Highly Sensitive Sensors Based on Photonic Crystal Fiber Modal Interferometers

    Directory of Open Access Journals (Sweden)

    Joel Villatoro

    2009-01-01

    Full Text Available We review the research on photonic crystal fiber modal interferometers with emphasis placed on the characteristics that make them attractive for different sensing applications. The fabrication of such interferometers is carried out with different post-processing techniques such as grating inscription, tapering or cleaving, and splicing. In general photonic crystal fiber interferometers exhibit low thermal sensitivity while their applications range from sensing strain or temperature to refractive index and volatile organic compounds.

  17. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge.......Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  18. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  19. Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Kent D. Choquette

    2012-01-01

    Full Text Available We review the design, fabrication, and performance of photonic crystal vertical cavity surface emitting lasers (VCSELs. Using a periodic pattern of etched holes in the top facet of the VCSEL, the optical cavity can be designed to support the fundamental mode only. The electrical confinement is independently defined by proton implantation or oxide confinement. By control of the refractive index and loss created by the photonic crystal, operation in the Gaussian mode can be insured, independent of the lasing wavelength.

  20. Nanoimprint Lithography of Topology Optimized Photonic Crystal Devices

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn; Nielsen, Theodor

    2006-01-01

    We demonstrate a nanoimprint process for fabrication of photonic crystal devices. The nanoimprint process, defining stamp patterns in a thin e-beam resist, yields improved pattern replication compared to direct e-beam writing of the devices.......We demonstrate a nanoimprint process for fabrication of photonic crystal devices. The nanoimprint process, defining stamp patterns in a thin e-beam resist, yields improved pattern replication compared to direct e-beam writing of the devices....

  1. Properties of directional couplers using photonic crystal waveguides

    DEFF Research Database (Denmark)

    Thorhauge, Morten; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2003-01-01

    Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found.......Coupled photonic crystal waveguides have been designed and modelled with a 3D finite-difference-time-domain method, and fabricated in silicon-on-insulator material. Good agreement between modelled and measured results has been found....

  2. Rigorous modeling of cladding modes in photonic crystal fibers

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside.......We study the cladding modes of a photonic crystal fiber (PCF) with a finite size cladding using a finite element method. The cladding consists of seven rings of air holes with bulk silica outside....

  3. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  4. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standard...... fiber squeezing experiments. Explicit we produce squeezed states in counter propagating pulses along the same fiber axis to achieve near identical dispersion properties. This enables the production of polarization squeezing through interference in a polarization type Sagnac interferometer. We observe...

  5. Emission studies on ZnO-inverse photonic crystals derived from self ...

    Indian Academy of Sciences (India)

    Keywords. Photonic crystals; inverse photonic crystals; sol–gel; photoluminescence. ... The polymer template was removed by heat treatment and chemical method to get ZnO-inverse photonic crystal. The structural quality of the inverse photonic crystal obtained by the chemical method was found to be superior to that ...

  6. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  7. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending...... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators...

  8. Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Niemi, Tapio; Frandsen, Lars Hagedorn; Hede, Kristian Knak

    2005-01-01

    We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is...

  9. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  10. The research on temperature sensing properties of photonic crystal fiber based on Liquid crystal filling

    Directory of Open Access Journals (Sweden)

    Zan Xiangzhen

    2016-01-01

    Full Text Available Based on the photonic bandgap-photonic crystal fibers( PBG-PCF fiber core fills the namitic liquid crystal. By readjusting the temperature to change the refractive index, constitute new liquid fiber-optic temperature sensor. In this paper, we use finite element COMSOL software to simulate and analyze photonic crystal optical fiber sensitive properties. The research show that after the PBG – PCF filling the liquid crystal, its mode field distribution, effective refractive index, waveguide dispersion etc changing with temperature is so big. Therefore, the properties that the refractive index of PCF mode CF changing with temperature sensitive medium, provides the theoretical basis for designing optic fiber temperature sensors.

  11. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency significantly....... An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled......Efficient and high quality single-photon sources is a key element in quantum information processing using photons. As a consequence, much current research is focused on realizing all-solid-state nanophotonic single-photon sources. Single photons can be harvested with high efficiency if the emitter...

  12. Quasi-periodic and periodic photonic crystals : A simulation study of their self-assembly, stability and photonic properties

    NARCIS (Netherlands)

    Pattabhiraman, H.

    2017-01-01

    In this thesis we study the self-assembly, stability and photonic properties of colloidal photonic crystals. We show that stable photonic crystals can be self-assembled using spherical colloidal particles interacting with a simple pair potential. We focus on two-dimensional quasi-periodic crystals

  13. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  14. Fabrication and measurements on coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Nielsen, Henri Thyrrestrup; Frandsen, Lars Hagedorn

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...... lasers have also a low output power. A promising way to increase the output power while keeping a low threshold is to couple a large number of cavities. We successfully fabricated several coupled cavity systems and measured on them in order to investigate the behaviour of the coupled systems...

  15. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S. [European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa (Spain); Institucio Catalana de Reserca i Estudis Avançats (ICREA), passeig Lluis Companys 23, 08010 Barcelona (Spain)

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  16. Lead tungstate crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Document Server

    Patrice Loïez

    2002-01-01

    A consignment of 500 lead tungstate crystals arrived at CERN from the northern Russian town of Apatity in May. Destined for the ALICE heavy-ion experiment in preparation for the Large Hadron Collider, each crystal is an 18 cm long rod with a 2.2 cm square section, and weighs some 750 g. A total of 17 000 crystals will make up the experiment's photon spectrometer.

  17. Subpicosecond shifting of the photonic band gap in a three-dimensional photonic crystal

    NARCIS (Netherlands)

    Mazurenko, DA; Kerst, R; Dijkhuis, JI; Akimov, AV; Golubev, VG; Kaplyanskii, AA; Kurdyukov, DA; Pevtsov, AB

    2005-01-01

    We demonstrate spectral shifting of the photonic band gap in a three-dimensional photonic crystal within a time of less than 350 fs. Single 120 fs high-power optical pulses are capable to induce the transition from the semiconductor to the metallic phase of VO2 in the pores of our artificial silica

  18. Photonic and plasmonic guided modes in graphene-silicon photonic crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...

  19. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...

  20. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic disp...

  1. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  2. Thermally tunable ferroelectric thin film photonic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  3. Photonic crystal slow light waveguides in a kagome lattice.

    Science.gov (United States)

    Schulz, Sebastian A; Upham, Jeremy; O'Faolain, Liam; Boyd, Robert W

    2017-08-15

    Slow light photonic crystal waveguides tightly compress propagating light and increase interaction times, showing immense potential for all-optical delay and enhanced light-matter interactions. Yet, their practical application has largely been limited to moderate group index values (light. This limitation persists because nearly all such research has focused on a single photonic crystal lattice type: the triangular lattice. Here, we present waveguides based on the kagome lattice that demonstrate an intrinsically high group index and exhibit slow and stopped light. We experimentally demonstrate group index values of >150, limited by our measurement resolution. The kagome-lattice waveguides are an excellent starting point for further slow light engineering in photonic crystal waveguides.

  4. Photonic crystal planar lens working at low frequencies

    Science.gov (United States)

    Lu, Zhaolin; Shi, Shouyuan; Schuetz, Christopher A.; Lin, Chunchen; Chen, Caihua; Sharkawy, Ahmed S.; Prather, Dennis W.

    2005-04-01

    In this paper, we demonstrate the design and fabrication of a planar lens based on the dispersion property of a photonic crystal. When a photonic crystal is illuminated with a low frequency within its dispersion diagram it behaves very similar to an isotropic material, whose resultant index is kept a constant, and is determined by the ratio of high index material and low index material. To validate our design, we performed the experiment in millimeter regime, where the photonic crystal lens was fabricated using a CNC micro-milling machine, and a millimeter wave imaging system was built based on a vector network analyzer. For the lens, we have observed its ability to collimate an incident point source both in the amplitude and phase.

  5. Diamond-Structured Photonic Crystals with Graded Air Spheres Radii

    Directory of Open Access Journals (Sweden)

    Dichen Li

    2012-05-01

    Full Text Available A diamond-structured photonic crystal (PC with graded air spheres radii was fabricated successfully by stereolithography (SL and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT. The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.

  6. Excitation enhancement and extraction enhancement with photonic crystals

    Science.gov (United States)

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  7. Photonic Crystal Waveguides in Triangular Lattice of Nanopillars

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei

    2004-01-01

    Photonic nanopillars waveguides have been analysed. Dielectric nanopillars are arranged in such way that they from a tringular lattice of 2D photonic crystal. Dispersion of the modes depends on the direction of the triangular lattice, Ã-J or Ã-X, in which nanopillars arrays are extended. Light fi....... Transmission spectra calculated by FDTD method completely reflect peculiarities of modes dispersion, showing up to 80% transmission for a realistic SOI nanopillar structure....

  8. Near field mapping of coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Vignolini, S; Wiersma, D S; Gurioli, M [LENS, Univof Florence, 50019 Sesto Fiorentino (Italy); Intonti, F; Zani, M; Riboli, F [CNISM, 50019 Sesto Fiorentino (Italy); Balet, L; Li, L H [Inst of Photonics and Nanotechnology, CNR, 00156 Roma (Italy); Francardi, M; Gerardino, A [COBRA, Eindhoven Univ of Technology, 5600 MB Eindhoven (Netherlands); Fiore, A, E-mail: gurioli@lensunifii

    2010-02-01

    We make use of near-field microscopy to image the coupling between two adjacent photonic crystal microcavities A special design of the photonic structures is adopted with selective coupling between different modes having orthogonal spatial extensions Spatial delocalization of coupled-cavity optical modes is found whenever the frequency matching condition is fulfilled On the contrary, in case of large detuning, the modes are localized in each microcavity

  9. Tunable waveguides based on liquid crystal-infiltrated silicon photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cos, Joaquin; Ferre-Borrull, Josep; Pallares, Josep; Marsal, Lluis F. [Universitat Rovira i Virgili, Nano-electronic and Photonic Systems, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)

    2011-03-15

    A methodology for the study of the practical implementation of tunable waveguides based on Silicon Photonic Crystals with liquid crystal-infiltrated pores is presented. First, by using the FDTD method, the transmission properties of the waveguide depending on the liquid crystal optical axis orientation are studied. Then by means of the plane wave expansion method and taking into account the anisotropy of the photonic crystal components and considering adequate supercells, the transmission or rejection of the optical beam are explained. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  11. Synthesis and stop band tuning application of colloidal photonic crystal

    Science.gov (United States)

    Xia, Jiqiang

    A photonic crystal is a regularly structured material with periodic dielectric constant variation at the length scale of visible light wavelength and near-IR region. Photonic crystals have been the focus of many researchers over the last two decades because of their wide applications ranging from optical communications to chemical and biological sensors. The initial intense focus on photonic crystals was for applications in telecommunications where a complete photonic band gap (PBG) is required. However, this focus has been defused because of the inherent difficulties in fabricating a photonic crystal with a complete photonic band gap, and in the case of colloidal crystals, synthesizing structures without defects. Emphasis within the photonic crystal community has shifted to explore the value of the stop band (rejection wavelength), and specifically, the opportunities present when the stop band is combined with a photonic crystal that can exhibit a dynamic tunability in its observed optical properties. The objectives of this dissertation are to fabricate colloidal photonic crystals with desired thermomechanical properties and to develop new methods to tune the stop band of the PBG composite. Physically robust water-free colloidal photonic crystal composites were fabricated using electrostatically stabilized monodisperse colloidal particles followed by two encapsulation steps. The long-range order of the crystalline array was essentially preserved during the encapsulation process. The Tg and storage modulus of the PBG composite were extended to lower values by using a different second step monomer. A new approach has been developed to tune the stop band of photonic crystals by modulating the electric field applied on the PBG composite film. A 25 nm total rejection wavelength variation from its initial nonbiased state was demonstrated with a PBG film (80 mum in thickness) when subjected to a field strength of 25 V/mum. The thickness strain and the, stop band shift

  12. Design and Fabrication of Photonic Crystal Materials and Components

    DEFF Research Database (Denmark)

    Harpøth, Anders

    2005-01-01

    The work described in this thesis covers the issues of producing materials for use as base material for fabricating photonic crystals and the design, fabrication and characterization of photonic crystal components. One of the aims is to investigate the possibilities of fabricating a silicon-on-insulator...... (SOI) material using standard cleanroom processing techniques. A standard silicon wafer is covered with a silica film by an oxidation process and subsequently covered with a thin silicon layer deposited from silane by a Low Pressure Chemical Vapor Deposition (LPCVD) process. Such a process sequence...

  13. Regimes of self-pulsing in photonic crystal Fano lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper

    2017-01-01

    Laser self-pulsing was a property exclusive to macroscopic laser systems until recently, where self-pulsing laser operation was demonstrated experimentally and theoretically in a microscopic photonic crystal Fano laser [1]. We now provide a detailed theoretical analysis of the self-pulsing mechan......Laser self-pulsing was a property exclusive to macroscopic laser systems until recently, where self-pulsing laser operation was demonstrated experimentally and theoretically in a microscopic photonic crystal Fano laser [1]. We now provide a detailed theoretical analysis of the self...

  14. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  15. Photonic crystals advances in design, fabrication, and characterization

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  16. Modal conversion with artificial materials for photonic-crystal waveguides.

    Science.gov (United States)

    Lalanne, Philippe; Talneau, A

    2002-04-22

    We study adiabatic mode transformations in photonic-crystal integrated circuits composed of a triangular lattice of holes etched into a planar waveguide. The taper relies on the manufacture of holes with progressively-varying dimensions. The variation synthesizes an artificial material with a gradient effective index. Calculations performed with a three-dimensional exact electromagnetic theory yield high transmission over a wide frequency range. To evidence the practical interest of the approach, a mode transformer with a length as small as lambda/2 is shown to provide a spectral-averaged transmission efficiency of 92% for tapering between a ridge waveguide and a photonic crystal waveguide with a one-row defect.

  17. Wavelength Selective 3D Topology Optimized Photonic Crystal Devices

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Sigmund, Ole

    2013-01-01

    A compact photonic crystal drop filter has been designed using 3D topology optimization and fabricated in silicon-on-insulator material. Measurements and modeling are in excellent agreement showing a low-loss ~11nm 3dB bandwidth of the filter.......A compact photonic crystal drop filter has been designed using 3D topology optimization and fabricated in silicon-on-insulator material. Measurements and modeling are in excellent agreement showing a low-loss ~11nm 3dB bandwidth of the filter....

  18. Design and Fabrication of SOI-based photonic crystal components

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    We present examples of ultra-compact photonic crystal components realized in silicon-on-insulator material. We have fabricated several different types of photonic crystal waveguide components displaying high transmission features. This includes 60° and 120° bends, different types of couplers......, and splitters. Recently, we have designed and fabricated components with more than 200 nm bandwidths. Design strategies to enhance the performance include systematic variation of design parameters using finite-difference time-domain simulations and inverse design methods such as topology optimization....

  19. Reconfigurable photonic crystal using self-initiated gas breakdown

    Science.gov (United States)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2017-02-01

    We present a resonant photonic crystal for which transmission is time-modulated by a self-initiated gaseous plasma. A resonant cavity in the photonic crystal is used to amplify an incoming microwave field to intensities where gas breakdown is possible. The presence of the plasma in the resonant cavity alters the transmission spectrum of the device. We investigate both transient and steady-state operation with computational simulations using a time-domain model that couples Maxwell’s equations and plasma fluid equations. The predicted plasma ignition and stability are then experimentally verified.

  20. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    See, Gloria G. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Xu, Lu; Nuzzo, Ralph G. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Sutanto, Erick; Alleyne, Andrew G. [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, 154 Mechanical Engineering Building, Urbana, Illinois 61801 (United States); Cunningham, Brian T. [Micro and Nanotechnology Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, Illinois 61801 (United States); Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, Urbana, Illinois 61801 (United States)

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  1. Perfect absorption and no reflection in disordered photonic crystals

    Science.gov (United States)

    Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.

