WorldWideScience

Sample records for random phased array

  1. A random phased array device for delivery of high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Hand, J W [Radiological Sciences Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS (United Kingdom); Shaw, A; Sadhoo, N; Rajagopal, S [Acoustics Group, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Dickinson, R J [Department of Bioengineering, Imperial College London, London SW7 2AZ (United Kingdom); Gavrilov, L R [N.N. Andreev Acoustics Institute, 117036 Moscow (Russian Federation)], E-mail: j.hand@imperial.ac.uk

    2009-10-07

    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least {+-}15 mm off axis and axially to more than {+-}15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci {+-}10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm{sup 3} in volume can be produced using the patterns of multiple foci.

  2. Phased arrays '85

    Science.gov (United States)

    Stiglitz, M. R.

    1985-11-01

    The conference Phased Arrays '85 was held in Bedford, MA, on October 15-18, 1985. It is pointed out that the 15 years between the 1970 and 1985 conferences dedicated to phased array antennas have seen many technological advances. Attention is given to the principle of operation, monolithic phased arrays, active arrays of monopole elements, scan compensated active element patterns, microstrip arrays, time delay technologies for phased array systems, ferrite materials for mm-wave phase shifters, phase-only optimization of phased array excitation by B-quadratic programming, a nearly frequency-independent sidelobe suppression technique for phased arrays, and active impedance effects in low sidelobe and ultrawideband phased arrays.

  3. UAVSAR Phased Array Aperture

    Science.gov (United States)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  4. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    beams. A random array with Gaussian distribution of transmitters and uniform distribution of receivers was found to have better resolution and depth-of-field than both a Mills cross array and a random array with uniform distribution of both transmit and receive elements. The Gaussian random array......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  5. Pulse Dispersion in Phased Arrays

    Directory of Open Access Journals (Sweden)

    Randy L. Haupt

    2017-01-01

    Full Text Available Phased array antennas cause pulse dispersion when receiving or transmitting wideband signals, because phase shifting the signals does not align the pulse envelopes from the elements. This paper presents two forms of pulse dispersion that occur in a phased array antenna. The first results from the separation distance between the transmit and receive antennas and impacts the definition of far field in the time domain. The second is a function of beam scanning and array size. Time delay units placed at the element and/or subarrays limit the pulse dispersion.

  6. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  7. Phased array imaging

    Science.gov (United States)

    1990-09-01

    The problem of recoverable image resolution is investigated for the case where an imaging array is used which array has an optical transfer function that may be described as consisting of islands of nonzero value in a sea of zero values. Can the missing spatial frequency information can be provided--can, in effect, a form of (interpolative) super resolution. The CLEAN algorithm used by radio astronomers suggests that this should be possible. The results developed here indicate that this can be done, with no significant price in terms of signal-to-noise ratio to be paid, and further show that a nonlinear algorithm, like CLEAN, is not required. The results show that the feasibility of doing this depends on the angular size of the object being imaged. We find that its size must be less than the inverse of the largest gap between islands in the array's optical transfer function.

  8. Phased array observations with infield phasing

    Science.gov (United States)

    Kudale, Sanjay; Chengalur, Jayaram N.

    2017-10-01

    We present results from pulsar observations using the Giant Metrewave Radio Telescope (GMRT) as a phased array with infield phasing. The antennas were kept in phase throughout the observation by applying antenna based phase corrections derived from visibilities that were obtained in parallel with the phased array beam data, and which were flagged and calibrated in real time using a model for the continuum emission in the target field. We find that, as expected, the signal to noise ratio (SNR) does not degrade with time. In contrast observations in which the phasing is done only at the start of the observation show a clear degradation of the SNR with time. We find that this degradation is well fit by a function of the form SNR(τ ) = α + β e^{-(τ /τ 0)^{5/3}}, which corresponds to the case where the phase drifts are caused by Kolmogorov type turbulence in the ionosphere. We also present general formulae (i.e. including the effects of correlated sky noise, imperfect phasing and self noise) for the SNR and synthesized beam size for phased arrays (as well as corresponding formulae for incoherent arrays). These would be useful in planning observations with large array telescopes.

  9. Broadband phased-arrays antennas

    Science.gov (United States)

    Mansky, L.

    1984-09-01

    The actual jamming-to-signal ratio achieved in an electronic countermeasures (ECM) system depends on the effective radiated power (ERP) directed toward the radar by the ECM system. The required ERP may be obtained in a phase-steered array using a variety of transmit-subsystem hardware configurations. Here, tradeoff criteria to aid in the selection of an optimal architecture are discussed. Such selection is based on minimizing the array size, backscattering cross selection, and overall system complexity. Functional elements of typical phased arrays and their principal components are descried.

  10. Monolithic phased arrays - Recent advances

    Science.gov (United States)

    Kinzel, Joseph A.

    1991-07-01

    Advances in monolithic phased array technology defined as a solid state array based on GaAs monolithic microwave integrated circuits are reviewed focusing on analytical and experimental work to improve array performance and reliability while reducing the cost. Monolithic array technology is equally applicable to communications and radar systems. In radar applications both transmit and receive functions at the elemental level require a transmit/receive module's physical size to be compatible with 1/2 wave length element spacing. For communication applications, separate aperture are used for transmit and receive to ensure sufficient isolation for full duplex operation. Radar transmitter chains are capable of operating with a saturated power output stage which helps to increase efficiency and minimize DC power. Communication systems place severe linearity constraints on the transmitters and receivers which requires the power amplifier to operate in an ultra-linear fashion.

  11. Phased Array Feeds

    Science.gov (United States)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  12. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  13. Plane wave imaging using phased array

    NARCIS (Netherlands)

    Volker, A.W.F.

    2014-01-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data

  14. Element parameters for ultrasonic phased arrays

    Science.gov (United States)

    Moles, Michael; Cancre, Fabrice

    2002-05-01

    The industrial use of ultrasonic phased arrays is limited by several factors, such as budget, coverage, beam steering required, as well as the limitations of array manufacture. Only at high frequencies does the minimum array size become a functional limitation. This paper describes the use of phased arrays and the definition of element size, including electronic scanning, beam steering, and Dynamic Depth Focusing. Several examples of industrial applications are given, with the key limiting factor for each described.

  15. Delamination Detection Using Guided Wave Phased Arrays

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  16. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting

    2016-01-01

    of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light...

  17. Low Cost Phased Array Antenna System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A program is proposed to research the applicability of a unique phased array technology, dubbed FlexScan, to S-band and Ku-band communications links between...

  18. Fundamental Limitations of Phased Array Antenna Elements

    Science.gov (United States)

    2015-12-15

    1327. doi: 10.1109/TAP.2012.2227661 Do-Hoon Kwon, Hsieh -Chi Chang. Bandwidth limitations of linearly polarized infinite planar phased arrays in free...Transactions on Antennas and Propagation (07 2014) Do-Hoon Kwon, Hsieh -Chi Chang. Bandwidth Limitations of Infinite Planar Phased Arrays in Free Space...Students Names of Post Doctorates Received Book TOTAL: Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Hsieh -Chi

  19. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  20. Probe suppression in conformal phased array

    CERN Document Server

    Singh, Hema; Neethu, P S

    2017-01-01

    This book considers a cylindrical phased array with microstrip patch antenna elements and half-wavelength dipole antenna elements. The effect of platform and mutual coupling effect is included in the analysis. The non-planar geometry is tackled by using Euler's transformation towards the calculation of array manifold. Results are presented for both conducting and dielectric cylinder. The optimal weights obtained are used to generate adapted pattern according to a given signal scenario. It is shown that array along with adaptive algorithm is able to cater to an arbitrary signal environment even when the platform effect and mutual coupling is taken into account. This book provides a step-by-step approach for analyzing the probe suppression in non-planar geometry. Its detailed illustrations and analysis will be a useful text for graduate and research students, scientists and engineers working in the area of phased arrays, low-observables and stealth technology.

  1. Phased Arrays 1985 Symposium - Proceedings

    Science.gov (United States)

    1985-08-01

    diameter to approximately 80-100 mm (3-4 inches) using liquid encapsulated Czochralski growth techniques [22]. Semi- insulating InP wafers are limited...34 \\ .185 , gi vingc the phase shiftr, a size of .240" x .185". Test of the inividual bits ’ro’w Ibreadboard wafers yielded the .elluwinq results. Fniase...collect unevenly at grain boundaries and to produce explosive grain growth . This grain growth may produce rather large macropores of such a size as to be

  2. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  3. Photonic Multitasking Interleaved Si Nanoantenna Phased Array.

    Science.gov (United States)

    Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L

    2016-12-14

    Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.

  4. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  5. Overview on the Phase Conjugation Techniques of the Retrodirective Array

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2010-01-01

    Full Text Available This paper presents an overview on the phase conjugation techniques of the retrodirective antenna array. The concepts, advantages, and disadvantages of phase conjugation techniques are introduced. The self-phasing characteristic and technical difficulties of the array are presented as well as their structures and applications. Further researches in this area are presented finally.

  6. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nicholas Keith; Chen, Chi-Chih; Volakis, John L.

    2012-01-01

    This presentation discussed a novel phased array with an emphasis to simplify the array feed. Specifically, we will demonstrate a simple, low cost feeding approach by mechanically controlling the substrate thickness. The array feed lines are constructed from parallel plate transmission lines whose thickness are adjusted to control their effective dielectric constant (Epsilon_eff). As a result the phase delay/excitation at each array element will be adjusted per desired beam direction. The proposed antenna elements will be overlapping dipoles operating over a 2:1 bandwidth in the Ku-Band spectrum. Preliminary simulation and experimental demonstration of such an array will be presented.

  7. Phase behaviour and phase separation kinetics measurement using acoustic arrays

    Science.gov (United States)

    Khammar, M.; Shaw, J. M.

    2011-10-01

    Speed of sound and acoustic wave attenuation are sensitive to fluid phase composition and to the presence of liquid-liquid interfaces. In this work, the use of an acoustic array comprising 64 elements as a non-intrusive sensor for liquid-liquid interface, phase separation kinetics measurement in bulk fluids, and local composition measurement in porous media is illustrated. Three benchmark examples: the phase behaviour of methanol + mixed hexanes and methanol + heptane mixtures at 25.0 °C and 1 bar, and Athabasca bitumen + heptane in a synthetic silica porous medium at 22.5 °C and 1 bar, illustrate the accuracy of liquid-liquid interface and potential research and industrial applications of the technique. Liquid-liquid interfaces can be detected independently using both speed of sound and acoustic wave attenuation measurements. The precision of the interface location measurement is 300 μm. As complete scans can be performed at a rate of 1 Hz, phase separation kinetics and diffusion of liquids within porous media are readily tracked. The technique is expected to find application where the fluids or porous media are opaque to visible light and where other imaging techniques are not readily applied, or are too costly. A current limitation is that the acoustic probes must be cooled to less than 315 K in order for them to operate.

  8. A Fully Reconfigurable Polarimetric Phased Array Antenna Testbed

    Directory of Open Access Journals (Sweden)

    Sudantha Perera

    2014-01-01

    Full Text Available The configurable phased array demonstrator (CPAD is a low-cost, reconfigurable, small-scale testbed for the dual-polarized array antenna and radar prototype. It is based on the concept that individual transmit and receive (TR modules and radiating elements can be configured in different ways to study the impact of various array manifolds on radiation pattern performance. For example, CPAD is configured as (a a 4 × 4 planar array, (b a planar array with mirror configuration, and (c a circular array to support the multifunctional phased array radar (MPAR system risk reduction studies. System descriptions are given in detail, and measurements are made and results are analyzed.

  9. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    Science.gov (United States)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  10. Imaging of surface wave phase velocities from array phase observations

    Science.gov (United States)

    Weidle, Christian; Maupin, Valerie

    2010-05-01

    While temporary deployments some 10 years ago were largely based on short-period seismometers, the availability of broadband instruments in instrument pools increased strongly in recent years and as such modern temporary deployments for passive seismological recordings often consist to a large extent, if not exclusively, of broadband instruments. This opens for new analysis approaches as the broadband seismic wavefield is obtained at a relatively high spatial sampling relative to the wavelength. In an attempt to infer surface wave phase velocity anomalies beneath Southern Norway based on data from a temporary network of 41 broadband instruments, we present a new approach to overcome the limitations of two-station phase measurements (on the great circle with the source) and instead exploit the two-dimensional nature of the wavefield by taking into account phase measurements at all stations of the array from a single event. This is based on the assumption that the wavefield is at least piecewise linear within the study region. By triangulation of the network region and linear estimation of the phase gradient in each triangle we get without further a priori assumptions a coarse image of the phase velocity variations within our network. The image can be significantly refined for a single event recording by stacking multiple images based on arbitrary subsets of the available data. Phase velocity anomalies measured from single event recordings can be biased and blurred by non-plane arriving wavefield, reflections and diffractions of heterogeneities. Therefore, by averaging over velocity fields from different events with varying backazimuths, artefacts are reduced and the recovered image significantly improved. Another way to improve the recovered structures is to take into account the spatial variation of the amplitude field. However, while the phase between two neighboring stations may be (at least close to) linear, the amplitude may not, hence estimation of the second

  11. Optoelectronic Infrastructure for RF/Optical Phased Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optoelectronic integrated circuits offer radiation-hard solutions for satellite systems with much improved SWPB (size, weight, power and bandwidth). The phased array...

  12. Phased-array vector velocity estimation using transverse oscillations

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Marcher, Jønne; Jensen, Jørgen Arendt

    2012-01-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicabil......A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical.......79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations...

  13. PROSPECTS FOR THE DEVELOPMENT OF PHASED ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    A. P. Dzuba

    2013-01-01

    Full Text Available This article describes the main achievements in the development of phased antenna arrays (par in the past decade. Provides an overview of the most famous systems based on the PAR and PAR based on MMIC technology - PAR in radar stations, PAR to control the laser and optical beams. The existing options for the design of the PAR:ferroelectric antenna array; plasma antenna with electronic scanning; reflective grating on 100-mm semiconductor wafers; wideband antenna arrays with aperture; antenna arrays with digital beam forming.

  14. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed

    2016-11-17

    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  15. Optical beam forming techniques for phased array antennas

    Science.gov (United States)

    Wu, Te-Kao; Chandler, Charles W.

    1993-01-01

    Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are 1) the fiber replacement of conventional RF phased array distribution and control components, 2) spatial beam forming, and 3) optical beam splitting techniques. Two novel optical beam forming approaches, i.e., the spatial beam forming with a 'smart pixel' spatial light modulator (SLM) and the optical beam splitting approaches are conceived with integrated quasi-optical components. Also presented are the transmit and receive array architectures with the new SLM.

  16. Active cancellation of probing in linear dipole phased array

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2015-01-01

    In this book, a modified improved LMS algorithm is employed for weight adaptation of dipole array for the generation of beam pattern in multiple signal environments. In phased arrays, the generation of adapted pattern according to the signal scenario requires an efficient adaptive algorithm. The antenna array is expected to maintain sufficient gain towards each of the desired source while at the same time suppress the probing sources. This cancels the signal transmission towards each of the hostile probing sources leading to active cancellation. In the book, the performance of dipole phased array is demonstrated in terms of fast convergence, output noise power and output signal-to-interference-and noise ratio. The mutual coupling effect and role of edge elements are taken into account. It is established that dipole array along with an efficient algorithm is able to maintain multilobe beamforming with accurate and deep nulls towards each probing source. This work has application to the active radar cross secti...

  17. Simple Array Beam-Shaping Using Phase-Only Adjustments.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Conventional beam-shaping for array antennas is accomplished via an amplitude-taper on the elemental radiators. It is well known that proper manipulation of the elemental phases can also shape the antenna far-field pattern. A fairly simple transformation from a desired amplitude-taper to a phase-taper can yield nearly equivalent results.

  18. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  19. Pattern synthesis of antenna array with digital phase shifters

    OpenAIRE

    Shcherbakov, N. V.; Norinchuk, I. V.

    1999-01-01

    One of the problems in the design work of phased arrays is the one taking into account phase shifter discreteness. Usually this problem is solved by means of finding the required continuous phase distribution and subsequent its rounding-off according to phase shifter discreteness. Such an approach is very simple but it often leads to non-optimal results, especially in the case of large shifter discrete-ness. Therefore, the problem arose to find the so-called discrete methods of phase synthesi...

  20. Automated array assembly, Phase II. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R. V.

    1979-01-01

    The work conducted during a 1-year program designed to establish the technological readiness and provide verification for the elements of a manufacturing sequence which would ultimately be suitable for the large-scale production of silicon solar-array modules at a cost of less than $500/peak kW is summarized. A detailed description of the development and experimental verification for individual process steps is given. The results of a detailed experimental study and evaluation of the factors which influence the performance of ion-implanted silicon solar cells are given. As a result of this study, a processing procedure was defined which can be used to produce ion-implanted solar cells with up to 15% efficiency. A review of a comprehensive test program performed on state-of-the-art commercial screen-printable metallizing inks as well as RCA-formulated materials is given. Data are presented on the critical areas of electrical conductivity, solderability, and adhesion of the films as-fired into silicon surfaces. A process for screen printing and infrared-lamp firing of silver inks for the front grid and back contact of 3-in.-diameter solar cells was developed, and performance data of these cells as a function of firing parameters and inks are given. The results of applying this process to ion-implanted solar cells are also presented. Process development and optimization studies for low-cost spray deposition of single-layer antireflection (AR) coatings are discussed. These studies included effects of spray deposition machine parameters, metallization bondability after coating, cell electrical performance as a function of AR coating type, thickness, and heat-treatment effects. The processing steps for a panel assembly process involving the lamination of a double-glass structure were developed. The procedures required to successfully laminate large panels are given. (WHK)

  1. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  2. Phased Array Synthesis Using Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    M. A. Zaman

    2011-01-01

    Full Text Available In this paper, a linear phased array is synthesized to produce a desired far field radiation pattern with a constraint on sidelobe level and beamwidth. The amplitude of the excitation current of each individual array element is optimized to give desired sidelobe level and beamwidth. A modified particle swarm optimization (PSO algorithm with a novel inertial weight variation function and modified stochastic variables is used here. The performance of the modified PSO is compared with standard PSO in terms of amount of iterations required to get desired fitness value and convergence rate. Using optimized excitation amplitudes, the far field radiation pattern of the phased array is analyzed to verify whether the design criterions are satisfied.

  3. CRF: detection of CRISPR arrays using random forest

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available CRISPRs (clustered regularly interspaced short palindromic repeats are particular repeat sequences found in wide range of bacteria and archaea genomes. Several tools are available for detecting CRISPR arrays in the genomes of both domains. Here we developed a new web-based CRISPR detection tool named CRF (CRISPR Finder by Random Forest. Different from other CRISPR detection tools, a random forest classifier was used in CRF to filter out invalid CRISPR arrays from all putative candidates and accordingly enhanced detection accuracy. In CRF, particularly, triplet elements that combine both sequence content and structure information were extracted from CRISPR repeats for classifier training. The classifier achieved high accuracy and sensitivity. Moreover, CRF offers a highly interactive web interface for robust data visualization that is not available among other CRISPR detection tools. After detection, the query sequence, CRISPR array architecture, and the sequences and secondary structures of CRISPR repeats and spacers can be visualized for visual examination and validation. CRF is freely available at http://bioinfolab.miamioh.edu/crf/home.php.

  4. Application Specific MMICs for Advanced Active Phased-Array Antenna's

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den

    1996-01-01

    Some application specific MMIC solutions, developed at TNO-FEL, are presented. These MMICs address the needs for future phased-array architectures. Among the MMICs are: a wide-band high-efficiency power amplifier in a MESFET technology, integrated tuneable microwave filters and multifunction RF

  5. High Resolution Processing with an Active Phased Array SAR

    NARCIS (Netherlands)

    Nijenboer, F.J.; Otten, M.P.G.

    1999-01-01

    The Dutch PHARUS system is a polarimetric active phased array SAR capable of performing advanced SAR modes. Advanced SAR modes that are being investigated are: spotlight SAR, sliding spotlight SAR, stepped frequency SAR and interferometric SAR. The flight experiments and automatic beam steering

  6. DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    NARCIS (Netherlands)

    Blom, K.C.H.; van de Burgwal, M.D.; Rovers, K.C.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2010-01-01

    A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of

  7. SAR processing with stepped chirps and phased array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  8. Transverse Oscillation Vector Velocity Estimation using a Phased Array Transducer

    DEFF Research Database (Denmark)

    Marcher, Jønne; Pihl, Michael Johannes; Seerup, Gert

    2012-01-01

    The Transverse Oscillation method has shown its commercial feasibility, providing the user with 2D velocity information. Todays implementation on commercial ultrasound platforms only support linear array transducers and are limited in depth. Extending the implementation to a phased array transduc...... leaves room for optimization. Despite the bias, the method has shown to work and produce reliable results, and 2D velocity estimates are provided within the entire color-box down to a depth of more than 100 mm making vector velocity imaging possible in the entire heart....

  9. Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach

    Science.gov (United States)

    2012-10-10

    Mutual Coupling Effects in Microstrip Patch Phased Array Antenna ,” 1998 IEEE Antennas and Propagation Society International Symposium, Vol. 2, pp...the normal to a far-range direction in which the composite fields from each of the elements must be added to determine the amplitude at just that...Contemporary optimization alternatives such as genetic algorithms [1–9], simulated annealing [10], particle swarm optimization [11], and just random search

  10. Collective Quantum Phase-Slip Dynamics in Superconducting Nanowire Arrays

    Science.gov (United States)

    Skacel, Sebastian T.; Voss, Jan N.; Bier, Tobias; Radke, Lucas; Weides, Martin; Rotzinger, Hannes; Mooij, Hans E.; Ustinov, Alexey V.

    2014-03-01

    Superconducting nanowire arrays exhibit quantum phase-slip (QPS) phenomenon if the superconductor has a very high normal-state sheet resistance. We experimentally study QPS effects in arrays of nanowires embedded in a resonant circuit at GHz frequencies. We probe this circuit at ultra-low microwave power, applied flux and mK temperatures. The nanowires are fabricated utilizing aluminium grown in a precisely-controlled oxygen atmosphere. In this way, we aim to control the QPS rate for a given wire width. The wires are defined with conventional electron beam lithography down to a width of 20 nm. We will present the fabrication of the nanowire arrays and first microwave measurements at mK temperatures. Center for Functional Nanostructures, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany.

  11. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  12. Design and Analysis of MEMS Linear Phased Array

    Directory of Open Access Journals (Sweden)

    Guoxiang Fan

    2016-01-01

    Full Text Available A structure of micro-electro-mechanical system (MEMS linear phased array based on “multi-cell” element is designed to increase radiation sound pressure of transducer working in bending vibration mode at high frequency. In order to more accurately predict the resonant frequency of an element, the theoretical analysis of the dynamic equation of a fixed rectangular composite plate and finite element method simulation are adopted. The effects of the parameters both in the lateral and elevation direction on the three-dimensional beam directivity characteristics are comprehensively analyzed. The key parameters in the analysis include the “cell” number of element, “cell” size, “inter-cell” spacing and the number of elements, element width. The simulation results show that optimizing the linear array parameters both in the lateral and elevation direction can greatly improve the three-dimensional beam focusing for MEMS linear phased array, which is obviously different from the traditional linear array.

  13. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    Science.gov (United States)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  14. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Billy C.

    2008-03-01

    Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

  15. Stiffness of the extrafibrillar phase in staggered biological arrays.

    Science.gov (United States)

    Bar-On, Benny; Wagner, H Daniel

    2012-08-17

    A number of important biological tissues such as nacre, tendon, and bone consist of staggered structural arrays as universal motifs. Such arrays usually include stiff fibril-like (or plateletlike, or needlelike) elements embedded in an extrafibrillar (XF) phase. This work discusses the effect of the stiffness of such an XF matrix on the elastic properties of the resulting staggered composite. In the case of most biological composites, this XF stiffness is hardly accessible and very little data are available. We develop an analysis based on previous analytical formulation that results in a relation between the XF modulus and the deformations of the staggered particles. This analysis is then used to back-calculate the yet unmeasured modulus of the XF phase from experimental deformation data, thereby providing a simple alternative to potentially complex direct measurements. This is demonstrated and validated for parallel-fiber bone tissue.

  16. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  17. Control of Complex Components with Smart Flexible Phased Arrays

    Science.gov (United States)

    Casula, O.; Poidevin, C.; Cattiaux, G.; Dumas, Ph.

    2006-03-01

    The inspection of piping in nuclear plants is mainly performed in contact with ultrasonic wedge transducers. During the scanning, the fixed shape of wedges cannot fit the irregular surfaces and complex geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam. To improve such controls, a new concept of contact "Smart Flexible Phased Array" has been developed with the support of the French "Institut de Radioprotection et de Sûreté Nucléaire". The phased array is flexible to fit the complex profile and to minimize the thickness of the coupling layer. The independent piezoelectric elements composing the radiating surface are mechanically assembled in order to build an articulated structure. A profilometer, embedded in the transducer, measures the local surface distortion allowing to compute in real-time the optimized delay laws and compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, two prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviours of these probes.

  18. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  19. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  20. Simulation and data reconstruction for NDT phased array techniques.

    Science.gov (United States)

    Chatillon, S; de Roumilly, L; Porre, J; Poidevin, C; Calmon, P

    2006-12-22

    Phased array techniques are now widely employed for industrial NDT applications in various contexts. Indeed, phased array present a great adaptability to the inspection configuration and the application of suitable delay laws allows to optimize the detection and characterization performances by taking into account the component geometry, the material characteristics, and the aim of the inspection. In addition, the amount of potential information issued from the inspection is in general greatly enhanced. It is the case when the employed method involve sequences of shots (sectorial scanning, multiple depth focusing etc) or when signals received on the different channels are stored. At last, application of electronic commutation make possible higher acquisition rates. Accompanying these advantages, it is clear that an optimal use of such techniques require the application of simulation-based algorithms at the different stages of the inspection process: When designing the probe by optimizing number and characteristics of element; When conceiving the inspection method by selecting suitable sequences of shots, computing optimized delay laws and evaluating the performances of the control in terms of zone coverage or flaw detection capabilities; When analysing the results by applying simulation-helped visualization and data reconstruction algorithms. For many years the CEA (French Atomic Energy Commission) has been being greatly involved in the development of such phased arrays simulation-based tools. In this paper, we will present recent advances of this activity and show different examples of application carried out on complex situations.

  1. PATL: A RFID Tag Localization based on Phased Array Antenna.

    Science.gov (United States)

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-03-15

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags' number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area.

  2. Phase Transitions on Random Lattices: How Random is Topological Disorder?

    Science.gov (United States)

    Barghathi, Hatem; Vojta, Thomas

    2015-03-01

    We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω = (d - 1) / (2 d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d + 1) ν > 2 rather than the usual Harris criterion dν > 2 , making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1 . These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. This work was supported by the NSF under Grant Nos. DMR-1205803 and PHYS-1066293. We acknowledge the hospitality of the Aspen Center for Physics.

  3. Innovative phased array ultrasonic inspection solution for large rotor shafts

    Energy Technology Data Exchange (ETDEWEB)

    Maes, G.; Devos, D.; Tremblay, P., E-mail: gmaes@zetec.com [Zetec, Ville de Quebec, Quebec (Canada)

    2016-05-15

    The increasing needs of energy production led to new rotor shaft designs with larger dimensions. A new generation of nuclear power plants is already being deployed worldwide with such heavy components. Their implementation requires new inspection tools in order to guarantee the public safety and to ensure the quality of these critical parts. Due to the long sound path, conventional ultrasonic (UT) techniques cannot provide adequate detectability of the reference reflectors required by the existing codes. Also, some standards require multiple angle beams to be applied in addition to the straight beam inspection, and this leads to long inspection times. This paper will address the implementation and validation of phased array (PA) UT techniques, using a semi-flexible 2D array probe, for the inspection of large mono-block rotor shaft forgings. It will show how the beam focusing and steering capabilities of phased array UT probes can be used to overcome the issues occurring with conventional UT probes. Results of acoustic beam simulation, as well as detectability measurements and data acquisitions on representative test specimens will be presented and compared with conventional UT performance. Various aspects of the hardware and software specification will be addressed, as well as the potential reduction of the total inspection time. (author)

  4. Dual-Polarized Planar Phased Array Analysis for Meteorological Applications

    Directory of Open Access Journals (Sweden)

    Chen Pang

    2015-01-01

    Full Text Available This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR mode and the simultaneously transmitting and simultaneously receiving (STSR mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.

  5. Supersymmetric phase transition in Josephson-tunnel-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1988-08-31

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.

  6. RF MEMS Phase Shifters and their Application in Phase Array Antennas

    Science.gov (United States)

    Scardelletti, Maximilian; Ponchak, George E.; Zaman, Afroz J.; Lee, Richard Q.

    2005-01-01

    Electronically scanned arrays are required for space based radars that are capable of tracking multiple robots, rovers, or other assets simultaneously and for beam-hopping communication systems between the various assets. ^Traditionally, these phased array antennas used GaAs Monolithic Microwave Integrated Circuit (MMIC) phase shifters, power amplifiers, and low noise amplifiers to amplify and steer the beam, but the development of RF MEMS switches over the past ten years has enabled system designers to consider replacing the GaAs MMIC phase shifters with RF Micro-Electro Mechanical System (MEMS) phase shifters. In this paper, the implication of replacing the relatively high loss GaAs MMICs with low loss MEMS phase shifters is investigated.

  7. Phase tuning in two-dimensional coherently coupled vertical-cavity surface-emitting laser array.

    Science.gov (United States)

    Xun, Meng; Xu, Chen; Xie, Yiyang; Deng, Jun; Jiang, Guoqing; Pan, Guanzhong; Dong, Yibo; Chen, Hongda

    2016-07-10

    Implant-defined vertical-cavity surface-emitting laser (VCSEL) arrays can be designed to operate in in-phase mode. However, the nonuniformities in fabrication process impact the resonance selection and the devices do not follow expected trends. Coherent coupling was demonstrated in three-element VCSEL arrays via phase tuning of elements. In-phase mode and out-of-phase mode were both achieved in most of the arrays. Moreover, coherent coupling can decrease the threshold current of elements in the array. Improved output power was also clearly observed when the array operated in the in-phase mode. Arbitrary phase combination of the array elements can be obtained via the phase tuning. This technology is able to improve the reproducibility and practicability of the implant-defined coherently coupled VCSEL array.

  8. Random phase textures: theory and synthesis.

    Science.gov (United States)

    Galerne, Bruno; Gousseau, Yann; Morel, Jean-Michel

    2011-01-01

    This paper explores the mathematical and algorithmic properties of two sample-based texture models: random phase noise (RPN) and asymptotic discrete spot noise (ADSN). These models permit to synthesize random phase textures. They arguably derive from linearized versions of two early Julesz texture discrimination theories. The ensuing mathematical analysis shows that, contrarily to some statements in the literature, RPN and ADSN are different stochastic processes. Nevertheless, numerous experiments also suggest that the textures obtained by these algorithms from identical samples are perceptually similar. The relevance of this study is enhanced by three technical contributions providing solutions to obstacles that prevented the use of RPN or ADSN to emulate textures. First, RPN and ADSN algorithms are extended to color images. Second, a preprocessing is proposed to avoid artifacts due to the nonperiodicity of real-world texture samples. Finally, the method is extended to synthesize textures with arbitrary size from a given sample.

  9. Improved SNR of phased-array PERES coils via simulation study

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, Alfredo O [Centro de Investigacion en Imagenologia e Instrumentacion Medica, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico, DF, 09340 (Mexico); Medina, LucIa [DISCA, Instituto de Investigacion en Matematicas Aplicadas y Sistemas, Universidad Nacional Autonoma de Mexico, AP 20-728, Admo. No. 20, 01000 Mexico, DF (Mexico); Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, DF (Mexico)

    2005-09-21

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  10. Transverse Oscillations for Phased Array Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2010-01-01

    of superficial blood vessels. To broaden the usability of the method, it should be expanded to a phased array geometry enabling vector velocity imaging of the heart. Therefore, the scan depth has to be increased to 10-15 cm. This paper presents suitable pulse echo fields (PEF). Two lines are beamformed...... in receive to obtain lateral spatial in-phase and quadrature components. The relative mean bias and standard deviation of the lateral velocity component are computed as performance measures. For the PEF, the coefficient of variance, CV, of the spectral frequencies, and the energy ratio, ER, of leakage...... into negative frequencies are used as metrics to assess estimator performance. At 10 cm’s depth for an initial setup, the relative mean bias and standard deviation are 9.1% and 9.5%, respectively. At a depth of 15 cm, the values are 20% and 13%, respectively. The PEF metric ER can be used to assess the bias...

  11. PZT Network and Phased Array Lamb Wave Based SHM Systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C [Academia da Forca Aerea, Granja do Marques, 2715-021 Pero Pinheiro (Portugal); Rocha, B; Suleman, A, E-mail: cbsilva@emfa.pt [University of Victoria, Department of Mechanical Engineering, PO Box 3055, Stn.CSC, Victoria, BC, V8W 3P6 (Canada)

    2011-07-19

    With the application of newer materials, such as composite materials, and growing complexity and capacity of current aircraft structures, reliably and completely assess the condition of the total structures in real time is then of growing and utmost importance. PZT Network and Phased Array, Lamb wave based Structural Health Monitoring (SHM) systems were developed to be applied to thin panels. The selection of transducers, their size and selected locations for their installation are described. The development and selection of the signal generation and data acquisition systems is also presented in detail. The requirements conducing to the development and selection of these systems are laid and particularly the selection of the actuation signal applied is justified. The development of a damage detection algorithm based in the comparison of the current structural state to a reference state is described, to detect damage reflected Lamb waves. Such method was implemented in software and integrated in the SHM system developed. Subsequently the detection algorithm, based in discrete signals correlation, was further improved by incorporating statistical methods. For phased arrays, a novel damage location algorithm is presented based on the individual sensors response. A visualization method based concurrently in the statistical methods developed and superposition of the different results obtained from a test set was implemented. These tests conducted to the successful and repeatable detection of 1mm damages in a multiple damaged plate with great confidence. Finally, a brief comparison and a hybrid system implementation is presented.

  12. Optimization of electro-optic phase shifters for integrated optical phased arrays

    Science.gov (United States)

    Macik, Dwayne D.; Bravo, Tyler E.; Pentecost, Seeley M.; Espinal, Francisco A.; Madsen, Christi K.

    2017-05-01

    A low-loss, high-speed optical phased array (OPA) has been designed and fabricated. Two different platforms have been utilized in combination to leverage electro-optic (EO) tuning. A lithium niobate (LiNbO3) optical phased array was fabricated and used in conjunction with a silicon nitride (Si3N4) 8x8 waveguide array that condenses the output pitch and utilizes the TriplexTM waveguide technology. This OPA allows for the non-mechanical beam steering (NMBS) of 1550 nm light on an edge coupled optic platform and takes advantage of the high electro-optic coefficient and high speed capability of LiNbO3 for electro-optic phase tuning. This coupled OPA has an overall insertion loss of 3.5 dB which is advantageous to silicon-on-insulator OPAs that have shown overall insertion losses of 14 dB. To characterize and tune this device, a 3 lens imaging system was employed to produce both near- and far- field intensity patterns of the output of the OPA on a static image plane. At the image plane, a high resolution infrared camera was used to observe the resulting intensity pattern. The control software for tuning the OPA reads the intensity incident at a specified position on the detector array, and has a PWM interface to drive the electro-optic phase controls. Beam steering was accomplished using an iterative tuning algorithm.

  13. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  14. High power compatible internally sensed optical phased array.

    Science.gov (United States)

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz.

  15. Phased-array technology for automatic pipeline inspection; Phased Array-Technologie fuer automatisierte Pipeline-Inspektion

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.; Hugger, A.; Franz, J. [GE Energy, PII Pipetronix GmbH, Stutensee (Germany); Falter, S.; Oberdoerfer, Y. [GE Inspection Technology Systems, Huerth (Germany)

    2004-07-01

    Pipeline inspection pigs with individual test probes are limited in their function due to the fixed arrangement of sensors on the support. In contrast, the phased-array technology enables multitasking of tests, e.g. stress and corrosion testing which formerly required two different test runs with different sensor set-ups. The angles of inclination can be adapted to the test medium, and virtual sensors can be matched in size and overlap so that, e.g., small pittings will be detected. The sensor set-up presented here enables higher test speed and improved flaw detection. The contribution describes the measuring principle, the inspection pig (UltraScan DUO), and some results of prototype measurements. [German] Pruefmolche fuer die Pipelinepruefung mit Einzelpruefkoepfen sind in ihrem Funktionsumfang aufgrund der festliegenden Anordnung der Sensoren im Sensortraeger eingeschraenkt. Die Phased-Array-Technologie gestattet die simultane Durchfuehrung verschiedener Pruefaufgaben, wie beispielsweise der Rissund der Korrosionspruefung, die vorher zwei Prueflaeufe mit verschiedenen Sensortraegern erforderten. Die Einfallswinkel koennen auf das jeweilige Medium angepasst werden, und es besteht die Moeglichkeit, virtuelle Sensoren bezueglich ihrer Groesse und der gegenseitigen Ueberlappung so anzupassen, dass beispielsweise kleine Pittings gefunden werden koennen. Die ausgefuehrte Form gestattet hoehere Pruefgeschwindigkeit und verbesserte Fehlerauffindung. In diesem Artikel werden das Messprinzip und der Inspektionsmolch (UltraScan DUO) beschrieben sowie einige Prototyp-Messergebnisse vorgestellt.

  16. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage.......We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  17. 1.3 microm-wavelength phase-locked VCSEL arrays incorporating patterned tunnel junction.

    Science.gov (United States)

    Mutter, Lukas; Iakovlev, Vladimir; Caliman, Andrei; Mereuta, Alexandru; Sirbu, Alexei; Kapon, Eli

    2009-05-11

    We report the fabrication and the performance of phase-locked VCSEL arrays emitting near 1310 nm wavelength. The arrays were fabricated using double wafer fusion by patterning a tunnel junction layer, which serves to define the individual single mode array elements. Phase-locking in both one-dimensional and two-dimensional array configurations was confirmed by means of far field and spectral measurements as well as theoretical modeling. CW output powers of more than 12 mW were achieved.

  18. W-band Phased Array Systems using Silicon Integrated Circuits

    Science.gov (United States)

    Kim, Sang Young

    This thesis presents the silicon-based on-chip W-band phased array systems. An improved quadrature all-pass filter (QAF) and its implementation in 60--80 GHz active phase shifter using 0.13 microm SiGe BiCMOS technology is presented. It is demonstrated that with the inclusion of an Rs/R in the high Q branches of C and L, the sensitivity to the loading capacitance, therefore the I/Q phase and amplitude errors are minimized. This technique is especially suited for wideband millimeter-wave circuits where the loading capacitance (CL) is comparable to the filter capacitance (C). A prototype 60--80 GHz active phased shifter using the improved QAF is demonstrated. The overall chip size is 1.15 x 0.92 mm2 with the power consumption of 108 mW. The measured S11 and S22 are pass pi-network. The chip size is 0.45 x 0.3 mm2 without pads and consumes virtually no power. The measured S11 and S22 is 8 dBm and the simulated IIP3 is > 22 dBm. A low-power 76--84 GHz 4-element phased array receiver using the designed passive phase shifter is presented. The power consumption is minimized by using a single-ended design and alternating the amplifiers and phase shifter cells to result in a low noise figure at a low power consumption. A variable gain amplifier and the 11° phase shifter are used to correct for the rms gain and phase errors at different operating frequencies. The overall chip size is 2.0 x 2.7 mm2 with the current consumption of 18 mA/channel with 1.8 V supply voltage. The measured S11 and S 22 is circuits are designed differentially to result in less sensitivity to packaging effect and high channel-to-channel isolation. The overall chip size is 5.0 x 5.8 mm 2 with the power consumption of 500--600 mA from 2 V supply voltage. The measured S11 and S22 for all 16 phase states is 10 dB for 76.4--90 GHz with the rms gain error of -45 dB. The measured NF is 11.2--13 dB at 77--87 GHz at the maximum gain state. And the measured input P1dB is 20 dBm at 77 GHz and -25.8 dBm at the

  19. The application of random phase filter in the image recognition

    Science.gov (United States)

    Yang, Xiujuan; Zhong, Mei; Shao, Zhufeng

    2016-03-01

    We define one kind of new correlation, i.e. random phase correlation, which based on the Random Fourier Transform (RFT). An optical pattern recognition system, random phase filtering, is given according to random phase correlation. Furthermore its electro-optical setup is given for the application in image recognition. By the numerical simulation on computer, when the, we have found the proposed random phase filter can recognize the small change of object image and has higher recognition capability comparing of other three conventional correlators, the classical marched filter, the phase-only filter and the pure phase correlator.

  20. Phased-array-fed antenna configuration study, volume 2

    Science.gov (United States)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.

    1983-01-01

    Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.

  1. Using Phased Array for Transverse Oscillation Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Haugaard, Per; Jensen, Jørgen Arendt

    be expanded to phased arrays enabling vector velocity imaging of the heart. Therefore, the performance of the TO estimator has to be evaluated for depths up to 10-15 cm. Methods The TO method is based on creating a double oscillating field. Flow phantoms were simulated with a transverse (90º) parabolic flow...... realizations. Results With a F-number of 10 in transmit and receive peaks (spaced 96 elements apart) shaped as Hanning functions, parabolic velocity profiles were be observed for all cases. At depths of 10, 12, and 15 cm, the following results were obtained in pairs of σr & Br: 6.5% & 2.6%, 7.5% & 3.8%, and 8...

  2. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    Science.gov (United States)

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  3. Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)

    Science.gov (United States)

    2015-07-01

    ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign... Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign Sensor Calibration) by Gail Vaucher and Robert Edmonds...From - To) 1 Oct 2013–1 Feb 2015 4. TITLE AND SUBTITLE Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign Sensor Calibration

  4. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo, E-mail: nicholas.ellens@utoronto.ca [Department of Imaging Research, Sunnybrook Research Institute, Toronto (Canada)

    2011-08-07

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose {>=} 240 equivalent minutes at 43 deg. C (T{sub 43})) and 'transition' and 'unsafe' regions (both defined as 5 min < T{sub 43} < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  5. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    Science.gov (United States)

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm.

  6. Radiation detection from phase-locked serial dc SQUID arrays

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    We report on synchronous operation of series arrays of inductively coupled superconducting quantum interference devices (SQUIDs). Each array consisted of N=3 or 11 dc SQUIDs with common inductances providing a strong interaction between neighboring cells. Externally shunted (betac...

  7. Automated Array Assembly. Phase 2. Annual technical progress report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, B G

    1979-02-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array (LSSA) Project is a process development task. This contract includes solar cell module process development activities in the areas of Surface Preparation. Plasma Processing, Diffusion, Cell Processing and Module Fabrication. In addition, a High Efficiency Cell Development Activity is included. The overall goal is to advance solar cell module process technology to meet the 1986 goal of a production capacity of 500 megawatts per year at a cost of less than $500 per kilowatt. This contract will focus on the process element developments stated above and will propose an overall module process. During 1978, process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies tat focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel-glass structure that should exceed the 20 year life goal of the LSA program. In a related set of studies, high efficiency cell development was carried out on the Texas Instruments developed Tandem Junction Cell (TJC) and a modification of the TJC called the Front Surface Field cell. These cells feature planar backslide contacts with no metallization of the frontside. Cell efficiencies in excess of 16% at AM1 have been attained with only modest fill factors. Photo generated current densities as high as 44 mA/cm/sup 2/ at AM0 have been attained. A transistor-like model has been proposed that fits the cell performance and provides a guideline for future improvements in cell performance.

  8. Electromagnetic Simulation and Alignment of Dual-Polarized Array Antennas in Multi-Mission Phased Array Radars

    Directory of Open Access Journals (Sweden)

    Sudantha Perera

    2017-02-01

    Full Text Available Electromagnetic (EM simulation of dual-polarized antennas is necessary for precise initial alignments, calibration and performance predictions of multi-function phased array radar systems. To achieve the required flexibility and scalability, a novel Finite-Difference Time-Domain (FDTD solution is developed for rectangular, cylindrical and non-orthogonal coordinate systems to simulate various types of array antenna manifolds. Scalable array pattern predictions and beam generations are obtained by combining the FDTD simulation solutions with the Near-Field (NF chamber measurements. The effectiveness and accuracy of this approach are validated by comparing different simulations and comparing simulations with measurements.

  9. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  10. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)

    2002-12-07

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  11. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Science.gov (United States)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-12-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm-2. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  12. Clustering and Network Analysis of Reverse Phase Protein Array Data.

    Science.gov (United States)

    Byron, Adam

    2017-01-01

    Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.

  13. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  14. Evolutionary Adaptive Discovery of Phased Array Sensor Signal Identification

    Energy Technology Data Exchange (ETDEWEB)

    Timothy R. McJunkin; Milos Manic

    2011-05-01

    Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).

  15. A phased array antenna for Doppler reflectometry in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Stefan; Lechte, Carsten; Kasparek, Walter [IGVP, Universitaet Stuttgart, D-70569 Stuttgart (Germany); Hennequin, Pascale [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytech., F-91128 Palaiseau (France); Conway, Garrard; Happel, Tim [Max-Planck-Institut fuer Plasmaphysik, D-85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-07-01

    In a toroidal plasma, Doppler reflectometry (DR) allows investigating electron density fluctuations with finite k {sub perpendicular} {sub to}. The injected microwave beam's frequency determines the radial position of the probed region, its tilt angle selects the wavenumber satisfying the Bragg condition for backscattering. The rotation velocity can be calculated from the Doppler shift of the backscattered signal's frequency. By varying the injected frequency, radial profiles can be reconstructed. Varying the tilt angle resolves the k {sub perpendicular} {sub to} -spectrum of the fluctuations. For DR, a pair of phased array antennas (PAAs) has been designed, built, and installed in the ASDEX Upgrade tokamak. Beam steering is done by slightly changing the injected frequency, thus, the PAAs do not need any movable parts or electronics inside the vacuum vessel. From 75 to 105 GHz, the PAAs feature 13 frequency bands, each with an angular scan range of -20 to +20 {sup circle}. So, for each angle, there are 13 radial positions to be probed. The results from PAA characterisation, commissioning, and first DR measurements are presented.

  16. Phase-locked InGaAsP laser array with diffraction coupling

    OpenAIRE

    Chen, T.R.; Yu, K.L.; Chang, B; Hasson, A; Margalit, S.; Yariv, A.

    1983-01-01

    A phase-locked array of InGaAsP lasers has been fabricated for the first time. This 50-µm-wide array utilized diffraction coupling between adjacent lasers to achieve phase locking. Threshold current as low as 200 mA is obtained for arrays with 250-µm cavity length. Smooth single-lobe far-field patterns with beam divergence as narrow as 3° have been achieved.

  17. A Phased Array Antenna Signal Processing Structure, a Method and a Computer Program Product

    NARCIS (Netherlands)

    Vliet, F.E. van; Dijk, R. van

    2011-01-01

    The invention relates to a phased array antenna signal processing structure. The structure comprises a processor that includes a digital beam forming unit for generating partial beam data from digitized samples of a set of phased array antenna elements. The processor further comprises a set of input

  18. Integrated filtering in reconfigurable planar phased-array antennas with spurious harmonic suppression

    NARCIS (Netherlands)

    Cifola, L.; Gerini, G.; Monni, S.; Berg, S. van den; Water, F. van de

    2013-01-01

    In the present work, the possibility to integrate filtering functionalities in a phased-array antenna at radiating element level is investigated. The filtenna concept has been applied to an X-band phased array of slot-fed patches. An effective strategy for the suppression of spurious harmonics,

  19. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2015-01-01

    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  20. PHASIM, a sophisticated phased array antenna software simulator implemented in MATLAB 5.2

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    A sophisticated phased array simulator software package for the design and analysis of planar phased array antennas is presented. This simulator is coded in MATLAB version 5.2. Using MATLAB, numerical engineering problems can be solved in a fraction of time of time required by programs coded in

  1. Mutual-Coupling Based Phased-Array Calibration: A Robust and Versatile Approach

    NARCIS (Netherlands)

    Bekers, D.J.; Dijk, R. van; Vliet, F.E. van

    2013-01-01

    The transmit and receive modules of a large phased array are often calibrated for amplitude and phase variations by an internal calibration network and an offline characterization of the complete array in an anechoic chamber. Such a solution is less obvious in view of current trends towards

  2. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  3. Observing Pulsars with a Phased Array Feed at the Parkes Telescope

    Science.gov (United States)

    Deng, X.; Chippendale, A. P.; Hobbs, G.; Johnston, S.; Dai, S.; George, D.; Kramer, M.; Karuppusamy, R.; Malenta, M.; Spitler, L.; Tzioumis, T.; Wieching, G.

    2017-07-01

    During 2016 February, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned, and carried out science observations with a phased array feed receiver system on the 64-m diameter Parkes radio telescope. Here, we demonstrate that the phased array feed can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the phased array feed can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of -31 dB can be achieved with a phased array feed beam offset from the centre of the field of view. We discuss the possibilities for using a phased array feed for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.

  4. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  5. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.

    Science.gov (United States)

    Zhang, Fu-Qiang; Peng, Kui-Qing; Sun, Rui-Nan; Hu, Ya; Lee, Shuit-Tong

    2015-09-18

    Realization of broadband optical absorption enhancement in thin film c-Si solar cells is essential for improving energy conversion efficiency and reducing cost. Here, we demonstrate the fabrication of randomly arranged silicon nanorocket (SiNR) arrays as a new light trapping structure design for thin film silicon solar cells. The optical absorption of the randomly arranged SiNR arrays is investigated via finite-difference-frequency-domain (FDTD) simulation. Our calculations reveal that the light trapping structures facilitate the coupling of incident sunlight into the resonant modes and lead to significant photon absorption enhancement across a wide solar spectrum, resulting in ultimate efficiencies superior to nanowire and nanohole arrays with the same thickness. Our findings indicate that the randomly arranged SiNR arrays fabricated by the simple self-assembly and etching approach can have a significant impact on performance improvement in thin film silicon solar cells.

  6. Theoretical model and experimental verification on the PID tracking method using liquid crystal optical phased array

    Science.gov (United States)

    Wang, Xiangru; Xu, Jianhua; Huang, Ziqiang; Wu, Liang; Zhang, Tianyi; Wu, Shuanghong; Qiu, Qi

    2017-02-01

    Liquid crystal optical phased array (LC-OPA) has been considered with great potential on the non-mechanical laser deflector because it is fabricated using photolithographic patterning technology which has been well advanced by the electronics and display industry. As a vital application of LC-OPA, free space laser communication has demonstrated its merits on communication bandwidth. Before data communication, ATP (acquisition, tracking and pointing) process costs relatively long time to result in a bottle-neck of free space laser communication. Meanwhile, dynamic real time accurate tracking is sensitive to keep a stable communication link. The electro-optic medium liquid crystal with low driving voltage can be used as the laser beam deflector. This paper presents a fast-track method using liquid crystal optical phased array as the beam deflector, CCD as a beacon light detector. PID (Proportion Integration Differentiation) loop algorithm is introduced as the controlling algorithm to generate the corresponding steering angle. To achieve the goal of fast and accurate tracking, theoretical analysis and experimental verification are demonstrated that PID closed-loop system can suppress the attitude random vibration. Meanwhile, theoretical analysis shows that tracking accuracy can be less than 6.5μrad, with a relative agreement with experimental results which is obtained after 10 adjustments that the tracking accuracy is less than12.6μrad.

  7. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    Science.gov (United States)

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  8. Resolution potential of surface wave phase velocity measurements at small arrays

    Science.gov (United States)

    Bodin, Thomas; Maupin, Valérie

    2008-02-01

    The deployment of temporary arrays of broadband seismological stations over dedicated targets is common practice. Measurement of surface wave phase velocity across a small array and its depth-inversion gives us information about the structure below the array which is complementary to the information obtained from body-wave analysis. The question is however: what do we actually measure when the array is much smaller than the wave length, and how does the measured phase velocity relates to the real structure below the array? We quantify this relationship by performing a series of numerical simulations of surface wave propagation in 3-D structures and by measuring the apparent phase velocity across the array on the synthetics. A principal conclusion is that heterogeneities located outside the array can map in a complex way onto the phase velocities measured by the array. In order to minimize this effect, it is necessary to have a large number of events and to average measurements from events well-distributed in backazimuth. A second observation is that the period of the wave has a remarkably small influence on the lateral resolution of the measurement, which is dominantly controlled by the size of the array. We analyse if the artefacts created by heterogeneities can be mistaken for azimuthal variations caused by anisotropy. We also show that if the amplitude of the surface waves can be measured precisely enough, phase velocities can be corrected and the artefacts which occur due to reflections and diffractions in 3-D structures greatly reduced.

  9. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    Science.gov (United States)

    2007-09-01

    range of 200 nm [3]. This range is not sufficient for a BMD Early Warning Radar ( EWR ) system for rapid and forward deployment with great range coverage...and the EWR uses the L-band. The AN/SPY-3 Multi Function Radar (MFR) is the X-band active phased-array radar that will take care of the short range...DDG 1000 a far better range detection and EWR capability [5]. Figure 4. DDG 1000 (From [6]). Even if dual band radars can complement each

  10. Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables

    Directory of Open Access Journals (Sweden)

    Yongfeng Wu

    2014-01-01

    Full Text Available The authors first present a Rosenthal inequality for sequence of extended negatively dependent (END random variables. By means of the Rosenthal inequality, the authors obtain some complete moment convergence and mean convergence results for arrays of rowwise END random variables. The results in this paper extend and improve the corresponding theorems by Hu and Taylor (1997.

  11. Strong Laws of Large Numbers for Arrays of Rowwise NA and LNQD Random Variables

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wang

    2011-01-01

    Full Text Available Some strong laws of large numbers and strong convergence properties for arrays of rowwise negatively associated and linearly negative quadrant dependent random variables are obtained. The results obtained not only generalize the result of Hu and Taylor to negatively associated and linearly negative quadrant dependent random variables, but also improve it.

  12. Nonlinear higher quasiparticle random phase approximation

    Science.gov (United States)

    Smetana, Adam; Šimkovic, Fedor; Štefánik, Dušan; Krivoruchenko, Mikhail

    2017-10-01

    We develop a new approach to describe nuclear states of multiphonon origin, motivated by the necessity for a more accurate description of matrix elements of neutrinoless double-beta decay. Our approach is an extension of the Quasiparticle Random Phase Approximation (QRPA), in which nonlinear phonon operators play an essential role. Before applying the nonlinear higher QRPA (nhQRPA) to realistic problems, we test its efficiency with exactly solvable models. The first considered model is equivalent to a harmonic oscillator. The nhQRPA solutions follow from the standard QRPA equation, but for nonlinear phonon operators defined for each individual excited state separately. The second exactly solvable model is the proton-neutron Lipkin model that describes successfully not only energy spectrum of nuclei, but also beta-decay transitions. Again, we reproduce exactly the numerical solutions in the nhQRPA framework. We show in particular that truncation of the nonlinear phonon operators leads to an approximation similar to the self-consistent second QRPA, given the phonon operators are defined with a constant term. The test results demonstrate that the proposed nhQRPA is a promising tool for a realistic calculation of energy spectra and nuclear transitions.

  13. A Partially Magnetized Ferrite LTCC-Based SIW Phase Shifter for Phased Array Applications

    KAUST Repository

    Ghaffar, Farhan A.

    2015-06-01

    The theory and design of a half-mode substrate-integrated waveguide ferrite low-temperature cofired ceramic-based phase shifter are presented in this paper. Unlike typical ferrite-based designs, the biasing is done through embedded windings in a multi-layer substrate that not only obviates the requirement of bulky electromagnets, but also prevents loss of bias fields at the air-to-ferrite interface. The phase shifter is operated in the partially magnetized state of ferrite substrate. Through the combined effect of embedded windings, half-mode waveguide operation, and partially magnetized state, the required bias fields have been reduced by 90% as compared with conventional ferrite-based designs employing electromagnets. A complete analytical model, backed up by electromagnetic simulations and measured results from a prototype, is presented in this paper. The fabricated prototype demonstrates a phase shift of 83.2° at a center frequency of 13.1 GHz and a figure of merit of 83.2°/dB. As a proof-of-concept, the proposed phase shifter design is monolithically integrated with a two-element antenna array to demonstrate a measured beam steering of 30°. The phase shifter design is highly efficient in terms of required bias fields, and it has a small form factor and can be easily integrated with other electronic components and systems. © 1965-2012 IEEE.

  14. Phased-array antenna control by a monolithic photonic integrated circuit, COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, S.H.; Hietala, V.M.; Vawter, G.A.; Meyer, W.J.

    1991-01-01

    Phased-array antenna systems are well known for rapid beam steering and their ability to bring high power to the target. Such systems are also quite complex and heavy, which have limited their usefulness. The issues of weight, size, power use, and complexity have been addressed through a system named COMPASS (Coherent Optical Monolithic Phased Array Steering System). All phased-array antenna systems need: (1) small size; (2) low power use; (3) high-speed beam steering; and (4) digitally-controlled phase shifting. COMPASS meets these basic requirements, and provides some very desirable additional features. These are: (1) phase control separate from the transmit/receive module; (2) simple expansion to large arrays; (3) fiber optic interconnect for reduced sensitivity to EMI; (4) an intrinsically radiation-hard GaAs chip; and (5) optical power provided by a commercially available continuous wave (CW) laser. 4 refs., 8 figs.

  15. Resolving Phase Ambiguities in the Calibration of Redundant Interferometric Arrays: Implications for Array Design (Preprint)

    Science.gov (United States)

    2016-02-29

    tele - scopes in the array. Therefore with interferometry one can achieve the same high resolution offered by an extremely ? Email: bkurien@ll.mit.edu...of the telescope positions, which is known as a baseline. For an array of N apertures, the data set then consists of all ( N 2 ) such measurements. A...the United States Government. Binoy Kurien would like to acknowledge the MATLAB- based software package NUFFT (Fessler 2003) developed by Prof. Jeff

  16. Apertif: A new phased-array feed for WSRT

    Science.gov (United States)

    Adams, Elizabeth; Adebahr, Björn; de Blok, Willem J. G.; Hess, Kelley M.; Lucero, Danielle M.; Maccagni, Filippo; Morganti, Raffaella; Oosterloo, Tom A.; Ponomareva, Anastasia; Staveley-Smith, Lister; van der Hulst, J. M.; Verheijen, Marc A. W.; Verstappen, Joris

    2018-01-01

    Apertif is a phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), increasing the field of view of the telescope by a factor of twenty-five to 6.8 square degrees. In 2018, three legacy surveys will commence: a shallow imaging survey, a medium-deep imaging survey, and a pulsars and fast transients survey. The imaging surveys will be done in full polarization over the frequency range 1130-1430 MHz, which corresponds to redshifts of z=0-0.256 for neutral hydrogen (HI). The spectral resolution is 12.2 kHz, or an HI velocity resolution of 2.6 km/s at z=0 and 3.2 km/s at z=0.256. The full resolution images will have a beam size of 15"x15"/sin(declination), and tapered data products (i.e., 30" resolution images) will also be available. The footprints of the imaging surveys are chosen to maximize coverage of multi-wavelength datasets, including the Herschel Atlas North Galactic Pole field, HetDex region, plus coordination with MaNGA and planned WEAVE follow-up. The survey footprints were also chosen to probe different regions of interest, including the CVn region, Coma cluster, and Perseus-Pisces supercluster. The key science cases for the imaging surveys include understanding how galaxy properties depend on environment, the role of interactions and gas accretion and removal, understanding the smallest gas-rich galaxies, connecting cold gas to AGN, understanding the history of star formation and AGN activity in the faint radio continuum population, and studying magnetic fields in galaxies and large-scale structure. After a proprietary period, the survey data products will be publicly available through the Apertif Long Term Archive (ALTA). Up-to-date information on Apertif and the planned surveys can be found at www.apertif.nl.Commissioning of the Apertif instrument is underway. Here we will present results from the imaging commissioning, highlighting the capabilities of the instrument as related to the key science cases of the imaging surveys.

  17. Design and simulation of single-electrode liquid crystal phased arrays

    Science.gov (United States)

    Bellini, B.; Geday, M. A.; Bennis, N.; Spadło, A.; Quintana, X.; Otón, J. M.; Dąbrowski, R.