    2017-05-01

    Understanding the effects of disorder on the light propagation in photonic devices is of major importance from both fundamental and applied points of view. Unidirectional reflectionless and coherent perfect absorption of optical signals are unusual yet fascinating phenomena that have recently sparked an extensive research effort in photonics. These two phenomena, which arise from topological deformations of the scattering matrix S parameters space, behave differently in the presence of different types of disorder, as we show here for a lossy photonic crystal prototype with a parity-time antisymmetric susceptibility or a more general non-Hermitian one.

  2. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyzes, analytical sensitivity analyzes and gradient...... based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...... curve and design of a wide bandwidth, constant low group velocity waveguide demonstrate the efficiency of the method....

  3. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  4. Photonics and lasing in liquid crystal materials

    National Research Council Canada - National Science Library

    Peter Palffy-Muhoray; Wenyi Cao; Michele Moreira; Bahman Taheri; Antonio Munoz

    2006-01-01

    Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields...

  5. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  6. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  7. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    Science.gov (United States)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  8. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    Science.gov (United States)

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  9. Effect of Temperature on Photonic Band Gaps in Semiconductor-Based One-Dimensional Photonic Crystal

    OpenAIRE

    Malik, J. V.; K. D. Jindal; Vinay Kumar; Vipin Kumar; Arun Kumar; Kh. S. Singh; Singh, T. P.

    2013-01-01

    The effect of the temperature and angle of incidence on the photonic band gap (PBG) for semiconductor-based photonic crystals has been investigated. The refractive index of semiconductor layers is taken as a function of temperature and wavelength. Three structures have been analyzed by choosing a semiconductor material for one of the two materials in a bilayer structure. The semiconductor material is taken to be ZnS, Si, and Ge with air in first, second, and third structures respectively. The...

  10. Highly birefringent index-guiding photonic crystal fibers

    DEFF Research Database (Denmark)

    Hansen, Theis Peter; Broeng, Jes; Libori, Stig E. Barkou

    2001-01-01

    Photonic crystal fibers (PCFs) offer new possibilities of realizing highly birefringent fibers due to a higher intrinsic index contrast compared to conventional fibers. In this letter, we analyze theoretically the levels of birefringence that can be expected using relatively simple PCF designs...

  11. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui

    2010-01-01

    -valued dielectric function. Perturbation theory predicts that the group index scales as 1/ϵ″ which we find to be in complete agreement with the full solutions for various examples. As a consequence, the group index remains finite in real photonic crystals, with its value depending on the damping parameter...

  12. Photonic Crystal Fibres for Dispersion and Sensor Applications

    DEFF Research Database (Denmark)

    Sørensen, Thorkild

    2005-01-01

    of the involved nonlinear processes. A hollow-core photonic crystal fibre (HC-PCF) is used as a sensor for gas. It is filled with two gasses, 12C2H2 acetylene, and H13CN hydrogen cyanide, and the transmission spectra are subject for a discussion. A model for infusion speed of fluids to a capillary presented...

  13. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n......(g) for the combined system is significantly enhanced relative to slow light based on purely material or waveguide dispersion....

  14. Ultrafast investigations of slow light in photonic crystal structures

    NARCIS (Netherlands)

    Engelen, Rob Jacques Paul

    2008-01-01

    Optical structures with dimensions down to nanometer length scales have been a topic for investigation for an increasing number of researchers, due to their intriguing physical properties and their possible new optical applications. In this thesis, waveguides in two-dimensional photonic crystals are

  15. Switching dynamics in InP photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2016-01-01

    In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics of...

  16. Topology Optimized Mode Conversion In a Photonic Crystal Waveguide

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Ding, Yunhong

    2013-01-01

    We experimentally demonstrate an ultra-compact TE0-TE1 mode converter obtained in a photonic crystal waveguide by utilizing topology optimization and show a ~39 nm bandwidth around 1550 nm with an insertion loss lower than ~3 dB....

  17. Analysis of Indexed-Guided Highly Birefringent Photonic Crystal ...

    African Journals Online (AJOL)

    In this paper, a comparative study of three geometries of highly birefringent photonic crystal fibers (HB PCF) is presented. The proposed geometries are: V type PCF, Pseudo-Panda PCF and selectively liquid-filled PCF. Based on the famous Finite Difference Time Domain (FDTD) method with the perfectly matched layer ...

  18. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...

  19. Thermal analysis of line-defect photonic crystal lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Ottaviano, Luisa; Chen, Yaohui

    2015-01-01

    We report a systematic study of thermal effects in photonic crystal membrane lasers based on line-defect cavities. Two material platforms, InGaAsP and InP, are investigated experimentally and numerically. Lasers with quantum dot layers embedded in an InP membrane exhibit lasing at room temperature...

  20. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...

  1. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...

  2. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths...

  3. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  4. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  5. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    Science.gov (United States)

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  6. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole

    2006-01-01

    Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness) on the lo...

  7. Mode-coupling in photonic crystal fibers with multiple cores

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2000-01-01

    Summary form only given. We have fabricated a photonic crystal fiber (PCF) with multiple cores by drawing a fiber preform from stacked glass tubes. Transmission is high through each core despite many unintentional defects in the cladding indicating that the guidance is determined by the holes near...

  8. Coherent Cerenkov emission from electrons streaming through a photonic crystal

    NARCIS (Netherlands)

    van der Slot, Petrus J.M.

    2014-01-01

    Cerenkov radiation is usually incoherent radiation emitted by charged particles when they pass through a medium with sufficiently high, usually relativistic velocity. It has recently been shown that in photonic crystals Cerenkov emission is possible without a velocity threshold, however emission

  9. Enhanced nonlinear optics in photonic-crystal microcavities.

    Science.gov (United States)

    Bravo-Abad, Jorge; Rodriguez, Alejandro; Bermel, Peter; Johnson, Steven G; Joannopoulos, John D; Soljacic, Marin

    2007-11-26

    Focus Serial: Frontiers of Nonlinear Optics Nonlinear photonic-crystal microresonators offer unique fundamental ways of enhancing a variety of nonlinear optical processes. This enhancement improves the performance of nonlinear optical devices to such an extent that their corresponding operation powers and switching times are suitable for their implementation in realistic ultrafast integrated optical devices. Here, we review three different nonlinear optical phenomena that can be strongly enhanced in photonic crystal microcavities. First, we discuss a system in which this enhancement has been successfully demonstrated both theoretically and experimentally, namely, a photonic crystal cavity showing optical bistability properties. In this part, we also present the physical basis for this dramatic improvement with respect to the case of traditional nonlinear devices based on nonlinear Fabry-Perot etalons. Secondly, we show how nonlinear photonic crystal cavities can be also used to obtain complete second-harmonic frequency conversion at very low input powers. Finally, we demonstrate that the nonlinear susceptibility of materials can be strongly modified via the so-called Purcell effect, present in the resonant cavities under study.

  10. Photonic crystal waveguides based on an antiresonant reflecting platform

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time...

  11. The analogy between photonic crystal fibres and step index fibres

    DEFF Research Database (Denmark)

    Birks, T.A.; Mogilevtsev, D.; Knight, J.C.

    1999-01-01

    The propagation constant of a photonic crystal fiber (PCF) can be approximated by substituting the effective V-value and NA into a formula valid for step index fibers (SIF), provided the V-value is defined with a core radius of 0.625 $Lambda@. V$PRM and NA must still be computed. Care must be tak...

  12. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  13. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...

  14. Soliton fission and supercontinuum generation in photonic crystal ...

    Indian Academy of Sciences (India)

    2015-10-17

    Oct 17, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 5 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) ...

  15. Soliton fission and supercontinuum generation in photonic crystal ...

    Indian Academy of Sciences (India)

    Soliton fission; photonic crystal fibre; supercontinuum generation; optical coherence tomography. PACS Nos 42.81. ... out in PCF for various applications, generating broadband sources and ultrashort pulses using SCG technique finds .... where T0 is the pulse width. Figure 1 gives an idea about the broadening of pulse in a.

  16. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...

  17. Topology optimization of slow light coupling to photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Frandsen, Lars Hagedorn

    2007-01-01

    The slow light coupling efficiency in photonic crystal waveguides is enhanced by using the topology optimisation method. As much as 5 dB improvement in transmission can be achieved in the proximity of the spectrum cutoff. Moreover, the resemblance of the resulting two optimised spectra from...

  18. Isogeometric shape optimization of photonic crystals via Coons patches

    DEFF Research Database (Denmark)

    Qian, Xiaoping; Sigmund, Ole

    2011-01-01

    In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have...

  19. Optimization of bandwidth in 60^o photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Xing, P. F.; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2005-01-01

    A systematic scheme utilizing 2D and 3D finite-difference time-domain calculations to design 60^o photonic crystal waveguide bends is presented. The method results in an improved transmission bandwidth from 70 to 160 nm in 2D simulations, and from 50 to 100 nm in 3D simulations. The design...

  20. Spatial and spectral imaging of LMA photonic crystal fiber amplifiers

    DEFF Research Database (Denmark)

    Laurila, Marko; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2011-01-01

    We demonstrate modal characterization using spatial and spectral resolved (S2) imaging, on an Ytterbium-doped large-mode-area photonic crystal fiber (PCF) amplifier and compare results with conventional cut-off methods. We apply numerical simulations and step-index fiber experiments to calibrate...

  1. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical...

  2. Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal.

    Science.gov (United States)

    Fuh, Andy Ying-Guey; Li, Ming Shian; Wu, Shing Trong

    2011-07-04

    This study investigates the transversely propagating waves in a body-centered tetragonal photonic crystal based on a holographic polymer-dispersed liquid crystal film. Rotating the film reveals three different transverse propagating waves. Degeneracy of optical Bloch waves from reciprocal lattice vectors explains their symmetrical distribution.

  3. Estimation of photonic crystal fiber dispersion by means of supercontinuum generation.

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-05-01

    We present a technique for photonic crystal fiber dispersion measurement. We demonstrate that investigating supercontinuum using cross-correlation frequency resolved optical gating (XFROG) technique can be used for quantitatively characterizing dispersion and observing orthogonal polarization modes in polarization maintaining photonic crystal fibers. In addition, an XFROG trace of supercontinuum generated in a polarization maintaining photonic crystal fiber reveals complex behavior of orthogonal polarization modes that is different in normal and anomalous dispersion regions of the photonic crystal fiber.

  4. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  5. Photonic integration in k-space: Enhancing the performance of photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Kristensen, Anders; Xiao, Sanshui

    2008-01-01

    We demonstrate how two optical functionalities can be implemented in a single photonic crystal structure by carefully engineering dispersion in several different bands at several different wavelengths. We use the concept for optically pumped dye doped hybrid polymer band edge lasers and show how...... a rectangular photonic crystal lattice imprinted into the surface can provide both feedback for in-plane band edge lasing and couple pump light into the device plane, thus increasing the emitted intensity and lowering the lasing threshold by more than an order of magnitude....

  6. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber

    OpenAIRE

    Zito, Gianluigi; Pissadakis, Stavros

    2013-01-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a pre-polymer/LC solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG are discussed. Experimental data here presented, demonstrate that the liquid crystal inclusions of the PLC-FBG...

  7. Density of photonic states in cholesteric liquid crystals

    Science.gov (United States)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  8. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short......-wavelength edge and the long-wavelength edge of the bandpass filter are tuned individually or simultaneously with the response time in the millisecond range....

  9. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate...

  10. Integrated photonic devices using self-assembled and optically defined photonic crystal superstructures

    Science.gov (United States)

    Wang, Ying

    Photonic crystals are structures with dielectric constants modulated in one, two, or three dimensions. They are an interesting subject of active research due to their ability to control the flow of light on a very small-length scale. In the research for this thesis, two integrated photonic devices were designed, fabricated and characterized which utilize the special optical properties of photonic crystals. The first device is a photonic crystal-photodiode micro-electro-optic filter, where a vertical self-assembly method was employed to grow a 3D face-centered cubic (FCC) photonic crystal over a working electro-optic device, a photodiode and a photodiode-plus-preamplifier made using conventional CMOS techniques. The objective of this project was to judge the practicality of the process and to observe the effect of the photonic crystal on the spectral response of the photodiode and photodiode-amplifier. Spectral measurements taken using a grating monochrometer confirmed that a stop band exists in the photocurrent response of this integrated photonic device, photonic crystal photodiode filter, at the predicted wavelength of 600 nm. These results were consistent with the simulation results made by using a 1D slab structure model. Although many groups have developed procedures to successfully grow self-assembled photonic crystals on substrates, we believe this is the first application of grown opals over functioning integrated electronics. This work explored the ability to include photonic functionality on the wafer with integrated electronic circuitry, and demonstrated a simple, practical and economic way to achieve it. The second device is a tunable planar waveguide with an optically defined 1D photonic crystal cladding layer. In this section a planar waveguide with a photosensitive cladding layer (mixture of PMMA co DR1 and side-chain nematic liquid crystal polymer) that is optically addressable and reversible is presented. The maximum of intensity decrease of the

  11. Enhanced transmission and beaming via a zero-index photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, Hodjat, E-mail: hodjat.hajian@bilkent.edu.tr [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Ozbay, Ekmel [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey); Caglayan, Humeyra [Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Abdullah Gul University, 38080 Kayseri (Turkey)

    2016-07-18

    Certain types of photonic crystals with Dirac cones at the Γ point of their band structure have a zero effective index of refraction at Dirac cone frequency. Here, by an appropriate design of the photonic structure, we obtain a strong coupling between modes around the Dirac cone frequency of an all-dielectric zero-index photonic crystal and the guided ones supported by a photonic crystal waveguide. Consequently, we experimentally demonstrate that the presence of the zero-index photonic crystal at the inner side of the photonic crystal waveguide leads to an enhancement in the transmission of some of the guided waves passing through this hybrid system. Moreover, those electromagnetic waves extracted from the structure with enhanced transmission exhibit high directional beaming due to the presence of the zero-index photonic crystal at the outer side of the photonic crystal waveguide.

  12. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.

    Science.gov (United States)

    Cunningham, B T; Zhang, M; Zhuo, Y; Kwon, L; Race, C

    2016-05-15

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics.

  13. Negative refraction angular characterization in one-dimensional photonic crystals.

    Science.gov (United States)

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  14. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  15. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    NARCIS (Netherlands)

    van Oosten, D.|info:eu-repo/dai/nl/269286470; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this

  16. Study on the propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: chenying@ysu.edu.cn [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shi, Jia; Liu, Teng; Dong, Jing [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Qiguang; Chen, Weidong [Key Laboratory of Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2015-10-02

    Based on the evanescent waves theory, the formation condition and propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal are studied. When the incident light travels through the periodic photonic crystal at a certain angle, the optical resonance will occur in the optically denser medium, and a unique photonic local feature will occur in photonic bandgap. Furthermore, the influences on transmission performance by the photonic crystal parameters are discussed respectively. The simulation results show that the structure mentioned above can achieve the performance of high transmission and high Q value, which can provide theoretical references for photonic crystal multi-channel filters.

  17. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    Science.gov (United States)

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further.

  18. Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers

    Science.gov (United States)

    Young, A. B.; Thijssen, A. C. T.; Beggs, D. M.; Androvitsaneas, P.; Kuipers, L.; Rarity, J. G.; Hughes, S.; Oulton, R.

    2015-10-01

    By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source. Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for a range of devices that can be realized with a QD in a PCW. We also show how suppression of quantum interference prevents dipole induced reflection in the waveguide, and highlight a fundamental breakdown of the semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.

  19. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  20. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Tai, Shih-Peng; Chan, Ming-Che; Tsai, Tsung-Han; Guol, Shi-Hao; Chen, Li-Jin; Sun, Chi-Kuang

    2004-12-13

    Self-phase-modulation and group velocity dispersion of near IR femtosecond pulses in fibers restrict their use in two-photon fluorescence microscopy (TPFM). Here we demonstrate a hollow-core photonic crystal fiber based two-photon fluorescence microscope with low nonlinearity and dispersion effects. We use this fiber-based TPFM system to take two-photon fluorescence (chlorophyll) images of mesophyll tissue in the leaf of Rhaphidophora aurea. With less than 2mW average power exposure on the leaf at 755nm, the near zero-dispersion wavelength, chloroplasts distribution inside the mesophyll cells can be identified with a sub-micron spatial resolution. The acquired image quality is comparable to that acquired by the conventional fiber-free TPFM system, due to the negligible temporal pulse broadening effect.