    2006-12-01

    Liquid crystal (LC) phased arrays and gratings have been employed in optical switching and routing [1]. These diffractive optic elements are of great interest because they can be scaled up to a large number of elements and their optical properties can be electrically addressed with a low driving voltage. LC phase gratings have been achieved either by periodic addressing of pixels or by using periodically-modified structures. The latter approach leads to less reconfigurable devices but the addressing is simpler. In this paper we focus on optical phased arrays where the phase is varied either continuously or discretely and where the periodicity is induced by electrode configuration. We first describe a possible structure based on a conductive silicon wafer. We argue that this structure can induce either continuously or discretely varying arrays while applying single voltage to the array. In the second part we simulate the behaviour of such arrays. We base the simulation on a LC synthesized at the Military University of Technology, this high-birefringence nematic LC shows in a 4-μm thick cell a linear phase shift range of more than 360° between 1.2 V and 1.8 V. We calculate the distribution of the LC molecule director and assess the performance of the array with respect to the applied voltage. Finally, the relevance of such technology for switchable phased arrays is discussed.

  18. Investigation of Beamforming Patterns from Volumetric Randomly Distributed Phased Arrays

    Science.gov (United States)

    2017-03-01

    Introduction Modern wireless technologies, such as ad-hoc networking, require agile and controllable antennas on their frontends. These networks often...Traditionally, these antennas are designed as periodic structures, where each element is placed in a lattice. The elements constructively add in

  19. Improving beampatterns of two-dimensional random arrays using convex optimization.

    Science.gov (United States)

    Gerstoft, Peter; Hodgkiss, William S

    2011-04-01

    Sensors are becoming ubiquitous and can be combined in arrays for source localization purposes. If classical conventional beamforming is used, then random arrays have poor beampatterns. By pre-computing sensor weights, these beampatterns can be improved significantly. The problem is formulated in the frequency domain as a desired look direction, a frequency-independent transition region, and the power minimized in a rejection-region. Using this formulation, the frequency-dependent sensor weights can be obtained using convex optimization. Since the weights are data independent they can be pre-computed, the beamforming has similar computational complexity as conventional beamforming. The approach is demonstrated for real 2D arrays.

  20. Space-time-dynamic model of passively-phased ring-geometry fiber laser array

    Energy Technology Data Exchange (ETDEWEB)

    Bochove, Erik J. [Air Force Research Laboratory, Kirtland Air Force Base, NM; Aceves, Alejandro B. [Southern Methodist University, Dallas; Deiterding, Ralf [ORNL; Crabtree, Lily I [ORNL; Braiman, Yehuda [ORNL; Jacobo, Adrian [University of the Balearic Islands, Palma de Mallorca, Spain; Colet, Pere R. [University of the Balearic Islands, Palma de Mallorca, Spain

    2010-01-01

    We performed a linearized stability analysis and preliminary simulations of passive phasing in a CW operating ring geometry fiber laser array coupled in an external cavity with a single-mode feedback fiber that functions as spatial filter. A two-element array with path length error is predicted to have a dynamically stable stationary operating state at the calculated operating wavelength.

  1. A spherical wave expansion model of sequentially rotated phased arrays with arbitrary elements

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    An analytical model of sequentially rotated phased arrays with arbitrary antenna elements is presented. It is applied to different arrays and the improvements of axial ratio bandwidth and copolar directivity are investigated. It is compared to a numerical method of auxiliary Sources model to asce...... to ascertain the accuracy and limitations. © 2007 Wiley Periodicals, Inc....

  2. Inspecting Composite Ceramic Armor Using Advanced Signal Processing Together with Phased Array Ultrasound

    Science.gov (United States)

    2010-01-08

    performed using the Dynamic Depth Focusing ( DDF ) method unique to phased-array inspection. In this method, the acoustic energy is transmitted into...there appears to be some kind of planar defect within the Support layer), DDF allows for the time delay between array elements to be adjusted

  3. Highly integrated application specific MMICs for active phased array radar applications

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den

    1999-01-01

    Application specific MMIC solutions for active array radar, developed at TNO-FEL, are presented. The use and application of these MMICs in their respective radar systems will be shown. These MMICs address the needs for current and future phased-array topologies as for example the concept of "smart

  4. Highly Integrated Application Specific MMICS for Active Phased Array Radar Applications

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den

    2000-01-01

    Application specific MMIC solutions for active array radar, developed at TNO-FEL. are presented. The use and application of these MMICs in their respective radar systems will be shown. These MMICs address the needs for current and future phased-array topologies as for example the concept of "smart

  5. High Gain Printed Phased Array for SAR Applications Using Planar Electromagnetic Band-Gap Technology

    NARCIS (Netherlands)

    Llombart, N.; Neto, A.; Gerini, G.

    2006-01-01

    This paper shows how the design of integrated arrays can significantly benefit from Planar Circularly Symmetric (PCS) Electromagnetic Band Gap (EBG) structures. Using this technology, a phased array that scans up to 40o in one dimension and that is characterized by relatively large bandwidth (BW ≈

  6. Array illumination with minimal non-uniformity based on generalized phase contrast

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2009-01-01

    The generalized phase contrast method (GPC) has been previously shown to be an efficient technique for generating array illumination and is thus highly suitable for such applications as dynamic multiple beam trapping and optical micromanipulation. However, projected arrays usually exhibit intensity...... roll-offs that may be undesirable for some applications. We show that the uniformity of GPC-generated array illuminations can be improved using intuitive corrections to the input spatial phase modulation, by increasing or decreasing it to respectively raise or lower the intensity of the corresponding...... output spots to improve uniformity. This is combined with matching corrections to the phase shift introduced by the phase contrast filter. Results from numerical experiments show that the array illumination uniformity error improves from over 40% to less than 1% while maintaining the efficiency prior...

  7. Ultrasonic phased array sensor for electric travel aids for visually impaired people

    Science.gov (United States)

    Takahashi, Takayuki; Takahashi, Ryosuke; Jeong, SeongHee

    2007-12-01

    An ultrasonic phased array sensor system is developed. The system has high capability on azimuthal resolution and plural obstacles detection, and is considered as a sensing system of an electric travel aids for visually impaired people. The developed phased array consists of multiple sound tubes to avoid the grating lobe problem even if one uses large size of ultrasonic sensor elements. To measure plural obstacles in different direction at one time, we applied a method that uses coded transmitting pulse trains to the phased array transmitter. The method reduces the interference between ultrasonic pulses sent out to different directions, and realizes the simultaneous measurement in multiple directions. Experimental results also shown to verify the performance of the phased array.

  8. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  9. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  10. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...

  11. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.; Anderson, Michael T.

    2014-05-31

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  12. Phased array ultrasonic examination of space shuttle main engine nozzle weld

    Science.gov (United States)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.

    2002-05-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle-Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  13. Optical phased array using guided resonance with backside reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2016-11-01

    Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.

  14. An analytical filter design method for guided wave phased arrays

    Science.gov (United States)

    Kwon, Hyu-Sang; Kim, Jin-Yeon

    2016-12-01

    This paper presents an analytical method for designing a spatial filter that processes the data from an array of two-dimensional guided wave transducers. An inverse problem is defined where the spatial filter coefficients are determined in such a way that a prescribed beam shape, i.e., a desired array output is best approximated in the least-squares sense. Taking advantage of the 2π-periodicity of the generated wave field, Fourier-series representation is used to derive closed-form expressions for the constituting matrix elements. Special cases in which the desired array output is an ideal delta function and a gate function are considered in a more explicit way. Numerical simulations are performed to examine the performance of the filters designed by the proposed method. It is shown that the proposed filters can significantly improve the beam quality in general. Most notable is that the proposed method does not compromise between the main lobe width and the sidelobe levels; i.e. a narrow main lobe and low sidelobes are simultaneously achieved. It is also shown that the proposed filter can compensate the effects of nonuniform directivity and sensitivity of array elements by explicitly taking these into account in the formulation. From an example of detecting two separate targets, how much the angular resolution can be improved as compared to the conventional delay-and-sum filter is quantitatively illustrated. Lamb wave based imaging of localized defects in an elastic plate using a circular array is also presented as an example of practical applications.

  15. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    Science.gov (United States)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  16. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  17. Model of the self-Q-switching instability of passively phased fiber laser arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bochove, Erik J. [Air Force Research Laboratory, Kirtland Air Force Base, NM; Aceves, Alejandro B. [Southern Methodist University, Dallas; Braiman, Yehuda [ORNL; Colet, Pere R. [University of the Balearic Islands, Palma de Mallorca, Spain; Deiterding, Ralf [ORNL; Jacobo, Adrian [University of the Balearic Islands, Palma de Mallorca, Spain; Miller, Casey A [ORNL; Rhodes, Charles [Liberations Systems Management, Inc.; Shakir, Sami A. [TASC, Inc.

    2011-01-01

    A simple physical model is presented to explain observed self-pulsations in passively phased rare earth-doped fiber laser arrays. Their essential features are the feedback level s sensitivity to small perturbations in the phases of array fields, hence altering the cavity s Q-value, and the nonlinear changes in the refractive index of the amplifier gain media. The model s qualitative prediction for an array having at least two elements that is operated at sufficiently high power levels, of the growth of an initial disturbance, is confirmed by a linearized stability analysis of the field and medium equations.

  18. An Optimal Beamforming Algorithm for Phased-Array Antennas Used in Multi-Beam Spaceborne Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.

    2015-01-01

    Strict requirements for future spaceborne ocean missions using multi-beam radiometers call for new antenna technologies, such as digital beamforming phased arrays. In this paper, we present an optimal beamforming algorithm for phased-array antenna systems designed to operate as focal plane arrays...... (FPA) in push-broom radiometers. This algorithm is formulated as an optimization procedure that maximizes the beam efficiency, while minimizing the side-lobe and cross-polarization power in the area of Earth, subject to a constraint on the beamformer dynamic range. The proposed algorithm is applied...

  19. Uplink Array Calibration via Power Spectra in the Presence of Phase and Delay Errors

    Science.gov (United States)

    Vilnrotter, V. A.

    2017-08-01

    In uplink array operations, alignment of the carrier phase and modulation delay from each antenna is of fundamental importance in achieving maximum array gain. The power spectrum of the combined signal can be obtained at the spacecraft and relayed to the ground for processing, or in near-Earth radar applications the echo signals from small targets can be collected and processed at the ground receiver. Expressions are derived for the power spectrum of a transmitting array of K elements in the presence of phase and delay alignment errors, and simulation results are provided to validate the theoretical results. It is shown that the power spectra are generally sensitive to errors in carrier and modulation alignment, thus enabling uplink array calibration directly from the power spectrum of the combined array signal.

  20. Ordering and phase transitions in random-field Ising systems

    Science.gov (United States)

    Maritan, Amos; Swift, Michael R.; Cieplak, Marek; Chan, Moses H. W.; Cole, Milton W.; Banavar, Jayanth R.

    1991-01-01

    An exact analysis of the Ising model with infinite-range interactions in a random field and a local mean-field theory in three dimensions is carried out leading to a phase diagram with several coexistence surfaces and lines of critical points. The results show that the phase diagram depends crucially on whether the distribution of random fields is symmetric or not. Thus, Ising-like phase transitions in a porous medium (the asymmetric case) are in a different universality class from the conventional random-field model (symmetric case).

  1. From Vision to Reality: 50 Years of Phased Array Development

    Science.gov (United States)

    2016-09-30

    conveyed the ability to send warheads to intercontinental distances so ballistic missile defense became a national concern. Missile defense would demand...southwest of Alaska. Its site and its long-range capability allow it to track satellites and to monitor ballistic missile flights in the Pacific...high-powered all- solid-state array. PAVE PAWS’ mission was warning of ballistic missile attack. It was built for the U.S. Air Force by the

  2. A Novel Monopulse Technique for Adaptive Phased Array Radar

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2017-01-01

    Full Text Available The monopulse angle measuring technique is widely adopted in radar systems due to its simplicity and speed in accurately acquiring a target’s angle. However, in a spatial adaptive array, beam distortion, due to adaptive beamforming, can result in serious deterioration of monopulse performance. In this paper, a novel constrained monopulse angle measuring algorithm is proposed for spatial adaptive arrays. This algorithm maintains the ability to suppress the unwanted signals without suffering from beam distortion. Compared with conventional adaptive monopulse methods, the proposed algorithm adopts a new form of constraint in forming the difference beam with the merit that it is more robust in most practical situations. At the same time, it also exhibits the simplicity of one-dimension monopulse, helping to make this algorithm even more appealing to use in adaptive planar arrays. The theoretical mean and variance of the proposed monopulse estimator is derived for theoretical analysis. Mathematical simulations are formulated to demonstrate the effectiveness and advantages of the proposed algorithm. Both theoretical analysis and simulation results show that the proposed algorithm can outperform the conventional adaptive monopulse methods in the presence of severe interference near the mainlobe.

  3. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...... phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from...

  4. Transmission phase control by stacked metal-dielectric hole array with two-dimensional geometric design.

    Science.gov (United States)

    Matsui, Takayuki; Miyazaki, Hideki T; Miura, Atsushi; Nomura, Tsuyoshi; Fujikawa, Hisayoshi; Sato, Kazuo; Ikeda, Naoki; Tsuya, Daiju; Ochiai, Masayuki; Sugimoto, Yoshimasa; Ozaki, Masanori; Hangyo, Masanori; Asakawa, Kiyoshi

    2012-07-02

    Transmission phase control is experimentally demonstrated using stacked metal-dielectric hole arrays with a two-dimensional geometric design. The transmission phase varies drastically with small frequency shifts due to structural resonances. Laterally propagating surface plasmon polaritons excited by the periodic hole array roughly determine the resonance frequency, whereas localized resonances in each hole determine the dispersion. The transmission phase at various frequencies is directly evaluated using interferometric microscopy, and the formation of an inclined wavefront is demonstrated using a beam steering element in which the hole shapes gradually change in-plane from square to circular.

  5. Modulation of electromagnetic fields by a depolarizer of random polarizer array

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Wang, Wei

    2016-01-01

    with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...

  6. Simple model to explain instabilities in passively-phased high-power fiber laser arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bochove, Erik J. [Air Force Research Laboratory, Kirtland Air Force Base, NM; Shakir, Sami A. [TASC, Inc.; Aceves, Alejandro B. [Southern Methodist University, Dallas; Braiman, Yehuda [ORNL; Deiterding, Ralf [ORNL; Miller, Casey A [ORNL; Colet, Pere R. [University of the Balearic Islands, Palma de Mallorca, Spain; Jacobo, Adrian [University of the Balearic Islands, Palma de Mallorca, Spain; Rhodes, Charles [Liberations Systems Management, Inc.

    2011-01-01

    We propose a simple physical mechanism to explain observed instabilities in the dynamics of passively phased fiber amplifier arrays that arises from two properties: First that a weak phase disturbance of the output field of the array is converted into a strong intensity disturbance through the mode-selective feedback mechanism. Second, that this intensity fluctuation regenerates a phase fluctuation due to the nonlinear properties of the amplifying media. At sufficiently high operating power levels this cyclic disturbance continues to grow upon each cavity round trip, creating instability. This simple picture is supported by the results of a linear stability analysis of the set of propagation and population rate equations, which are in good agreement with observed critical power levels. A third level of quantitative confirmation was obtained by comparison to the results of numerical integration of the original set of nonlinear equations. This predicted instability is entirely a property of passively phased arrays of more than one element.

  7. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  8. Optoelectronic Infrastructure for RF/Optical Phased Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optoelectronic integrated holds the key to higher performance, reduced mass and radiation-hard space systems. A special need is increased flexibility of phased...

  9. Theory and implementation of a very high throughput true random number generator in field programmable gate array.

    Science.gov (United States)

    Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao

    2016-04-01

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  10. Phase Centers of Subapertures in a Tapered Aperture Array.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.

  11. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders.

    Science.gov (United States)

    Szmyt, Wojciech; Guerra, Carlos; Utke, Ivo

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  12. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Directory of Open Access Journals (Sweden)

    Wojciech Szmyt

    2017-01-01

    Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  13. Method and apparatus for self-calibration and phasing of array antenna

    Science.gov (United States)

    Wu, C. (Inventor)

    1984-01-01

    A technique for self-calibrating and phasing a lens-feed array antenna, while normal operation is stopped, utilizes reflected energy of a continuous and coherent wave broadcast by a transmitter through a central feed while a phase controller advances the phase angles of reciprocal phase shifters in radiation electronics of the array elements at different rates to provide a distinct frequency modulation of electromagnetic wave energy returned by reflection in one mode and leakage in another mode from the radiation electronics of each array element. The composite return signal received by a synchronous receiver goes through a Fourier transform processing system and produces a response function for each antenna element. Compensation of the phase angles for the antenna elements required to conform the antenna response to a precomputed array pattern is derived from the reciprocal square root of the response functions for the antenna elements which, for a rectangular array of NXM elements, is a response function T(n,m). A third mode of calibration uses an external pilot tone from a separate antenna element. Respective responses are thus obtained from the three modes of calibration.

  14. A technique for the in situ phase calibration of in-duct axial microphone arrays

    Science.gov (United States)

    Lowis, C. R.; Joseph, P. F.; Sijtsma, P.

    2010-10-01

    In aeroengine noise experiments in-duct microphone arrays are often used to make detailed measurements of the sound field transmitted along the duct. The individual microphones in the array must be calibrated with respect to magnitude, and often more critically with respect to phase. Calibration is difficult to perform in situ due to the presence of the duct. This paper presents a technique to allow in situ phase calibration of axial microphone arrays. It relies on the observation that the measured cross-spectral pressure matrix at the array has a Hermitian Töplitz form in the case where the propagating duct modes are mutually incoherent. Using this property a system of equations can be written which, when solved, allows the phase calibration factors to be obtained. The technique is verified experimentally using a no-flow laboratory rig by comparing the phase calibration factors obtained with those measured in free-field conditions. The accuracy of the phase calibration factors obtained by the technique is limited by the degree of deviation of the measured cross-spectral matrix from Töplitz behaviour. In the experimental results shown this is less than 15° at duct frequencies below ka=25. The technique is a robust and rapid method for calibrating in-duct axial microphone arrays.

  15. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Directory of Open Access Journals (Sweden)

    Hun-Hee Kim

    2016-02-01

    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  16. Phased arrays: A strategy to lower the energy threshold for neutrinos

    Directory of Open Access Journals (Sweden)

    Wissel Stephanie

    2017-01-01

    Full Text Available In-ice radio arrays are optimized for detecting the highest energy, cosmogenic neutrinos expected to be produced though cosmic ray interactions with background photons. However, there are two expected populations of high energy neutrinos: the astrophysical flux observed by IceCube (~1 PeV and the cosmogenic flux (~ 1017 eV or 100 PeV. Typical radio arrays employ a noise-riding trigger, which limits their minimum energy threshold based on the background noise temperature of the ice. Phased radio arrays could lower the energy threshold by combining the signals from several channels before triggering, thereby improving the signal-to-noise at the trigger level. Reducing the energy threshold would allow radio experiments to more efficiently overlap with optical Cherenkov neutrino telescopes as well as for more efficient searches for cosmogenic neutrinos. We discuss the proposed technique and prototypical phased arrays deployed in an anechoic chamber and at Greenland’s Summit Station.

  17. Phased arrays: A strategy to lower the energy threshold for neutrinos

    Science.gov (United States)

    Wissel, Stephanie; Avva, Jessica; Bechtol, Keith; Chesebro, Tyler; Cremonesi, Linda; Gupta, Anusha; Ludwig, Andrew; Messino, Wesley; Miki, Christian; Nichol, Ryan; Oberla, Eric; Romero-Wolf, Andrew; Saltzberg, David; Schlupf, Chandler; Shipp, Nora; Varner, Gary; Vieregg, Abigail

    2017-03-01

    In-ice radio arrays are optimized for detecting the highest energy, cosmogenic neutrinos expected to be produced though cosmic ray interactions with background photons. However, there are two expected populations of high energy neutrinos: the astrophysical flux observed by IceCube ( 1 PeV) and the cosmogenic flux ( 1017 eV or 100 PeV). Typical radio arrays employ a noise-riding trigger, which limits their minimum energy threshold based on the background noise temperature of the ice. Phased radio arrays could lower the energy threshold by combining the signals from several channels before triggering, thereby improving the signal-to-noise at the trigger level. Reducing the energy threshold would allow radio experiments to more efficiently overlap with optical Cherenkov neutrino telescopes as well as for more efficient searches for cosmogenic neutrinos. We discuss the proposed technique and prototypical phased arrays deployed in an anechoic chamber and at Greenland's Summit Station.

  18. Single mode Lamb wave phased array beamforming with hybrid PZT-SLDV sensing

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu

    2014-04-01

    This paper presents a single Lamb mode phased array beamforming by using a hybrid piezoelectric transducer (PZT)-scanning laser Doppler vibrometer (SLDV) system. The array system consists of a surface mounted PZT to generate Lamb waves and a non-contact SLDV to acquire high spatial resolution time-space wavefield remotely. The time-space wavefield contains Lamb waves which can be generated from the PZT excitation, damage scattering, mode conversion, etc. A frequency-wavenumber (f-k) decomposition technique is used to decompose the miscellaneous Lamb waves into individual wave mode components and wave propagations in different directions. The f-k decomposition allows using a single wave component as the phased array input for beamforming. The single mode array beamforming methodology was verified through PZT-SLDV experimental tests on an aluminum plate with a bonded quartz rod as a simulated damage

  19. Automated Array Assembly, Phase II. Quarterly report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R. V.

    1978-10-01

    The purpose of the overall program is to establish technological readiness and provide verification for the elements of a manufacturing sequence which would ultimately be suitable for the large-scale production of silicon solar-array modules at a selling price of less than $500/kW. A program and process plan for accomplishing this objective was developed and put into operation during the first quarter. The processing sequence is described. Three junction-formation processes are under consideration; since our cost analysis shows that they do not differ greatly in cost, each should be considered for technical merits and possible future cost reduction. The progress made in the various process steps of the plan is described, and conclusions are presented. (WHK)

  20. Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Croxford, Anthony J.; Drinkwater, Bruce W.

    2017-05-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect material degradation and challenging defects, such as closed cracks. This paper describes an investigation into the performance of nonlinear ultrasonic imaging (NUI) for the monitoring of the early stages of fatigue crack growth. This technique, in conjunction with conventional array imaging, is applied to the periodic monitoring of steel compact tension specimens subjected to high cycle fatigue loading. The detection limits of these techniques are investigated. Their abilities to localise and detect small cracks are further quantified with the aid of micrography. The results suggest that NUI is more sensitive than conventional ultrasonic imaging to the microscale changes occurring at the early stages of failure, i.e. detectability starts c. 15% of fatigue life. In addition to early detection, the potential for NUI to deliver accurate sizing of fatigue cracks and monitor crack propagation is also presented.

  1. The new JET phased ICRH array: first experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bures, M.; Bhatnagar, V.; Brown, T.; Fechner, B.; Gormezano, C.; Kaye, A.; Lennholm, M.; Righi, E.; Rimini, F.; Sibley, A.; Start, D.; Wade, T. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Goulding, R. [Oak Ridge National Lab., TN (United States); Lamalle, P. [Ecole Royale Militaire, Brussels (Belgium). Lab. de Physique des Plasmas; Nguyen, F. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1994-07-01

    New ICRH antennas on JET were designed to couple to the new JET divertor plasma configurations and to improve the Fast Wave Current Drive (FWCD) capabilities. The A2 antenna consists of 4 straps whose currents can be phased at arbitrary angles. The real time automatic tuning acts on frequency, line length (line phase shifters) and stub length. Provision is made for the coupling resistance/plasma position feedback to accommodate the fast changes in antenna loading. The first coupling, tuning and heating results are reported in 0{pi}0{pi}, 0000 and 00{pi}{pi} phasing. A new antenna model is described, which was developed to simulate the measured antenna loading in terms of plasma parameters and to provide a starting point for the real time automatic tuning. 5 refs., 4 figs.

  2. A K/Ka band radiating element for Tx/Rx phased array

    KAUST Repository

    Sandhu, Ali Imran

    2017-01-20

    The paper presents a K/Ka band radiating element for TX/RX phased arrays. Dual band operations is obtained using a single radiating surface: a novel radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The array elements are optimized to scan the beam in excess of 50° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  3. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  4. Eigenmode analysis of phased-coupled VCSEL arrays using spatial coherence measurements.

    Science.gov (United States)

    Lamothe, Elodie; Lundeberg, Lars D A; Kapon, Eli

    2011-08-01

    We apply the modal coherence theory to evaluate the spatial mode structure of a 2×2 phase-coupled array of vertical cavity surface emitting lasers (VCSELs). The eigenmode structure is extracted for different pump currents by measuring the degree of spatial coherence of all VCSEL pairs in the array. The results reveal the impact of optical disorder and spatial hole burning on the modal discrimination. The approach is useful more generally for the evaluation of spatial mode content of other laser array. © 2011 Optical Society of America

  5. Coordinated Radar Resource Management for Networked Phased Array Radars

    Science.gov (United States)

    2014-12-01

    computed, and the detection of a target is determined based on a Monte Carlo test. For each successful target confirmation, a measurement report is...detection based on Monte Carlo test • add appropriate random perturbations to detec- tion measurements Radar Targets Environment Input Parameters... Fuente and J.R. Casar-Corredera. Optimal radar pulse scheduling using a neural network. In IEEE Int. Conf. Neural Networks, volume 7, pages 4558–4591

  6. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  7. Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna

    Science.gov (United States)

    Subbaraman, Harish (Inventor); Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor)

    2017-01-01

    A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.

  8. 3D differential phase-contrast microscopy with computational illumination using an LED array.

    Science.gov (United States)

    Tian, Lei; Wang, Jingyan; Waller, Laura

    2014-03-01

    We demonstrate 3D differential phase-contrast (DPC) microscopy, based on computational illumination with a programmable LED array. By capturing intensity images with various illumination angles generated by sequentially patterning an LED array source, we digitally refocus images through various depths via light field processing. The intensity differences from images taken at complementary illumination angles are then used to generate DPC images, which are related to the gradient of phase. The proposed method achieves 3D DPC with simple, inexpensive optics and no moving parts. We experimentally demonstrate our method by imaging a camel hair sample in 3D.

  9. Validating Phasing and Geometry of Large Focal Plane Arrays

    Science.gov (United States)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of

  10. Accuracy and uncertainty in random speckle modulation transfer function measurement of infrared focal plane arrays

    Science.gov (United States)

    Barnard, Kenneth J.; Jacobs, Eddie L.; Plummer, Philip J.

    2016-12-01

    This paper expands upon a previously reported random speckle technique for measuring the modulation transfer function of midwave infrared focal plane arrays by considering a number of factors that impact the accuracy of the estimated modulation transfer function. These factors arise from assumptions in the theoretical derivation and bias in the estimation procedure. Each factor is examined and guidelines are determined to maintain accuracy within 2% of the true value. The uncertainty of the measurement is found by applying a one-factor ANOVA analysis and confidence intervals are established for the results. The small magnitude of the confidence intervals indicates a very robust technique capable of distinguishing differences in modulation transfer function among focal plane arrays on the order of a few percent. This analysis directly indicates the high quality of the random speckle modulation transfer function measurement technique. The methodology is applied to a focal plane array and results are presented that emphasize the need for generating independent random speckle realizations to accurately assess measured values.

  11. Methods for determining infrasound phase velocity direction with an array of line sensors.

    Science.gov (United States)

    Walker, Kristoffer T; Zumberge, Mark A; Hedlin, Michael A H; Shearer, Peter M

    2008-10-01

    Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters.

  12. Field emitter array RF amplifier development project. Cathode technology development. Phase 1

    Science.gov (United States)

    Palmer, W. Devereux; McGuire, Gary E.

    1994-06-01

    This document presents the results of Phase I of the Field Emitter Array RF Amplifier Development Project. The primary goal of the Phase I performance period was the development of field emission cathodes with the following characteristics: 5 mA total emission current, 5 A/sq cm current density, operation at an applied voltage of less than 250 V, greater than 1 hour lifetime, and emission current modulation at 1 GHz or greater. The basic fabrication process for silicon field emitter arrays was defined during the first 18 months of the contract performance period. During the final 12 months of the contract, the process was refined using statistical process control, with the goal of maximizing electrical yield on large arrays. The resulting devices met each of the program performance criteria. Arrays of up to 232,630 emitters, the largest field emitter arrays in any material to date, were successfully fabricated and electrically tested. The emission currents measured from these devices were the highest reported in the literature for silicon field emitter arrays. Techniques for further enhancing performance through the deposition of low work function and metal coatings were developed. Recommended directions for further research were defined for implementation under ARPA leadership.

  13. Linear phased array of piezoelectric transducers for delamination monitoring in a composite laminate using Lamb waves

    Science.gov (United States)

    Rathod, Vivek T.; Chakraborty, Nibir; Roy Mahapatra, D.

    2011-04-01

    Applications of Linear Phased array concept have been extended from electromagnetic antennae to many other areas due to their capability to direct, magnify and pick up energy in and from desired directions. Apart from radar, optics and medical imaging, one such growing area is in the non-destructive testing of structures. The extensive use of linear array can be attributed to the attenuation of the waves generated in the structure due to inherent damping and loss in the materials and discontinuities. Linear phased arrays are used as actuator in ultrasonic imaging and diagnostics to magnify the energy at a given direction or point in the structure. In the present work the property of amplifying the wave generated in a particular direction is exploited and is studied on a carbon composite structure. Almost all of the existing imaging methods in context of phased array are based on through thickness and bulk wave modes. In the present research we employ Lamb wave which propagates in a doubly bounded media like structural panels. The spreading of energy in a composite laminate is studied in the form of lobe patterns obtained using amplitude of symmetric Lamb wave mode (S0) with a particular orientation of the linear array with fiber direction. The effect of damage in the form of a delamination in a CFRP composite plate on the lobe pattern is analyzed.

  14. Synthesis of Phase-Only Reconfigurable Linear Arrays Using Multiobjective Invasive Weed Optimization Based on Decomposition

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2014-01-01

    Full Text Available Synthesis of phase-only reconfigurable array aims at finding a common amplitude distribution and different phase distributions for the array to form different patterns. In this paper, the synthesis problem is formulated as a multiobjective optimization problem and solved by a new proposed algorithm MOEA/D-IWO. First, novel strategies are introduced in invasive weed optimization (IWO to make original IWO fit for solving multiobjective optimization problems; then, the modified IWO is integrated into the framework of the recently well proved competitive multiobjective optimization algorithm MOEA/D to form a new competitive MOEA/D-IWO algorithm. At last, two sets of experiments are carried out to illustrate the effectiveness of MOEA/D-IWO. In addition, MOEA/D-IWO is compared with MOEA/D-DE, a new version of MOEA/D. The comparing results show the superiority of MOEA/D-IWO and indicate its potential for solving the antenna array synthesis problems.

  15. Phase transitions for information diffusion in random clustered networks

    Science.gov (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin

    2016-09-01

    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  16. Further development of synthetic aperture real-time 3D scanning with a rotating phased array

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Gran, Fredrik

    2003-01-01

    In a precious paper we have presented an approach combing synthetic transmit aperture imaging with a rotating phased array. The method is implemented on a specially made Vermon transducer capable of rotating at 5 Hz. The center frequency of the transducer is 3.2 MHz, and the pitch is 0.22 mm. The...

  17. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  18. A 28 GHz FR-4 Compatible Phased Array Antenna for 5G Mobile Phone Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    The design of a 28 GHz phased array antenna for future fifth generation (5G) mobile-phone applications has been presented in this paper. The proposed antenna can be implemented using low cost FR-4 substrates, while maintaining good performance in terms of gain and efficiency. This is achieved...

  19. Design issues of an open scalable architecture for active phased array radars

    NARCIS (Netherlands)

    Huizing, A.G.

    2003-01-01

    An open scalable architecture will make it easier and quicker to adapt active phased array radar to new missions and platforms. This will provide radar manufacturers with larger markets, more commonality in radar systems, and a better continuity in radar production lines. The procurement of open

  20. Improving the resolution of three-dimensional acoustic imaging with planar phased arrays

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Jacobsen, Finn; Fernandez Grande, Efren

    2012-01-01

    This paper examines and compares two methods of improving the quality of three-dimensional beamforming with phased microphone arrays. The intended application is the detection of aerodynamic noise sources on wind turbines. Both methods employ Fourier based deconvolution. The first method involves...

  1. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    multiplexing readouts, but this has a natural limitation. High-content screening via image acquisition and analysis allows multiplexing of few parameters, but is connected to substantial time consumption and complex logistics. We report on integration of Reverse Phase Protein Arrays (RPPA)-based readouts...

  2. Comparison of 3-D Synthetic Aperture Phased-Array Ultrasound Imaging and Parallel Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-01-01

    This paper demonstrates that synthetic apertureimaging (SAI) can be used to achieve real-time 3-D ultra-sound phased-array imaging. It investigates whether SAI in-creases the image quality compared with the parallel beam-forming (PB) technique for real-time 3-D imaging. Data areobtained using bot...

  3. Switchable Phased Antenna Array with Passive Elements for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a reconfigurable phased antenna array system is constructed for the mobile terminals in the context of 5G communication system. The proposed antenna system operates at the resonance frequency of 28 GHz. The reconfigurability of the antenna element is achieved by using a passive slot...

  4. A Silicon-Germanium Single Chip Receiver for S-band Phased Array Radars

    NARCIS (Netherlands)

    Heij, W. de; Boer, A. de; Hek, A.P. de; Vliet, F.E. van

    2011-01-01

    A Silicon-Germanium single chip receiver has been developed for S-band phased array radars with 2-D digital beamforming. The complete receiver chain from the S-band RF input up to the low-IF output has been integrated on a single SiGe chip. The only external components required to complete the

  5. Simulation of a ring resonator-based optical beamformer system for phased array receive antennas

    NARCIS (Netherlands)

    Tijmes, M.R.; Meijerink, Arjan; Roeloffzen, C.G.H.; Bentum, Marinus Jan

    2009-01-01

    A new simulator tool is described that can be used in the field of RF photonics. It has been developed on the basis of a broadband, continuously tunable optical beamformer system for phased array receive antennas. The application that is considered in this paper is airborne satellite reception of

  6. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Nillesen, M.M.; Hansen, H.H.G.; Gerrits, I.H.; Thijssen, J.M.; Korte, C.L. de

    2009-01-01

    The goal of this study was to investigate the applicability of conventional 2-D displacement and strain imaging techniques to phased array radiofrequency (RF) data. Furthermore, the possible advantages of aligning and stretching techniques for the reduction of decorrelation artefacts was examined.

  7. Development of an integrated photonic beamformer for electronically-steered Ku-band phased array antenna

    NARCIS (Netherlands)

    Zhuang, L.; Marpaung, D.A.I.; Burla, M.; Boot, R.; Hulzinga, A.; Beeker, W.P.; Beeker, Willem; van Dijk, P.; Roeloffzen, C.G.H.

    2011-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) system for satellite communications is being developed within a Dutch Point One R&D Innovation Project “Broadband Satellite Communication Services on High-Speed Transport Vehicles‿, targeting

  8. Development of a broadband integrated optical beamformer for Ku-Band Phased Array Antennas

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; van Dijk, Paul; Marpaung, D.A.I.; Burla, M.; Zhuang, L.

    2012-01-01

    Currently an integrated photonic beamformer for electronically-steered Ku-band phased array antenna (PAA) systems for satellite communications is being developed, targeting continuous reception of the full DVB-S band (10.7- 12.75 GHz), squint-free and seamless beam steering, and polarization

  9. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  10. Single-random-phase holographic encryption of images

    Science.gov (United States)

    Tsang, P. W. M.

    2017-02-01

    In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.

  11. Evaluation of Methods for In-Situ Calibration of Field-Deployable Microphone Phased Arrays

    Science.gov (United States)

    Humphreys, William M.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.

    2017-01-01

    Current field-deployable microphone phased arrays for aeroacoustic flight testing require the placement of hundreds of individual sensors over a large area. Depending on the duration of the test campaign, the microphones may be required to stay deployed at the testing site for weeks or even months. This presents a challenge in regards to tracking the response (i.e., sensitivity) of the individual sensors as a function of time in order to evaluate the health of the array. To address this challenge, two different methods for in-situ tracking of microphone responses are described. The first relies on the use of an aerial sound source attached as a payload on a hovering small Unmanned Aerial System (sUAS) vehicle. The second relies on the use of individually excited ground-based sound sources strategically placed throughout the array pattern. Testing of the two methods was performed in microphone array deployments conducted at Fort A.P. Hill in 2015 and at Edwards Air Force Base in 2016. The results indicate that the drift in individual sensor responses can be tracked reasonably well using both methods. Thus, in-situ response tracking methods are useful as a diagnostic tool for monitoring the health of a phased array during long duration deployments.

  12. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    Science.gov (United States)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core-shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  13. Inspection design using 2D phased array, TFM and cueMAP software

    Science.gov (United States)

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-01

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  14. In Vivo Evaluations of a Phased Ultrasound Array for Transesophageal Cardiac Ablation

    Science.gov (United States)

    Jaiswal, Devina; Werner, Jacob; Park, Eun-Joo; Francischelli, David; Smith, Nadine Barrie

    2010-03-01

    Atrial fibrillation is one of the most common arrhythmias that affects over 2.2 million Americans each year. Catheter ablation, one of the effective treatments, has shown high rate of success in treating paroxysmal atrial fibrillation. Currently, radiofrequency which is being used for catheter ablation is an invasive procedure. Measurable morbidity and significant costs and time are associated with this modality of treatment of permanent or persistent atrial fibrillation. In order to address these issues, a transesophageal ultrasound applicator for noninvasive cardiac ablation was designed, developed and evaluated. The ultrasound energy delivered by the phased array was used to create a lesion in the myocardial tissue. Various factors, simulation results of transducer arrays, current transesophageal medical devices, and throat anatomy, were considered while designing a phased ultrasound transducer that can be inserted into the esophagus. For this research, a two-dimensional sparse phased array with flat tapered elements was fabricated and evaluated in in vivo experiments. Five pigs were anesthetized; the array was passed transesophagealy and positioned over the heart. An operating frequency of 1.6 MHz and 8˜15 minutes of array operation resulted in both single and multiple lesions on atrial and ventricular myocardium. The average size of lesions was 5.1±2.1 mm in diameter and 7.8±2.5 mm in length. Experimental results indicate that the array delivered sufficient power to produce ablation at the focal point while not grossly damaging the tissue surrounding the area of interest. These results demonstrate a potential application of the ultrasound applicator for noninvasive transesophageal cardiac surgery in atrial fibrillation treatment.

  15. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  16. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    OpenAIRE

    Ho, Kevin Ming-Jiang

    2014-01-01

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka- band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and prod...

  17. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  18. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    Science.gov (United States)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-01-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  19. High-speed phase modulation using the RPC method with a digital micromirror-array device

    Science.gov (United States)

    Rodrigo, Peter John; Perch-Nielsen, Ivan R.; Glückstad, Jesper

    2006-06-01

    An improved implementation of the reverse phase contrast (RPC) method for rapid optical transformation of amplitude patterns into spatially similar phase patterns using a high-speed digital micromirror-array device (DMD) is presented. Aside from its fast response, the DMD also provides an electronically adjustable and inherently aligned input iris that simplifies the optimization of the RPC system. In the RPC optimization, we illustrate good agreement between experimentally obtained and theoretically predicted optimal iris size. Finally, we demonstrate the conversion of a binary amplitude grating encoded on the DMD into a binary (0-π) phase grating.

  20. Switchable Phased Antenna Array with Passive Elements for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a reconfigurable phased antenna array system is constructed for the mobile terminals in the context of 5G communication system. The proposed antenna system operates at the resonance frequency of 28 GHz. The reconfigurability of the antenna element is achieved by using a passive slot...... antenna element with a switch. The passive element acts as a reflector when the switch is turned off, and thus, change in the main beam direction occurs. The antenna system consists of two sub-arrays on each of the short edges of the ground plane. The coverage efficiency of over 70 % at 10 dBi threshold...

  1. Random phase-free computer-generated hologram

    CERN Document Server

    Shimobaba, Tomoyoshi

    2015-01-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  2. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...

  3. Enhanced defect detection and sizing accuracy using matrix phased array ultrasonic tools

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Roger; Porter, Nancy; Todorov, Evgueni [Edison Welding Institute (EWI), Columbus, OH (United States); Lozev, Mark [BP, Naperville, IL (United States); Reverdy, Frederic [Centre d' Etudes Nucleaires de Saclay (NDT/CEA) Saclay (France). Nondestructive Testing; Benoist, Philippe [Centre d' Etudes Nucleaires de Saclay (NDE/CEA) Saclay (France); Dumas, Philippe [Imasonic, Besancon (France)

    2009-07-01

    Although ultrasonic testing inspection technology and tools have improved significantly, there is still a need for more reliable detection, monitoring, and accurate sizing of crack-like and planar defects, complex corrosion damage, and detection of secondary features within deformed pipe. Ultrasonic two dimensional (2D) matrix phased array technology offers some unique advantages that make the technology promising for improving detection and sizing of pipeline flaws resulting from welding or from in-service damage. Ultrasonic modeling and simulation has been conducted to evaluate the detection and sizing capabilities of 2D matrix arrays for various pipeline inspection concepts. Simulations have been performed using both flexible and rigid array probes. Inspection concepts using rigid probes were evaluated for inspections from both the outside and inside pipe surfaces, while flexible probes were evaluated primarily for inspection from the outside surface when dents or corrosion damage may limit the use of rigid probes. (author)

  4. Electronic transport in a one-dimensional random array of scatterers

    CERN Document Server

    Filinov, V S; Varga, I; Meier, T; Bonitz, M; Fortov, V E; Koch, S W

    2003-01-01

    The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated using a new numerical approach for the calculation of average values of quantum operators and time correlation functions in the Wigner representation. This approach combines both molecular dynamics and Monte Carlo methods and computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum correlation functions and spatial dispersions. Considering, as an application, a system with fixed scatterers, the results clearly demonstrate that the many-particle interaction between the electrons can lead to an enhancement of the conductivity at intermediate densities.

  5. Conservation laws in coupled multiplicative random arrays lead to $1/f$ noise

    CERN Document Server

    Thurner, S; Teich, M C; Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1997-01-01

    We consider the dynamic evolution of a coupled array of N multiplicative random variables. The magnitude of each is constrained by a lower bound w_0 and their sum is conserved. Analytical calculation shows that the simplest case, N=2 and w_0=0, exhibits a Lorentzian spectrum which gradually becomes fractal as w_0 increases. Simulation results for larger $N$ reveal fractal spectra for moderate to high values of w_0 and power-law amplitude fluctuations at all values. The results are applied to estimating the fractal exponents for cochlear-nerve-fiber action-potential sequences with remarkable success, using only two parameters.

  6. Instantaneous phase-stepping interferometry based on a pixelated micro-polarizer array

    Directory of Open Access Journals (Sweden)

    Satoru Yoneyama

    2016-07-01

    Full Text Available In this paper, we propose an instantaneous phase-stepping method for determining phase distribution of interference fringes utilizing a camera that is equipped with a micro-polarizer array on the sensor plane. An optical setup of polarization interferometry using a Mach–Zehnder interferometer with two polarizers is constructed. Light emerging from the interferometer is recorded using a camera that has a micro-polarizer array. This micro-polarizer array has four different optical axes. That is, an image obtained by the camera contains four types of information corresponding to four different optical axes of the polarizer. The four images separated from the image recorded by the camera are reconstructed using gray level interpolation. Subsequently, the distributions of the Stokes parameters that represent the state of polarization are calculated from the four images. The phase distribution of the interference fringe pattern produced by the Mach–Zehnder interferometer is then obtained from these Stokes parameters. The effectiveness of the proposed method is demonstrated by measuring a static carrier pattern and time-variant fringe patterns. It is emphasized that this method is applicable to time-variant phenomena because multiple exposures are unnecessary for sufficient data acquisition in the completion of the phase analysis.

  7. X-band printed phased array antennas using high-performance CNT/ion gel/Ag transistors

    Science.gov (United States)

    Grubb, Peter M.; Bidoky, Fazel; Mahajan, Ankit; Subbaraman, Harish; Li, Wentao; Frisbie, Daniel; Chen, Ray T.

    2016-05-01

    This paper reports a fully printed phased array antenna developed on a 125 micron thick flexible Kapton substrate. Switching for the phase delay lines is accomplished using printed carbon nanotube transistors with ion gel dielectric layers. Design of each element of the phased array antenna is reported, including a low loss constant impedance power divider, a phase shifter network, and patch antenna design. Steering of an X-band PAA operating at 10GHz from 0 degrees to 22.15 degrees is experimentally demonstrated. In order to completely package the array with electrical interconnects, a single substrate interconnect scheme is also investigated.

  8. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.

    Science.gov (United States)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-07-27

    We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.

  9. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  10. Multi-colorimetric sensor array for detection of explosives in gas and liquid phase

    Science.gov (United States)

    Kostesha, N.; Alstrøm, T. S.; Johnsen, C.; Nielsen, K. A.; Jeppesen, J. O.; Larsen, J.; Boisen, A.; Jakobsen, M. H.

    2011-05-01

    In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives. The technology is based on an array of chemoselective compounds immobilized on a solid support. Upon exposure to the analyte in suspicion the colorimetric array changes color. Each chosen compound reacts chemo-selectively with analytes of interest. A change in a color signature indicates the presence of unknown explosives and volatile organic compounds (VOCs). We are working towards the selection of compounds that undergo color changes in the presence of explosives and VOCs, as well as the development of an immobilization method for the molecules. Digital imaging of the colorimetric array before and after exposure to the analytes creates a color difference map which gives a unique fingerprint for each explosive and VOCs. Such sensing technology can be used for screening relevant explosives in a complex background as well as to distinguish mixtures of volatile organic compounds distributed in gas and liquid phases. This sensor array is inexpensive, and can potentially be produced as single use disposable.

  11. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays

    Directory of Open Access Journals (Sweden)

    Rajeev Thakur

    1996-01-01

    Full Text Available A number of applications on parallel computers deal with very large data sets that cannot fit in main memory. In such applications, data must be stored in files on disks and fetched into memory during program execution. Parallel programs with large out-of-core arrays stored in files must read/write smaller sections of the arrays from/to files. In this article, we describe a method for accessing sections of out-of-core arrays efficiently. Our method, the extended two-phase method, uses collective l/O: Processors cooperate to combine several l/O requests into fewer larger granularity requests, to reorder requests so that the file is accessed in proper sequence, and to eliminate simultaneous l/O requests for the same data. In addition, the l/O workload is divided among processors dynamically, depending on the access requests. We present performance results obtained from two real out-of-core parallel applications – matrix multiplication and a Laplace's equation solver – and several synthetic access patterns, all on the Intel Touchstone Delta. These results indicate that the extended two-phase method significantly outperformed a direct (noncollective method for accessing out-of-core array sections.

  12. A coherent through-wall MIMO phased array imaging radar based on time-duplexed switching

    Science.gov (United States)

    Chen, Qingchao; Chetty, Kevin; Brennan, Paul; Lok, Lai Bun; Ritchie, Matthiew; Woodbridge, Karl

    2017-05-01

    Through-the-Wall (TW) radar sensors are gaining increasing interest for security, surveillance and search and rescue applications. Additionally, the integration of Multiple-Input, Multiple-Output (MIMO) techniques with phased array radar is allowing higher performance at lower cost. In this paper we present a 4-by-4 TW MIMO phased array imaging radar operating at 2.4 GHz with 200 MHz bandwidth. To achieve high imaging resolution in a cost-effective manner, the 4 Tx and 4 Rx elements are used to synthesize a uniform linear array (ULA) of 16 virtual elements. Furthermore, the transmitter is based on a single-channel 4-element time-multiplexed switched array. In transmission, the radar utilizes frequency modulated continuous wave (FMCW) waveforms that undergo de-ramping on receive to allow digitization at relatively low sampling rates, which then simplifies the imaging process. This architecture has been designed for the short-range TW scenarios envisaged, and permits sufficient time to switch between antenna elements. The paper first outlines the system characteristics before describing the key signal processing and imaging algorithms which are based on traditional Fast Fourier Transform (FFT) processing. These techniques are implemented in LabVIEW software. Finally, we report results from an experimental campaign that investigated the imaging capabilities of the system and demonstrated the detection of personnel targets. Moreover, we show that multiple targets within a room with greater than approximately 1 meter separation can be distinguished from one another.

  13. A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds

    Science.gov (United States)

    Groves, Wavley M., III; Morgan, Matthew A.

    2017-08-01

    The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.

  14. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.

    2009-09-11

    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  15. Characteristic Assessments of the Phased Array UT System Developed by KHNP

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan-Hee; Jee, Dong-Hyun; Lee, Tae-Hun; Yoo, Hyun-Ju [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The ultrasonic testing (UT) is an important one of the nondestructive examination methods which are used for the in-service inspection in the nuclear power plant. It is mainly used for the inspection of welds in piping and nozzle for many components. Technologies for the ultrasonic testing have been advanced for the reduction of inspection time and the increase of inspection reliability. In the manual ultrasonic testing system, it is not easy to compare the variation of inspection signals over time, because the data cannot be stored during the inspection. For the purpose of inspecting nuclear power components, the KHNP developed a phased array UT system including pulser-receiver, AD converter, beam-former, phased array probe, and scanner with 3-directional degree of freedom. Characteristics of the KHNP PA system and the results of acquired signals are described in detail in this paper.

  16. Accurate azimuth estimates from a large aperture hydrophone array using T-phase waveforms

    Science.gov (United States)

    Hanson, Jeffrey A.; Given, Holly K.

    A simple method is described whereby station-to-source azimuths are estimated by fitting a plane wave to envelope functions of T-phases observed on a 5-element hydrophone array around Ascension Island, South Atlantic Ocean. When applied to a data set of 55 earthquakes of known location ranging between 2 and 45 degrees distance from Ascension Island, estimated azimuths have a standard deviation of 3.3 degrees from reference azimuths when 3 or more hydrophone elements are used. The standard deviation decreases to 1.8 degrees if T-phase data from all 5 hydrophone elements are used. We also investigate variations in predicted errors for different array geometries and arrival azimuths. This simple method is amenable to automation and can easily be incorporated into a global monitoring system.

  17. End-fire silicon optical phased array with half-wavelength spacing

    Science.gov (United States)

    Kossey, Michael R.; Rizk, Charbel; Foster, Amy C.

    2018-01-01

    We demonstrate an optical phased array with emitting elements spaced at half the operational wavelength. The device is a one-dimensional array fabricated on an integrated silicon platform for operation at a wavelength of 1.55 μm. Light is emitted end-fire from the chip edge where the waveguides are terminated. The innovative design and high confinement afforded by the silicon waveguides enables λ/2 spacing (775-nm pitch) at the output thereby eliminating grating lobes and maximizing the power in the main lobe. Steering is achieved by inducing a phase shift between the waveguide feeds via integrated thermo-optic heaters. The device forms a beam with a full-width half-maximum angular width of 17°, and we demonstrate beam steering over a 64° range limited only by the element factor.

  18. Phased-array intracardiac echocardiographic imaging of acute cardiovascular emergencies: Experimental studies in dogs.

    Science.gov (United States)

    Yamada, Elina; Zhang, Yi; Davies, Ray; Coddington, William; Kerber, Richard E

    2002-10-01

    We evaluated a newly developed phased-array intracardiac echocardiographic catheter. Our aim was to evaluate the imaging capability of this new ICE catheter in an animal model simulating acute cardiovascular abnormalities. ICE images were obtained from the right atrium during (1) acute left ventricular dysfunction; (2) acute coronary occlusion; (3) pericardial effusion and tamponade; and (4) pulmonary embolism. Left ventricular dysfunction, induced experimentally by halothane inhalation, resulted in a fall in echocardiography-calculated ejection fraction from 47% +/- 11% to 25% +/- 10%, P small as 15 mL. Right ventricular and atrial compression and respiratory variation in right ventricular inflow during tamponade were demonstrated. After injection of intravenous thrombin to create venous thromboembolism, we demonstrated right ventricular dilatation and dysfunction and thrombi attached to the tricuspid and pulmonary valves and in the pulmonary artery. This new phased-array ICE catheter may be a useful clinical tool for the diagnosis of heart failure, ischemia, tamponade, and pulmonary embolism.

  19. On the design of a planar phased array radar antenna architecture for space debris situational awareness

    OpenAIRE

    Garcia-Gasco Trujillo, Javier; Noval Sánchez de Toca, Alvaro; Montesinos Ortego, Ignacio; Fernández González, José Manuel; Sierra Pérez, Manuel

    2013-01-01

    The Space Situational Awareness (SSA) program from the European Space Agency (ESA) protects Europe's citizens and their satellite-based services by detecting space hazards. ESA Ground Systems (GS) division is currently designing a phased array radar composed of thousands of radiating elements for future stages of the SSA program [1]. The radar shall guarantee the detection of most of the Low Earth Orbit (LEO) space debris, providing a general map of space junk. While range accuracy is mainly ...

  20. Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED UNCLASSIFIED Doppler Compensation for Airborne Non-Side- Looking Phased-Array Radar Yunhan Dong National Security...side-looking modes, including the forward-looking mode. A simple Doppler compensation scheme is described, so that the Doppler frequency of mainlobe...clutter is shifted to zero and becomes range invariant, like the clutter data collected from the side-looking geometry. After Doppler compensation

  1. Relativistic Quasiparticle Random Phase Approximation in Deformed Nuclei

    OpenAIRE

    Pena Arteaga, Daniel

    2008-01-01

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogoliubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of th...

  2. Phase Synchronization for the Mid-Frequency Square Kilometre Array Telescope

    Science.gov (United States)

    Schediwy, Sascha; Gozzard, David; Stobie, Simon; Gravestock, Charles; Whitaker, Richard; Alachkar, Bassem; Malan, Sias; Boven, Paul; Grainge, Keith

    2018-01-01

    The Square Kilometre Array (SKA) project is an international effort to build the world’s most sensitive radio telescope operating in the 50 MHz to 14 GHz frequency range. Construction of the SKA has been divided into phases, with the first phase (SKA1) accounting for the first 10% of the telescope's receiving capacity. During SKA1, a low-frequency aperture array comprising over a hundred thousand individual dipole antenna elements will be constructed in Western Australia (SKA1-low), while an array of 197 parabolic-dish antennas, incorporating the 64 dishes of MeerKAT, will be constructed in South Africa (SKA1-mid).Radio telescope arrays such as the SKA require phase-coherent reference signals to be transmitted to each antenna site in the array. In the case of the SKA1-mid, these reference signals will be generated at a central site and transmitted to the antenna sites via fiber-optic cables up to 175 km in length. Environmental perturbations affect the optical path length of the fiber and act to degrade the phase stability of the reference signals received at the antennas, which has the ultimate effect of reducing the fidelity and dynamic range of the data.Since 2011, researchers at the University of Western Australia (UWA) have led the development of an actively-stabilized phase-synchronization system designed specifically to meet the scientific needs and technical challenges of the SKA telescope. Recently this system has been select as the official phase synchronization system for the SKA1-mid telescope. The system is an evolution of Atacama Large Millimeter Array’s distributed ‘photonic local oscillator system’, incorporating key advances made by the international frequency metrology community over the last decade, as well as novel innovations developed by UWA researchers.In this presentation I will describe the technical details of the system; outline how the system's performance was tested using metrology techniques in a laboratory setting, on 186 km

  3. Wireless Power Transfer to a Microaerial Vehicle with a Microwave Active Phased Array

    Directory of Open Access Journals (Sweden)

    Shotaro Nako

    2014-01-01

    Full Text Available A wireless power transfer system using a microwave active phased array was developed. In the system, power is transferred to a circling microaerial vehicle (MAV by a microwave beam of 5.8 GHz, which is formed and directed to the MAV using an active phased array antenna. The MAV is expected to support observation of areas that humans cannot reach. The power beam is formed by the phased array with eight antenna elements. Input power is about 5.6 W. The peak power density at 1,500 mm altitude was 2.63 mW/cm2. The power is sent to a circling MAV. Therefore, the transfer beam should be polarized circularly to achieve a constant power supply independent of its yaw angle. To minimize the polarization loss, a sequentially routed antenna (SRA was applied to the transmitter antenna. Results show that the axial ratio of 0.440 dB was accomplished and that power fluctuation was kept below 1%.

  4. Investigation on Phase Shifting Effect on The Voltage Output of Piezoelectric Cantilever Array

    Science.gov (United States)

    Jing, B. Y.; Leong, K. S.

    2017-06-01

    This paper analyses the phase shifting of the output waveform produced by piezoelectric cantilevers under a range of vibration frequencies. The phase shift of four piezoelectric cantilevers with different resonant frequency are inspected while it is excited with the vibration from the electrodynamics shaker at a range of frequencies from 100 Hz to 500 Hz with the acceleration level (g-force) fixed at constant magnitude of 1g-level (9.81 m/s2). Time different and Lissajous pattern methods were used in this research to measure the phase shift of the output waveform. Both methods show similar result where the major phase shift happened at the resonant frequency of respective cantilevers. The phase difference remains low around 0 degrees or in other term in phase before the resonant frequency of the cantilever. When the frequency of the vibration source approaches the resonant frequency of respective cantilever, the phase different start to increase rapidly and reach 180 degree which is out of phase after the resonant frequency. This major phase shifting contributes to the significant rise of the gap in between the peaks formed when multiple piezoelectric cantilevers are connected together. As a result, it indirectly improves the output performance of the piezoelectric cantilevers array.

  5. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    ... (the Electro-optic Sensor Network, or ESN) for the performance evaluation of phased antenna arrays at the end of their development/production cycle, and furthermore, for onsite test and calibration of deployed large-scale phased arrays...

  6. Reconstruction of a random phase dynamics network from observations

    Science.gov (United States)

    Pikovsky, A.

    2018-01-01

    We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.

  7. Extension of DAMAS Phased Array Processing for Spatial Coherence Determination (DAMAS-C)

    Science.gov (United States)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2006-01-01

    The present study reports a new development of the DAMAS microphone phased array processing methodology that allows the determination and separation of coherent and incoherent noise source distributions. In 2004, a Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) was developed which decoupled the array design and processing influence from the noise being measured, using a simple and robust algorithm. In 2005, three-dimensional applications of DAMAS were examined. DAMAS has been shown to render an unambiguous quantitative determination of acoustic source position and strength. However, an underlying premise of DAMAS, as well as that of classical array beamforming methodology, is that the noise regions under study are distributions of statistically independent sources. The present development, called DAMAS-C, extends the basic approach to include coherence definition between noise sources. The solutions incorporate cross-beamforming array measurements over the survey region. While the resulting inverse problem can be large and the iteration solution computationally demanding, it solves problems no other technique can approach. DAMAS-C is validated using noise source simulations and is applied to airframe flap noise test results.

  8. A Tutorial on Optical Feeding of Millimeter-Wave Phased Array Antennas for Communication Applications

    Directory of Open Access Journals (Sweden)

    Ivan Aldaya

    2015-01-01

    Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.

  9. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive. We show that dimerization produces distinct types of moving phases which depend on the direction of the driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions, a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the critical depinning force. The jamming can also cause unusual effects such as an increase in the critical depinning force when the size of the pinning sites is reduced.

  10. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  11. A Planar Switchable 3-D-Coverage Phased Array Antenna and Its User Effects for 28-GHz Mobile Terminal Applications

    DEFF Research Database (Denmark)

    Zhang, Shuai; Chen, Xiaoming; Syrytsin, Igor A.

    2017-01-01

    This paper introduces a planar switchable 3D-coverage phased array for 28 GHz mobile terminal applications. In order to realize 3D-coverage beam scan with a simple planar array, chassis surface waves are efficiently excited and controlled by three identical slot subarrays. Three subarrays switch...

  12. Pressure-driven reverse-phase liquid chromatography separations in ordered non-porous pillar array columns

    NARCIS (Netherlands)

    de Malsche, Wim; Eghbali, Hamed; Clicq, David; Vangelooven, Joris; Gardeniers, Johannes G.E.; Desmet, Gert

    2007-01-01

    Building upon the micromachined column idea proposed by the group of Regnier in 1998, we report on the first high-resolution reversed-phase separations in micromachined pillar array columns under pressure-driven LC conditions. A three component mixture could be separated in 3 s using arrays of

  13. Fiber-optic transmission system information for the testing of active phased antenna arrays in an anechoic chamber.

    Science.gov (United States)

    Saveleiv, I. K.; Sharova, N. V.; Tarasenko, M. Yu; Yalunina, T. R.; Davydov, V. V.; Rud’, V. Yu

    2017-11-01

    The results of the research of the developed fiber-optic transmission systems for analog high frequency signal are represented. On its basis, a new method to identify various structural defects in the active phased antenna arrays is elaborated.

  14. Wide operation range in-phase coherently coupled vertical cavity surface emitting laser array based on proton implantation.