  1. Near-infrared photonic band structure in a semiconductor metamaterial photonic crystal.

    Science.gov (United States)

    Wu, Meng-Ru; Wu, Chien-Jang; Chang, Shoou-Jinn

    2014-11-01

    In this study, we theoretically investigate the near-infrared (NIR) photonic band structure (PBS) in a one-dimensional semiconductor metamaterial (MM) photonic crystal (PC). The considered PC is (AB)N, where N is the stack number, A is a dielectric, and B is a semiconductor MM composed of Al-doped ZnO and ZnO. It is found that the photonic band gaps (PBGs) can be tunable by the variations in filling factor, and thicknesses of A and B. It is of particular interest to see that the PBG will vanish when the thicknesses of A and B satisfy a certain condition. The results provide fundamental information on a NIR PBS that could be of technical use in photonic applications using such a semiconductor MM. The band gap vanishing makes it possible to design a wider band pass filter at NIR based on the use of such a PC.

  2. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  3. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  4. 2D Plasma Photonic Crystals in resonantly pumped Cesium Vapor

    Science.gov (United States)

    Righetti, Fabio; Cappelli, Mark

    2016-10-01

    Plasma photonic crystals (PCs) afford the opportunity for dynamic reconfigurability. In this presentation we describe the conditions required for constructing an all-plasma PC that can interact with sub mm-wavelength radiation. Conditions required for this interaction are high plasma densities (>1014 cm-3) and small lattice constant (line. The filaments are produced by focusing the laser through a microlens array with a 500 µm pitch. Small departures from line center are found to produce a strong variation in the plasma filament structure and density. Stark broadening measurements of the cesium 9F-5D transition at 647.4 nm yield plasma density. We present preliminary terahertz transmission spectrum of the two-dimensional plasma photonic crystal structure. Experimental results are compared to numerical simulations which predict the presence of bandgaps in regions of both negative and positive plasma dielectric constant.

  5. Multiple topological phase transitions in a gyromagnetic photonic crystal

    KAUST Repository

    Chen, Zeguo

    2017-04-19

    We present the design of a tunable two-dimensional photonic crystal that exhibits multiple topological phases, including a conventional insulator phase, a quantum spin Hall phase, and a quantum anomalous Hall phase under different combinations of geometric parameters and external magnetic fields. Our photonic crystal enables a platform to study the topology evolution attributed to the interplay between crystalline symmetry and time-reversal symmetry. A four-band tight-binding model unambiguously reveals that the topological property is associated with the pseudospin orientations and that it is characterized by the spin Chern number. The emerging quantum anomalous Hall phase features a single helical edge state that is locked by a specific pseudospin. Simulation results demonstrate that the propagation of such a single helical edge state is robust against magnetic impurities. Potential applications, such as spin splitters, are described.

  6. Hollow-core photonic-crystal fibres for laser dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Konorov, Stanislav O [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Mitrokhin, Vladimir P [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Fedotov, Andrei B [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Sidorov-Biryukov, Dmitrii A [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation); Beloglazov, Valentin I [Technology and Equipment for Glass Structures Institute, pr. Stroitelei 1, 410044 Saratov (Russian Federation); Skibina, Nina B [Technology and Equipment for Glass Structures Institute, pr. Stroitelei 1, 410044 Saratov (Russian Federation); Wintner, Ernst [Institut fuer Photonik, Technische Universitaet Wien, Gusshausstrasse 27/387, 1040 Wien (Austria); Scalora, Michael [Weapons Sciences Directorate, US Army Aviation and Missile Command Huntsville, AL 35898-5000 (United States); Zheltikov, Aleksei M [Physics Department, International Laser Center, M V Lomonosov Moscow State University, Vorob' evy gory, 119899 Moscow (Russian Federation)

    2004-04-07

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 {mu}m Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 {mu}m and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 {mu}m laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  7. Slow light enhanced gas sensing in photonic crystals

    Science.gov (United States)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2018-02-01

    Infrared spectroscopy allows for highly selective and highly sensitive detection of gas species and concentrations. Conventional gas spectrometers are generally large and unsuitable for on-chip applications. Long absorption path lengths are usually required and impose a challenge for miniaturization. In this work, a gas spectrometer is developed consisting of a microtube photonic crystal structure. This structure of millimetric form factors minimizes the required absorption path length due to slow light effects. The microtube photonic crystal allows for strong transmission in the mid-infrared and, due to its large void space fraction, a strong interaction between light and gas molecules. As a result, enhanced absorption of light increases the gas sensitivity of the device. Slow light enhanced gas absorption by a factor of 5.8 in is experimentally demonstrated at 5400 nm. We anticipate small form factor gas sensors on silicon to be a starting point for on-chip gas sensing architectures.

  8. CVD synthesis of carbon-based metallic photonic crystals

    CERN Document Server

    Zakhidov, A A; Baughman, R H; Iqbal, Z

    1999-01-01

    Three-dimensionally periodic nanostructures on the scale of hundreds of nanometers, known as photonic crystals, are attracting increasing interest because of a number of exciting predicted properties. In particular, interesting behavior should be obtainable for carbon- based structures having a dimensional scale larger than fullerenes and nanotubes, but smaller than graphitic microfibers. We show here how templating of porous opals by chemical vapor deposition (CVD) allows us to obtain novel types of graphitic nanostructures. We describe the synthesis of new cubic forms of carbon having extended covalent connectivity in three dimensions, which provide high electrical conductivity and unit cell dimensions comparable to optical wavelengths. Such materials are metallic photonic crystals that show intense Bragg diffraction. (14 refs).

  9. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  10. Polarization beam splitting using a birefringent graded photonic crystal.

    Science.gov (United States)

    Cassan, Eric; Van Do, Khanh; Dellinger, Jean; Le Roux, Xavier; de Fornel, Frédérique; Cluzel, Benoit

    2013-02-15

    The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

  11. Characterisation of longitudinal variation in photonic crystal fibre

    CERN Document Server

    Francis-Jones, Robert J A

    2016-01-01

    We present a method by which the degree of longitudinal variation in photonic crystal fibre (PCF) may be characterised through seeded four-wave mixing (FWM). Using an iterative numerical reconstruction, we created a model PCF that displays similar FWM phasematching properties across all measured length scales. Our results demonstrate that the structure of our PCF varies by less than 1% and that the characteristic length of the variations is approximately 15 cm.

  12. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    OpenAIRE

    Jian Ju; Wei Jin

    2009-01-01

    This paper discusses the applications of photonic crystal fibers (PCFs) for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  13. Photonic Crystal Fiber Sensors for Strain and Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Jian Ju

    2009-01-01

    Full Text Available This paper discusses the applications of photonic crystal fibers (PCFs for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.

  14. Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings

    Directory of Open Access Journals (Sweden)

    Beatriz Larrión

    2009-01-01

    Full Text Available Quantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM have been experimentally studied for a temperature range from −40 to 70C°.

  15. Study and analysis on slow light in photonic crystal waveguide

    Science.gov (United States)

    Dang, Shuzhen; Shu, Jing

    2017-02-01

    Slow light is to reduce the light propagation speed in the medium. In recent years, because slow light technology is the key to achieving all-optical network technologies constitute optics, it attracted people's attention. Compared with other methods, photonic crystal waveguides provide slow light with many adventages, especially we can fine tune the structure to control the performance of the slow-light. Because the two-dimensional triangular lattice photonic crystal is easier to form band gaps than two-dimensional cubic lattice photonic crystal, the circular dielectric rod is easier to form band gaps than square dielectric cylinder, when the photonic crystal lattice vector angle is greater than 60 degrees, it can make the performance of slow light more excellent. So in this paper,we will rotate the cubic lattice 45 degrees counterclockwise. By reducing the radius of middle row of medium column to form the line defect; Additionly, we design a coupled cavity waveguide. Using the plane wave expansion method (PWE), we have analyzed the dispersion curves of the guided mode, the corresponding group refractive index and group velocity dispersion of slow light. For the line defected waveguide, we have realized the group refractive index changing from 8.1 to 84.8 by fine tuning the radius of the defective rod, the position and radius of the first row of the dielectric cylinder close to the waveguide. For the coupled cavity waveguide, we have realized the group refractive index changing from 16 to 79 by fine tuning the radius of the defective rod.

  16. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this contribution we will discuss the underlying mechanisms of supercontinuum generation in tapers. We show, by introducing t...... at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers....

  17. Estimating modal instability threshold for photonic crystal rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko

    2013-01-01

    We present a semi-analytic numerical model to estimate the transverse modal instability (TMI) threshold for photonic crystal rod amplifiers. The model includes thermally induced waveguide perturbations in the fiber cross section modeled with finite element simulations, and the relative intensity ...... noise (RIN) of the seed laser, which seeds mode coupling between the fundamental and higher order mode. The TMI threshold is predicted to ~370 W – 440 W depending on RIN for the distributed modal filtering rod fiber....

  18. Wafer-scale plasmonic and photonic crystal sensors

    Science.gov (United States)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  19. Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal

    NARCIS (Netherlands)

    Woldering, L.A.; Mosk, Allard; Vos, Willem L.

    2014-01-01

    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamondlike crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as

  20. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.

    Science.gov (United States)

    Shen, Guansheng; Tian, Huiping; Ji, Yuefeng

    2013-02-20

    We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 10(-7) bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system.

  1. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  2. How Photonic Crystals Can Improve the Timing Resolution of Scintillators

    CERN Document Server

    Lecoq, P; Knapitsch, A

    2013-01-01

    Photonic crystals (PhCs) and quantum optics phenomena open interesting perspectives to enhance the light extraction from scintillating me dia with high refractive indices as demonstrated by our previous work. By doing so, they also in fl uence the timing resolution of scintillators by improving the photostatistics. The present cont ribution will demonstrate that they are actually doing much more. Indeed, photonic crystals, if properly designed, allow the extr action of fast light propagation modes in the crystal with higher efficiency, therefore contributing to increasing the density of photons in the early phase of the light pulse. This is of particular interest to tag events at future high-energy physics colliders, such as CLIC, with a bunch-crossing rate of 2 GHz, as well as for a new generation of time-of-flight positron emission tomographs (TOFPET) aiming at a coincidence timing resolution of 100 ps FWHM. At this level of precision, good control of the light propagation modes is crucial if we consid...

  3. Label-Free Biosensor Imaging on Photonic Crystal Surfaces

    Directory of Open Access Journals (Sweden)

    Yue Zhuo

    2015-08-01

    Full Text Available We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in “digital” diagnostics with single molecule sensing resolution. We will review PCEM’s development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  4. Temperature insensitive curvature sensor based on cascading photonic crystal fiber

    Science.gov (United States)

    Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong

    2018-03-01

    A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.

  5. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.

    Science.gov (United States)

    Zhuo, Yue; Cunningham, Brian T

    2015-08-28

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  6. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber

    CERN Document Server

    Zito, Gianluigi

    2013-01-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a pre-polymer/LC solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG are discussed. Experimental data here presented, demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, while further discussed.

  7. Modeling of Photonic Band Gap Crystals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Kady, Ihab Fathy [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal

  8. Visible light Laue diffraction from woodpile photonic crystals.

    Science.gov (United States)

    Brüser, Björn; Staude, Isabelle; von Freymann, Georg; Wegener, Martin; Pietsch, Ullrich

    2012-10-01

    Bragg diffraction is often used as a tool to assess the structural quality of two-dimensional and three-dimensional (3D) photonic crystals. However, direct conclusions from the Laue diagrams to the underlying crystals structure cannot be drawn, as multiple scattering due to the high index contrast takes place. Here we systematically study the scattering of visible light by 3D woodpile photonic crystals with varying internal refractive index contrast Δn, to determine the limits of the single (kinematic) scattering approach. We aim to describe the intensity distribution of diffracting Bragg peaks with analytic expressions similarly to x-ray scattering at electronic crystals. Measured scattering curves of selected Bragg reflections are classified in terms of Δn. We find that the kinematic approach describes the shape and intensity distribution of experimental scattering curves in acceptable accuracy as long as Δn<0.15. The transition between single and multiple scattering is observed for Δn≈0.16-0.25 before multiple scattering dominates for larger Δn. The classification of the scattering regimes is confirmed by simulations in terms of numerical solution of Maxwell's equations.

  9. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  10. Light exiting from real photonic band gap crystals is diffuse and strongly directional

    NARCIS (Netherlands)

    Koenderink, A.F.; Vos, Willem L.

    2003-01-01

    Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:

  11. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wahle, Markus, E-mail: markus.wahle@uni-paderborn.de; Kitzerow, Heinz-Siegfried [Department of Chemistry, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany and Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Str. 100, 33098 Paderborn (Germany)

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  12. High-efficiency photonic crystal narrowband thermal emitters

    Science.gov (United States)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  13. Reflection spectra and their angular dependences of one-dimensional photonic crystals based on aluminium oxide

    Science.gov (United States)

    Gorelik, V. S.; Yashin, M. M.; Pudovkin, A. V.; Vodchits, A. I.

    2017-11-01

    The article considers optical properties (transmission and reflection) of one-dimensional photonic crystals based on mesoporous anodic aluminum oxide, with periods of crystal lattices 188 and 194 nm. A comparison of the experimentally measured reflection spectrum in the spectral region of the first stop-zone with the theoretical dependence obtained from the dispersion relation for one-dimensional photonic crystal is carried out. The angular dependence of the first stop-zone spectral positions of one-dimensional photonic crystal is established. The authors analyze the possibility of applications of mesoporous one-dimensional photonic crystals based on aluminum oxide as the selective narrowband filters and mirrors.

  14. Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    We design and fabricate a compact tunable and rotatable polarization controller using liquid crystal photonic band gap fibers. The electrically and thermally induced phase shift in the Poincaré sphere and corresponding birefringence change are measured. The direction of the electric field...

  15. Modification of Thermal Emission via Metallic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  16. Synthetic approaches toward tungsten photonic crystals for thermal emission

    Science.gov (United States)

    Denny, Nicholas R.; Han, Sangjin; Turgeon, Ryan T.; Lytle, Justin C.; Norris, David J.; Stein, Andreas

    2005-11-01

    The efficiency of standard incandescent light sources is limited by strong thermal emission in the infrared regime. It is possible that emission of light may be more efficient when the conventional tungsten filament is replaced by metallic photonic crystals that have large photonic band gaps in the infrared and can suppress the thermal emission of blackbody emitters. One approach toward fabricating photonic crystal structures with highly ordered periodic features on an optical length scale involves colloidal crystal templating to produce inverse opals. Metallic inverse opals were synthesized using chemical vapor deposition (CVD) and wet chemical methods capable of producing granules, thin films and monolithic pieces. Thin films were prepared by infiltrating silica opal films with tungsten hexacarbonyl in a CVD process, reducing tungsten in hydrogen and removing the silica template by HF etching. A range of soluble metal precursors, including tungsten(VI) chloride, tungsten(V) ethoxide and acetylated peroxotungstic acid, were infiltrated into self-assembled, colloidal crystal arrays comprised of monodisperse poly(methyl methacrylate) (PMMA) spheres. The infiltrated composites were processed under reducing conditions to produce metallic inverse replicas of the template. The influence of processing conditions on structural properties, including thickness of skeletal walls, window openings and solid filling fraction, was studied. A monolithic tungsten inverse opal with dimensions of 0.5 × 0.5 × 0.2 cm was resistively heated in an inert atmosphere and thermal emission was observed. The wet chemical methods provide a low cost alternative to expensive nanolithographic methods for the fabrication of three-dimensional periodic metallic structures.

  17. Photonic stop bands of two-dimensional quasi-random structures based on macroporous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad Mahbubur; Ferre-Borrull, Josep; Pallares, Josep; Marsal, Lluis F. [Universitat Rovira i Virgili, Nano-electronic and Photonic Systems (NePhoS), Av. Paisos Catalans 26, 43007 Tarragona (Spain)

    2011-03-15

    The existence of photonic stop bands in macroporous silicon with a quasi-random structure transferred from nanoporous anodic alumina is studied. The quasi-random structure consists of a periodic triangular arrangement broken into domains of random orientation and size. By means of Finite-Difference Time-Domain simulation, transmittance spectra of the structure are calculated which show that stop bands exist for the TE polarization in the same frequency range it exist for periodic photonic crystals. For TM polarization local minima of the transmittance are predicted by the calculations. A general trend of the transmittance to decrease with increasing frequency is observed. The comparison with the transmittance for random structures shows that such trend is due to incoherent scattering caused by the degree of randomness of the structure (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Raman-tailored photonic crystal fiber for telecom band photon-pair generation

    Science.gov (United States)

    Cordier, M.; Orieux, A.; Gabet, R.; Harlé, T.; Dubreuil, N.; Diamanti, E.; Delaye, P.; Zaquine, I.

    2017-07-01

    We report on the experimental characterization of a novel nonlinear liquid-filled hollow-core photonic-crystal fiber for the generation of photon pairs at telecommunication wavelength through spontaneous four-wave-mixing. We show that the optimization procedure in view of this application links the choice of the nonlinear liquid to the design parameters of the fiber, and we give an example of such an optimization at telecom wavelengths. Combining the modeling of the fiber and classical characterization techniques at these wavelengths, we identify, for the chosen fiber and liquid combination, spontaneous four-wave-mixing phase matching frequency ranges with no Raman scattering noise contamination. This is a first step toward obtaining a telecom band fibered photon-pair source with a high signal-to-noise ratio.

  19. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    under oblique incidence angles can to a large degree be predicted by considering the number of escaping diffraction orders which may easily be found from the grating equation. In addition to the well-known structures mentioned above I also introduce novel light trapping structures. I use these structures to investigate what level of light trapping that may be achieved by freely selecting the unit cell geometry. The best light trapping is achieved for structures with low symmetry in their unit cells. The light confinement of one such structure even exceeds the Lambertian light trapping for normal incident light. Lambertian light trapping assumes total randomization of light inside the absorbing material. From geometric optics considerations such a structure will provide the maximum achievable light trapping within a dielectric slab. The Lambertian limit is independent of incidence angle and is therefore valid for isotropic illumination. To experimentally study light trapping from periodic structures, and moreover to compare with our numerical simulations, we had periodic cylinder arrays fabricated i by photolithography. The samples were divided into small blocks of cylinder arrays where lattice geometries and lattice periods varied between the blocks. The measured reflectances from the different blocks are in qualitative agreement with the numerical simulations. A quantitative comparison, on the other hand, is difficult due to the small size of the structured areas. I have also been a part of a team at IFE investigating fabrication methods which may be better suited than photolithography for low-cost fabrication of photonic crystals for solar cells. These methods comprise nano imprint lithography on very thin Si substrates and self-assembled structures using nanospheres. The work focused mainly on control and understanding of the fabrication methods. My contributions to this work were in transfer of the nano imprinted structures from the resist to the substrate and the

  20. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  1. Analysis of thin-film photonic crystal microstructures

    CERN Document Server

    Pottage, J M

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al sub x Ga sub 1 sub - sub x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci ...

  2. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Scolari, Lara; Lægsgaard, Jesper

    2007-01-01

    We demonstrate electrically and mechanically induced long period gratings (LPGs) in a photonic crystal fiber (PCF) filled with a highindex liquid crystal. The presence of the liquid crystal changes the guiding properties of the fiber from an index guiding fiber to a photonic bandgap guiding fiber...

  3. Nonresonant feeding of photonic crystal nanocavity modes by quantum dots

    Science.gov (United States)

    Laucht, A.; Hauke, N.; Neumann, A.; Günthner, T.; Hofbauer, F.; Mohtashami, A.; Müller, K.; Böhm, G.; Bichler, M.; Amann, M.-C.; Kaniber, M.; Finley, J. J.

    2011-05-01

    We experimentally probe the nonresonant feeding of photons into the optical mode of a two dimensional photonic crystal nanocavity from the discrete emission from a quantum dot. For a strongly coupled system of a single exciton and the cavity mode, we track the detuning-dependent photoluminescence intensity of the exciton-polariton peaks at different lattice temperatures. At low temperatures we observe a clear asymmetry in the emission intensity depending on whether the exciton is at higher or lower energy than the cavity mode. At high temperatures this asymmetry vanishes when the probabilities to emit or absorb a phonon become similar. For a different dot-cavity system where the cavity mode is detuned by ΔE >5 meV to lower energy than the single exciton transitions emission from the mode remains correlated with the quantum dot as demonstrated unambiguously by cross-correlation photon counting experiments. By monitoring the temporal evolution of the photoluminescence spectrum, we show that feeding of photons into the mode occurs from multi-exciton transitions. We observe a clear anti-correlation of the mode and single exciton emission; the mode emission quenches as the population in the system reduces toward the single exciton level while the intensity of the mode emission tracks the multi-exciton transitions.

  4. 3D electron tomography of biological photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin; Winter, Benjamin; Vieweg, Benito; Knoke, Isabel; Spallek, Stefanie; Spiecker, Erdmann [CENEM, Universitaet Erlangen-Nuernberg (Germany); Schroeder-Turk, Gerd; Mecke, Klaus [Theoretische Physik I, Universitaet Erlangen-Nuernberg (Germany)

    2011-07-01

    Photonic crystals, i.e. periodical nanostructures of materials with different dielectric constants, are highly interesting for applications in optics, optoelectronics, and sensing. By tailoring the geometrical parameters radically different and improved optical properties (e.g., optical band-gap structure, extreme refractive indices, or high anisotropy) can be achieved. Naturally occurring photonic crystals, like butterfly scales, exoskeletons of insects (chitin), or seashells (nacre), can serve as model systems for understanding the relationship between structure and optical properties. Butterfly scales are studied by TEM using a FEI Titan{sup 3} 80-300 instrument. An optimized FIB technique or ultramicrotome sectioning were used to prepare the sensitive specimens with desired thickness. Since the periodical structures have dimensions on the sub-{mu}m scale, HAADF-STEM tomography was employed for obtaining extended tilt series under conditions of atomic-number sensitive imaging. Since the solid crystal consists of chemically homogeneous chitin while the pores are unfilled, the distinct contrast in the images can easily be interpreted in terms of the local projected mass density allowing to reconstruct the chitin distribution within the optical unit cell of the scales with high 3D resolution.

  5. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    Nanostructures that feature nonreciprocal light trans- mission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demon...

  6. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    Science.gov (United States)

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns.

  7. Dispersion-controlled slow light in photonic crystal waveguides.

    Science.gov (United States)

    Baba, Toshihiko; Adachi, Jun; Ishikura, Norihiro; Hamachi, Yohei; Sasaki, Hirokazu; Kawasaki, Takashi; Mori, Daisuke

    2009-01-01

    Slow light with a markedly low group velocity is a promising solution for optical buffering and advanced time-domain optical signal processing. It is also anticipated to enhance linear and nonlinear effects and so miniaturize functional photonic devices because slow light compresses optical energy in space. Photonic crystal waveguide devices generate on-chip slow light at room temperature with a wide bandwidth and low dispersion suitable for short pulse transmission. This paper first explains the delay-bandwidth product, fractional delay, and tunability as crucial criteria for buffering capacity of slow light devices. Then the paper describes experimental observations of slow light pulse, exhibiting their record high values. It also demonstrates the nonlinear enhancement based on slow light pulse transmission.

  8. Integrable microwave filter based on a photonic crystal delay line.

    Science.gov (United States)

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  9. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    -sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...... of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring...

  10. Photonic crystal materials and their application in biomedicine.

    Science.gov (United States)

    Chen, Huadong; Lou, Rong; Chen, Yanxiao; Chen, Lili; Lu, Jingya; Dong, Qianqian

    2017-11-01

    Photonic crystal (PC) materials exhibit unique structural colors that originate from their intrinsic photonic band gap. Because of their highly ordered structure and distinct optical characteristics, PC-based biomaterials have advantages in the multiplex detection, biomolecular screening and real-time monitoring of biomolecules. In addition, PCs provide good platforms for drug loading and biomolecule modification, which could be applied to biosensors and biological carriers. A number of methods are now available to fabricate PC materials with variable structure colors, which could be applied in biomedicine. Emphasis is given to the description of various applications of PC materials in biomedicine, including drug delivery, biodetection and tumor screening. We believe that this article will promote greater communication among researchers in the fields of chemistry, material science, biology, medicine and pharmacy.

  11. Tunable defect mode realized by graphene-based photonic crystal

    Science.gov (United States)

    Fu, Jiahui; Chen, Wan; Lv, Bo

    2016-04-01

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band.

  12. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers........ The applicability of the International Standards Organization 11146 : 1999 standard for$M^2$measurement of the beam quality of HC-PCFs is discussed. Because they are dependent on the measurement parameters, such as choice of aperturing scheme and the axis of measurement,$M^2$values could vary from 1.32 to 3...

  13. Recent advances and progress in photonic crystal-based gas sensors

    Science.gov (United States)

    Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan

    2017-05-01

    This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.

  14. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  15. Analysis of photonic crystal and multi-frequency terahertz microstrip patch antenna

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lechen, E-mail: yanglechen@163.com [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China); Shi, Xueshun [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Science and Technology on Electronic Test and Measurement Laboratory, Qingdao 266555, Shandong Province (China); Chen, Kunfeng [The 41st Research Institute of CETC, Qingdao 266555, Shandong Province (China); Fu, Kai; Zhang, Baoshun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province (China); Key Laboratory of Nanodevices and Applications, Chinese Academy of Science, Suzhou 215123, Jiangsu Province (China)

    2013-12-15

    In this paper, two-dimensional photonic crystals working at terahertz (THz) frequency is analyzed, a multi-frequency terahertz microstrip patch antenna on photonic crystal substrate is presented and its electromagnetic wave propagation phenomenon is investigated. The proposed antenna can work at five frequency points' scope at terahertz frequency regions, and the radiation efficiency is as high as ∼96%. The photonic crystal structure of the substrate is used to enhance the gain, directivity and radiation efficiency of the antenna.

  16. Optical phase response to temperature in a hollow-core photonic crystal fiber.

    Science.gov (United States)

    Meiselman, Seth; Cranch, Geoffrey A

    2017-10-30

    Analysis of previous measurements of thermal phase sensitivity in hollow core photonic crystal fibers is presented with additional new corroborating measurements, resolving a discrepancy in previously reported results. We extend an existing derivation of thermo-mechanical phase sensitivity in solid- and hollow-core photonic crystal fiber to also include kagome lattice photonic crystal fibers. Measured thermal phase response is shown to agree with theoretical prediction to within a few percent.

  17. Efficient input and output fiber coupling to a photonic crystal waveguide

    OpenAIRE

    Barclay, Paul E.; Srinivasan, Kartik; Borselli, Matthew; Painter, Oskar

    2003-01-01

    The efficiency of evanescent coupling between a silica optical fiber taper and a silicon photonic crystal waveguide is studied. A high reflectivity mirror on the end of the photonic crystal waveguide is used to recollect, in the backwards propagating fiber mode, the optical power that is initially coupled into the photonic crystal waveguide. An outcoupled power in the backward propagating fiber mode of 88% of the input power is measured, corresponding to a lower bound on the coupler efficienc...

  18. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  19. Determination of glucose concentrations using photonic crystal LEDs

    Science.gov (United States)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chang, Cheng-Yu; Lan, Wen-Yi; Huang, Jian-Jang

    2016-09-01

    As internet of things (IOT) has become a popular topic in current consumer electronics, there is a demand for cost-effective sensors to monitor bio-signals. Traditional optical sensors employ low-dimensional gratings and high-resolution spectrometers to detect the refractive index changes of the solutions. In this work, we develop an alternative approach to correlate the concentration of molecules to the band diagrams of the photonic crystals. A relatively low-resolution spectrum analyzer can be employed, yet achieves higher sensitivity than traditional approaches.

  20. All-optical nonlinear switching cell made of photonic crystal.

    Science.gov (United States)

    Wirth Lima, A; da Silva, Marcio G; Ferreira, A C; Sombra, A S B

    2009-07-01

    We analyze and propose a directional optical coupler embedded in photonic crystal, which is driven by an external command signal. Therefore, this switching cell can work in an all-optical switch. The switching method uses a low-power external command signal, inserted in the central coupling region, which acts as another waveguide. The switching process is based on the change from the bar state to the cross state due to the external command signal. In our simulations we used the plane wave expansion method, finite-difference time-domain method, and our own binary propagation method.

  1. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  2. Optofluidic tuning of photonic crystal band edge lasers

    DEFF Research Database (Denmark)

    Bernal, Felipe; Christiansen, Mads Brøkner; Gersborg-Hansen, Morten

    2007-01-01

    We demonstrate optofluidic tuning of polymer photonic crystal band edge lasers with an imposed rectangular symmetry. The emission wavelength depends on both lattice constant and cladding refractive index. The emission wavelength is shown to change 1 nm with a cladding refractive index change of 1......−2. The rectangular symmetry modification alters the emission characteristics of the devices and the relative emission intensities along the symmetry axes depend on cladding refractive index, suggesting a sensor concept based on detection of intensity rather than wavelength....

  3. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    Directory of Open Access Journals (Sweden)

    Joel Villatoro

    2013-02-01

    Full Text Available A photonic crystal fiber (PCF interferometer that exhibits record fringe contrast (~40 dB is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10−5.

  4. High-Visibility Photonic Crystal Fiber Interferometer as Multifunctional Sensor

    Science.gov (United States)

    Cárdenas-Sevilla, G.A.; Fávero, Fernando C.; Villatoro, Joel

    2013-01-01

    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (∼40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ∼1.6 × 10−5. PMID:23396192

  5. Liquid Crystal Photonic bandgap Fibers: Modeling and Devices

    DEFF Research Database (Denmark)

    Weirich, Johannes

    In this PhD thesis an experimental and numerical investigation of liquid crystal infiltrated photonic bandgap fibers (LCPBGs) is presented. A simulation scheme for modeling LCPBG devices including electrical tunability is presented. New experimental techniques, boundary coating and the applications...... of monomer added LCs, are investigated. Waveplates based on LCPBGs and a tunable polarization maintaining filter are developed. An on-chip tunable notch filter based on long period gratings is presented. Furthermore, the application of a LCPBG device for the electrical control of a fiber laser...

  6. Extreme optical confinement in a slotted photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr [Institut d' Électronique Fondamentale, Université Paris-Sud CNRS UMR 8622 Bat. 220, Centre scientifique d' Orsay, 91405 Orsay (France); Combrié, Sylvain, E-mail: sylvain.combrie@thalesgroup.com; De Rossi, Alfredo [Thales Research and Technology, 1 Av. Augustin Fresnel, 91767 Palaiseau (France)

    2014-09-22

    Using Optical Coherence Tomography, we measure the attenuation of slow light modes in slotted photonic crystal waveguides. When the group index is close to 20, the attenuation is below 300 dB cm{sup −1}. Here, the optical confinement in the empty slot is very strong, corresponding to an ultra-small effective cross section of 0.02 μm{sup 2}. This is nearly 10 times below the diffraction limit at λ = 1.5 μm, and it enables an effective interaction with a very small volume of functionalized matter.

  7. Tailoring the dispersion properties of photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, P.J.; Bache, Morten

    2007-01-01

    Photonic crystal fibers (PCFs) have had a substantial impact on nonlinear fiber optics and shortpulsed fiber laser systems due to their novel dispersion properties. The large normal or anomalous waveguide dispersion available in such fibers opens up a number of new opportunities not accessible wi...... with standard fiber technology. In this contribution, the fundamentals of PCF dispersion are briefly reviewed along with earlier results. In addition, some of our recent work on dispersion tailoring to facilitate nonlinear processes, and dispersion control in lasers will be presented....