    Science.gov (United States)

    Xun, Meng; Xu, Chen; Deng, Jun; Xie, Yiyang; Jiang, Guoqing; Wang, Jun; Xu, Kun; Chen, Hongda

    2015-05-15

    In-phase coherently coupled vertical cavity surface emitting laser (VCSEL) hexagonal arrays were fabricated using proton implantation. The near-field profiles, far-field profiles, and emission spectra under different injection currents were tested and analyzed. The arrays can maintain in-phase single mode in a considerably wide current range from 10 mA (I(th)) to 35 mA (3.5×I(th)), exhibiting excellent beam quality. The far-field divergence angle of the in-phase coupled array is 2.5 degrees. Approximately 29% of total power is localized in the central lobe. Compared with square structure arrays, hexagonal arrays can maintain a more stable in-phase mode because of stronger coupling among the elements. The maximum output power of 4.9 mW was obtained under pulse wave condition. The simulation of far-field was carried out to match the in-phase operation test results. The performance enhancement of the array is attainable if the condition of heat dissipation is better. The process procedure of proton implantation is relatively simple and of low cost. It can be used as an alternative to coherently coupled array implementations.

  15. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  16. Radiating Elements for Shared Aperture Tx/Rx Phased Arrays at K/Ka Band

    KAUST Repository

    Sandhu, Ali Imran

    2016-04-11

    A dual band, Tx/Rx, self-diplexing phased array is presented. The antenna has been designed to cover Tx/Rx satellite communications at K/Ka band with a frequency ratio 1.5:1. To obtain dual band operations with a single radiating surface, a novel dual band radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The proposed configuration reduces the number of radiating elements required by other solutions while avoiding the insurgence of grating lobes. The tightly packed arrangement of the elements poses many integration issues, which are solved with a novel integration technique. The array elements are optimized to scan the beam in excess of ° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  17. FPGA-based Low Latency Inverse QRD Architecture for Adaptive Beamforming in Phased Array Radars

    Directory of Open Access Journals (Sweden)

    R. Irfan

    2017-09-01

    Full Text Available The main objective of this paper is to facilitate the adaptive beamforming which is one of the most challenging task in phased array radars receivers. Recursive least square (RLS is considered as the most well suited adaptive algorithm for the applications where beamforming is mandatory, because of its good numerical properties and convergence rate. In this paper, some RLS variants are discussed and the most numerically suitable algorithm Inverse QRD is selected for efficient adaptive beamforming. A novel architecture for IQRD RLS is also presented, which offers low latency and low area occupation for Field Programmable Gate Array (FPGA implementation. This approach reduces the computations by utilizing the standard pipelining methodology. Hence, efficient adder and multipliers and LUT based solution for square root and division, has highly enhanced the performance of the algorithm. The proposed IQRD RLS architecture has been coded in Verilog and analyze its performance in terms of throughput, hardware resources and efficiency.

  18. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  19. A two-stage noise source identification technique based on a farfield random parametric array.

    Science.gov (United States)

    Bai, Mingsian R; Chen, You Siang; Lo, Yi-Yang

    2017-05-01

    A farfield random array is implemented for noise source identification. Microphone positions are optimized, with the aid of the simulated annealing method. A two-stage localization and separation algorithm is devised on the basis of the equivalent source method (ESM). In the localization stage, the active source regions are located by using the delay-and-sum method, followed by a parametric localization procedure, stochastic maximum likelihood algorithm. Multidimensional nonlinear optimization is exploited in the bearing estimation process. In the separation stage, source amplitudes are extracted by formulating an inverse problem based on the preceding source bearings identified. The number of equivalent sources is selected to be less than that of microphones to render an overdetermined problem which can be readily solved by using the Tikhonov regularization. Alternatively, the separation problem can be augmented into an underdetermined problem which can be solved by using the compressive sensing technique. Traditionally, farfield arrays only give a relative distribution of source field. However, by using the proposed method, the acoustic variables including sound pressure, particle velocity, sound intensity, and sound power can be calculated based on ESM. Numerical and experimental results of several objective and subjective tests are presented.

  20. Stable switching of resistive random access memory on the nanotip array electrodes

    KAUST Repository

    Tsai, Kun-Tong

    2016-09-13

    The formation/rupture of conducting filaments (CFs) in resistive random access memory (ReRAM) materials tune the electrical conductivities non-volatilely and are largely affected by its material composition [1], internal configurations [2] and external environments [3,4]. Therefore, controlling repetitive formation/rupture of CF as well as the spatial uniformity of formed CF are fundamentally important for improving the resistive switching (RS) performance. In this context, we have shown that by adding a field initiator, typically a textured electrode, both performance and switching uniformity of ReRAMs can be improved dramatically [5]. In addition, despite its promising characteristics, the scalable fabrication and structural homogeneity of such nanostructured electrodes are still lacking or unattainable, making miniaturization of ReRAM devices an exceeding challenge. Here, we employ nanostructured electrode (nanotip arrays, extremely uniform) formed spontaneously via a self-organized process to improve the ZnO ReRAM switching characteristics.

  1. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Science.gov (United States)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  2. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  3. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    Directory of Open Access Journals (Sweden)

    Yoichi Ochiai

    Full Text Available The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  4. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    Science.gov (United States)

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  5. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    Science.gov (United States)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  6. RF Photonic, In-Situ, Real-Time Phased Array Antenna Calibration System

    Science.gov (United States)

    2010-11-22

    2008, pp. 3829-3834. [10] Wake, D.; Walker, N.G., Smith, I. C.; "Zero-bias edge-coupled InGaAs photodiodes in millimetre - wave radio-fibre systems...23 Figure 3-3: Simulation model used to study the voltage induced on a diode placed across the gap of an...array have a standard deviation of less than 0.3 dB for magnitude and less than 2.5° for phase. The average standard deviation across the channels as a

  7. Interference mitigation for simultaneous transmit and receive applications on digital phased array systems

    Science.gov (United States)

    Snow, Trevor M.

    As analog-to-digital (ADC) and digital-to-analog conversion (DAC) technologies become cheaper and digital processing capabilities improve, phased array systems with digital transceivers at every element will become more commonplace. These architectures offer greater capability over traditional analog systems and enable advanced applications such as multiple-input, multiple-output (MIMO) communications, adaptive beamforming, space-time adaptive processing (STAP), and MIMO for radar. Capabilities for such systems are still limited by the need for isolating self-interference from transmitters at co-located receivers. The typical approach of time-sharing the antenna aperture between transmitters and receivers works but leaves the receivers blind for a period of time. For full-duplex operation, some systems use separate frequency bands for transmission and reception, but these require fixed filtering which reduces the system's ability to adapt to its environment and is also an inefficient use of spectral resources. To that end, tunable, high quality-factor filters are used for sub-band isolation and protect receivers while allowing open reception at other frequencies. For more flexibility, another emergent area of related research has focused on co-located spatial isolation using multiple antennas and direct injection of interference cancellation signals into receivers, which enables same-frequency full-duplex operation. With all these methods, self-interference must be reduced by an amount that prevents saturation of the ADC. Intermodulation products generated in the receiver in this process can potentially be problematic, as certain intermodulation products may appear to come from a particular angle and cohere in the beamformer. This work explores various digital phased array architectures and the how the flexibility afforded by an all-digital beamforming architecture, layered with other methods of isolation, can be used to reduce self-interference within the system

  8. Sparsity-based super-resolution and phase-retrieval in waveguide arrays.

    Science.gov (United States)

    Shechtman, Yoav; Small, Eran; Lahini, Yoav; Verbin, Mor; Eldar, Yonina C; Silberberg, Yaron; Segev, Mordechai

    2013-10-07

    We present a scheme for recovering the complex input field launched into a waveguide array, from partial measurements of its output intensity, given advance knowledge that the input is sparse. In spite of the fact that in general the inversion problem is ill-conditioned, we demonstrate experimentally and in simulations that the prior knowledge of sparsity helps overcome the loss of information. Our method is based on GESPAR, a recently proposed efficient phase retrieval algorithm. Possible applications include optical interconnects and quantum state tomography, and the ideas are extendable to other multiple input and multiple output (MIMO) communication schemes.

  9. Optical double image security using random phase fractional Fourier domain encoding and phase-retrieval algorithm

    Science.gov (United States)

    Rajput, Sudheesh K.; Nishchal, Naveen K.

    2017-04-01

    We propose a novel security scheme based on the double random phase fractional domain encoding (DRPE) and modified Gerchberg-Saxton (G-S) phase retrieval algorithm for securing two images simultaneously. Any one of the images to be encrypted is converted into a phase-only image using modified G-S algorithm and this function is used as a key for encrypting another image. The original images are retrieved employing the concept of known-plaintext attack and following the DRPE decryption steps with all correct keys. The proposed scheme is also used for encryption of two color images with the help of convolution theorem and phase-truncated fractional Fourier transform. With some modification, the scheme is extended for simultaneous encryption of gray-scale and color images. As a proof-of-concept, simulation results have been presented for securing two gray-scale images, two color images, and simultaneous gray-scale and color images.

  10. Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables

    Directory of Open Access Journals (Sweden)

    Dug Hun Hong

    1999-01-01

    Full Text Available Let {Xij} be a double sequence of pairwise independent random variables. If P{|Xmn|≥t}≤P{|X|≥t} for all nonnegative real numbers t and E|X|p(log+|X|3<∞, for 1array of random variables under the conditions E|X|p(log+|X|r+1<∞,E|X|p(log+|X|r−1<∞, respectively, thus, extending Choi and Sung's result [1] of the one-dimensional case.

  11. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  12. A Novel Encoded Excitation Scheme in a Phased Array for The Improving Data Acquisition Rate

    Directory of Open Access Journals (Sweden)

    César Gutiérrez-Fernández

    2013-12-01

    Full Text Available One of the challenges of phased array (PA ultrasonic imaging systems is their limited capability to deal with real-time applications, such as echocardiography and obstetrics. In its most basic outline, these systems require emitting and receiving with the entire array for each image line to be acquired; therefore, with many image lines, a higher acquisition time and a lower frame rate. This constraint requires one to find alternatives to reduce the total number of emissions needed to obtain the whole image. In this work, we propose a new PA scheme based on the Code Division Multiple Access (CDMA technique, where a different code is assigned to each steering direction, allowing the array to emit in several directions simultaneously. However, the use of encoding techniques produces a reduction of the image contrast because of the interferences between codes. To solve this, a new scheme based on merging several images is proposed, allowing the system to get close to the theoretical maximum frame rate, as well as to limit the loss of contrast, intrinsic to the technique.

  13. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    Science.gov (United States)

    Guo, Ke; Lozano, Gabriel; Verschuuren, Marc A.; Gómez Rivas, Jaime

    2015-08-01

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  14. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    Science.gov (United States)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  15. Three-dimensional Mid-air Acoustic Manipulation by Ultrasonic Phased Arrays

    CERN Document Server

    Ochiai, Yoichi; Rekimoto, Jun

    2013-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by oppose...

  16. Numerical and experimental simulation of linear shear piezoelectric phased arrays for structural health monitoring

    Science.gov (United States)

    Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui

    2017-04-01

    A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.

  17. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)

    2017-08-15

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)

  18. Phased Array Ultrasound System for Planar Flow Mapping in Liquid Metals.

    Science.gov (United States)

    Mader, Kevin; Nauber, Richard; Galindo, Vladimir; Beyer, Hannes; Buttner, Lars; Eckert, Sven; Czarske, Jurgen

    2017-09-01

    Controllable magnetic fields can be used to optimize flows in technical and industrial processes involving liquid metals in order to improve quality and yield. However, experimental studies in magnetohydrodynamics often involve complex, turbulent flows and require planar, two-component (2c) velocity measurements through only one acoustical access. We present the phased array ultrasound Doppler velocimeter as a modular research platform for flow mapping in liquid metals. It combines the pulse wave Doppler method with the phased array technique to adaptively focus the ultrasound beam. This makes it possible to resolve smaller flow structures in planar measurements compared with fixed-beam sensors and enables 2c flow mapping with only one acoustical access via the cross beam technique. From simultaneously measured 2-D velocity fields, quantities for turbulence characterization can be derived. The capabilities of this measurement system are demonstrated through measurements in the alloy gallium-indium-tin at room temperature. The 2-D, 2c velocity measurements of a flow in a cubic vessel driven by a rotating magnetic field (RMF) with a spatial resolution of up to 2.2 mm are presented. The measurement results are in good agreement with a semianalytical simulation. As a highlight, two-point correlation functions of the velocity field for different magnitudes of the RMF are presented.

  19. Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays

    Science.gov (United States)

    Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian; Yue, Jason

    2017-08-01

    We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T_p, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T_n˜ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ˜ 10^{-9}{-}10^{-7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory.

  20. RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays.

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-12-22

    Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1,000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  1. Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael

    2016-01-01

    Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us

  2. Measuring the wavefront distortion of a phased-array laser radar by using a real-time optoelectronic measurement system

    Science.gov (United States)

    Zheng, Chunyan; Wu, Jian

    2009-11-01

    A real-time optoelectronic measurement system is proposed to measure the wavefront distortions of scanning beams of a phased-array laser radar. This measurement system includes electric control rotating and translating platforms and a cyclic radial shearing interferometer(CRSI). CRSI is an effective interferometry to mesure the laser wavefront. A inversion algorithm is used to precisely reconstruct wavefront phase distribution from interferograms generated by the CRSI. An actual experiment of laser wavefront distortion measurement is implemented successfully. The experimental results show that this optoelectromic measurement system can measure laser wavefront distortion of a phased-array laser radar in accuracy and in real time.

  3. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    Science.gov (United States)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the

  4. Improvement of the image quality of random phase--free holography using an iterative method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in the amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.

  5. Analytic interatomic forces in the random phase approximation

    CERN Document Server

    Ramberger, Benjamin; Kresse, Georg

    2016-01-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the GW approximation. This relationship allows to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  6. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    Science.gov (United States)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  7. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures

    Science.gov (United States)

    Rosnitskiy, P. B.; Gavrilov, L. R.; Yuldashev, P. V.; Sapozhnikov, O. A.; Khokhlova, V. A.

    2017-09-01

    A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient's head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.

  8. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  9. Nonvolatile Resistance Random Access Memory Devices Based on ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2015-02-01

    Full Text Available In this paper, a nonvolatile resistance random access memory (RRAM device based on ZnO nanorod arrays has been fabricated and characterized. Vertically aligned ZnO nanorod layers (NRLs were deposited on indium tin oxide (ITO electrodes using a hydrothermal process/ chemical bath deposition (CBD. It can be found the Ag/ZnO NRL/ITO capacitor exhibits bipolar resistive switching behavior. The resistive switching behavior may be related to the oxygen vacancies and/or zinc interstitials confined on the surface of the ZnO NRs, giving rise to the formation of straight and extensible conducting path along each ZnO NR. Furthermore, superior stability in resistive switching characteristics was also observed. Both growing times and annealing times were investigated and annealing was done in oxygen for 3, 6 and 9 minutes at different temperatures. For ZnO nanorods that had been annealed for 6 minutes the forming voltage was about 6.06V, the Set voltage was about 3.25V and the Reset voltage was -2.78V. The original resistance was 7×106Ω. The resistance in the low-resistance state was 108Ω and in the high-resistance state was 2016Ω, the resistance ratio was 18.7.

  10. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Science.gov (United States)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  11. Modeling and experimental analysis of phased array synthetic jet cross-flow interactions

    Science.gov (United States)

    Hasnain, Zohaib

    developed from the full momentum equations. Analytical methods to solve these reduced order models were then implemented in order to cut down on solution time. A wave equation based solution to the stream and vorticity formulation of the momentum equations was implemented to predict SJA behavior. For the experimental component of the project, a finite span high aspect ratio orifice SJA was designed and characterized through Constant Temperature Anemometry (CTA). Two of these SJA were then placed in close proximity to one another. The relative phase of operation between the two jets was altered and the resulting flow field was measured through Particle Image Velocimetry (PIV). This process was repeated for different sets of array spacing, and SJA to cross-flow velocity ratio. For specific choices of these parameters a 40% increase in momentum addition was observed. The experimental results were used to validate the modeling techniques. In general reasonable agreement between the modeling and experiment was observed in specific domains of the flow field.

  12. Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology

    Directory of Open Access Journals (Sweden)

    Qiuqiu WEN

    2017-06-01

    Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.

  13. Hybridization of Cognitive Radar and Phased Array Radar Having Low Probability of Intercept Transmit Beamforming

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-01-01

    Full Text Available A novel design of a cognitive radar (CR hybridized with a phased array radar (PAR having a low probability of intercept (LPI transmit beam forming is proposed. PAR directed high gain property reveals its position to interceptors. Hence, the PAR high gain scanned beam patterns, over the entire surveillance region, are spoiled to get the series of low gain basis patterns. For unaffected array detection performance, these basis patterns are linearly combined to synthesize the high gain beam pattern in the desired direction using the set of weight. Genetic algorithm (GA based evolutionary computing technique finds these weights offline and stores to memory. The emerging CR technology, having distinct properties (i.e., information feedback, memory, and processing at receiver and transmitter, is hybridized with PAR having LPI property. The proposed radar receiver estimates the interceptor range and the direction of arrival (DOA, using the extended Kalman filter (EKF and the GA, respectively, and sends as feedback to transmitter. Selector block in transmitter gets appropriate weights from memory to synthesize the high gain beam pattern in accordance with the interceptor range and the direction. Simulations and the results validate the ability of the proposed radar.

  14. 3D Vector Velocity Estimation using a 2D Phased Array

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2011-01-01

    of using the TO method for estimation 3D velocity vectors, and the proposed decoupling is demonstrated. A 64x64 and a 32x32 elements transducer are emulated using Field II. Plug flow with a speed of 1 m/s in a small region is rotated in the XY -plane. A binary flow example with [vx,vy]=[1,0] and [0,1] m...... transverse to the ultrasound beam, which enables the estimation of the transverse velocity. To expand the method from 2D to 3D, it is proposed to decouple the velocity estimation into separate estimates of vx, vy, and vz in combination with a 2D phased matrix array. Through simulations the feasibility...... vector estimation can be decoupled into separate estimates of vx, vy, and vz....

  15. Automated Array Assembly, Phase II. Quarterly report No. 5, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R. V.

    1979-03-01

    The work reported represents a new phase of activity directed toward a cost and performance evaluation of three manufacturing sequences designed to convert silicon sheet and wafers into solar-cell array modules. The details of these sequences are described, and a near-term cost analysis for each is given. The progress made during this quarter in materials acquisition, mask design, equipment setup and qualification, process verification and refinement, and new equipment design and construction is described. Some highlights are: installation and qualification of a production model screen printer for thick-film metallization and autocoater for spray-on antireflection (AR) coating; laminations of three 4-ft-square double-glass panels; and design and construction of an automatic electrical test system. The status of the overall program plan is discussed and plans for the next quarter are outlined.

  16. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    Science.gov (United States)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  17. Evaluation of phased array TOFD capability for the inspection of LWR internal components

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Ichiro [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-12-01

    As correct evaluation on fault size (sizing) is essential for safe and stable operation of nuclear power generation plants, it is well-known that conventional fault sizing using super sonic wave is not necessarily excellent because of dependence of material faults and operator skillfulness. The TOFD method is recently focussed as a method capable of improving accuracy of the conventional fault size evaluation methods, of which performance is evaluated at wide area of applications and which have been supplied to actual uses. Here was introduced on adaptability evaluation of fracture sizing against apparatus in reactor of BWR using the TOFD method, in a center of results using phased array TOFD method. As a result, it was found that the TOFD method had in general better sizing accuracy than that of conventional terminal echo method, but could not say to have sufficient data on sizing of natural faults, especially of faults at welded portions. (G.K.)

  18. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Qiang; Bruce Buchholz, D. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Zhou, Wei [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Ocola, Leonidas E. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439 (United States); Sakoda, Kazuaki [NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Chang, Robert P. H., E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States)

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  19. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    Science.gov (United States)

    Li, Shi-Qiang; Zhou, Wei; Bruce Buchholz, D.; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-01

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  20. AN ULTRASONIC PHASED ARRAY EVALUATION OF CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing performance of the phased-array (PA) ultrasonic testing (UT) methods applied. Four different custom-made PA probes were employed in this study, operating nominally at 800 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz center frequencies. The CASS PZR surge-line specimens were polished and chemically etched to bring out the microstructures of both pipe and elbow segments. Additional studies were conducted and documented to address baseline CASS material noise and observe possible ultrasonic beam redirection phenomena.

  1. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  2. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.

    Science.gov (United States)

    Yu, Ji Hoon; Chen, Hung-Shan; Chen, Po-Ju; Song, Ki Hoon; Noh, Seong Cheol; Lee, Jae Myeong; Ren, Hongwen; Lin, Yi-Hsin; Lee, Seung Hee

    2015-06-29

    Electrically tunable focusing microlens arrays based on polarization independent optical phase of nano liquid crystal droplets dispersed in polymer matrix are demonstrated. Such an optical medium is optically isotropic which is so-called an optically isotropic liquid crystals (OILC). We not only discuss the optical theory of OILC, but also demonstrate polarization independent optical phase modulation based on the OILC. The experimental results and analytical discussion show that the optical phase of OILC microlens arrays results from mainly orientational birefringence which is much larger than the electric-field-induced birefringence (or Kerr effect). The response time of OILC microlens arrays is fast~5.3ms and the tunable focal length ranges from 3.4 mm to 3.8 mm. The potential applications are light field imaging systems, 3D integrating imaging systems and devices for augment reality.

  3. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  4. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  5. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Hennessy Bryan T

    2008-12-01

    Full Text Available Abstract Background Reverse Phase Protein Arrays (RPPA are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML. RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  6. Examination of measurement and its method of compensation of the sensitivity distribution using phased array coil for body scan

    CERN Document Server

    Kimura, T; Iizuka, A; Taniguchi, Y; Ishikuro, A; Hongo, T; Inoue, H; Ogura, A

    2003-01-01

    The influence on the quality of images by measurement of a sensitivity distribution and the use of a sensitivity compensation filter was considered using an opposite-type phased array coil and volume-type phased array coil. With the opposite-type phased array coil, the relation between coil interval and filter was investigated for the image intensity correction (IIC) filter, surface coil intensity correction (SCIC) filter (GE), and the Normalize filter (SIEMENS). The SCIC filter and Normalize filter showed distance dependability over the coil interval of signal-to-noise ratio (SNR) and uniformity was observed, and the existence of an optimal coil interval was suggested. Moreover, with the IIC filter, distance dependability over a coil interval was small, and the decrease in contrast with use was remarkable. On the other hand, with the volume-type phased array coil, the overlap of an array element was investigated to determine the influence it had on sensitivity distribution. Although the value stabilized in t...

  7. SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR

    Science.gov (United States)

    Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.

    2012-01-01

    In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.

  8. True-time-delay photonic beamformer for an L-band phased array radar

    Science.gov (United States)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  9. Low-Cost Planar MM-Wave Phased Array Antenna for Use in Mobile Satellite (MSAT) Platforms

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    In this paper, a compact 8×8 phased array antenna for mobile satellite (MSAT) devices is designed and investigated. 64-elements of 22 GHz patch antennas with coaxial-probe feeds have been used for the proposed planar design. The antenna is designed on a low-cost FR4 substrate with thickness, diel...... of simple configuration, low-cost, low-profile, and easy fabrication. Simulations have been done to validate the feasibility of the proposed phased array antenna for MSAT applications....

  10. Cramer-Rao Bounds for M-PSK Packets with Random Phase

    Science.gov (United States)

    Drake, Jeffrey

    1999-01-01

    In this paper, we derive new Cramer-Rao bounds (CRBs) for the estimation of phase from a block of random M-PSK (M=8) symbols for the case where the phase to be estimated is a random variable(r.v.). Existing bounds for 2 and 4-PSK which model the phase as non-random are extended to obtain a new 8-PSK CRB. The new bound which models the phase as a r.v. is compared to the new 8-PSK bound which models the phase as non-random. With 8-PSK we see clearly that use of the random phase CRB more accurately models the behavior if the phase, as normally happens, is supposed to be constrained to the interval [-pi/M,pi/M).

  11. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  12. Relationship between thunderstorm electrification and storm kinetics revealed by phased array weather radar

    Science.gov (United States)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Hayashi, S.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2017-04-01

    We examine 3-D lightning location data and radar data obtained through multiple radar observation stations, including two X-band phased array weather radars (PAWRs), in order to understand the relationship between thunderstorm electrification and storm kinetics. In an investigated convective cell, both intracloud (IC) and cloud-to-ground (CG) flash rates drastically change within 25 min. First, the IC flash rate shows a steep increase with a peak at 10 min-1, and then, the CG flash rate peaks 7 min afterward. During the increase phase of the IC flash rate, the radar observation indicates that the echo top height and updraft echo volume in the upper level increase. The upper positive charge regions removed by IC flashes are located in or near the updraft region at high altitudes. On the contrary, the IC flash rate decreases when the updraft at high altitudes weakens. The IC flash rate is well correlated with a proxy for updraft volume in 1 min interval comparison. These results indicate that the IC flash rate has a strong connection with updraft at high altitudes. The CG flash rate peaks when precipitation particles, probably involving graupel, from high altitudes arrive at approximately the -10°C isotherm level. We speculate that graupel from high altitudes might contribute to the initiations of CG flashes. We show an abrupt ascent of the upper positive charge region involved in IC flashes. PAWR observation results indicate that the updraft might have contributed to the ascent of the upper positive lightning charge region.

  13. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    Directory of Open Access Journals (Sweden)

    Sukru Burc Eryilmaz

    2014-07-01

    Full Text Available Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance.

  14. Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels

    Science.gov (United States)

    Yoo, B.; Purekar, A. S.; Zhang, Y.; Pines, D. J.

    2010-07-01

    A damage detection method based on an innovative 2D phased sensor array made of piezoelectric paint is proposed for in situ damage detection of a thin isotropic panel using guided Lamb waves. A design analysis of candidate 2D arrays based on spiral, cruciform and circular element layouts is performed. In this study, a 2D phased sensor array with a spiral configuration is fabricated using a piezoelectric composite (piezopaint) patch and used for detecting damages in an aluminum panel. Steered array responses are generated from the raw sensor signals using a directional filtering algorithm based on phased array signal processing. The fundamental flexural (or transverse), A0 mode, of the guided Lamb waves is used though the sensing and analysis technique is not limited to the mode used in this work. To enhance the proposed analysis technique, empirical mode decomposition (EMD) and a Hilbert-Huang transform (HHT) are applied. A new damage detection algorithm including threshold setting and damage index (DI) calculation is developed and implemented for detecting damages in the form of holes and a simulated crack. The characteristic damage indices consistently increase as damage size grows.

  15. FY16 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagge, Tobias J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, Michael S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This section of the Joint summary technical letter report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2016 (FY16) on the under-sodium viewing (USV) PNNL project 58745, work package AT-16PN230102. This section of the TLR satisfies PNNL’s M3AT-16PN2301025 milestone and is focused on summarizing the design, development, and evaluation of two different phased-array ultrasonic testing (PA-UT) probe designs—a two-dimensional (2D) matrix phased-array probe, and two one-dimensional (1D) linear array probes, referred to as serial number 4 (SN4) engineering test units (ETUs). The 2D probe is a pulse-echo (PE), 32×2, 64-element matrix phased-array ETU. The 1D probes are 32×1 element linear array ETUs. This TLR also provides the results from a performance demonstration (PD) of in-sodium target detection trials at 260°C using both probe designs. This effort continues the iterative evolution supporting the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor (SFR) inspection system for in-sodium detection and imaging.

  16. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  17. Far-field distributions of semiconductor phase-locked arrays with multiple contacts

    Science.gov (United States)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Yariv, A.

    1983-01-01

    Experimental results on far-field patterns of semiconductor laser arrays with multiple contacts are reported. It is found that, by tailoring the distribution of the currents through the array elements, narrow single-lobe patterns, which are more useful in most applications, can be obtained from arrays that usually operate in a double-lobe mode. A diffraction-limited 1.8 deg-wide far field pattern was obtained from a three-element array.

  18. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    Science.gov (United States)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  19. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.; Chittenden, J. P.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G.; Harvey-Thompson, A. J.; Bland, S. N.; De Grouchy, P.; Khoory, E.; Pickworth, L.; Skidmore, J.; Suttle, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2013-02-15

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by a dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.

  20. Fully Adaptive Clutter Suppression for Airborne Multichannel Phase Array Radar Using a Single A/D Converter

    Directory of Open Access Journals (Sweden)

    Madurasinghe Dan

    2010-01-01

    Full Text Available This study considers an airborne multichannel phase array radar consisting of an analog phase shifter on each channel, where the sum channel (output is digitised using a single A/D converter. Generally for such a configuration, the array weights are predetermined for each transmit/receive direction and are nonadaptive to the clutter. In order to achieve any adaptivity to the environment, the convention is to split the array into at least two subgroups and implement two analogs to digital converters. A single A/D-based software solution (numerically stable, robust is proposed to achieve the full sidelobe adaptation to clutter. The proposed algorithm avoids these engineering complications involved in implementing multiple A/Ds for radar applications while maintaining the same desired performance. As a large number of airborne radar platforms already exist worldwide, the possible applications of this proposed fully adaptive upgrade as a software solution can be huge.

  1. Scanning E-field sensor device for online measurements in annular phased-array systems.

    Science.gov (United States)

    Wust, P; Berger, J; Fähling, H; Nadobny, J; Gellermann, J; Tilly, W; Rau, B; Petermann, K; Felix, R

    1999-03-01

    A measurement device for noninvasive and simultaneous control of antennas during regional radiofrequency (rf) hyperthermia and, subsequently, the estimation of the power distribution in the interior of patients are essential preconditions for further technological progress. Aiming at this, the feasibility of an electro-optical electric field sensor was investigated during clinical rf hyperthermia. The electro-optical electric field (E-field) sensor is based on lithiumniobate crystals and the Mach-Zehnder interferometer structure, and was tested in an earlier phantom study. For this study, a mechanical scanning device was developed allowing the registration of the E-field during clinical application. Data were recorded along a curve in the water bolus of the SIGMA 60 applicator of the annular phased-array system BSD-2000 (BSD Medical Corp., Salt Lake City, UT) close to the base points of the flat biconical dipole antennas. The results were compared with modeling calculations using the finite-difference time-domain (FDTD) method. For the latter, different antenna models were assumed. For systematic registration of the E-field curves in amplitude and phase, we employed an elliptical lamp phantom with fat-equivalent ring (filled with saline solution) and an elliptical polyacrylamide phantom with acrylic glass wall. Further measurements were carried out during the treatment of 5 patients with 20 hyperthermia treatments. Data of both phantom and patient measurements can be satisfactorily described by the FDTD method, if the antenna model is refined by taking into account the conical form of the dipoles and the special dielectric environment of the feeding point. Phase deviations can be entered ex posteriori for correction in the calculation algorithm. A comparison of amplifier power measurement (forward and backward power) and bolus E-field scans near the antenna base points demonstrates that E-field measurements between antennas and patient are a necessity for the

  2. In-situ Calibration Methods for Phased Array High Frequency Radars

    Science.gov (United States)

    Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.