  8. Advances in Nanophotonics: Active Photonic Crystal Structures and Devices

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    The nanostructuring of optical materials may significantly alter their optical and optoelectronic properties. Structuring on a length scale well below the wavelength of light may create new artificial atoms (quantum dots) or new effective media (metamaterials) that may be designed to have (optical......) properties that do not exist in nature. Periodic structuring on the length scale of the wavelength of light as in photonic crystals, on the other hand, dramatically influences the propagation of light as well as the fundamental interaction between light and matter. In this talk, I shall discuss some...... important consequences on spontaneous emission and lasing as well as some aspects of slow light and nonlinear interactions....

  9. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  10. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    OpenAIRE

    Tianyi Zhao; Youzhuan Zhang; Jingxia Wang; Yanlin Song; Lei Jiang

    2014-01-01

    This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs) by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs woul...

  11. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical......All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...

  12. Numerical methods for modeling photonic-crystal VCSELs

    DEFF Research Database (Denmark)

    Dems, Maciej; Chung, Il-Sug; Nyakas, Peter

    2010-01-01

    We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR......, a fraction of the top-mirror DBR or just the VCSEL cavity. The different models are evaluated by comparing the predicted resonance wavelengths and threshold gains for different hole diameters and pitches of the PC. The agreement between the models is relatively good, except for one model, which corresponds...

  13. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    processing. Based on the previous fabrication recipe developed in our III-V platform, several processing techniques are developed and optimized for the fabrication of InP photonic crystal membrane structures. Several key issues are identified to ensure a good device quality such as air hole size control...... different, yet spatially overlapping, resonances and are spatially separated at the output. This structure reduces the complexity of the system that usually includes band pass filters in order to distinguish the signals at the output. Finally, we may need to mention an important design: a simple...

  14. Large signal simulation of photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Zali, Aref Rasoulzadeh; Yu, Yi; Moravvej-Farshi, Mohammad Kazem

    2017-01-01

    be modulated at frequencies exceeding 1 THz which is much higher than its corresponding relaxation oscillation frequency. Large signal simulation of the Fano laser is also investigated based on pseudorandom bit sequence at 0.5 Tbit/s. It shows eye patterns are open at such high modulation frequency, verifying......We numerically investigate small and large signal modulation of a photonic crystal laser with a mirror based on Fano interference between continuum modes of a waveguide and a discrete mode of a nanocvaity. Our simulation shows that the instantaneous optical frequency of the laser signal can...... the large bandwidth of the laser....

  15. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  16. Mode conversion enables optical pulling force in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhu, Tongtong; Novitsky, Andrey; Cao, Yongyin

    2017-01-01

    We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode...... to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband...

  17. Photonic crystal fibers: fundamental properties and applications within sensors

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Riishede, Jesper; Broeng, Jes

    2003-01-01

    Since the first experimental demonstration of a photonic crystal fiber (PCF) in 1996 by Knight et al. the optical properties and the fabrication of such fibers have attracted significant attention. The fiber structure with a lattice of air holes running along the length of the fiber provides...... a large variety of novel optical properties and improvements compared to standard optical fibers. The stack-and-pull procedure used to manufacture PCFs is a highly flexible method offering a large degree of freedom in the fabrication of PCFs with specific characteristics. A few of the remarkable optical...

  18. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron

    2014-01-01

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled...... numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model...

  19. Simulation and measurement of slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Jacobsen, Rune Shim; Fage-Pedersen, Jacob

    Planar photonic crystals offer a fascinating means of manipulation of light in integrated,optical circuits. Such waveguides can be realized, as in the present investigations, byfabricating arrays of holes with sub-micrometer distance in the top layer of a silicon-oninsulatorwafer. The waveguides...... can be tailored such that the propagating mode achievesextreme dispersion as well as a low group velocity, allowing for realization of ultracompact, functional devices. Here, we present numerical modeling and measurements ofthe time-of-flight propagation of optical pulses. Near the cut......-off of the guided mode weobserve a group velocity vg smaller than c/200, with good agreement between simulationand measurement....

  20. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  1. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin; Jia, Jieshu; Wang, Ying; Zhou, Zhongxiang, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Wang, Xiaoou [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wu, Jian [National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China)

    2016-08-15

    This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.

  2. Modal parameter analysis for crown glass and phosphate glass photonic crystal fiber

    Science.gov (United States)

    Paul, D.; Biswas, R.; Bhattacharyya, N. S.

    2015-07-01

    The dependence of modal parameter on different photonic crystal fiber has been taken into consideration for a comparative analysis. We consider here phosphate glass and crown glass photonic crystal fiber for our modal analysis for seven air-hole missing photonic crystal fiber. By the use of effective index method, the analysis has been put forwarded for L and C communication bands. Crown glass is found to be a good candidate for spot size and single mode application. Also most importantly, it is very much reliable for low loss and dispersion in comparison with theoretically computed phosphate glass and experimental results of silica core photonic crystal fiber.

  3. Time-reversal constraint limits unidirectional photon emission in slow-light photonic crystals.

    Science.gov (United States)

    Lang, Ben; Beggs, Daryl M; Oulton, Ruth

    2016-08-28

    Photonic crystal waveguides are known to support C-points-point-like polarization singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs, we consider a modest group velocity of vg≈c/10 is found to be the optimum for slow-light coupling to the C-points.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  4. Nonlinear Optics and Solitons in Photonic Crystal Fibres

    Science.gov (United States)

    Skryabin, Dmitry V.; Wadsworth, William J.

    The fibre optics revolution in communication technologies followed the 1950's demonstration of the glass fibres with dielectric cladding [1]. Transmission applications of fibre optics have become a dominant modern day technology not least because nonlinearities present in - or introduced into - glass and enhanced by the tight focusing of the fibre modes allow for numerous light processing techniques, such as amplification, frequency conversion, pulse shaping, and many others. For these reasons, and because of the rich fundamental physics behind it, nonlinear fibre optics has become a blossoming discipline in its own right [1]. The 1990's witnessed another important development in fibre optics. Once again it came from a new approach to the fibre cladding, comprising a periodic pattern of air holes separated by glass membranes forming a photonic crystal structure [2, 3]. This prompted the name Photonic Crystal Fibres (PCFs). The fascinating story behind the invention of PCF and research into various fibre designs can be found, e.g., in [4]. Our aim here is to review the role played by PCFs in nonlinear and quantum optics, which is becoming the mainstream of the PCF related research and applications. Our focus will be on the areas where PCFs have brought to life effects and applications which were previously difficult, impossible to observe or simply not thought about.

  5. Dirac Dispersion in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    C. T. Chan

    2012-01-01

    Full Text Available We show how one may obtain conical (Dirac dispersions in photonic crystals, and in some cases, such conical dispersions can be used to create a metamaterial with an effective zero refractive index. We show specifically that in two-dimensional photonic crystals with C4v symmetry, we can adjust the system parameters to obtain accidental triple degeneracy at Γ point, whose band dispersion comprises two linear bands that generate conical dispersion surfaces and an additional flat band crossing the Dirac-like point. If this triply degenerate state is formed by monopole and dipole excitations, the system can be mapped to an effective medium with permittivity and permeability equal to zero simultaneously, and this system can transport wave as if the refractive index is effectively zero. However, not all the triply degenerate states can be described by monopole and dipole excitations and in those cases, the conical dispersion may not be related to an effective zero refractive index. Using multiple scattering theory, we calculate the Berry phase of the eigenmodes in the Dirac-like cone to be equal to zero for modes in the Dirac-like cone at the zone center, in contrast with the Berry phase of π for Dirac cones at the zone boundary.

  6. Microwave plasma formation within a 2D photonic crystal

    Science.gov (United States)

    Parsons, Stephen; Gregório, José; Hopwood, Jeffrey

    2017-05-01

    Experiments demonstrate that an electromagnetic wave incident on a photonic crystal (PhC) containing a single point-defect causes gas breakdown. After breakdown we report the formation of a stable microwave plasma within this free-space vacancy. We show that gas breakdown is possible in low-pressure argon (10 Torr) using as little as 1.4 W of microwave power if the frequency of the incident wave is equal to the resonance of the vacancy (8.614 GHz). During formation, the plasma-filled defect decreases the transmission of energy through the photonic crystal by approximately two orders of magnitude. Plasma formation time is measured to be as fast as 100 ns at relatively high power (9 W). Using the transmission of energy through the PhC as a diagnostic tool, we report that the electron density of the microwave plasma is 1016-1017 m-3 for argon pressures between 10 and 50 Torr. Finally, we consider the application of the self-initiated plasma within the PhC as a simple power limiter.

  7. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two...... by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths...

  8. Kagome Hollow-Core Photonic Crystal Fiber Resonator for Rotation Sensing

    CERN Document Server

    Fsaifes, Ihsan; Debord, Benoît; Gérôme, Frédéric; Baz, Assaad; Humbert, Georges; Benabid, Fetah; Schwartz, Sylvain; Bretenaker, Fabien

    2016-01-01

    We investigate the performances of a Kagome Hollow-Core Photonic Crystal Fiber resonator for rotation sensing applications. The use of a large mode field diameter Kagome fiber permits to reduce the free space fiber-to-fiber coupling losses, allowing the realization of cavities with finesses compatible with the angular random walk required for medium to high performance rotation sensing, while minimizing the Kerr effect induced non reciprocities. Experiments show encouraging results that could lead to a compact, low cost, and robust medium for high performance gyroscope.

  9. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  10. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    Directory of Open Access Journals (Sweden)

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  11. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  12. Effect of Temperature on Photonic Band Gaps in Semiconductor-Based One-Dimensional Photonic Crystal

    Directory of Open Access Journals (Sweden)

    J. V. Malik

    2013-01-01

    Full Text Available The effect of the temperature and angle of incidence on the photonic band gap (PBG for semiconductor-based photonic crystals has been investigated. The refractive index of semiconductor layers is taken as a function of temperature and wavelength. Three structures have been analyzed by choosing a semiconductor material for one of the two materials in a bilayer structure. The semiconductor material is taken to be ZnS, Si, and Ge with air in first, second, and third structures respectively. The shifting of band gaps with temperature is more pronounced in the third structure than in the first two structures because the change in the refractive index of Ge layers with temperature is more than the change of refractive index of both ZnS and Si layers with temperature. The propagation characteristics of the proposed structures are analyzed by transfer matrix method.

  13. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the

  14. Photonic crystal waveguides by direct writing of e-beam on self ...

    Indian Academy of Sciences (India)

    rounding crystal. The effective index of the crystal can be modified by infiltrating the air voids of the crystal with higher index materials such as ethanol, ethylene glycol, silica and zinc oxide, thus paving the way for photonic crystal-based sensor applications (Nair and Vijaya 2010). Acknowledgements. One of the authors (SK) ...

  15. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  16. Reflectance-based Photonic Crystal Liquid Sensors Made of ALD TiO2

    NARCIS (Netherlands)

    Huang, Y.; Pandraud, G.; Sarro, P.M.

    2011-01-01

    A promising concept for a photonic crystal sensor for liquid sensing applications is introduced. The two dimensional photonic crystals are fabricated using a recently developed Atomic layer deposition ARrays Defined by Etch-back technique (AARDE) to obtain large functional surfaces and dense pillar

  17. Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2007-01-01

    Optofluidic sensors based on highly dispersive two-dimensional photonic crystal waveguides are studied theoretically. Results show that these structures are strongly sensitive to the refractive index of the infiltrated liquid (nl), which is used to tune dispersion of the photonic crystal waveguide...

  18. Large area two-dimensional silicon photonic crystals for infrared light fabricated with laser interference lithography

    NARCIS (Netherlands)

    Prodan, L.G.; Euser, T.G.; van Wolferen, Hendricus A.G.M.; Bostan, C.G.; de Ridder, R.M.; Beigang, R.; Boller, Klaus J.; Kuipers, L.

    We report on the production of large-area 2D photonic crystals from high-index material with laser interference lithography (LIL). A new image reversal photoresist is used in combination with an anti-reflection coating to suppress undesired reflections. The photonic crystals possess a cubic pattern

  19. Numerical Methods for the Design and Analysis of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Roberts, John

    2008-01-01

    The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted.......The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted....

  20. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0...

  1. Hot embossing of photonic crystal polymer structures with a high aspect ratio

    DEFF Research Database (Denmark)

    Schelb, Mauno; Vannahme, Christoph; Kolew, Alexander

    2011-01-01

    Hot embossing is a promising approach for mass production of photonic crystal structures. This paper describes the fabrication of a replication tool for two-dimensional photonic crystal patterns and its replication in substrates of poly(methylmethacrylate) (PMMA) and cyclic olefin copolymer (COC...

  2. Reflectivity calculated for a three-dimensional silicon photonic band gap crystal with finite support

    NARCIS (Netherlands)

    Devashish, D.; Hasan, Shakeeb B.; Van Der Vegt, J. J.W.; Vos, Willem L.

    2017-01-01

    We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap. We employ the finite element method to study crystals with the cubic diamondlike inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon.

  3. Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y.; Badolato, A., E-mail: antonio.badolato@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Pirotta, S.; Urbinati, G.; Gerace, D.; Galli, M. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100 Pavia (Italy); Minkov, M.; Savona, V. [Laboratory of Theoretical Physics of Nanosystems, Ecole Polytechnique Federale de Lausanne EPFL, CH-1015 Lausanne (Switzerland)

    2014-06-16

    We report on the experimental realization of ultra-high quality factor (Q) designs of the L3-type photonic crystal nanocavity. Based on genetic optimization of the positions of few nearby holes, our design drastically improves the performance of the conventional L3 as experimentally confirmed by direct measurement of Q ≃ 2 × 10{sup 6} in a silicon-based photonic crystal membrane. Our devices rank among the highest Q/V ratios ever reported in photonic crystal cavities, holding great promise for the realization of integrated photonic platforms based on ultra-high-Q resonators.

  4. The fabrication and characterization of quantum dots-conjugated opal photonic crystals structure.

    Science.gov (United States)

    Isnaeni; Cho, Yong-Hoon

    2010-06-04

    We have fabricated opal photonic crystal structure, which is assembled from quantum dots-conjugated polystyrene spheres. We found that the quantum dots (QD) emission from QD-conjugated photonic crystal (PC) structure experienced not only shifting to shorter wavelength, but also an asymmetrical broadening. This photonic crystal structure uses less quantum dots and may lead to great application such as single photon source and QD laser, since we may sharpen and broaden the QD emission by selecting the proper position of stop band.

  5. Laser-driven plasma photonic crystals for high-power lasers

    Science.gov (United States)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  6. Angular Dependence of Fluorescence Emission from Quantum Dots inside a Photonic Crystal

    NARCIS (Netherlands)

    Baert, K.; Kolaric, B.; Libaers, W.; Vallée, R.A.L.; Di Vece, M.|info:eu-repo/dai/nl/248753355; Lievens, P.; Clays, K.

    2008-01-01

    The fluorescence of emitters embedded in a photonic crystal is known to be inhibited by the presence of an incomplete photonic band gap or pseudogap acting in their emission range. Here, we present a study of the angular dependence of the fluorescence emission of emitters embedded in a photonic

  7. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    through randomized hole arrays, the strong influence of the hole shape on the transmission peaks, and so on. Beaming is another far-field effect resulting from surface modes. Normally light coming from a subwavelength waveguide is diffracted to all angles. With the help of surface modes, we can confine the output field in a small angle interval. This phenomenon is called beaming (46). The principle of the beaming has been explained clearly in literatures (47). To achieve good beaming, a photonic crystal waveguide need a surface layer to support surface modes and a grating layer to coupling the evanescent surface modes into propagation modes. A metallic beaming structure is generally a subwavelength waveguide surrounded by periodic structures such as grooves or dielectric gratings (53; 54). The flat metal surface supports the surface mode, so additional surface layer is not necessary. The periodic structures work as the grating layer.

  8. Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices

    Science.gov (United States)

    Zeng, Y.; Chen, X. S.; Lu, W.; Fu, Y.

    2006-02-01

    Nonlocal investigations are presented for exciton-photon coupling in three-dimensional nano-spherical-particle photonic crystals in compound lattices for a tailored dielectric environment to optimize the optical properties of nano particles. The photonic band structure can be modified by tuning the nano particle size and the distance between two interlacing identical face-centered sub-lattices making up the photonic crystal lattice. A complete photonic band gap with a gap-midgap ratio as large as 40.82% has been found in the wurzite structure under the current investigation.

  9. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: liufa20719@126.com [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  10. Electrically tunable Yb-doped fiber laser based on a liquid crystal photonic bandgap fiber device.

    Science.gov (United States)

    Olausson, Christina B; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T; Hansen, Kim P; Bjarklev, Anders

    2010-04-12

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a tunable liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on the liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040-1065 nm by applying an electric field to the silicon assembly.

  11. Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture

    Science.gov (United States)

    2015-01-20

    AFRL-AFOSR-UK-TR-2015-0004 Wavelength-scale Microlasers based on VCSEL -Photonic Crystal Architecture Pablo Postigo...scale Microlasers based on VCSEL -Photonic Crystal Architecture 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8655-12-1-2125 5c. PROGRAM ELEMENT...photonic crystal‐ VCSEL with a total footprint around the wavelength of emission (1550 nm) and operating under electrical injection. We have

  12. Optical Activity in Twisted Solid-Core Photonic Crystal Fibers

    Science.gov (United States)

    Xi, X. M.; Weiss, T.; Wong, G. K. L.; Biancalana, F.; Barnett, S. M.; Padgett, M. J.; St. J. Russell, P.

    2013-04-01

    In this Letter we show that, in spectral regions where there are no orbital cladding resonances to cause transmission loss, the core mode of a continuously twisted photonic crystal fiber (PCF) exhibits optical activity, and that the magnitude of the associated circular birefringence increases linearly with twist rate and is highly reproducible. In contrast to previous work on twist-induced circular birefringence, PCF has zero linear birefringence and an on-axis core, making the appearance of circular birefringence rather unexpected. A theoretical model based on symmetry properties and perturbation theory is developed and used to show that both spin and orbital angular momentum play a role in this effect. It turns out that the degenerate left- and right-circularly polarized modes of the untwisted PCF are not 100% circularly polarized but carry a small amount of orbital angular momentum caused by the interaction between the core mode and the hollow channels.

  13. Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    S. Revathi

    2014-01-01

    Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.

  14. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing.

    Science.gov (United States)

    Asher, Sanford A; Alexeev, Vladimir L; Goponenko, Alexander V; Sharma, Anjal C; Lednev, Igor K; Wilcox, Craig S; Finegold, David N

    2003-03-19

    We developed a carbohydrate sensing material, which consists of a crystalline colloidal array (CCA) incorporated into a polyacrylamide hydrogel (PCCA) with pendent boronic acid groups. The embedded CCA diffracts visible light, and the PCCA diffraction wavelength reports on the hydrogel volume. This boronic acid PCCA responds to species containing vicinal cis diols such as carbohydrates. This PCCA photonic crystal sensing material responds to glucose in low ionic strength aqueous solutions by swelling and red shifting its diffraction as the glucose concentration increases. The hydrogel swelling results from a Donnan potential due to formation of boronate anion; the boronic acid pK(a) decreases upon glucose binding. This sensing material responds to glucose and other sugars at <50 microM concentrations in low ionic strength solutions.

  15. Self-collimation-based photonic crystal notch filters

    Science.gov (United States)

    Lee, Sun-Goo; Kim, Kap-Joong; Kim, Seong-Han; Kee, Chul-Sik

    2017-05-01

    We introduce a design concept of an optical notch filter (NF) utilizing two perfectly reflecting mirrors and a beam splitter. Based on the new design concept, a photonic crystal (PC)-NF based on the self-collimation phenomenon in a two-dimensional PC is proposed and studied through finite-difference time-domain simulations and experimental measurements in a microwave region. The transmission properties of the self-collimation-based PC-NF were demonstrated to be controlled by adjusting the values of parameters such as the radius of rods in the line-defect beam splitter, distance between the two perfectly reflecting mirrors, and radius of rods on the outermost surface of the perfectly reflecting mirrors. Our results indicate that the proposed design concept could provide a new approach to manipulate light propagation, and the PC-NF could increase the applicability of the self-collimation phenomenon in a PC.

  16. Ultrawideband photonic crystal fiber coupler for multiband optical imaging system.

    Science.gov (United States)

    Ryu, Seon Young; Choi, Hae Young; Choi, Eun Seo; Tomov, Ivan; Chen, Zhongping; Lee, Byeong Ha

    2010-04-01

    We report a photonic crystal fiber (PCF) coupler having an ultrawide spectral bandwidth keeping single mode operation. The use of the PCF coupler in a fiber-based optical coherence tomography (OCT) system enables us to handle the wide spectral bands of various light sources, including superluminescent diodes (SLDs) at 1300 nm and 820 nm, Ti:sapphire lasers, and white-light sources. The multiband imaging performances of the PCF-based OCT system are demonstrated by obtaining dental images at 1300 nm and 820 nm with the same setup. In addition, we show that the PCF coupler could cover the spectrum over a one octave span and guide both the fundamental wave (1030 nm) and the second harmonic wave (515 nm) simultaneously.

  17. Highly birefringent elliptical core photonic crystal fiber for terahertz application

    Science.gov (United States)

    Sultana, Jakeya; Islam, Md. Saiful; Faisal, Mohammad; Islam, Mohammad Rakibul; Ng, Brian W.-H.; Ebendorff-Heidepriem, Heike; Abbott, Derek

    2018-01-01

    We present a novel strategy for designing a highly birefringent photonic crystal fiber (PCF) with near zero flattened dispersion properties by applying elliptical air holes in the core area. The elliptical structure of the air holes in the porous-core region introduces asymmetry between x and y polarization modes, which consequently offers ultra-high birefringence. Also the compact geometry of the conventional hexagonal structure in the cladding confines most of the useful power. The optical properties including birefringence, dispersion, confinement loss, effective material loss (EML) and single modeness of the fiber are investigated using a full-vector finite element method. Simulation results show an ultra-high birefringence of 0 . 086 ultra-flattened near zero dispersion of 0 . 53 ± 0 . 07 ps/THz/cm in a broad frequency range. The practical implementation of the proposed fiber is feasible using existing fabrication technology and is applicable to the areas of terahertz sensing and polarization maintaining systems.

  18. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Science.gov (United States)

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  19. Flexible photonic crystal membranes with nanoparticle high refractive index layers

    Directory of Open Access Journals (Sweden)

    Torben Karrock

    2017-01-01

    Full Text Available Flexible photonic crystal slabs with an area of 2 cm2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.

  20. An 8-channel wavelength demultiplexer based on photonic crystal fiber

    Science.gov (United States)

    Malka, Dror

    2017-05-01

    We propose a novel 8-channel wavelength demultiplexer based on photonic crystal fiber (PCF) structures that operate at 1530nm, 1535nm, 1540nm, 1545nm, 1550nm, 1555nm, 1560nm and 1565nm wavelengths. The new design is based on replacing some air-holes zones with silicon nitride and lithium niobate materials along the PCF axis with optimization of the PCF size. The reason of using these materials is because that each wavelength has a different value of coupling length. Numerical investigations were carried out on the geometrical parameters by using a beam propagation method (BPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565nm) with low crosstalk ((-16.88)-(-15.93) dB) and bandwidth (4.02-4.69nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  1. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  2. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Science.gov (United States)

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  3. Highly birefringent, highly negative dispersion compensating photonic crystal fiber.

    Science.gov (United States)

    Bala, Animesh; Chowdhury, Kanan Roy; Mia, Md Borhan; Faisal, Mohammad

    2017-09-01

    A triangular lattice dispersion compensating photonic crystal fiber is presented in this paper. The fiber produces high birefringence and operates at fundamental mode only. The full vector finite element method with a perfectly matched absorbing layer boundary condition is applied to investigate the guiding properties of the proposed fiber. The designed fiber demonstrates that it is possible to obtain a very large negative dispersion of -9486.1  ps/(nm·km) at 1550 nm wavelength with a negative dispersion more than -7000  ps/(nm·km) over the entire C-band (1530-1565 nm), which is suitable for broadband dispersion compensation. The birefringence is about 4.13×10(-2) at 1550 nm wavelength, which is also very high. All these properties make this fiber very suitable in the area of broadband dispersion compensation and polarization-maintaining applications.

  4. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Carla C. Kato

    2011-11-01

    Full Text Available A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  5. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    Science.gov (United States)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480–900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible with any other fabrication method. PMID:25317501

  6. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Roberth W. A. Llerena

    2010-11-01

    Full Text Available The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution.

  7. Photonic crystal resonator integrated in a microfluidic system

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Niels Asger; Kutter, Jörg Peter

    2008-01-01

    We report on a novel optofluidic system consisting of a silica-based 1D photonic crystal, integrated planar waveguides, and electrically insulated fluidic channels. An array of pillars in a microfluidic channel designed for electrochromatography is used as a resonator for on-column label......-free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electro-osmotic flow, and operated at =1.55 m. Different aqueous solutions of ethanol with refractive indices ranging from n1.3330 to 1.3616 were pumped into the column/resonator, and the transmission...... spectra were recorded. Linear shifts of the resonant wavelengths yielded a maximum sensitivity of /n=480 nm/RIU (refractive index unit), and a minimum difference of n=0.007 RIU was measured....

  8. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...... makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible...

  9. Modal formulation for diffraction by absorbing photonic crystal slabs

    CERN Document Server

    Dossou, Kokou B; Asatryan, Ara A; Sturmberg, Björn C P; Byrne, Michael A; Poulton, Christopher G; McPhedran, Ross C; de Sterke, C Martijn

    2016-01-01

    A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semi-analytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption. The verification and validation of this approach is applied to a silicon nanowire array and the efficiency and accuracy of the method is demonstrated. The method is ideally suited to studying the manner in which spectral properties (e.g., absorption) vary with the thickness of the array, and we demonstrate this with efficient calculations which can identify an optimal geometry.

  10. Hexagonal photonic crystal waveguide based on barium titanate thin films

    Science.gov (United States)

    Li, Jianheng; Liu, Zhifu; Wessels, Bruce W.; Tu, Yongming; Ho, Seng-Tiong; Joshi-Imre, Alexandra; Ocola, Leonidas E.

    2011-03-01

    The simulation, fabrication and measurement of nonlinear photonic crystals (PhCs) with hexagonal symmetry in epitaxial BaTiO3 were investigated. The optical transmission properties of a PhC were simulated by a 2-D finite-difference time domain (FDTD) method. A complete bandgap exists for both the TE and TM optical modes. The fabricated PhC has a well-defined stop band over the spectral region of 1525 to 1575 nm. A microcavity structure was also fabricated by incorporation of a line defect in the PhC. Transmission of the microcavity structure over the spectral region from 1456 to 1584nm shows a well-defined 5 nm wide window at 1495nm. Simulations indicate that the phase velocity matched PhC microcavity device of 0.5 mm long can potentially serve as modulator with a 3 dB bandwidth of 4 THz.

  11. Dual-hole Photonic Crystal Fiber Intermodal Interference based Refractometer

    Science.gov (United States)

    Liu, Feng; Guo, Xuan; Zhang, Qing; Fu, Xinghu

    2017-12-01

    A refractive-index (RI) sensor and its sensing characteristics based on intermodal interference of dual-hole Polarization Maintaining Photonic Crystal Fiber (PM-PCF) are demonstrated in this letter. The sensor works from the interference between LP01 and LP11 modes of hydrofluoric acid etched PM-PCF. The influence of corrosion zone radius on the RI sensing sensitivity is also discussed. Via choosing a 2.5 cm etched PM-PCF(the etched area radius is 27.5 μm) and 650 nm laser, the sensor exhibits the RI sensitivity of 7.48 V/RIU. The simple sensor structure and inexpensive demodulation method can make this technology for online refractive index measurement in widespread areas.

  12. Processing of Photonic Crystal Nanocavity for Quantum Information in Diamond

    CERN Document Server

    Bayn, Igal; Lahav, Alex; Salzman, Joseph; Kalish, Rafi; Fairchild, Barbara A; Prawer, Steven; Barth, Michael; Benson, Oliver; Wolf, Thomas; Siyushev, Petr; Jelezko, Fedor; Wrachtrup, Jorg

    2010-01-01

    The realization of photonic crystals (PC) in diamond is of major importance for the entire field of spintronics based on fluorescent centers in diamond. The processing steps for the case of diamond differ from those commonly used, due to the extreme chemical and mechanical properties of this material. The present work summarizes the state of the art in the realization of PC's in diamond. It is based on the creation of a free standing diamond membrane into which the desired nano-sized patterns are milled by the use of Focused-Ion-Beam (FIB). The optimal fabrication-oriented structure parameters are predicted by simulations. The milling strategies, the method of formation the diamond membrane, recipes for dielectric material-manipulation in FIB and optical characterization constraints are discussed in conjunction with their implication on PC cavity design. The thus produced structures are characterized via confocal photoluminescence.

  13. Femtosecond Pulse Propagation in a Highly Nonlinear Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    J. F. Gabayno

    2004-12-01

    Full Text Available Femtosecond pulses are launched into a highly nonlinear photonic crystal fiber (PCF. The input and output spectra were measured using a monochromator and streak camera. The spectrum of the output from a 50 cm PCF pumped at 794 nm for different pump powers features asymmetric side lobes due to intrapulse Raman scattering. Similar measurements on a 100 cm PCF pumped at 795 nm highlight the appearance of blueshifted peaks as a result of energy transfer of solitons to dispersive waves. Broadening in the spectrum is observed and attributed to Raman-scattering-induced soliton self-frequency shift. Spectrograms of both input and output pulses into a 50 cm PCF are captured using a streak camera. The spectrum reveals that individual modes observed on the spectrogram are actually a decomposition of the input pulse.

  14. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals.

    Science.gov (United States)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-22

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g(-1) with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  15. Tunable defect mode realized by graphene-based photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo

    2016-04-29

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band. - Highlights: • A novel PhC embedded with grapheme sheets is presented, tunable defect is realized. • The mechanism of the tunable defect is explained using the change of equivalent thickness. • The electromagnetic force of a slab is calculated, which indicates the structure can serve as a tunable force generator.

  16. Photonic bandgap quasi-crystals for integrated WDM devices

    Science.gov (United States)

    Yankov, Vladimir V.; Babin, Sergey; Ivonin, Igor; Goltsov, Alexander Y.; Morozov, Anatolii; Polonskiy, Leonid; Spector, Michael; Talapov, Andrei; Kley, Ernst-Bernhard; Schmidt, Holger; Dahlgren, Robert P.

    2003-06-01

    A novel concept of Photonic Bandgap Quasi-Crystal (PBQC) as a platform for planar integrated WDM optical devices is proposed. The PBQC can be lithographically fabricated in a planar waveguide as a computer-generated two-dimensional hologram. In this approach the spectral selectivity of Bragg gratings, focusing properties of elliptical mirrors, superposition properties of thick holograms, photonic bandgaps of periodic structures, and flexibility of lithography on planar waveguides are combined. In distinction to conventional combination of independent planar Bragg gratings, in PBQC we create multiple bandgaps by synthesizing a synergetic super-grating of a number of individual sub-gratings. The device spectral selectivity is determined by those of the sub-gratings. The super-grating comprises million(s) of dashes etched on an interface of a planar waveguide. Each dash is a binary feature placed by a computer program to serve simultaneously many channels. For realization of PBQC devices the software for generating super-gratings (GDS-II format) and 2-D simulation of its transfer function was developed. Direct e-beam writing and photolithography were used for manufacturing PBQC structures. For verification of the ideas behind the concept a number of multichannel MUX/DEMUX devices have been manufactured and experimentally tested. The results of detailed experimental study of 4- and 16-channel devices will be presented. Channel isolation ~30 dB was achieved in the 4-channel devices. The applications of PBQC platform for integrated light wave circuits are discussed.

  17. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  18. Photonic crystal wave guide for non-cryogenic cooled carbon nanotube based middle wave infrared sensors

    Science.gov (United States)

    Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi

    2010-10-01

    We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.

  19. Optical properties of one-dimensional photonic crystals obtained by micromatchining silicon (a review)

    Science.gov (United States)

    Tolmachev, V. A.