    2016-12-01

    HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in

  3. Multiwavelength optical beam forming network with ring resonator-based binary-tree architecture for broadband phased array antenna systems

    NARCIS (Netherlands)

    Burla, M.; Khan, M.R.H.; Zhuang, L.; Roeloffzen, C.G.H.

    2008-01-01

    Integrated optical beam forming networks (OBFNs) offer many advantages for phased array applications. ORR-based true-time-delay units can be cascaded in a binary tree topology and tuned for continuously-adjustable broadband time delay. Nonetheless, with large number of antenna elements, the OBFN may

  4. Multi-wavelength integrated optical beamformer based on Wavelength division multiplexing for 2-D phased array antennas

    NARCIS (Netherlands)

    Burla, M.; Marpaung, D.A.I.; Zhuang, L.; Khan, M.R.H.; Leinse, Arne; Beeker, Willem; Hoekman, M.; Heideman, Rene; Roeloffzen, C.G.H.

    2014-01-01

    A novel, hardware-compressive architecture for broadband and continuously tunable integrated optical truetime- delay beamformers for phased array antennas is proposed and experimentally demonstrated. The novel idea consists in employing the frequency-periodic response of optical ring resonator (ORR)

  5. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    Science.gov (United States)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  6. A Novel Read Scheme for Large Size One-Resistor Resistive Random Access Memory Array

    Science.gov (United States)

    Zackriya, Mohammed; Kittur, Harish M.; Chin, Albert

    2017-02-01

    The major issue of RRAM is the uneven sneak path that limits the array size. For the first time record large One-Resistor (1R) RRAM array of 128x128 is realized, and the array cells at the worst case still have good Low-/High-Resistive State (LRS/HRS) current difference of 378 nA/16 nA, even without using the selector device. This array has extremely low read current of 9.7 μA due to both low-current RRAM device and circuit interaction, where a novel and simple scheme of a reference point by half selected cell and a differential amplifier (DA) were implemented in the circuit design.

  7. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    National Research Council Canada - National Science Library

    Yang, Kyoung

    2005-01-01

    This final report summarizes the progress during the Phase I SBIR project entitled "Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays...

  8. Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate

    Science.gov (United States)

    Chen, Yihong; Lu, Xuejun

    2010-01-01

    To address the issues of flexible electronics needed for surface-to-surface, surface-to-orbit, and back-to-Earth communications necessary for manned exploration of the Moon, Mars, and beyond, a room-temperature printing process has been developed to create active, phased-array antennas (PAAs) on a flexible Kapton substrate. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proven feasible for phased-array antenna systems. The carrier mobility of an individual CNT is estimated to be at least 100,000 sq cm/V(dot)s. The CNT network in solution has carrier mobility as high as 46,770 sq cm/V(dot)s, and has a large current-density carrying capacity of approx. 1,000 mA/sq cm , which corresponds to a high carrying power of over 2,000 mW/ sq cm. Such high carrier mobility, and large current carrying capacity, allows the achievement of high-speed (>100 GHz), high-power, flexible electronic circuits that can be monolithically integrated on NASA s active phasedarray antennas for various applications, such as pressurized rovers, pressurized habitats, and spacesuits, as well as for locating beacon towers for lunar surface navigation, which will likely be performed at S-band and attached to a mobile astronaut. A fully printed 2-bit 2-element phasedarray antenna (PAA) working at 5.6 GHz, incorporating the CNT FETs as phase shifters, is demonstrated. The PAA is printed out at room temperature on 100-mm thick Kapton substrate. Four CNT FETs are printed together with microstrip time delay lines to function as a 2-bit phase shifter. The FET switch exhibits a switching speed of 0.2 ns, and works well for a 5.6-GHz RF signal. The operating frequency is measured to be 5.6 GHz, versus the state-of-the-art flexible FET operating frequency of 52 MHz. The source-drain current density is measured to be over 1,000 mA/sq cm, while the conventional organic FETs, and single carbon nanotube-based FETs, are typically in the m

  9. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Smith Nadine

    2005-06-01

    Full Text Available Abstract Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this

  10. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    Science.gov (United States)

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  11. Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jie Xia

    2017-07-01

    Full Text Available The cross-range resolution of forward-looking phase array radar (PAR is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods.

  12. Multidimensional profiling of plasma lipoproteins by size exclusion chromatography followed by reverse-phase protein arrays

    Science.gov (United States)

    Dernick, Gregor; Obermüller, Stefan; Mangold, Cyrill; Magg, Christine; Matile, Hugues; Gutmann, Oliver; von der Mark, Elisabeth; Handschin, Corinne; Maugeais, Cyrille; Niesor, Eric J.

    2011-01-01

    The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique. PMID:21971713

  13. Quantifying performance of ultrasonic immersion inspection using phased arrays for curvilinear disc forgings

    Science.gov (United States)

    Brown, Roy H.; Dobson, Jeff; Pierce, S. Gareth; Dutton, Ben; Collison, Ian

    2017-02-01

    Use of full-matrix capture (FMC), combined with the total focusing method (TFM), has been shown to provide improvements to flaw sensitivity within components of irregular geometry. Ultrasonic immersion inspection of aerospace discs requires strict specifications to ensure full coverage - one of which is that all surfaces should be machined flat. The ability to detect defects through curved surfaces, with an equivalent sensitivity to that obtained through flat surfaces could bring many advantages. In this work, the relationship between surface curvature and sensitivity to standard defects was quantified for various front wall radii. Phased array FMC immersion inspection of curved components was simulated using finite element modelling, then visualized using surface-compensated focusing techniques. This includes the use of BRAIN software developed at the University of Bristol for production of TFM images. Modelling results were compared to experimental data from a series of test blocks with a range of curvatures, containing standard defects. The sensitivity to defects is evaluated by comparing the performance to conventional methods. Results are used to highlight the benefits and limitations of these methods relating to the application area of aerospace engine disc forgings.

  14. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    Science.gov (United States)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  15. MR microscopy of human skin using phased-array of microcoils at 9.4 T

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Katharina; Leupold, Jochen; LeVan, Pierre; Hennig, Juergen; Elverfeldt, Dominik von [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Gruschke, Oliver G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Kern, Johannes S. [Dept. of Dermatology, University Medical Center Freiburg (Germany); Korvink, Jan G. [Lab. of Simulation, University of Freiburg - IMTEK (Germany); Freiburg Institute for Advanced Studies, University of Freiburg (Germany); Baxan, Nicoleta [Dept. of Radiology, Medical Physics, University Medical Center Freiburg (Germany); Bruker BioSpin MRI GmbH, Ettlingen (Germany)

    2013-07-01

    MRI of the skin as non-invasive alternative to histopathology requires dedicated approaches to overcome both the low sensitivity and low contrast of standard MR investigations applied at microscale. The geometry of the skin with layers of large lateral dimensions and a few μm thickness demands exceptionally high resolution combined with large imaging matrix size. A home-made microcoil-based MR detector in planar phased-array geometry (diameter=5.5 mm) was developed to alleviate such limitations by combining the advantages of a large field-of-view and high signal-to-noise ratio. The detector was first characterized in terms of influence on B{sub 0} homogeneity and SNR. Trials on healthy and Acne inversa diseased human skin biopsies allowed the acquisition of high resolution images (30 x 30 x 100 μm{sup 3}) in reasonable scan time. Histology was subsequently performed to validate the MRI results, demonstrating the suitability of this methodological approach for the characterization and early detection of structural skin changes.

  16. Simulation assisted pod of a phased array ultrasonic inspection in manufacturing

    Science.gov (United States)

    Dominguez, N.; Feuillard, V.; Jenson, F.; Willaume, P.

    2012-05-01

    The concept of Probability of Detection (POD) is generally used to quantitatively assess performances and reliability of NDT operations for in-service operations related to damage tolerant designs. Application of the POD approach as a metric for manufacturing NDT assessment would also be relevant but the very expensive cost of such campaigns generally prevents us from doing so. However the increase in NDT simulation capability and maturity opens the field for POD demonstrations for manufacturing NDT with the help of simulation. This paper presents the example of an automated phased array ultrasonic testing procedure of Electron Beam Welding on rotative parts, as part of the PICASSO European project. POD is calculated by using the uncertainty propagation approach in CIVA. The peculiarity of uncertainties in automated NDT compared to in-service manual operations is discussed and raises questions on appropriate statistics to be used for this kind of data. Alternative estimation techniques like Box-Cox transform or quantile regression are proposed and evaluated.

  17. POD evaluation using simulation: A phased array UT case on a complex geometry part

    Science.gov (United States)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  18. Spectral-Line Observations Using a Phased Array Feed on the Parkes Telescope

    Science.gov (United States)

    Reynolds, T. N.; Staveley-Smith, L.; Rhee, J.; Westmeier, T.; Chippendale, A. P.; Deng, X.; Ekers, R. D.; Kramer, M.

    2017-11-01

    We present first results from pilot observations using a phased array feed (PAF) mounted on the Parkes 64-m radio telescope. The observations presented here cover a frequency range from 1 150 to 1 480 MHz and are used to show the ability of PAFs to suppress standing wave problems by a factor of 10, which afflict normal feeds. We also compare our results with previous HIPASS observations and with previous H i images of the Large Magellanic Cloud. Drift scan observations of the GAMA G23 field resulted in direct H i detections at z = 0.0043 and z = 0.0055 of HIPASS galaxies J2242-30 and J2309-30. Our new measurements generally agree with archival data in spectral shape and flux density, with small differences being due to differing beam patterns. We also detect signal in the stacked H i data of 1 094 individually undetected galaxies in the GAMA G23 field in the redshift range 0.05 ⩽ z ⩽ 0.075. Finally, we use the low standing wave ripple and wide bandwidth of the PAF to set a 3σ upper limit to any positronium recombination line emission from the Galactic Centre of <0.09 K, corresponding to a recombination rate of <3.0 × 1045 s-1.

  19. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  20. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Directory of Open Access Journals (Sweden)

    Brase Jan C

    2010-06-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89 between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.

  1. Analysis of creep crack growth by intelligent phased array ultrasonic inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, C.S. [Graduate School of Sungkyunkwan Univ., Kyungki (Korea); Lim, B.S. [School of Mechanical Engineering, Sungkyunkwan Univ., Kyungki (Korea)

    2004-07-01

    At high temperatures typical for service conditions in fossil power plants, the creep fracture is dominated by the formation, growth and coalescence of cavities. Using high temperature pipe materials, P92 and P122, the characteristics of creep crack growth were analyzed in this study according to the cavities. The characteristics of cavities play a critical role in creep crack propagation and load line displacement. The effect of the load line displacement rate(dv/dt) and crack growth rate(da/dt) on the da/dt-C{sub t} relation of creep crack growth was evaluated at different temperatures and K{sub i}(initial stress intensity factor) values. The number of cavities increased with increasing temperature and K{sub i}. The crack growth rate and load line displacement rate increased with the increase in the cavity numbers. The kind and distribution of these internal flaws were investigated by an intelligent phased array ultrasonic method and they were utilized in deriving the relationship with the creep crack growth rate, which will predict the creep characteristics of these materials. (orig.)

  2. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests

    Science.gov (United States)

    Che, Xiao-Hua; Qiao, Wen-Xiao; Ju, Xiao-Dong; Wang, Rui-Jia

    2016-03-01

    We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations and field tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing—cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing—cement bonding, the AABT can further evaluate the cement bond quality at the cement—formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.

  3. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    Science.gov (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  4. Ultra-High Speed Analog-to-Digital Converters in 14nm FinFET Process and Usage in Digital and Hybrid Phased Array Systems

    Science.gov (United States)

    2017-03-01

    will be presented. Keywords: high-speed ADC’s; digital phased array; RF sampling; digital frequency conversion; software defined radio. Introduction...Phased array systems offer tremendous advantages for various radar, electronic warfare, and communications systems. These include agile beam...cost. This paper provides insight into the applications, circuit and system architectures , their implementation, and performance. It also provides

  5. BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.; Goeke, R.; Morgan, E. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bradley, Richard F. [Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904 (United States); Bernardi, G. [Square Kilometre Array South Africa (SKA SA), Cape Town 7405 (South Africa); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cappallo, R. J.; Corey, B. E.; Lonsdale, C. J.; McWhirter, S. R. [MIT Haystack Observatory, Westford, MA 01886 (United States); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J.; Morales, M. F. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Mitchell, D. A. [CSIRO Astronomy and Space Science (CASS), P.O. Box 76, Epping, NSW 1710 (Australia); and others

    2016-03-20

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  6. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    Science.gov (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  7. 8×8 Planar Phased Array Antenna with High Efficiency and Insensitivity Properties for 5G Mobile Base Stations

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    An insensitive planar phased array antenna with high efficiency function for 5G applications is introduced in this study. 64-elements of compact slot-loop antenna elements have been used to form the 8×8 planar array. The antenna is designed on a low cost FR4 substrate and has good performance...... in terms of gain and efficiency. This property has been achieved by applying a new slot-loop resonators. The proposed antenna is designed to operate at 21-23.5 GHz and has a same performance for different values of dielectric constant and loss tangent. It has high-gain, high-efficiency radiation beams...... at both sides of the substrate and could be used for mobile base station (MBS) applications. The proposed planar array could be integrated with the transceivers on the low-cost printed circuit boards (PCBs) to reduce the manufacturing cost....

  8. Design of Circularly-Polarised, Crossed Drooping Dipole, Phased Array Antenna Using Genetic Algorithm Optimisation

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal

    2007-01-01

    A printed drooping dipole array is designed and constructed. The design is based on a genetic algorithm optimisation procedure used in conjunction with the software programme AWAS. By optimising the array G/T for specific combinations of scan angles and frequencies an optimum design is obtained...

  9. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part I: Theory

    NARCIS (Netherlands)

    Xu, B.; Wind, J.; Bree, H.E. de; Basten, T.G.H.; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional. Currently, acoustic vector sensor arrays are under investigation for far field

  10. Seismic wavefield polarization: a study of spatial coherency within the LSBB 3-component broadband array to extract seismic phases

    Science.gov (United States)

    Labonne, Claire; Sèbe, Olivier; Gaffet, Stéphane; Schindelé, François

    2017-04-01

    In seismology, the key to interpreting data is wavefield characterization independent from the nature of the wavefield whether it is seismogram from earthquake or seismic noise from hydrocarbon production or ocean swell. The seismic wavefield is a combination of polarized waves. These waves are characterized not only by their propagation properties (i.e. velocity and direction of propagation) but also by the local particle motion trajectories they generate. These particle motion trajectories are the polarization properties of the waves and play a large part in identifying and extracting the seismic phases. To study the polarization, 3-component data are required. The LSBB (Low Noise Underground Laboratory) 3-component seismic array offers the possibility to study the spatial coherency of polarization properties of propagating waves through the array. An optimized time-frequency decomposition of the polarization properties, such as the ellipticity, the rectilinearity vector or the planarity vector, is done for each station of the array by approximating each time-frequency contribution by an elliptical motion lying in a plane in the 3D space. By assuming coherent polarization properties for plane waves propagating through a seismic array, these properties' spatial coherency could be integrated in advanced array processing techniques. Applied to teleseismic records, the study of the spatial coherency of the polarization yields three main results: (i) a very precise station orientation (lower than 1 degree) is required to observe a significant spatial coherency, (ii) a relative station orientation can be done by maximizing the spatial coherency of the polarization, and (iii) if the precision of the station orientation is sufficient, identifying seismic phases according to their coherent polarization parameters becomes possible. This type of array polarization analysis can be performed as well on telesismic records as on seismic noise. Our first results demonstrate the

  11. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  12. Beamforming in sparse, random, 3D array antennas with fluctuating element locations

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Lager, Ioan E.; Bosma, Sjoerd; Bruinsma, Wessel P.; Hes, Robin P.

    2015-01-01

    The impact of the fluctuations in the locations of elementary radiators on the radiation properties of three dimensional(3D) array antennas is studied. The principal radiation features (sidelobes level, beam squint) are examined based on illustrative examples. Some atypical behaviours, that are

  13. RNAi-based validation of antibodies for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Sahin Özgür

    2010-12-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA have been demonstrated to be a useful experimental platform for quantitative protein profiling in a high-throughput format. Target protein detection relies on the readout obtained from a single detection antibody. For this reason, antibody specificity is a key factor for RPPA. RNAi allows the specific knockdown of a target protein in complex samples and was therefore examined for its utility to assess antibody performance for RPPA applications. Results To proof the feasibility of our strategy, two different anti-EGFR antibodies were compared by RPPA. Both detected the knockdown of EGFR but at a different rate. Western blot data were used to identify the most reliable antibody. The RNAi approach was also used to characterize commercial anti-STAT3 antibodies. Out of ten tested anti-STAT3 antibodies, four antibodies detected the STAT3-knockdown at 80-85%, and the most sensitive anti-STAT3 antibody was identified by comparing detection limits. Thus, the use of RNAi for RPPA antibody validation was demonstrated to be a stringent approach to identify highly specific and highly sensitive antibodies. Furthermore, the RNAi/RPPA strategy is also useful for the validation of isoform-specific antibodies as shown for the identification of AKT1/AKT2 and CCND1/CCND3-specific antibodies. Conclusions RNAi is a valuable tool for the identification of very specific and highly sensitive antibodies, and is therefore especially useful for the validation of RPPA-suitable detection antibodies. On the other hand, when a set of well-characterized RPPA-antibodies is available, large-scale RNAi experiments analyzed by RPPA might deliver useful information for network reconstruction.

  14. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    Science.gov (United States)

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  15. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    Science.gov (United States)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  16. Building Blocks for a 24 GHz Phased-Array Front-End in CMOS Technology for Smart Streetlights

    OpenAIRE

    Ban Wang; Gabriele Tasselli; Cyril Botteron; Pierr-André Farine

    2014-01-01

    According to a recent European Union report lighting represents a significant share of electricity costs and the goal of reducing lighting power consumption by 20 demands the coupling of light emitting diode (LED) lights with smart sensors and communication networks. This paper proposes the integration of these three elements into a smart streetlight which is based on LEDs and a 24 GHz phased array (Ph A) front end (FE) designed in low cost 90nm complementary metal oxide semiconductor (CMOS) ...

  17. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2017-09-01

    We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

  18. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    Directory of Open Access Journals (Sweden)

    R. Aluguri

    2017-09-01

    Full Text Available A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  19. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    Science.gov (United States)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  20. Seismic Prediction While Drilling (SPWD): Seismic exploration ahead of the drill bit using phased array sources

    Science.gov (United States)

    Jaksch, Katrin; Giese, Rüdiger; Kopf, Matthias

    2010-05-01

    maximize the energy of the seismic source in order to reach a sufficient exploration range. The next step for focusing is to use the method of phased array. Dependent of the seismic wave velocities of the surrounding rock, the distance of the actuators to each other and the used frequencies the signal phases for each actuator can be determined. Since one year several measurements with the prototype have been realized under defined conditions at a test site in a mine. The test site consists of a rock block surrounded from three galleries with a dimension of about 100 by 200 meters. For testing the prototype two horizontal boreholes were drilled. They are directed to one of the gallery to get a strong reflector. The quality of the data of the borehole seismics in amplitude and frequency spectra show overall a good signal-to-noise ratio and correlate strongly with the fracture density along the borehole and are associated with a lower signal-to-noise ratio. Additionally, the geophones of the prototype show reflections from ahead and rearward in the seismic data. In particular, the reflections from the gallery ahead are used for the calibration of focusing. The direct seismic wave field indicates distinct compression and shear waves. The analysis of several seismic measurements with a focus on the direct seismic waves shows that the phased array technology explicit can influence the directional characteristics of the radiated seimic waves. The amplitudes of the seismic waves can be enhanced up to three times more in the desired direction and simultaneously be attenuated in the reverse direction. A major step for the directional investigation in boreholes has accomplished. But the focusing of the seismic waves has to be improved to maximize the energy in the desired direction in more measurements by calibrating the initiating seismic signals of the sources. A next step this year is the development of a wireline prototype for application in vertical boreholes with depths not

  1. Phased array technique for low signal-to-noise ratio wind tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  2. Modeling and understanding of effects of randomness in arrays of resonant meta-atoms

    DEFF Research Database (Denmark)

    Tretyakov, Sergei A.; Albooyeh, Mohammad; Alitalo, Pekka

    2013-01-01

    In this review presentation we will discuss approaches to modeling and understanding electromagnetic properties of 2D and 3D lattices of small resonant particles (meta-atoms) in transition from regular (periodic) to random (amorphous) states. Nanostructured metasurfaces (2D) and metamaterials (3D......) are arrangements of optically small but resonant particles (meta-atoms). We will present our results on analytical modeling of metasurfaces with periodical and random arrangements of electrically and magnetically resonant meta-atoms with identical or random sizes, both for the normal and oblique-angle excitations......) of the arrangements of meta-atoms....

  3. The Latest Results from the Focal L-Band Array for the Green Bank Telescope (FLAG), the World's (Current) Most Sensitive Phased Array Feed

    Science.gov (United States)

    Pingel, Nickolas; Pisano, D. J.

    2018-01-01

    Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.

  4. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.

    analysis Cross spectrum analysis lies at the heart of phase/time/path difference methods. Cross spectrum analysis means the computation of two parameters, viz., phase and coherence between two time series, as a function of frequency (phase spectrum...

  5. Double blind randomized phase II study with radiation + 5-fluorouracil ± celecoxib for resectable rectal cancer

    National Research Council Canada - National Science Library

    Debucquoy, Annelies; Roels, Sarah; Goethals, Laurence; Libbrecht, Louis; Cutsem, Eric Van; Geboes, Karel; Penninckx, Freddy; D’Hoore, André; McBride, William H; Haustermans, Karin

    2009-01-01

    To assess the feasibility and efficacy of the COX-2 inhibitor celecoxib in conjunction with preoperative chemoradiation for patients with locally advanced rectal cancer in a double blind randomized phase II study...

  6. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  7. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy

    Science.gov (United States)

    Auboiroux, Vincent; Dumont, Erik; Petrusca, Lorena; Viallon, Magalie; Salomir, Rares

    2011-06-01

    A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm-2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.

  8. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Auboiroux, Vincent [Inserm, U556, Lyon, F-69003 (France); Dumont, Erik [Image Guided Therapy, Pessac, Bordeaux (France); Petrusca, Lorena; Salomir, Rares [Faculty of Medicine, University of Geneva (Switzerland); Viallon, Magalie, E-mail: vincent.auboiroux@unige.ch [Radiology Department, University Hospital of Geneva, Geneva (Switzerland)

    2011-06-21

    A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm{sup -2} CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost.

  9. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  10. Variance of phase fluctuations of waves propagating through a random medium

    Science.gov (United States)

    Chu, Nelson C.; Kong, Jin AU; Yueh, Simon H.; Nghiem, Son V.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.

    1992-01-01

    As an electromagnetic wave propagates through a random scattering medium, such as a forest, its energy is attenuated and random phase fluctuations are induced. The magnitude of the random phase fluctuations induced is important in estimating how well a Synthetic Aperture Radar (SAR) can image objects within the scattering medium. The two-layer random medium model, consisting of a scattering layer between free space and ground, is used to calculate the variance of the phase fluctuations induced between a transmitter located above the random medium and a receiver located below the random medium. The scattering properties of the random medium are characterized by a correlation function of the random permittivity fluctuations. The effective permittivity of the random medium is first calculated using the strong fluctuation theory, which accounts for large permittivity fluctuations of the scatterers. The distorted Born approximation is used to calculate the first-order scattered field. A perturbation series for the phase of the received field in the Rytov approximation is then introduced and the variance of the phase fluctuations is also calculated assuming that the transmitter and receiver are in the paraxial limit of the random medium, which allows an analytic solution to be obtained. Results are compared using the paraxial approximation, scalar Green's function formulation, and dyadic Green's function formulation. The effects studied are the dependence of the variance of the phase fluctuations on receiver location in lossy and lossless regions, medium thickness, correlation length and fractional volume of scatterers, depolarization of the incident wave, ground layer permittivity, angle of incidence, and polarization.

  11. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics.

    Science.gov (United States)

    Nagahama, Yuki; Shimobaba, Tomoyoshi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-05-01

    A holographic projector utilizes holography techniques. However, there are several barriers to realizing holographic projections. One is deterioration of hologram image quality caused by speckle noise and ringing artifacts. The combination of the random phase-free method and the Gerchberg-Saxton (GS) algorithm has improved the image quality of holograms. However, the GS algorithm requires significant computation time. We propose faster methods for image quality improvement of random phase-free holograms using the characteristics of ringing artifacts.

  12. Global histone modification fingerprinting in human cells using epigenetic reverse phase protein array.

    Science.gov (United States)

    Partolina, Marina; Thoms, Hazel C; MacLeod, Kenneth G; Rodriguez-Blanco, Giovanny; Clarke, Matthew N; Venkatasubramani, Anuroop V; Beesoo, Rima; Larionov, Vladimir; Neergheen-Bhujun, Vidushi S; Serrels, Bryan; Kimura, Hiroshi; Carragher, Neil O; Kagansky, Alexander

    2017-01-01

    The balance between acetylation and deacetylation of histone proteins plays a critical role in the regulation of genomic functions. Aberrations in global levels of histone modifications are linked to carcinogenesis and are currently the focus of intense scrutiny and translational research investments to develop new therapies, which can modify complex disease pathophysiology through epigenetic control. However, despite significant progress in our understanding of the molecular mechanisms of epigenetic machinery in various genomic contexts and cell types, the links between epigenetic modifications and cellular phenotypes are far from being clear. For example, enzymes controlling histone modifications utilize key cellular metabolites associated with intra- and extracellular feedback loops, adding a further layer of complexity to this process. Meanwhile, it has become increasingly evident that new assay technologies which provide robust and precise measurement of global histone modifications are required, for at least two pressing reasons: firstly, many approved drugs are known to influence histone modifications and new cancer therapies are increasingly being developed towards targeting histone deacetylases (HDACs) and other epigenetic readers and writers. Therefore, robust assays for fingerprinting the global effects of such drugs on preclinical cell, organoid and in vivo models is required; and secondly, robust histone-fingerprinting assays applicable to patient samples may afford the development of next-generation diagnostic and prognostic tools. In our study, we have used a panel of monoclonal antibodies to determine the relative changes in the global abundance of post-translational modifications on histones purified from cancer cell lines treated with HDAC inhibitors using a novel technique, called epigenetic reverse phase protein array. We observed a robust increase in acetylation levels within 2-24 h after inhibition of HDACs in different cancer cell lines

  13. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals

  14. Design of a Practical and Compact mm-Wave MIMO System with Optimized Capacity and Phased Arrays

    Directory of Open Access Journals (Sweden)

    Tommaso Cella

    2014-01-01

    Full Text Available In this paper we evaluate the feasibility of short range outdoor mm-wave MIMO links in the 70 GHz portion of the E-band (71–76 GHz. We use phased arrays in order to strongly reduce the impact of the multipath components, thus making the channel mainly line-of-sight (LOS. We design the array using a simple patch as a single element and simulate the performances for a 200 m link and a MIMO system with equal element spacing at the transmitter and the receiver. Each node of the MIMO system consists of a uniform rectangular array (URA where the single element is a patch antenna, in order to achieve higher gains and narrow beams. Such configuration is much more compact compared to the antennas currently employed for the same bandwidth. We optimize the interelement distances at the transmitter and the receiver and evaluate the capacity achievable with different array sizes. The results show that, for the proposed link budget, capacity up to 29 bit/s/Hz is achievable at a range of 200 m, with practical dimensions. We also show that the beamforming capabilities make the design much more flexible than the single reflector antenna systems. In the last part of the paper, we verify that our antenna can also operate in rainy conditions and longer ranges.

  15. Feasibility of using lateral mode coupling method for a large scale ultrasound phased array for noninvasive transcranial therapy.

    Science.gov (United States)

    Song, Junho; Hynynen, Kullervo

    2010-01-01

    A hemispherical-focused, ultrasound phased array was designed and fabricated using 1372 cylindrical piezoelectric transducers that utilize lateral coupling for noninvasive transcranial therapy. The cylindrical transducers allowed the electrical impedance to be reduced by at least an order of magnitude, such that effective operation could be achieved without electronic matching circuits. In addition, the transducer elements generated the maximum acoustic average surface intensity of 27 W/cm(2). The array, driven at the low (306-kHz) or high frequency (840-kHz), achieved excellent focusing through an ex vivo human skull and an adequate beam steering range for clinical brain treatments. It could electronically steer the ultrasound beam over cylindrical volumes of 100-mm in diameter and 60-mm in height at 306 kHz, and 30-mm in diameter and 30-mm in height at 840 kHz. A scanning laser vibrometer was used to investigate the radial and length mode vibrations of the element. The maximum pressure amplitudes through the skull at the geometric focus were predicted to be 5.5 MPa at 306 kHz and 3.7 MPa at 840 kHz for RF power of 1 W on each element. This is the first study demonstrating the feasibility of using cylindrical transducer elements and lateral coupling in construction of ultrasound phased arrays.

  16. A magnetostrictive phased array sensor using a nickel comb patch for guided Lamb wave-based damage detection

    Science.gov (United States)

    Yoo, Byungseok; Pines, Darryll J.

    2017-04-01

    This paper presents the development of an ultrasonic guided Lamb wave (GLW)-based magnetostrictive phased array sensor (MPAS) using a circular comb-shaped nickel disc patch with 1" in diameter. And its damage detection capability to identify loosened joint bolts is experimentally demonstrated. The compact sized MPAS was comprised of the nickel disc patch and a detachable magnetic circuit device. The disc patch was machined with 24 comb fingers along its radial direction and the magnetic circuit device contained 6 sensing coils and cylindrical biasing magnets. The individual sensing coils appear to have distinct directional sensing preferences designated by the normal direction of coil winding. The directional sensing feature of the developed MPAS is offered by the combined effect of the magnetic shape anisotropy of comb finger formation in the nickel patch and the sensing directionality of the coil sensor. The MPAS detects the strain-induced magnetic property change on the nickel comb patch due to the mechanical interaction between the patch and GLWs. Although the MPAS holds only the 6 physical coil sensors, the array sensor enables to acquire additional GLW signal data from different sensing sections within the nickel patch, by simply altering the rotational orientation of the magnetic circuit device. Such signal data additions allow to provide a higher resolution damage detection scheme for the advanced phased array signal processing technique. The MPAS apparatus and its damage detection capability were experimentally validated by GLW inspection testing with a thin aluminum plate installed with numerous joint bolts.