    2017-04-01

    The theoretical and experimental investigations of photonic band gaps in one-dimensional photonic crystals created by micromatchining silicon, which have been performed by the author as part of his doctoral dissertation, are presented. The most important result of the work is the development of a method of modeling photonic crystals based on photonic band gap maps plotted in structure-property coordinates, which can be used with any optical materials and in any region of electromagnetic radiation, and also for nonperiodic structures. This method made it possible to realize the targeted control of the optical contrast of photonic crystals and to predict the optical properties of optical heterostructures and three-component and composite photonic crystals. The theoretical findings were experimentally implemented using methods of micromatchining silicon, which can be incorporated into modern technological lines for the production of microchips. In the IR spectra of a designed and a fabricated optical heterostructure (a composite photonic crystal), extended bands with high reflectivities were obtained. In a Si-based three-component photonic crystal, broad transmission bands and photonic band gaps in the middle IR region have been predicted and experimentally demonstrated for the first time. Si-liquid crystal periodic structures with electric-field tunable photonic band-gap edges have been investigated. The one-dimensional photonic crystals developed based on micromatchining silicon can serve as a basis for creating components of optical processors, as well as highly sensitive chemical and biological sensors in a wide region of the IR spectrum (from 1 to 20 μm) for lab-on-a-chip applications.

  20. Electrically controlled optical bandgap in a twisted photonic liquid crystal

    Science.gov (United States)

    Molina, Ismael; Adrián Reyes, J.; Avendaño, Carlos G.

    2011-06-01

    We consider a one-dimensional twisted photonic liquid crystal, which consists of N nematic liquid crystal slabs in a twisted configuration alternated by N isotropic dielectric layers under the action of a dc electric field (Edc) aligned along the periodicity axis. We write and solve numerically the corresponding Euler-Lagrange equations describing the nematic layer configuration. We express Maxwell's equations in a 4×4 matrix representation, and by using the transfer matrix formalism, we obtain the optical band structures at arbitrary incidence angles and different external electric fields. We have found that there exists a strong dependence of electric field on the transmission and reflection spectra in enhancing and extinguishing bandgaps. The analysis presented here allow us to propose an electrically shiftable universal rejection filter for incident waves of left- and right-circular polarization. It is observed that by increasing the electric field we can highly enhance the cross-polarized reflection bandgaps and suppress the co-polarized ones. We analyzed the optical spectra for different values of twist angle, different ratios between dielectric and nematic layer thicknesses and number of layers N. Also, we showed that the cross-polarized bandgaps are blue-shifted as the incidence angle gets larger.

  1. Tunable Mach-Zehnder interferometer in a two-dimensional photonic crystal with liquid crystal infiltration

    Science.gov (United States)

    Chen, Xiyao; Dong, Xinyong; Hu, Juan Juan; Shum, Ping; Wang, Yufei; Qiu, Yishen; Lin, Guimin; Hong, Hailian

    2007-09-01

    A theoretical model of a tunable Mach-Zehnder interferometer (TMZI) constructed in a 2D photonic crystal is proposed. The 2D PhC consists of a square lattice of cylindric air holes in silicon. The TMZI includes two mirrors and two splitters. Lights propagate between them employing self-collimation effect. The two interferometer branches have different path lengths. Parts of the longer branch are infiltrated with a kind of liquid crystal (LC) whose ordinary and extraordinary refractive indices are 1.522 and 1.706, respectively. The transmission spectra at two MZI output ports are in the shape of sinusoidal curves and have a uniform peak spacing 0.0017c/a in the frequency range from 0.26c/a to 0.27c/a. When the effective refractive index n eff of the liquid crystal is increased from 1.522 to 1.706, the peaks shift to the lower frequencies over 0.0017c/a while the peak spacing is almost kept unchanged. So this TMZI can work as a tunble power splitter or an optical switch. For the central operating wavelength around 1550nm, its dimensions are only about tens of microns. So this device may be applied to photonic integrated circuits.

  2. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    Science.gov (United States)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  3. Longitudinal and angular dispersions in photonic crystals: a synergistic perspective on slow light and superprism effects.

    Science.gov (United States)

    Integlia, Ryan A; Song, Weiwei; Tan, Jun; Jiang, Wei

    2010-03-01

    The slow-light effect and the superprism effect are two important effects in photonic crystal structures. In this paper, we will review some of our recent works on the fundamental physics and device applications of these two effects. We will present a synergistic perspective that examines these two effects as a whole. Apparently, the slow light effect is due to the dispersion of a photonic crystal along the direction of light propagation, namely the longitudinal direction, and the superprism effect is related to angular dispersion. However, a deep analysis will show that the superprism effect has an elusive dependence on the longitudinal dispersion as well. Some subtle connections and distinctions between the slow-light effect and the superprism effect will be revealed through our physical analysis. This allows us to treat these two effects under a common theoretical framework. As an example, we will apply this framework to make a direct comparison of the slow-light optical phase array approach and the superprism approach to beam steering applications. Dispersive effects are frequently accompanied by high optical loss and/or narrow bandwidths. We will discuss these issues for both longitudinal and angular dispersions. For the slow light effect, we will give a simple proof of the scaling of fabrication-imperfection related random scattering losses in a slow-light photonic crystal waveguide. Similar to the bandwidth-delay product for the longitudinal dispersion, we will introduce a simple, yet fundamental, limit that governs the bandwidth and angular sensitivities of the superprism effect. We will also discuss the application of the slow-light effect to making compact silicon optical modulators and switches.

  4. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    Science.gov (United States)

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  5. Controlling Interface States in 1D Photonic Crystals by tuning Bulk Geometric Phases

    CERN Document Server

    Gao, Wensheng; Chen, Baojie; Pun, Edwin Y B; Chan, C T; Tam, Wing Yim

    2016-01-01

    Interface states in photonic crystals usually require defects or surface/interface decorations. We show here that one can control interface states in 1D photonic crystals through the engineering of geometrical phase such that interface states can be guaranteed in even or odd, or in all photonic bandgaps. We verify experimentally the designed interface states in 1D multilayered photonic crystals fabricated by electron beam vapor deposition. We also obtain the geometrical phases by measuring the reflection phases at the bandgaps of the PCs and achieve good agreement with the theory. Our approach could provide a platform for the design of using interface states in photonic crystals for nonlinear optic, sensing, and lasing applications

  6. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide.

    Science.gov (United States)

    Daveau, Raphaël S; Balram, Krishna C; Pregnolato, Tommaso; Liu, Jin; Lee, Eun H; Song, Jin D; Verma, Varun; Mirin, Richard; Nam, Sae Woo; Midolo, Leonardo; Stobbe, Søren; Srinivasan, Kartik; Lodahl, Peter

    2017-02-20

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources.

  7. Ultrashort polarization rotator based on spiral photonic crystal fiber aided by liquid crystal.

    Science.gov (United States)

    Yu, Lin; Chen, Lei; Zhang, Weigang; Zhang, Yunshan; Wang, Song; Zhang, Yanxin; Yan, Tieyi; Yang, Jiang

    2017-09-01

    A novel polarization rotator (PR) is proposed based on a spiral photonic crystal fiber aided by liquid crystal. The proposed PR has an ultrashort length of only ∼4.17  μm and a low cross talk of ∼-20.93  dB, and the proposed PR offers a nearly 100% polarization conversion efficiency for the whole C-band. In addition, a large temperature tolerance of ∼±5°C and a large rotation angle tolerance of ∼±4° can be accepted based on the full-vector finite-element method simulation. The proposed PR is a potentially effective polarization conversion device for applications in modern communication systems.

  8. Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore

    Science.gov (United States)

    Farsari, M.; Ovsianikov, A.; Vamvakaki, M.; Sakellari, I.; Gray, D.; Chichkov, B. N.; Fotakis, C.

    2008-10-01

    Direct laser writing by two-photon polymerization of photosensitive materials has emerged as a very promising technique for rapid and flexible fabrication of photonic crystals. In this work, a photosensitive silica sol-gel containing the nonlinear optical chromophore Disperse Red 1 is synthesized, and the two-photon polymerization technique is employed to fabricate three-dimensional photonic crystals with stop-gaps in the near-infrared. The composite material exhibits minimal shrinkage during photopolymerization, eliminating the need for shrinkage compensation or the fabrication of support structures.

  9. Visualization of unidirectional optical waveguide using topological photonic crystals made of dielectric material

    CERN Document Server

    Yang, Yuting; Xu, Tao; Wang, Hai-Xiao; Jiang, Jian-Hua; Hu, Xiao; Hang, Zhi Hong

    2016-01-01

    The introduction of topology unravels a new chapter of physics. Topological systems provide unique edge/interfacial quantum states which are expected to contribute to the development of novel spintronics and open the door to robust quantum computation. Optical systems can also benefit from topology. Engineering locally in real space a honeycomb photonic crystal with double Dirac cone in its photonic dispersion, topology transition in photonic band structure is induced and a pseudospin unidirectional optical channel is created and demonstrated by the backscattering immune electromagnetic transportation. The topological photonic crystal made of dielectric material can pave the road towards steering light propagations and contribute to novel communication technology.

  10. Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mørk, Jesper; Lodahl, Peter

    2011-01-01

    We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range of probl......We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range...

  11. The Optical Bloch oscillation in chirped one-dimensional superconducting photonic crystal

    Science.gov (United States)

    Zhang, Zhengren; Long, Yang; Zhang, Liwei; Yin, Pengfei; Xue, Chunhua

    2017-09-01

    We exploit theoretically the propagation properties of electromagnetic waves in nanoscale one-dimensional superconducting photonic crystal. The Wannier Stark ladders can be formed in the photonic crystal by varying the thickness of the dielectric layers linearly across the structure. The dynamics behavior of a Gaussian pulse transmitting through the structure is simulated theoretically. We find that photons undergo Bloch oscillations inside tilted photonic bands and the Bloch oscillations are sensitive to the change of temperature in the range of 3-8 K. It is demonstrated that our structure is possible to realize tunable optical Bloch oscillations by controlling the temperature of superconducting material.

  12. Linear and nonlinear microwave responses of a microwave photonic filter based on a photonic crystal microcavity

    Science.gov (United States)

    Long, Yun; Zhang, Yong; Zhang, Xinliang; Xia, Jinsong; Dong, Jianji; Wang, Jian

    2017-06-01

    We propose and demonstrate an ultracompact bandpass microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) microcavity. Taking the fabricated PhC microcavity as an example, we comprehensively investigate both the linear and nonlinear microwave responses of the MPF based on silicon waveguide devices. Two cases are discussed in the experiment, i.e., the optical carrier wavelength is located on the left or right side of the notch resonant wavelength of the PhC microcavity. The experimental results agree well with the theoretical analyses. For the former case, the central frequency of MPF increases monotonically when fixing the optical carrier wavelength and increasing the optical carrier power. For the latter case, the nonlinear response at a fixed optical carrier wavelength shows a decrease first and then an increase in the central frequency of MPF when increasing the optical carrier power. A jump of the response is observed in the switching process. Moreover, we also observe an interesting bistable microwave response in the experiment under an optical carrier power of around -2.6 dBm in the latter case.

  13. Subwavelength-Diameter Silica Wire and Photonic Crystal Waveguide Slow Light Coupling

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2007-01-01

    Full Text Available Counter-directional coupling between subwavelength-diameter silica wire and single-line-defect two-dimensional photonic crystal slab waveguide is studied numerically using parallel three-dimensional finite-different time-domain method. By modifying silica wire properties or engineering photonic crystal waveguide dispersion band, the coupling central wavelength can be moved to the slow light region and the coupling efficiency improves simultaneously. One design gives 82% peak power transmission from silica wire to photonic crystal waveguide over an interacting distance of 50 lattice constants. The group velocity is estimated as 1/35 of light speed in vacuum.

  14. Photonic crystal waveguides with semi-slow light and tailored dispersion properties

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Lavrinenko, Andrei; Fage-Pedersen, Jacob

    2006-01-01

    waveguide with either vanishing, positive, or negative group velocity dispersion and semi-slow light. We realize experimentally a silicon-on-insulator photonic crystal waveguide having nearly constant group velocity [similar to]c$-0$//34 in an 11-nm bandwidth below the silica-line. $CPY@2006 Optical Society......We demonstrate a concept for tailoring the group velocity and dispersion properties for light propagating in a planar photonic crystal waveguide. By perturbing the holes adjacent to the waveguide core it is possible to increase the useful bandwidth below the light-line and obtain a photonic crystal...

  15. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect.

    Science.gov (United States)

    Liu, Nian-Hua; Zhu, Shi-Yao; Chen, Hong; Wu, Xiang

    2002-04-01

    The propagation of a pulse through one-dimensional photonic crystals that contain a dispersive and absorptive defect layer doped with two-level atoms is discussed. The dynamical evolution of the pulse inside the photonic crystal is presented. Superluminal negative group velocity (the peak appears at the exit end before it reaches the input end) is discovered. Although the group velocity is larger than c and even negative, the velocity of energy propagation never exceeds the vacuum light speed. The appearance of the superluminal advance or subluminal delay of the pulse peak inside the photonic crystal or at the exit end is due to the wave interference from Bragg reflections.

  16. Enhanced photoluminescence from photonic crystal-coated GaN LED wafers

    Science.gov (United States)

    Rahman, F.; Khokhar, A. Z.

    2011-06-01

    This paper describes results of studies on photoluminescence from blue-emitting GaN LED wafers coated with a layer of synthetic opal photonic crystals. Commercial LED wafer material was used and samples were coated with thin films consisting of several layers of stacked spherical polystyrene balls. Various optical measurements were performed on these samples while they were excited with a 405 nm laser beam. Diffraction pattern due to the photonic crystal structure, showing the underlying six-fold symmetry, was recorded. The spectrum and angle-resolved intensity of photoluminescence were measured to understand the coupling of LED light with the grown photonic crystal structure on top of the wafer.

  17. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2017-12-11

    In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

  18. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    Science.gov (United States)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.

  19. Nanoimprinted photonic crystal color filters for solar-powered reflective displays.

    Science.gov (United States)

    Cho, Eun-Hyoung; Kim, Hae-Sung; Sohn, Jin-Seung; Moon, Chang-Youl; Park, No-Cheol; Park, Young-Pil

    2010-12-20

    A novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process. The theoretical and experimental results show that the color filters have high reflectance and angular tolerance, which was qualitatively confirmed by chromaticity coordination analysis.

  20. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    Science.gov (United States)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  1. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    Science.gov (United States)

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  2. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  3. Mode conversion enables optical pulling force in photonic crystal waveguides

    Science.gov (United States)

    Zhu, Tongtong; Novitsky, Andrey; Cao, Yongyin; Mahdy, M. R. C.; Wang, Lin; Sun, Fangkui; Jiang, Zehui; Ding, Weiqiang

    2017-08-01

    We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems.

  4. Miniature photonic-crystal hydrophone optimized for ocean acoustics.

    Science.gov (United States)

    Kilic, Onur; Digonnet, Michel J F; Kino, Gordon S; Solgaard, Olav

    2011-04-01

    This work reports on an optical hydrophone that is insensitive to hydrostatic pressure, yet capable of measuring acoustic pressures as low as the background noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal reflector interrogated with a single-mode fiber and is compatible with existing fiber-optic technologies. Three sensors with different acoustic power ranges placed within a sub-wavelength sized hydrophone head allow a high dynamic range in the excess of 160 dB with a low harmonic distortion of better than -30 dB. A method for suppressing cross-coupling between sensors in the same hydrophone head is also proposed. A prototype was fabricated, assembled, and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating a sound-pressure-equivalent noise spectral density down to 12 μPa/Hz(1/2), a flatband wider than 10 kHz, and very low distortion.

  5. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.; Kristensen, Anders, E-mail: anders.kristensen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, Building 345E, DK-2800 Kgs. Lyngby (Denmark)

    2014-08-18

    A class of photonic crystal resonant reflectors known as guided mode resonant filters are optical structures that are widely used in the field of refractive index sensing, particularly in biosensing. For the purposes of understanding and design, their behavior has traditionally been modeled numerically with methods such as rigorous coupled wave analysis. Here it is demonstrated how the absolute resonance wavelengths of such structures can be predicted by analytically modeling them as slab waveguides in which the propagation constant is determined by a phase matching condition. The model is experimentally verified to be capable of predicting the absolute resonance wavelengths to an accuracy of within 0.75 nm, as well as resonance wavelength shifts due to changes in cladding index within an accuracy of 0.45 nm across the visible wavelength regime in the case where material dispersion is taken into account. Furthermore, it is demonstrated that the model is valid beyond the limit of low grating modulation, for periodically discontinuous waveguide layers, high refractive index contrasts, and highly dispersive media.

  6. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes

    Science.gov (United States)

    Okamoto, Kazuma; Tsuruda, Kazuisao; Diebold, Sebastian; Hisatake, Shintaro; Fujita, Masayuki; Nagatsuma, Tadao

    2017-09-01

    In this paper, we report on a terahertz (THz) sensing system. Compared to previously reported systems, it has increased system sensitivity and reduced size. Both are achieved by using a photonic crystal (PC) cavity as a resonator and compact resonant tunneling diodes (RTDs) as signal source and as detector. The measured quality factor of the PC cavity is higher than 10,000, and its resonant frequency is 318 GHz. To demonstrate the operation of the refractive index sensing system, dielectric tapes of various thicknesses are attached to the PC cavity and the change in the resonator's refractive index is measured. The figure of merit of refractive index sensing using the developed system is one order higher than that of previous studies, which used metallic metamaterial resonators. The frequency of the RTD-based source can be swept from 316 to 321 GHz by varying the RTD direct current voltage. This effect is used to realize a compact frequency tunable signal source. Measurements using a commercial signal source and detector are carried out to verify the accuracy of the data obtained using RTDs as a signal source and as a detector.

  7. Measurement of gas viscosity using photonic crystal fiber

    Science.gov (United States)

    Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.

    2016-11-01

    A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.

  8. Dataset on photonic crystal fiber based chemical sensor

    Directory of Open Access Journals (Sweden)

    Kawsar Ahmed

    2017-06-01

    Full Text Available This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA, and effective area (Aeff. The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017 [1]. Furthermore, V-parameter (V, Marcuse spot size (MSS, and beam divergence (BD are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML. The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10–11 to ~10−7 dB/m; the high Aeff from 5.50 to 5.66 µm2; the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  9. Dataset on photonic crystal fiber based chemical sensor.

    Science.gov (United States)

    Ahmed, Kawsar; Paul, Bikash Kumar; Chowdhury, Sawrab; Islam, Md Shadidul; Sen, Shuvo; Islam, Md Ibadul; Asaduzzaman, Sayed; Bahar, Ali Newaz; Miah, Mohammad Badrul Alam

    2017-06-01

    This article represents the data set of micro porous core photonic crystal fiber based chemical sensor. The suggested structure is folded cladding porous shaped with circular air hole. Here is investigated four distinctive parameters including relative sensitivity, confinement loss, numerical aperture (NA), and effective area (Aeff). The numerical outcomes are computed over the E+S+C+L+U communication band. The useable sensed chemicals are methanol, ethanol, propanol, butanol, and pentanol whose are lies in the alcohol series (Paul et al., 2017) [1]. Furthermore, V-parameter (V), Marcuse spot size (MSS), and beam divergence (BD) are also investigated rigorously. All examined results have been obtained using finite element method based simulation software COMSOL Multiphysics 4.2 versions with anisotropic circular perfectly matched layer (A-CPML). The proposed PCF shows the high NA from 0.35 to 0.36; the low CL from ~10(-11) to ~10(-7) dB/m; the high Aeff from 5.50 to 5.66 µm(2); the MSS from 1.0 to 1.08 µm; the BD from 0.43 to 0.46 rad at the controlling wavelength λ = 1.55 µm for employing alcohol series respectively.

  10. Photonic crystal waveguide-based biosensor for detection of diseases

    Science.gov (United States)

    Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer

    2016-07-01

    A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.

  11. Photon Throughput Calculations for a Spherical Crystal Spectrometer

    Science.gov (United States)

    Gilman, C. J.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Hill, K.; Kraus, B.; Gao, L.; Pablant, N.

    2017-10-01

    X-ray imaging crystal spectrometers of the type described in Refs. have become a standard diagnostic for Doppler measurements of profiles of the ion temperature and the plasma flow velocities in magnetically confined, hot fusion plasmas. These instruments have by now been implemented on major tokamak and stellarator experiments in Korea, China, Japan, and Germany and are currently also being designed by PPPL for ITER. A still missing part in the present data analysis is an efficient code for photon throughput calculations to evaluate the chord-integrated spectral data. The existing ray tracing codes cannot be used for a data analysis between shots, since they require extensive and time consuming numerical calculations. Here, we present a detailed analysis of the geometrical properties of the ray pattern. This method allows us to minimize the extent of numerical calculations and to create a more efficient code. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466.

  12. Undamped trace distance and coherence preservation of quantum bit in photonic crystal

    Science.gov (United States)

    Lu, Yu-Wei; You, Chun-Lian; Liu, Jing-Feng; Jiang, Hao-Xiang; Li, Ling-Yan

    2017-11-01

    We study the coherence preservation of quantum bit in photonic crystal using input-output trace distance. The input-output trace distance can be extremely short and the information hardly dissipates when the quantum bit frequency lies deep inside the photonic band gap. Different from the behavior in cavities, the undissipated information of the quantum bit can be held in the photonic band gap due to the effective interaction between the quantum bit and photonic crystal. A factor called coherence radius is defined in this paper for evaluating the quantum coherence preservation in photonic crystal, which is straightly linked to the visibility of input-output trace distance and the coherence of quantum states.

  13. Tuning of the Optical Properties in Photonic Crystals Made of Macroporous Silicon

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2008-06-01

    Full Text Available It is well known that robust and reliable photonic crystal structures can be manufactured with very high precision by electrochemical etching of silicon wafers, which results in two- and three-dimensional photonic crystals made of macroporous silicon. However, tuning of the photonic properties is necessary in order to apply these promising structures in integrated optical devices. For this purpose, different effects have been studied, such as the infiltration with addressable dielectric liquids (liquid crystals, the utilization of Kerr-like nonlinearities of the silicon, or free-charge carrier injection by means of linear (one-photon and nonlinear (two-photon absorptions. The present article provides a review, critical discussion, and perspectives about state-of-the-art tuning capabilities.

  14. Comparison between different dispersion engineering methods in slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    This paper compares the performance of different dispersion engineering methods in slow light photonic crystal waveguides, i.e., geometrical parameter optimization and topology optimization. In both methods, the design robustness is enforced by considering the dilated, intermediate and eroded...

  15. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Henry Hao-Chuan [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  16. Realization of robust photonic crystal waveguides designed to reduce out-of-plane scattering

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Søndergaard, Thomas

    2001-01-01

    We have realized environmentally stable silicon-on-insulator based photonic crystal waveguides. The waveguide structure is designed to minimize scattering at semiconductor/hole interfaces. Transmission measurements and IR pictures indicate efficient guiding through straight and bent waveguides....

  17. Systematic and robust design of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2010-01-01

    A robust topology optimization method is presented to consider manufacturing uncertainties in tailoring dispersion properties of photonic crystal waveguides. The under, normal and over-etching scenarios in manufacturing process are represented by dilated, intermediate and eroded designs based...

  18. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  19. Optimization of photonic crystal 60 degrees waveguide bends for broadband and slow-light transmission

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Tetu, Amelie; Frandsen, Lars Hagedorn

    2007-01-01

    We present results on broadband transmission through photonic crystal waveguide bends optimized for slowlight modes. Theoretical analysis and topology optimization are complemented by experimental verification of designs fabricated in SOI material....

  20. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors

    National Research Council Canada - National Science Library

    Rosenberg, Jessie; Shenoi, Rajeev V; Krishna, Sanjay; Painter, Oskar

    2010-01-01

    We design a polarization-sensitive resonator for use in mid-infrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector...

  1. Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring.

    Science.gov (United States)

    Jewart, Charles M; Quintero, Sully Mejía; Braga, Arthur M B; Chen, Kevin P

    2010-12-06

    We present the design of an air hole microstructured photonic crystal fiber for pressure sensing applications. The air-hole photonic crystal lattices were designed to produce a large intrinsic birefringence of 1.16 x 10(-3). The impact of the surrounding air holes for pressure sensing to the propagation mode profiles and indices were studied and improved, which ensures single mode propagation in the fiber core defined by the photonic crystal lattice. An air hole matrix and a practical chemical etching process during the fiber perform preparation stage is proposed to produce an optical fiber with a birefringence-pressure coefficient of 43.89 x 10 (-6)MPa(-1) or a fiber Bragg grating pressure responsivity of 44.15 pm/MPa, which is a 17 times improvement over previous photonic crystal fiber designs.

  2. Photonic Crystal Biosensor with In-Situ Synthesized DNA Probes for Enhanced Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shuren [Vanderbilt University, Nashville; Zhao, Y. [Vanderbilt University, Nashville; Retterer, Scott T [ORNL; Kravchenko, Ivan I [ORNL; Weiss, Sharon [Vanderbilt University, Nashville

    2013-01-01

    We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating in-situ synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.

  3. Demonstration of Optically Controlled re-Routing in a Photonic Crystal Three-Port Switch

    DEFF Research Database (Denmark)

    Combrié, S.; Heuck, Mikkel; Xavier, S.

    2012-01-01

    We present an experimental demonstration of optically controlled re-routing of a signal in a photonic crystal cavity-waveguide structure with 3 ports. This represents a key functionality of integrated all-optical signal processing circuits....

  4. Ultra-Fast Low Energy Switching Using an InP Photonic Crystal H0 Nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2013-01-01

    Pump-probe measurements on InP photonic crystal H0 nanocavities show large-contrast ultrafast switching at low pulse energy. For large pulse energies, high-frequency carrier density oscillations are induced, leading to pulsesplitting....

  5. Increased fluorescence of PbS quantum dots in photonic crystals by excitation enhancement

    Science.gov (United States)

    Barth, Carlo; Roder, Sebastian; Brodoceanu, Daniel; Kraus, Tobias; Hammerschmidt, Martin; Burger, Sven; Becker, Christiane

    2017-07-01

    We report on the enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab-type silicon photonic crystals. The photonic crystal slabs were fabricated, supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant in the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning the wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three-dimensional numerical simulations consistently explain the experimental findings by strong near-field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion applications.

  6. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.

    Science.gov (United States)

    Kushwaha, M S; Martinez, G

    2005-02-01

    This paper reports the multiple band gaps in the two-dimensional semiconductor-dielectric photonic crystals of several compositions: semiconductor cylinders in the dielectric background. We consider both square lattice and hexagonal lattice arrangements and compute extensive band structures using a plane-wave method within the framework of an efficient standard eigenvalue problem for both E and H polarizations. The whole range of filling fraction has been explored to claim the existence of the lowest (the so-called acoustic) band gap and multiple higher-energy band gaps within the first 30 to 40 bands for various compositions. Such semiconductor-dielectric photonic crystals which are shown to possess huge lowest band gaps below a threshold frequency (the plasma frequency omega(p) ) have an advantage over the dielectric photonic crystals in the emerging technology based on the photonic crystals.

  7. Effect of loss on slow-light enhanced absorption in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Asger

    2008-01-01

    We study slow-light enhancement of absorption measurements in photonic crystals composed of lossy dielectrics. We find that the material loss has an unexpected limited drawback and may even increase the bandwidth for low-index contrast systems....

  8. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  9. Ultra-small coherent thermal conductance using multi-layer photonic crystal

    Science.gov (United States)

    Lau, W. T.; Shen, J.-T.; Veronis, G.; Fan, S.

    2009-02-01

    A multi-layer photonic crystal can be used to suppress coherent thermal conductance below the vacuum conductance value, over the entire high-temperature range. With interlacing layers of silicon and vacuum, heat can only be carried by photons. The thermal conductance of the crystal would then be determined by the photonic band structure. Partial photonic band gaps that present over most of the thermal spectrum, as well as the suppression of evanescent coupling of photons across the vacuum layers at high frequencies, would reduce the amount heat conducting photon channels below that of the vacuum. Thus such multi-layer structures can be very efficient thermal insulators. Besides, the thermal conductance of such structures can exhibit substantial tunability, by merely changing the size of the vacuum spacing.

  10. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    Directory of Open Access Journals (Sweden)

    H. Oda

    2016-06-01

    Full Text Available The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  11. Operation of an InAs quantum-dot embedded GaAs photonic crystal slab waveguide laser by using two-photon pumping for photonics integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Oda, H., E-mail: h-oda@photon.chitose.ac.jp; Yamanaka, A. [Chitose Institute of Science and Technology, 758-65 Chitose 066-8655 (Japan); Ozaki, N. [Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510 (Japan); Ikeda, N.; Sugimoto, Y. [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8561 (Japan)

    2016-06-15

    The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  12. Enhancement of Coupling to the Slow Light Regime in Photonic Crystal Waveguides using Topology Optimization

    DEFF Research Database (Denmark)

    Têtu, Amélie; Yang, Lirong; Lavrinenko, Andrei

    2006-01-01

    The topology optimization method has been used to improve the coupling into the slow light wavelength regime in planar photonic crystal waveguides. The coupling efficiency has been enhanced by more than 5dB.......The topology optimization method has been used to improve the coupling into the slow light wavelength regime in planar photonic crystal waveguides. The coupling efficiency has been enhanced by more than 5dB....

  13. Optimization of Photonic Crystal 60o Waveguide Bends in the Slow Light Regime for Broadband Transmission

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Frandsen, Lars Hagedorn

    2006-01-01

    We present results for broadband transmission through photonic crystal waveguide bends optimized for slow-light modes. Theoretical analysis is complemented by experimental verification of designs including topology optimized ones fabricated in SOI material.......We present results for broadband transmission through photonic crystal waveguide bends optimized for slow-light modes. Theoretical analysis is complemented by experimental verification of designs including topology optimized ones fabricated in SOI material....

  14. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  15. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  16. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment.

    Science.gov (United States)

    Haché, A; Poirier, L

    2002-03-01

    We demonstrate that coaxial cables with a periodic impedance exhibit dispersion properties specific to photonic crystals, albeit on a much lower frequency scale. Highly superluminal (>2c) pulse propagation is observed near the photonic band gap at 10 MHz. The influence of group velocity dispersion and crystal length on the traveling speed and shape of a Gaussian pulse are discussed. Results compare favorably with a simple multilayer theory and a coupled-mass model of the structure.

  17. Enhanced amplified spontaneous emission in III-V semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Schubert, Martin; Yvind, Kresten

    2010-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in the slow light regime of an active photonic crystal waveguide slab. This promises great opportunities for future devices such as miniaturized semiconductor optical amplifiers and mode-locked lasers.......We experimentally demonstrate enhanced amplified spontaneous emission in the slow light regime of an active photonic crystal waveguide slab. This promises great opportunities for future devices such as miniaturized semiconductor optical amplifiers and mode-locked lasers....

  18. Multi-Periodic Photonic Crystal Out-Coupling Layers for Flexible OLEDs

    DEFF Research Database (Denmark)

    Kluge, Christian; Pradana, Arfat; Adam, Jost

    2014-01-01

    Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography.......Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography....

  19. An ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei

    2006-01-01

    We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides.......We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides....

  20. Atomic layer deposition of TiO{sub 2} photonic crystal waveguide biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jardinier, E; French, P J [Electronic Instrumentation Laboratory, Delft University of Technology, 4 Mekelweg, 2628 CD Delft (Netherlands); Pandraud, G; Pham, M H; Sarro, P M [Electronic Components, Technology and Materials, Delft University of Technology, 17 Feldmannweg, 2628 CT Delft (Netherlands)], E-mail: g.pandraud@tudelft.nl

    2009-09-01

    A photonic crystal waveguide biosensor in the visible is presented for biosensing. The sensor is applied to Refractive Index (RI) measurements. The sensitivity at different wavelength is presented for both air holes and air core configurations of photonic crystal waveguide (PCW) made of TiO{sub 2}. It is shown that by using Atomic Layer Deposition (ALD) the expected sensitivity of the air core configuration outperforms the previously reported results.