  17. Multiple-wavelength double random phase encoding with CCD-plane sparse-phase multiplexing for optical information verification.

    Science.gov (United States)

    Chen, Wen

    2015-12-20

    A novel method is proposed by using multiple-wavelength double random phase encoding (MW-DRPE) with CCD-plane sparse-phase multiplexing for optical information verification. Two different strategies are applied to conduct sparse-phase multiplexing in the CCD plane. The results demonstrate that large capacity can be achieved for optical multiple-image verification. The proposed optical verification strategy is implemented based on optical encoding, and the keys generated by optical encryption can further guarantee the safety of the designed optical multiple-image verification system. The proposed method provides a novel alternative for DRPE-based optical information verification.

  18. A Switchable 3D-Coverage Phased Array Antenna Package for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Zhang, Shuai

    2016-01-01

    This manuscript proposes a new design of a millimeter-wave (mm-Wave) array antenna package with beam steering characteristic for the fifth generation (5G) mobile applications. In order to achieve a broad 3D scanning coverage of the space with high-gain beams, three identical sub arrays of patch...... antennas have been compactly arranged along the edge region of the mobile phone PCB to form the antenna package. By switching the feeding to one of the sub arrays, the desired direction of coverage can be achieved. The proposed design has >10 dB gain in the upper spherical space, good directivity...... and efficiency, which is suitable for 5G mobile communications. In addition, the impact of user’s hand on the antenna performance has been investigated....

  19. Three Phase Power Imbalance Decomposition into Systematic Imbalance and Random Imbalance

    DEFF Research Database (Denmark)

    Kong, Wangwei; Ma, Kang; Wu, Qiuwei

    2017-01-01

    is calculated based on the systematic imbalance component to guide phase swapping. Case studies demonstrate that 72.8% of 782 low voltage substations have systematic imbalance components. The degree of power imbalance results reveal the maximum need for phase swapping and the random imbalance components reveal...

  20. A Randomized Double-Blind Crossover Study of Phase-Shift Sound Therapy for Tinnitus

    NARCIS (Netherlands)

    Heijneman, Karin M.; de Kleine, Emile; van Dijk, Pim

    Objective. The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. Study Design. A double-blind crossover randomized controlled trial. Setting. This study was conducted at the

  1. Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array

    Science.gov (United States)

    2017-01-16

    The radiating aperture is a 9-element linear patch antenna array with the central element terminated. The RF center frequency is 2.45 GHz with 100 MHz...band- Tx 1 Tx 2 Tx 3 Tx 4 Term. Rx 1 Rx 2 Rx 3 Rx 4 Fig. 2. ALSTAR prototype consists of a linear patch array with 4 transmitting and 4 receiving...an SFDR of 65 dB. The digital interface consists of a Xilinx VC707 board with a Virtex-7 FGPA, a 4DSP FMC168 card with eight 16-bit ADCs , and a 4DSP

  2. Multi-colorimetric sensor array for detection of explosives in gas and liquid phase

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C.

    2011-01-01

    In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives. The tec......In the framework of the research project "Xsense" at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT, TATP, HMX, RDX and identification of reagents needed for making homemade explosives...

  3. FY15 Status of Immersion Phased Array Ultrasonic Probe Development and Performance Demonstration Results for Under Sodium Viewing

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamberlin, Clyde E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This Technical Letter Report (TLR) describes work conducted at the Pacific Northwest National Laboratory (PNNL) during FY 2015 on the under-sodium viewing (USV) PNNL project 58745, Work Package AT-15PN230102. This TLR satisfies PNNL’s M3AT-15PN2301027 milestone, and is focused on summarizing the design, development, and evaluation of a two-dimensional matrix phased-array probe referred to as serial number 3 (SN3). In addition, this TLR also provides the results from a performance demonstration of in-sodium target detection trials at 260°C using a one-dimensional 22-element linear array developed in FY14 and referred to as serial number 2 (SN2).

  4. Multi-directional random wave interaction with an array of cylinders

    DEFF Research Database (Denmark)

    Ji, Xinran; Liu, Shuxue; Bingham, Harry B.

    2015-01-01

    Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...... of wave spreading becomes wider, the wave run-up at some points around the cylinders is found to increase. This suggests that multi-directional wave run-up tends to be larger than unidirectional wave run-up. In addition, the wave directionality has a significant influence on the transverse force...

  5. Reverse Phase Protein Arrays for High-Throughput Protein Measurements in Mammospheres

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    Protein Array (RPPA)-based readout format integrated into robotic siRNA screening. This technique would allow post-screening high-throughput quantification of protein changes. Recently, breast cancer stem cells (BCSCs) have attracted much attention, as a tumor- and metastasis-driving subpopulation...

  6. The IMPACT Common Module - A Low Cost, Reconfigurable Building Block for Next Generation Phased Arrays

    Science.gov (United States)

    2016-03-31

    of Oklahoma Advanced Radar Research Center (ARRC), 3190 Monitor Ave, Norman, OK USA 73019 Boris Murmann, Bill Chen, Alex Guo Dept. of...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many

  7. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  8. Amplitude, phase, location and orientation calibration of an acoustic vector sensor array, part II: Experiments

    NARCIS (Netherlands)

    Basten, T.G.H.; Wind, J.; Xu, B.; Bree, H.E. de; Druyvesteyn, E.

    2010-01-01

    An acoustic vector sensor array consists of multiple sound pressure microphones and particle velocity sensors. A pressure microphone usually has an omni-directional response, yet a particle velocity sensor is directional and usually has a response pattern as a figure of eight. Currently, acoustic

  9. Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial.

    Science.gov (United States)

    Fouda, Abdelrahman Y; Newsome, Andrea S; Spellicy, Samantha; Waller, Jennifer L; Zhi, Wenbo; Hess, David C; Ergul, Adviye; Edwards, David J; Fagan, Susan C; Switzer, Jeffrey A

    2017-10-01

    Minocycline is under investigation as a neurovascular protective agent for stroke. This study evaluated the pharmacokinetic, anti-inflammatory, and safety profile of minocycline after intracerebral hemorrhage. This study was a single-site, randomized controlled trial of minocycline conducted from 2013 to 2016. Adults ≥18 years with primary intracerebral hemorrhage who could have study drug administered within 24 hours of onset were included. Patients received 400 mg of intravenous minocycline, followed by 400 mg minocycline oral daily for 4 days. Serum concentrations of minocycline after the last oral dose and biomarkers were sampled to determine the peak concentration, half-life, and anti-inflammatory profile. A total of 16 consecutive eligible patients were enrolled, with 8 randomized to minocycline. Although the literature supports a time to peak concentration (Tmax) of 1 hour for oral minocycline, the Tmax was estimated to be at least 6 hours in this cohort. The elimination half-life (available on 7 patients) was 17.5 hours (SD±3.5). No differences were observed in inflammatory biomarkers, hematoma volume, or perihematomal edema. Concentrations remained at neuroprotective levels (>3 mg/L) throughout the dosing interval in 5 of 7 patients. In intracerebral hemorrhage, a 400 mg dose of minocycline was safe and achieved neuroprotective serum concentrations. However, oral administration led to delayed absorption in these critically ill patients and should not be used when rapid, high concentrations are desired. Given the safety and pharmacokinetic profile of minocycline in intracerebral hemorrhage and promising data in the treatment of ischemic stroke, intravenous minocycline is an excellent candidate for a prehospital treatment trial. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01805895. © 2017 American Heart Association, Inc.

  10. 50 nm AlxOy resistive random access memory array program bit error reduction and high temperature operation

    Science.gov (United States)

    Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken

    2014-01-01

    In order to decrease program bit error rate (BER) of array-level operation in AlxOy resistive random access memory (ReRAM), program BERs are compared by using 4 × 4 basic set and reset with verify methods on multiple 1024-bit-pages in 50 nm, mega-bit class ReRAM arrays. Further, by using an optimized reset method, 8.5% total BER reduction is obtained after 104 write cycles due to avoiding under-reset or weak reset and ameliorating over-reset caused wear-out. Then, under-set and over-set are analyzed by tuning the set word line voltage (VWL) of ±0.1 V. Moderate set current shows the best total BER. Finally, 2000 write cycles are applied at 125 and 25 °C, respectively. Reset BER increases 28.5% at 125 °C whereas set BER has little difference, by using the optimized reset method. By applying write cycles over a 25 to 125 to 25 °C temperature variation, immediate reset BER change can be found after the temperature transition.

  11. Statistical properties of photon modes in random arrays of ZnO nano-needles

    Energy Technology Data Exchange (ETDEWEB)

    Minz, Christoph; Leipold, David; Runge, Erich [Technische Universitaet Ilmenau, 98693 Ilmenau (Germany)

    2011-07-01

    Localization of electromagnetic waves in random media received renewed interest in the last years. Recent ultrafast optical experiments indicate the existence of highly localized photon modes in a system of homogeneous, randomly distributed, vertically aligned ZnO nano-needles. In particular, hot spots in the spatial distribution of the second harmonic generation (SHG) were found. In this work, we discuss the optical near field, which we obtain from full 3D solutions of Maxwell's equations of a model system in time domain. The spatial distribution of the electric near-field and the squared electric near-field intensity are investigated with statistical methods. The results are compared to the experimental findings. We thank Manfred Maschek, Slawa Schmidt, Martin Silies and Christoph Lienau from the Carl von Ossietzky Universitaet Oldenburg as well as Takashi Yatsui, Kokoro Kitamura and Motoichi Ohtsu from the University of Tokyo for sharing their experimental data with us prior to publication.

  12. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    Science.gov (United States)

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  13. Triple Band Parasitic Array Antenna for C-X-Ku-Band Application Using Out-of-Phase Coupling Approach

    Directory of Open Access Journals (Sweden)

    Anubhuti Khare

    2014-01-01

    Full Text Available Triple band parasitic array antenna for C-X-Ku-band application is presented. The proposed antenna is designed using the concept of parasitic array and out-of-phase coupling approach. The objects of research are to optimize total inductance of geometry by using out-of-phase inductance approach. The out of phase inductance of geometry consists of using two U-patches novel director on the left side of geometry, appropriate dimension of ground plan, and gap coupling between parasitic and active patches. The dimension of the ground plan geometry is 0.5λ mil × 0.5154λ mil. The usable impedance bandwidth of design antenna is “5.8 GHz to 18 GHz” (102% impedance bandwidth and gain enhancement is up to 11.8 dBi. The proposed antenna can be used for X-Ku band and C-band applications. Both simulated and measured results are presented, which are in good agreement. The proposed antenna was fabricated with a thin copper layer printed on a thin lossy FR4 substrate for low-cost production.

  14. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.

    Science.gov (United States)

    Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D

    2017-01-24

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  15. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peijun; Weimer, Matthew S. [Department; Emery, Jonathan D.; Diroll, Benjamin T.; Chen, Xinqi; Hock, Adam S. [Department; Chang, Robert P. H.; Martinson, Alex B. F.; Schaller, Richard D.

    2016-12-19

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  16. Novel splittable N-Tx/2N-Rx transceiver phased array to optimize both signal-to-noise ratio and transmit efficiency at 9.4T.

    Science.gov (United States)

    Avdievich, Nikolai I; Giapitzakis, Ioannis A; Henning, Anke

    2016-11-01

    The goal of this study was to optimize signal-to-noise ratio (SNR) and parallel receive (Rx) performance of ultrahigh field (UHF) (≥7T) transceiver arrays without compromising their transmit (Tx) efficiency. UHF transceiver head phased arrays with a tight fit improve Tx efficiency in comparison with Tx-only arrays, which are usually larger so that Rx-only arrays can fit inside. However, having ≥16 elements inside a head transceiver array presents decoupling problems. Furthermore, the available number of Tx channels is limited. A prototype of a splittable transceiver phased array was constructed. The array consisted of four flat surface Tx loops positioned in two rows. Each loop could be split into two smaller overlapped Rx loops during reception. Experimental data demonstrated that both SNR and parallel reception performance improved substantially by doubling the number of Rx elements from four to eight. As a proof of concept, we developed and constructed a novel splittable transceiver phased array that allows doubling of the number of Rx elements while keeping both Tx and Rx elements at the same distance from the subject. Both Tx and Rx performance can be optimized at the same time using this method. Magn Reson Med 76:1621-1628, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  17. Building Blocks for a 24 GHz Phased-Array Front-End in CMOS Technology for Smart Streetlights

    OpenAIRE

    Wang, Ban; Tasselli, Gabriele; Botteron, Cyril; Farine, Pierre-André

    2014-01-01

    According to a recent European Union report, lighting represents a significant share of electricity costs and the goal of reducing lighting power consumption by 20% demands the coupling of light-emitting diode (LED) lights with smart sensors and communication networks. In this context, this paper proposes the integration of these three elements into a smart streetlight, incorporating a 24 GHz phased-array (Ph-A) front-end (FE). The main building blocks of this Ph-A FE integrated in a low cost...

  18. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    Science.gov (United States)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  19. Equilibrium phase diagram of a randomly pinned glass-former.

    Science.gov (United States)

    Ozawa, Misaki; Kob, Walter; Ikeda, Atsushi; Miyazaki, Kunimasa

    2015-06-02

    We use computer simulations to study the thermodynamic properties of a glass-former in which a fraction c of the particles has been permanently frozen. By thermodynamic integration, we determine the Kauzmann, or ideal glass transition, temperature [Formula: see text] at which the configurational entropy vanishes. This is done without resorting to any kind of extrapolation, i.e., [Formula: see text] is indeed an equilibrium property of the system. We also measure the distribution function of the overlap, i.e., the order parameter that signals the glass state. We find that the transition line obtained from the overlap coincides with that obtained from the thermodynamic integration, thus showing that the two approaches give the same transition line. Finally, we determine the geometrical properties of the potential energy landscape, notably the T- and c dependence of the saddle index, and use these properties to obtain the dynamic transition temperature [Formula: see text]. The two temperatures [Formula: see text] and [Formula: see text] cross at a finite value of c and indicate the point at which the glass transition line ends. These findings are qualitatively consistent with the scenario proposed by the random first-order transition theory.

  20. Magnetic field alignment of randomly oriented, high aspect ratio silicon microwires into vertically oriented arrays.

    Science.gov (United States)

    Beardslee, Joseph A; Sadtler, Bryce; Lewis, Nathan S

    2012-11-27

    External magnetic fields have been used to vertically align ensembles of silicon microwires coated with ferromagnetic nickel films. X-ray diffraction and image analysis techniques were used to quantify the degree of vertical orientation of the microwires. The degree of vertical alignment and the minimum field strength required for alignment were evaluated as a function of the wire length, coating thickness, magnetic history, and substrate surface properties. Nearly 100% of 100 μm long, 2 μm diameter, Si microwires that had been coated with 300 nm of Ni could be vertically aligned by a 300 G magnetic field. For wires ranging from 40 to 60 μm in length, as the length of the wire increased, a higher degree of alignment was observed at lower field strengths, consistent with an increase in the available magnetic torque. Microwires that had been exposed to a magnetic sweep up to 300 G remained magnetized and, therefore, aligned more readily during subsequent magnetic field alignment sweeps. Alignment of the Ni-coated Si microwires occurred at lower field strengths on hydrophilic Si substrates than on hydrophobic Si substrates. The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements.

  1. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  2. The NMR multi-transmit phased array: a Cartesian feedback approach.

    Science.gov (United States)

    Hoult, D I; Kolansky, G; Kripiakevich, D; King, S B

    2004-11-01

    The use of Cartesian feedback is proposed to solve the problem of using an array of coils for the purposes of transmission in magnetic resonance imaging. The difficulties caused by direct and sample-mediated coil interactions are briefly examined, and the known solutions of using power-mismatched pre-amplifiers and transmitters noted. It is then shown that, without loss of transmitter efficiency, a high effective impedance may be created in series with each coil in the array by the use of Cartesian negative feedback. A bench experiment is described that confirms the theory. The solution is also viable for signal reception and is more efficacious than pre-amplifier damping, albeit over a smaller bandwidth.

  3. Highly tunable ultra-narrow-resonances with optical nano-antenna phased arrays in the infrared

    Science.gov (United States)

    Li, Shi-Qiang; Zhou, Wei; Guo, Peijun; Buchholz, D. Bruce; Qiu, Ziwei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-09-01

    We report our recent development in pursuing high Quality-Factor (high-Q factor) plasmonic resonances, with vertically aligned two dimensional (2-D) periodic nanorod arrays. The 2-D vertically aligned nano-antenna array can have high-Q resonances varying arbitrarily from near infrared to terahertz regime, as the antenna resonances of the nanorod are highly tunable through material properties, the length of the nanorod, and the orthogonal polarization direction with respect to the lattice surface,. The high-Q in combination with the small optical mode volume gives a very high Purcell factor, which could potentially be applied to various enhanced nonlinear photonics or optoelectronic devices. The 'hot spots' around the nanorods can be easily harvested as no index-matching is necessary. The resonances maintain their high-Q factor with the change of the environmental refractive index, which is of great interest for molecular sensing.

  4. Simultaneous Transmit and Receive Performance of an 8-Channel Digital Phased Array

    Science.gov (United States)

    2017-01-16

    and a 4DSP FMC204 16-bit DAC card. Digital signal processing was performed offline using MATLAB. Probe waveforms were used to characterize the array...Canceller Receive Digital Beamfomer Isolated Receive SignalTransmit Signal ALSTAR Transmit Elements ALSTAR Receive Elements ... ... Fig. 1...and cancellation. Physical sampling of the transmitted signal enables digital cancellation of transmit distortion and noise. Once the beamformers have

  5. Radar cross section of dipole phased arrays with parallel feed network

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents the detailed analytical formulation for the RCS of parallel-fed linear dipole array in the presence of mutual coupling. The radar cross section (RCS) of an object represents its electromagnetic (EM) scattering properties for a given incident wave. The analysis of scattered field is critical in military and defence arenas, especially while designing low-observable platforms. It is well-known that the presence of an antenna/array on the target influences its echo area significantly. The primary cause for such scattering of the incident signals is reflection that occurs within the antenna aperture and its feed network. In this book, the RCS estimation is done based on the signal path within the antenna system. The scattered field is expressed in terms of array design parameters including the reflection and transmission coefficients. The computed results show the variation in the RCS pattern with and without mutual coupling. The effect of finite dipole-length, inter-element spacing, scan angle,...

  6. Automated array assembly, Phase II. Quarterly report No. 7, July 1-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R. V.

    1979-10-01

    During this period, work continued on studies of three manufacturing sequences for solar cells based on ion-implanted junctions, furnace annealing, screen-printed contacts, and spray-on antireflection (AR) coatings. The starting material has been primarily solar-grade, n- and p-type 3-in.-diameter wafers; in addition, a small quantity of dendritic web has been received. A total of 1500 solar cells has been fabricated and evaluated. As a result of this work, two problems areas have not been identified relating to materials and process compatibility. First, screen-printed thick-film inks do not contact ion-implanted junctions as well as diffused junctions. Second, it was found that the previously determined optimum ion implantation/anneal process must be modified to accommodate the starting silicon material. Discounting the above compatibility problems, evaluations and comparisons of the three manufacturing sequences were made with regard to the performance data accumulated for each sequence and its effect on cost-effectiveness. In cell interconnection and panel assembly, a solder reflow process has been demonstrated in which the cells are individually tabbed and then placed in an array which is soldered by means of a bank of infrared lamps which traverse the array. With the present system, this latter process is accomplished at a rate of 1 linear ft of array/minute.

  7. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.

    Science.gov (United States)

    Kozak, M; Karaman, M

    2001-07-01

    Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.

  8. NormaCurve: a SuperCurve-based method that simultaneously quantifies and normalizes reverse phase protein array data.

    Directory of Open Access Journals (Sweden)

    Sylvie Troncale

    Full Text Available MOTIVATION: Reverse phase protein array (RPPA is a powerful dot-blot technology that allows studying protein expression levels as well as post-translational modifications in a large number of samples simultaneously. Yet, correct interpretation of RPPA data has remained a major challenge for its broad-scale application and its translation into clinical research. Satisfying quantification tools are available to assess a relative protein expression level from a serial dilution curve. However, appropriate tools allowing the normalization of the data for external sources of variation are currently missing. RESULTS: Here we propose a new method, called NormaCurve, that allows simultaneous quantification and normalization of RPPA data. For this, we modified the quantification method SuperCurve in order to include normalization for (i background fluorescence, (ii variation in the total amount of spotted protein and (iii spatial bias on the arrays. Using a spike-in design with a purified protein, we test the capacity of different models to properly estimate normalized relative expression levels. The best performing model, NormaCurve, takes into account a negative control array without primary antibody, an array stained with a total protein stain and spatial covariates. We show that this normalization is reproducible and we discuss the number of serial dilutions and the number of replicates that are required to obtain robust data. We thus provide a ready-to-use method for reliable and reproducible normalization of RPPA data, which should facilitate the interpretation and the development of this promising technology. AVAILABILITY: The raw data, the scripts and the normacurve package are available at the following web site: http://microarrays.curie.fr.

  9. Comparative study on mode-identification algorithms using a phased-array system in a rectangular duct

    Science.gov (United States)

    Suzuki, Takao; Day, Benjamin J.

    2015-07-01

    To identify multiple acoustic duct modes, conventional beam-forming, CLEAN as well as L2 (i.e. pseudo-inverse) and L1 generalized-inverse beam-forming are applied to phased-array pressure data. A tone signal of a prescribed mode or broadband signal is generated upstream of a curved rectangular duct, and acoustic fields formed in both upstream and downstream stations of the test section are measured with identical wall-mounted microphone arrays. Sound-power distributions of several horizontal and vertical modes including upstream- and downstream-propagating waves can be identified with phased-array techniques, and the results are compared among the four approaches. The comparisons using synthetic data demonstrate that the L2 generalized-inverse algorithm can sufficiently suppress undesirable noise levels and detect amplitude distributions accurately in over-determined cases (i.e. the number of microphones is more than the number of cut-on modes) with minimum computational cost. As the number of cut-on modes exceeds the number of microphones (i.e. under-determined problems), the L1 algorithm is necessary to retain better accuracy. The comparison using test data acquired in the curved duct test rig (CDTR) at NASA Langley Research Center suggests that the L1 /L2 generalized-inverse approach as well as CLEAN can improve the dynamic range of the detected mode by as much as 10 dB relative to conventional beam-forming even with mean flow of M=0.5.

  10. Enhancement of directional sensitivity of magnetostrictive phased array sensor using a circular comb-shaped nickel patch

    Directory of Open Access Journals (Sweden)

    Byungseok Yoo

    2017-05-01

    Full Text Available In this paper, we present a magnetostrictive phased array sensor (MPAS with a polycrystalline nickel patch of a circular comb shape in order for the use of the ultrasonic guided Lamb wave inspection technique. The MPAS was comprised of two main components of the surface-mounted nickel patch and a mobile magnetic circuit device enclosing six sensing coils and center-positioned cylindrical biasing magnets. The magnetic circuit device detects the magnetic property change induced by the elastic wave propagation through the magnetostrictive nickel patch bonded to a thin aluminum plate. The individual sensing coils were configured to have directional preferences specified along the perpendicular direction of the coil winding, and they were arranged in a hexagon with a radius of 0.5” to form a compact-sized phased array sensor. Although the magnetic circuit device contains only six physical sensing coils, the MPAS enables to increase the total numbers of sensing positions by altering the orientation of the magnetic circuit device. The enhanced directional sensing capability of the presented MPAS was achieved as a result of the combined effect on the high magnetic shape anisotropy feature along the individual comb finger directions of the nickel patch and the directional sensitivity of the hexagon magnetic circuit device itself.

  11. Enhancement of directional sensitivity of magnetostrictive phased array sensor using a circular comb-shaped nickel patch

    Science.gov (United States)

    Yoo, Byungseok; Pines, Darryll J.

    2017-05-01

    In this paper, we present a magnetostrictive phased array sensor (MPAS) with a polycrystalline nickel patch of a circular comb shape in order for the use of the ultrasonic guided Lamb wave inspection technique. The MPAS was comprised of two main components of the surface-mounted nickel patch and a mobile magnetic circuit device enclosing six sensing coils and center-positioned cylindrical biasing magnets. The magnetic circuit device detects the magnetic property change induced by the elastic wave propagation through the magnetostrictive nickel patch bonded to a thin aluminum plate. The individual sensing coils were configured to have directional preferences specified along the perpendicular direction of the coil winding, and they were arranged in a hexagon with a radius of 0.5" to form a compact-sized phased array sensor. Although the magnetic circuit device contains only six physical sensing coils, the MPAS enables to increase the total numbers of sensing positions by altering the orientation of the magnetic circuit device. The enhanced directional sensing capability of the presented MPAS was achieved as a result of the combined effect on the high magnetic shape anisotropy feature along the individual comb finger directions of the nickel patch and the directional sensitivity of the hexagon magnetic circuit device itself.

  12. Accurate and continuous non-contact vital signs monitoring using phased array antennas in a clutter-free anechoic chamber.

    Science.gov (United States)

    Boothby, A; Das, V; Lopez, J; Tsay, J; Nguyen, T; Banister, R E; Lie, D Y C

    2013-01-01

    Continuous and accurate monitoring of human vital signs is an important part of the healthcare industry, as it is the basic means by which the clinicians can determine the instantaneous status of their patients. Doppler-based noncontact vital signs (NCVS) sensor systems can monitor the heart and respiration rates without touching the patient, but it has been observed that that the accuracy of these NCVS sensors can be diminished by reflections from background clutters in the measurement environment, and that high directivity antennas can increase the sensing accuracy. Therefore, this work explores a NCVS sensor with continuous data taken inside an anechoic chamber where the background cluttering is negligible. In addition, a high directivity custom-made beam-steerable phased array antenna system is used to improve the performance and functionality of the 2.4GHz NCVS sensor we have built. We believe this work is the 1st systematic study using Doppler-based phased array systems for NCVS sensing performed in a clutter-free anechoic chamber.

  13. A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design

    Science.gov (United States)

    2016-03-21

    computed the array factor, we now approximate the integral of (2) as a Riemann sum over points in the lattice Λ−TR−1Z2: f (a) ≈ 1|Λ| |R| ∑ k∈Z2 W (uk) A...messy, it is straightforward to compute. In practice the integrals in the objective and gradient will be approximated by a sum over lattice points. As...The majority of the computation lies in the sum of (1) and the integral (to be approximated with a sum ) of (5b). The identical-element assumption

  14. Flexible resistive random access memory devices by using NiO x /GaN microdisk arrays fabricated on graphene films

    Science.gov (United States)

    Lee, Keundong; Park, Jong-woo; Tchoe, Youngbin; Yoon, Jiyoung; Chung, Kunook; Yoon, Hosang; Lee, Sangik; Yoon, Chansoo; Park, Bae Ho; Yi, Gyu-Chul

    2017-05-01

    We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.

  15. UA(1) breaking and phase transition in chiral random matrix model

    OpenAIRE

    Sano, T.; Fujii, H.; Ohtani, M

    2009-01-01

    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temp...

  16. System and method for controlling the phase of an antenna array

    Science.gov (United States)

    Conroy, Bruce (Inventor); Hoppe, Daniel (Inventor)

    1998-01-01

    A system and method for controlling power transferred to an aircraft. The system includes a master antenna and a plurality of slave antennas on the ground. Each slave antenna transmits an uplink signal of a unique phase modulated frequency. The master antenna transmits a master uplink signal. The aircraft receives all the uplink signals and modulates a composite of those signals to produce a downlink beacon that has multiple phase components, each of which corresponds to one of the slave antennas and has a unique frequency. Each of the slave antennas receives the downlink beacon and uses the corresponding phase component to adjust the phase of the slave uplink signal relative to the master uplink signal.

  17. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation)

    Science.gov (United States)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung

    2017-04-01

    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  18. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  19. Automated array Assembly, Phase II. Quarterly report No. 3, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiello, R. V.

    1978-06-01

    The purpose of the overall program is to establish technological readiness and provide verification for the elements of a manufacturing sequence which would ultimately be suitable for the large-scale production of silicon solar-array modules at a selling price of less than $500/kW. A program and process plan for accomplishing this objective was developed and put into operation. This plan is centered around a processing sequence using Czochralski, silicon wafers. Three junction-formation processes are considered since cost analyses show that they do not differ greatly in cost. The progress made in the various process steps of the plan is described, and plans for the next quarter are summarized.

  20. Array Automated Assembly, Phase 2. Quarterly report for the quarter ending June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, W.E.; Kimberly, W.; Mardesich, N.; Pepe, A.

    1978-08-01

    The Automated Array Assembly Task is a process development task. The overall goal is to advance solar cell and module process technology to meet the 1986 goal of a production capacity of 500 megawatts per year at a cost of less than $500 per kilowatt. Work performed during the quarter ending June 30, 1978 is covered. Discussions are included on diffusion masking dielectric evaluation, P/sup +/ back surface fields formed by firing screen printed aluminum back contacts, screen printable glass systems for use as isolation dielectrics, screen printed front contact metallization and stresses caused by thermal cycling silicon solar cells adhesively bonded to glass superstrates. SEM pictures of the fritted layer at the interface between the front metallization and silicon are presented. Results of an x-ray topographic examination of the silicon under and adjacent to printed and fired patterns of fritted conductor and dielectric pastes are given.

  1. Fractional Fourier transform-based optical encryption with treble random phase-encoding

    Science.gov (United States)

    Xin, Yi; Tao, Ran; Wang, Yue

    2008-03-01

    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  2. Generation of sound by Alfven waves with random phases in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fainshtein, S.M.

    1976-11-01

    The problem of the excitation of sound by Alfven waves meeting in the solar plasma is discussed. Kinetic equations for the interacting waves are derived and analyzed on the assumption that the Alfven waves have random phases. Estimates are given which show the possibility of the generation of LF-pulsations in the solar atmosphere.

  3. Nanostructure-property relations for phase-change random access memory (PCRAM) line cells

    NARCIS (Netherlands)

    Kooi, B. J.; Oosthoek, J. L. M.; Verheijen, M. A.; Kaiser, M.; Jedema, F. J.; Gravesteijn, D. J.

    2012-01-01

    Phase-change random access memory (PCRAM) cells have been studied extensively using electrical characterization and rather limited by detailed structure characterization. The combination of these two characterization techniques has hardly been exploited and it is the focus of the present work.

  4. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material.

    Science.gov (United States)

    Kats, Mikhail A; Blanchard, Romain; Genevet, Patrice; Yang, Zheng; Qazilbash, M Mumtaz; Basov, D N; Ramanathan, Shriram; Capasso, Federico

    2013-02-01

    We demonstrate that the resonances of infrared plasmonic antennas can be tuned or switched on/off by taking advantage of the thermally driven insulator-to-metal phase transition in vanadium dioxide (VO(2)). Y-shaped antennas were fabricated on a 180 nm film of VO(2) deposited on a sapphire substrate, and their resonances were shown to depend on the temperature of the VO(2) film in proximity of its phase transition, in good agreement with full-wave simulations. We achieved tunability of the resonance wavelength of approximately 10% (>1 μm at λ~10 μm).

  5. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  6. Security enhanced optical encryption system by random phase key and permutation key.

    Science.gov (United States)

    He, Mingzhao; Tan, Qiaofeng; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2009-12-07

    Conventional double random phase encoding (DRPE) encrypts plaintext to white noise-like ciphertext which may attract attention of eavesdroppers, and recent research reported that DRPE is vulnerable to various attacks. Here we propose a security enhanced optical encryption system that can hide the existence of secret information by watermarking. The plaintext is encrypted using iterative fractional Fourier transform with random phase key, and ciphertext is randomly permuted with permutation key before watermarking. Cryptanalysis shows that linearity of the security system has been broken and the permutation key prevent the attacker from accessing the ciphertext in various attacks. A series of simulations have shown the effectiveness of this system and the security strength is enhanced for invisibility, nonlinearity and resistance against attacks.

  7. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  8. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  9. Stochastic modeling for starting-time of phase evolution of random seismic ground motions

    Directory of Open Access Journals (Sweden)

    Yongbo Peng

    2014-01-01

    Full Text Available In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for non-stationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components' starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N—S component of Northridge Earthquake at the type-II site are investigated. The frequency components' starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zero-mean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.

  10. An overview of Test Techniques for Characterizing Active Phased Array Antennas

    NARCIS (Netherlands)

    Keizer, W.P.M.N.

    1999-01-01

    In this paper a review will be given of the microwave testing of active phased anay antennas. It will be shown that due to the application of Transmit/Receive (T/R) modules in such antennas considerable more tests have to be performed to characterise completely their microwave performance than for

  11. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence of...

  12. Double image encryption based on random phase encoding in the fractional Fourier domain.

    Science.gov (United States)

    Tao, Ran; Xin, Yi; Wang, Yue

    2007-11-26

    A novel image encryption method is proposed by utilizing random phase encoding in the fractional Fourier domain to encrypt two images into one encrypted image with stationary white distribution. By applying the correct keys which consist of the fractional orders, the random phase masks and the pixel scrambling operator, the two primary images can be recovered without cross-talk. The decryption process is robust against the loss of data. The phase-based image with a larger key space is more sensitive to keys and disturbances than the amplitude-based image. The pixel scrambling operation improves the quality of the decrypted image when noise perturbation occurs. The novel approach is verified by simulations.

  13. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  14. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding

    Science.gov (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool

    2017-12-01

    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  15. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  16. Algorithm for real-time detection of signal patterns using phase synchrony: an application to an electrode array

    Science.gov (United States)

    Sadeghi, Saman; MacKay, William A.; van Dam, R. Michael; Thompson, Michael

    2011-02-01

    Real-time analysis of multi-channel spatio-temporal sensor data presents a considerable technical challenge for a number of applications. For example, in brain-computer interfaces, signal patterns originating on a time-dependent basis from an array of electrodes on the scalp (i.e. electroencephalography) must be analyzed in real time to recognize mental states and translate these to commands which control operations in a machine. In this paper we describe a new technique for recognition of spatio-temporal patterns based on performing online discrimination of time-resolved events through the use of correlation of phase dynamics between various channels in a multi-channel system. The algorithm extracts unique sensor signature patterns associated with each event during a training period and ranks importance of sensor pairs in order to distinguish between time-resolved stimuli to which the system may be exposed during real-time operation. We apply the algorithm to electroencephalographic signals obtained from subjects tested in the neurophysiology laboratories at the University of Toronto. The extension of this algorithm for rapid detection of patterns in other sensing applications, including chemical identification via chemical or bio-chemical sensor arrays, is also discussed.

  17. Bayesian phase II adaptive randomization by jointly modeling time-to-event efficacy and binary toxicity.

    Science.gov (United States)

    Lei, Xiudong; Yuan, Ying; Yin, Guosheng

    2011-01-01

    In oncology, toxicity is typically observable shortly after a chemotherapy treatment, whereas efficacy, often characterized by tumor shrinkage, is observable after a relatively long period of time. In a phase II clinical trial design, we propose a Bayesian adaptive randomization procedure that accounts for both efficacy and toxicity outcomes. We model efficacy as a time-to-event endpoint and toxicity as a binary endpoint, sharing common random effects in order to induce dependence between the bivariate outcomes. More generally, we allow the randomization probability to depend on patients' specific covariates, such as prognostic factors. Early stopping boundaries are constructed for toxicity and futility, and a superior treatment arm is recommended at the end of the trial. Following the setup of a recent renal cancer clinical trial at M. D. Anderson Cancer Center, we conduct extensive simulation studies under various scenarios to investigate the performance of the proposed method, and compare it with available Bayesian adaptive randomization procedures.

  18. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  19. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  20. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    Science.gov (United States)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  1. Quantum Phase Transition of Polaritonic Excitations in a Multi-Excitation Coupled Array

    Science.gov (United States)

    Shen, Lituo; Chen, Rongxin; Wu, Huaizhi; Yang, Zhenbiao; Irish, E. K.; Zheng, Shibiao

    2017-11-01

    We analyze the quantum phase transition-like behavior in the lowest energy state of a two-site coupled atom-cavity system, where each cavity contains one atom but the total excitation number is not limited to two. Under the large-detuning condition, we identify an interesting coexisting phase involving characteristics of both photonic superfluid and atomic insulator, which has not been previously revealed. For small hopping, we find that the signature of the photonic superfluid state becomes more pronounced with the increase in total excitation number, and that the boundaries of the various phases shift with respect to the case of two excitations. In the limit of small atom-field interaction, the polaritonic superfluid region becomes broader as the total excitation number increases. We use alternative order parameters to characterize the nonclassical property in the lowest-energy state, and find that the entanglement of photons in the photonic superfluid state has an approximately quadratic-like dependence on the total excitation number within the large-detuning limits. The second-order cross-correlation function is demonstrated to become inversely proportional to the total excitation number in the large detuning limits.

  2. Cryogenic phased-array for high resolution magnetic resonance imaging (MRI); assessment of clinical and research applications

    Science.gov (United States)

    Ip, Flora S.

    , the MR counter-rotating current coil is sufficient and demonstrated its simplicity over a phased array in this application.

  3. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    OpenAIRE

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radi...

  4. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... with PARISM are described and compared to implementations of auralisations with another geometrical acoustic simulation tool, i.e. ODEON and the LoRA toolbox that applies Ambisonics to ODEON simulations. In opposition to the LoRA toolbox, higher order Ambisonics are also applied to the late part of the PARISM...

  5. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  6. What makes a phase transition? Analysis of the random satisfiability problem

    Science.gov (United States)

    Zweig, Katharina A.; Palla, Gergely; Vicsek, Tamás

    2010-04-01

    In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions is still exponential at the critical point. Moreover we provide evidence that the hardness of the closely related problem of counting the total number of solutions does not show any phase transition-like behavior. This raises the question of whether the probability of finding a satisfiable instance is really an order parameter of a phase transition or whether it is more likely to just show a simple sharp threshold phenomenon. More generally, this paper aims at starting a discussion where a simple sharp threshold phenomenon turns into a genuine phase transition.

  7. Comprehensive Assessment and Standardization of Solid Phase Multiplex-Bead Arrays for the Detection of Antibodies to HLA

    Science.gov (United States)

    Reed, Elaine F.; Rao, Ping; Zhang, Zilu; Gebel, Howard; Bray, Robert A.; Guleria, Indira; Lunz, John; Mohanakumar, Thalachallour; Nickerson, Peter; Tambur, Anat R.; Zeevi, Adriana; Heeger, Peter S.; Gjertson, David

    2014-01-01

    Solid phase multiplex-bead arrays for the detection and characterization of HLA antibodies provide increased sensitivity and specificity compared to conventional lymphocyte-based assays. Assay variability due to inconsistencies in commercial kits and differences in standard operating procedures hamper comparison of results between laboratories. The Clinical Trials in Organ Transplantation Antibody Core Laboratories investigated sources of assay variation and determined if reproducibility improved through utilization of standard operating procedures, common reagents and normalization algorithms. Ten commercial kits from two manufacturers were assessed in each of seven laboratories using 20 HLA reference sera. Implementation of a standardized (versus a non-standardized) operating procedure greatly reduced MFI variation from 62% to 25%. Although laboratory agreements exceeded 90% (R2), small systematic differences were observed suggesting center specific factors still contribute to variation. MFI varied according to manufacturer, kit, bead type and lot. ROC analyses showed excellent consistency in antibody assignments between manufacturers (AUC>0.9) and suggested optimal cutoffs from 1000–1500 MFI. Global normalization further reduced MFI variation to levels near 20%. Standardization and normalization of solid phase HLA antibody tests will enable comparison of data across laboratories for clinical trials and diagnostic testing. PMID:23763485

  8. Non-destructive patterning of 10 nm magnetic island array by phase transformation with low-energy proton irradiation

    Science.gov (United States)

    Dutta, Tanmay; Pathak, Sachin; Asbahi, Mohamed; Celik, Kubra; Lee, Jong Min; Yang, Ping; Saifullah, M. S. M.; Oral, Ahmet; Bhatia, C. S.; Cha, Jongin; Hong, Jongill; Yang, Hyunsoo

    2017-10-01

    Nano-patterning on the order of sub-10 nm is integral to achieve high-density nano-scale devices for various data storage and data processing applications. However, the additional requirement of planarization and unwanted side-effects of physical or chemical etching have so far limited the patterning of sub-10 nm devices. In this work, we have demonstrated the creation of an array of ˜10 nm ferromagnetic islands through selective phase transformation of paramagnetic multilayers by low-energy proton irradiation. Paramagnetic Co3O4/Pd multilayers masked with patterned PMMA (polymethyl methacrylate) were reduced to ferromagnetic Co/Pd by proton irradiation. A clear contrast of the nano-islands was observed using magnetic force microscopy, establishing the formation of ferromagnetic nano-islands with perpendicular magnetic anisotropy. This process provides a way to circumvent the side-effects associated with both conventional nano-scale pattering and high-energy ion irradiation. Therefore, phase transformation by low energy proton irradiation can be used for patterning sub-10 nm nano-islands, not only for magnetic data storage but also for patterning various opto-electronic and spintronic devices.

  9. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    Science.gov (United States)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  10. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-02

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  11. Phase-space representation and polarization domains of random electromagnetic fields.

    Science.gov (United States)

    Castaneda, Roman; Betancur, Rafael; Herrera, Jorge; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of stationary random electromagnetic fields is developed by using electromagnetic spatial coherence wavelets. The propagation of the field's power and states of spatial coherence and polarization results from correlations between the components of the field vectors at pairs of points in space. Polarization domains are theoretically predicted as the structure of the field polarization at the observation plane. In addition, the phase-space representation provides a generalization of the Poynting theorem. Theoretical predictions are examined by numerically simulating the Young experiment with electromagnetic waves. The experimental implementation of these results is a current subject of research.

  12. Viterbi Tracking of Randomly Phase-Modulated Data (and Related Topics).

    Science.gov (United States)

    1982-08-10

    space I-ir, vr). were a random sequence on the unit circle C or equiva- Discretization of this bounded interval leads to a finite-state lently on the...and the symbol phase, arg ak. Also, of Recall ’k is defined on the circle C . Therefore, for clarity course, for PSK symbol sets only one symbol...x)) on [-V,w] g,(R(x)) Wropped on M-4 the Circle C . M*4 (c) (d) Fig. 5. Density functions of phase increment before and after folding. dix). It

  13. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview

    Science.gov (United States)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2017-05-01

    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  14. A randomized double-blind crossover study of phase-shift sound therapy for tinnitus.

    Science.gov (United States)

    Heijneman, Karin M; de Kleine, Emile; van Dijk, Pim

    2012-08-01

    The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. A double-blind crossover randomized controlled trial. This study was conducted at the University Medical Center Groningen. Twenty-two patients with predominantly tonal tinnitus underwent both intervention and control treatments. Each treatment consisted of three 30-minute sessions in 1 week. The control treatment was identical to the intervention treatment, except that the stimulus was a pure tone without phase shifting. Questionnaires, tinnitus loudness match, and annoyance and loudness ratings were used to measure treatment effects. Pure-tone treatment and phase-shift treatment had no significant effect on tinnitus according to questionnaires (Tinnitus Handicap Index, Tinnitus Reaction Questionnaire, Hospital Anxiety and Depression Scale, and Maastricht Questionnaire), audiological matching procedures, and loudness and annoyance ratings of tinnitus. Furthermore, phase-shift treatment showed no additional significant improvement in comparison with pure-tone treatment. Changes in questionnaire scores due to pure-tone and the phase-shift treatment were correlated. On average across the group, both treatments failed to demonstrate a significant effect. Both treatments were beneficial for some patients. However, a positive effect was not demonstrated that could be attributed to the periodic shifting of the phase of the stimulus tone.

  15. Luteal Phase Support in the Intrauterine Insemination (IUI) Cycles: A Randomized Double Blind, Placebo Controlled Study.

    OpenAIRE

    Batool Hossein Rashidi; Fatemeh Davari Tanha; Haleh Rahmanpour; Mahya Ghazizadeh

    2014-01-01

    Objective: To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI) cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG), in sub fertile couples. Materials and methods: This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They und...

  16. Implementation of the direct evaluation of strains using a phase analysis code for random patterns

    CERN Document Server

    Molimard, Jérôme

    2011-01-01

    A new approach for decoding directly strains from surfaces encoded with random patterns has been developed and validated. It is based on phase analysis of small region of interest. Here we adapt to random patterns new concepts proposed by Badulescu (2009) on the grid method. First metrological results are encouraging: resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9 pixels (ZOI 64 \\times 64 pixels2). Random noise has to be carefully controlled. A numerical example shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite is developed. Fabric intertwining is studied using a tensile test. Over-strains are clearly visible, and results connect well with the previous studies

  17. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    Science.gov (United States)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  18. Determination of alkenes in cracking products by normal-phase high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Tomić, Tatjana; Babić, Sandra; Nasipak, Nada Uzorinac; Ruszkowski, Maja Fabulić; Skrobonja, Livijana; Kastelan-Macan, Marija

    2009-05-01

    Alkene content determinations in fluid catalytic cracking (FCC) liquid products were performed by means of normal-phase high-performance liquid chromatography (NP-HPLC) with diode array detection (UV/DAD). Separation of alkenes from aromatic hydrocarbons was performed on amino-modified silica gel column with n-heptane as mobile phase. The column has a little affinity to alkenes and saturated hydrocarbons and a pronounced affinity to aromatic compounds. The problem of alkenes and saturates co-elution on this column type was overcome with the detection system, UV/DAD, sensitive and selective to alkenes, while saturates are inactive in UV field. Total alkene content was determined as a sum of mono- and dialkene groups quantified by external standard method. Validation and verification of the developed method proved their applicability. The following criteria were used to validate the HPLC-DAD method: selectivity, linearity, precision, limits of detection and quantification. Alkene contents were quantified with the external standard method of wide calibration range, so both low and high alkene contents can be determined by the single calibration. Correlation coefficients were higher than 0.99. Precision was evaluated as repeatability and intermediary precision with relative standard deviations less than 5%. Some structural investigation of alkene groups was performed to confirm the assumption. Proposed method was compared with certified NMR method. Six commercial motor gasoline samples were analyzed by these two methods. Obtained results indicate good agreement between alkene content determined by both methods. The developed method was applied to the determination of alkene content in liquid FCC products in the boiling range from 70 degrees C to 190 degrees C.

  19. Highly Ordered Boron Nitride Nanotube Arrays with Controllable Texture from Ammonia Borane by Template-Aided Vapor-Phase Pyrolysis

    Directory of Open Access Journals (Sweden)

    Yuting Wang

    2008-01-01

    Full Text Available An efficient approach for the preparation of good-quality boron nitride nanotubes (BNNTs is developed. BNNTs with specific texture were prepared from ammonia borane (BH3NH3 by vapor-phase pyrolysis with the aid of a template in two independent temperature-controlled furnaces. Two kinds of BNNTs, 200–300 nm wide ×60 μm long and 70–80 nm wide ×40 μm long, were produced after removal of the templates. The as-produced BNNTs were heated at different temperatures in the range of 1300–1700°C in NH3. FT-IR and XPS results confirmed the formation of BN from BH3NH3. Ordered arrays of BNNTs without cracks on the surface were seen using microstructural observations. The diameter and length of the BNNTs are controlled using templates with different pore sizes and thickness. The wall thickness of the nanotubes was increased by increasing the number of deposition cycles. The crystallinity of the BNNTs was improved by heating at a high temperature (1700°C in NH3.

  20. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  1. Increased Vessel Depiction of the Carotid Bifurcation with a Specialized 16-Channel Phased Array Coil at 3T

    Science.gov (United States)

    Tate, Quinn; Kim, Seong-Eun; Treiman, Gerald; Parker, Dennis L.; Hadley, J. Rock

    2012-01-01

    The purpose of this work was to design and construct a multi-channel receive-only RF coil for 3 Tesla magnetic resonance imaging of the human carotid artery and bifurcation with optimized signal to noise ratio in the carotid vessels along the full extent of the neck. A neck phantom designed to match the anatomy of a subject with a neck representing the body habitus often seen in subjects with carotid arterial disease, was constructed. Sixteen circular coil elements were arranged on a semi-rigid fiberglass former that closely fit the shape of the phantom, resulting in a 16-channel bilateral phased array coil. Comparisons were made between this coil and a typical 4-channel carotid coil in a study of 10 carotid vessels in 5 healthy volunteers. The 16-channel carotid coil showed a 73% average improvement in signal to noise ratio (SNR) at the carotid bifurcation. This coil also maintained an SNR greater than the peak SNR of the 4-channel coil over a vessel length of 10 cm. The resulting increase in SNR improved vessel depiction of the carotid arteries over an extended field of view, and demonstrated better image quality for higher parallel imaging reduction factors compared to the 4-channel coil. PMID:22777692

  2. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  3. Riding Quality Model for Asphalt Pavement Monitoring Using Phase Array Type L-band Synthetic Aperture Radar (PALSAR

    Directory of Open Access Journals (Sweden)

    Kamiya Yoshikazu

    2010-11-01

    Full Text Available There are difficulties associated with near-real time or frequent pavement monitoring, because it is time consuming and costly. This study aimed to develop a binary logit model for the evaluation of highway riding quality, which could be used to monitor pavement conditions. The model was applied to investigate the influence of backscattering values of Phase Array type L-band Synthetic Aperture Radar (PALSAR. Training data obtained during 3–7 May 2007 was used in the development process, together with actual international roughness index (IRI values collected along a highway in Ayutthaya province, Thailand. The analysis showed that an increase in the backscattering value in the HH or the VV polarization indicated the poor condition of the pavement surface and, of the two, the HH polarization is more suitable for developing riding quality evaluation. The model developed was applied to analyze highway number 3467, to demonstrate its capability. It was found that the assessment accuracy of the prediction of the highway level of service was 97.00%. This is a preliminary study of the proposed technique and more intensive investigation must be carried out using ALOS/PALSAR images in various seasons.

  4. High-vs low-dose cytarabine combined with interferon alfa in patients with first chronic phase chronic myeloid leukemia. A prospective randomized phase III study

    NARCIS (Netherlands)

    Deenik, W.; van der Holt, B.; Verhoef, G. E. G.; Schattenberg, A. V. M. B.; Verdonck, L. F.; Daenen, S. M. G. J.; Zachee, P.; Westveer, P. H. M.; Smit, W. M.; Wittebol, S.; Schouten, H. C.; Lowenberg, B.; Ossenkoppele, G. J.; Cornelissen, J. J.

    A prospective randomized phase III study was performed to evaluate whether intensified cytarabine would induce a higher response rate and longer event-free interval as compared to low-dose cytarabine in chronic myeloid leukemia (CML). One hundred and eighteen patients with CML in early chronic phase

  5. High-vs low-dose cytarabine combined with interferon alfa in patients with first chronic phase chronic myeloid leukemia : A prospective randomized phase III study

    NARCIS (Netherlands)

    Deenik, W.; Holt, B. van der; Verhoef, G.E.; Schattenberg, A.V.M.B.; Verdonck, L.F.; Daenen, S.M.G.J.; Zachee, P.; Westveer, P.H.; Smit, W.M.; Wittebol, S.; Schouten, H.C.; Lowenberg, B.; Ossenkoppele, G.J.; Cornelissen, J.J.L.M.

    2007-01-01

    A prospective randomized phase III study was performed to evaluate whether intensified cytarabine would induce a higher response rate and longer event-free interval as compared to low-dose cytarabine in chronic myeloid leukemia (CML). One hundred and eighteen patients with CML in early chronic phase

  6. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia : 2-year follow-up from a randomized phase 3 trial (DASISION)

    NARCIS (Netherlands)

    Kantarjian, Hagop M.; Shah, Neil P.; Cortes, Jorge E.; Baccarani, Michele; Agarwal, Mohan B.; Soledad Undurraga, Maria; Wang, Jianxiang; Kassack Ipina, Juan Julio; Kim, Dong-Wook; Ogura, Michinori; Pavlovsky, Carolina; Junghanss, Christian; Milone, Jorge H.; Nicolini, Franck E.; Robak, Tadeusz; Van Droogenbroeck, Jan; Vellenga, Edo; Bradley-Garelik, M. Brigid; Zhu, Chao; Hochhaus, Andreas

    2012-01-01

    Dasatinib is a highly potent BCR-ABL inhibitor with established efficacy and safety in imatinib-resistant/-intolerant patients with chronic myeloid leukemia (CML). In the phase 3 DASISION trial, patients with newly diagnosed chronic-phase (CP) CML were randomized to receive dasatinib 100 mg (n =

  7. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra.

    Science.gov (United States)

    Chen, Duyu; Jiao, Yang; Torquato, Salvatore

    2014-07-17

    Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation

  8. Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes

    Science.gov (United States)

    Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing

    2017-11-01

    Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.

  9. Core polarization effects in the Hartree--Fock--random phase approximation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.

    1987-02-01

    Core polarization effects in odd nuclei are investigated in the framework of the Hartree--Fock and random phase approximation schemes. The results of the particle vibration coupling model are recovered by linearizing the equations of motion in the interaction Hamiltonian between the external and the core particles. The formalism is used to study the renormalization of diagonal and off-diagonal M1 matrix elements. It is found that M1 polarization effects exhibit a very strong dependence on the range of the force. Copyright 1987 Academic Press, Inc.

  10. Correlations in two-dimensional electron gas: Random-phase approximation with exchange and ladder results

    Science.gov (United States)

    Pederiva, F.; Lipparini, E.; Takayanagi, K.

    1997-12-01

    We have evaluated the density-density response of the two-dimensional electron gas at zero temperature by solving the Dyson equation for the particle-hole Green's function, including exchange Coulomb matrix elements and short-range contributions in the ladder approximation. We study the effect of these correlations on the total energy, compressibility per particle, local field factor G(q), static structure factor and pair-correlation function. Results are compared with the normal random-phase approximation, local field theories and quantum Monte Carlo calculations.

  11. Role of small-norm components in extended random-phase approximation

    Science.gov (United States)

    Tohyama, Mitsuru

    2017-09-01

    The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.

  12. Optical information authentication via compressed sensing and double random phase encoding

    Science.gov (United States)

    Chen, Junxin; Bao, Nan; Zhu, Zhi-liang

    2017-10-01

    This paper presents a novel information authentication scheme via compressed sensing and double random phase encoding. Two alternative architectures have been investigated, in which significantly compressed data with micro percentage is sufficient for authentication. At the decoder end, a noise-like image with no leakage of the plaintext is recovered and subsequently authenticated using a nonlinear optical correlation approach. The authentication effectiveness, noise resistance and security performance of the proposed scheme have been experimentally validated. This work was supported by the Fundamental Research Funds for the Central Universities (N162410002-4, N151904002), the National Natural Science Foundation of China (No. 61374178).

  13. Restoring the Pauli principle in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-12-01

    Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.

  14. Cryptographic salting for security enhancement of double random phase encryption schemes

    Science.gov (United States)

    Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto

    2017-10-01

    Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.

  15. Phase transitions of Ising mixed spin 1 and 3/2 with random crystal field distribution

    Science.gov (United States)

    Sabri, S.; EL Falaki, M.; EL Yadari, M.; Benyoussef, A.; EL Kenz, A.

    2016-10-01

    The thermal and magnetic properties of the mixed spin-1 and spin-3/2 in the presence of the random crystal field are studied within the mean field approach based on the Bogoliubov inequality for the Gibbs free energy. The model exhibits first, second order transitions, a tricritical point, triple point and an isolated critical end point. It is found that the system displays simple and double compensation temperatures, five topologies of the phase diagrams. A re-entrant phenomenon is also discussed and the thermal dependences of total magnetization according to extended Neel classification have been also given.

  16. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  17. Workshop on Strategic Behavior and Phase Transitions in Random and Complex Combinatorial Structures : Extended Abstracts

    CERN Document Server

    Kirousis, Lefteris; Ortiz-Gracia, Luis; Serna, Maria

    2017-01-01

    This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been e...

  18. Accuracy of 3 Tesla pelvic phased-array multiparametric MRI in diagnosing prostate cancer at repeat biopsy

    Directory of Open Access Journals (Sweden)

    Pietro Pepe

    2014-12-01

    Full Text Available Introduction. Multiparametric pelvic magnetic resonance imaging (mpMRI accuracy in prostate cancer (PCa diagnosis was evaluated. Materials and Methods. From June 2011 to December 2013, 168 patients (median 65 years with negative digital rectal examination underwent repeat transperineal saturation biopsy (SPBx; median 28 cores for persistently high or increasing PSA values, PSA >10 ng/ml or PSA values between 4.1-10 o r 2.6-4 ng/ml with free/total PSA < 25% and < 20%, respectively. All patients underwent mpMRI using a 3.0 Tesla scanner equipped with surface 16 channels phased-array coil and lesions suspicious for PCa were submitted to additional targeted biopsies. Results. A T1c PCa was found in 66 (39% cases; SPBx and mpMRI-suspicious targeted biopsy diagnosed 60 (91% and 52 (78.8% cancers missing 6 (all of the anterior zone and 14 cancers (12 and 2 of the lateral margins and anterior zone, respectively; in detail, mpMRI missed 12 (18.1% PCa charaterized by microfocal (1 positive core with greatest percentage of cancer and Gleason score equal to 5% and 6, respectively disease at risk for insignificant cancer. The diameter of the suspicious mpMRI lesion was directly correlated to the diagnosis of PCa with poor Gleason score (p < 0.05; detection rate of cancer for each suspicious mpMRI core was 35.3%. Diagnostic accuracy, sensitivity, specificity, positive and negative predictive value of mpMRI in diagnosing PCa was 75.7%, 82.5%, 71.8%, 78.9%, 87.9%, respectively. Conclusion. Multiparametric pMRI improved SPBx accuracy in diagnosing significant anterior PCa; the diameter of mpMRI suspicious lesion resulted significantly predictive of aggressive cancers.

  19. Reverse-phase protein array for prediction of patients at low risk of developing bone metastasis from breast cancer.

    Science.gov (United States)

    Hayashi, Naoki; Manyam, Ganiraju C; Gonzalez-Angulo, Ana M; Niikura, Naoki; Yamauchi, Hideko; Nakamura, Seigo; Hortobágyi, Gabriel N; Baggerly, Keith A; Ueno, Naoto T

    2014-09-01

    A biomarker that predicts bone metastasis based on a protein laboratory assay has not been demonstrated. Reverse-phase protein array (RPPA) enables quantification of total and phosphorylated proteins, providing information about their functional status. The aim of this study was to identify bone-metastasis-related markers in patients with primary breast cancer using RPPA analysis. Tumor samples were obtained from 169 patients with primary invasive breast carcinoma who underwent surgery. The patients were categorized by whether they developed breast cancer bone metastasis (BCBM) during follow-up. Clinical characteristics and protein expression by RPPA were compared and verified by leave-one-out cross-validation. Lymph node status (p = .023) and expression level of 22 proteins by RPPA were significantly correlated with BCBM in logistic regression analysis. These variables were used to build a logistic regression model. After filtering the variables through a stepwise algorithm, the final model, consisting of 8 proteins and lymph node status, had sensitivity of 30.0%, specificity of 90.5%, positive predictive value of 30.0%, and negative predictive value of 90.5% in the cross-validation. Most of the identified proteins were associated with cell cycle or signal transduction (CDK2, CDKN1A, Rb1, Src, phosphorylated-ribosomal S6 kinase, HER2, BCL11A, and MYH11). Our validated model, in which the primary tumor is tested with RPPA, can predict patients who are at low risk of developing BCBM and thus who likely would not benefit from receiving a bisphosphonate in the adjuvant setting. Clinical trials excluding these patients have the potential to clarify the benefit of bisphosphonates in the adjuvant setting. ©AlphaMed Press.

  20. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    Science.gov (United States)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. MRI staging of prostate cancer with combined endorectal body phased-array coil and histologic correlation; Kernspintomographisches Staging des Prostatakarzinoms mittels kombinierter Endorektal-Body-Phased-Array-Spule und histopathologische Korrelation

    Energy Technology Data Exchange (ETDEWEB)

    Pegios, W. [Basel Univ. (Switzerland). Inst. fuer Diagnostische Radiologie; Bentas, W.; Wittmann, L.; Mack, M.G.; Zangos, S.; Soellner, O.; Binder, J.; Fellbaum, C.; Jonas, D.; Vogl, T.J.

    2003-12-01

    Purpose: Evaluation of the diagnostic value of the combined endorectal body-phased array technique regarding the staging of prostate cancers, especially in the differentiation between stages T2 and T3. Materials and Methods: Forty-two patients with biopsy-proven or clinically suspected prostate cancer were examined on a 1.5 T scanner (Siemens, Symphony) prior to radical prostatectomy. T{sub 2}-weighted TSE (axial, coronal) and T{sub 2}-weighted FSE (axial) sequences were obtained with and without fat suppression. After application of 0.2 mmol/kg bodyweight Gd-DTPA, T{sub 1}-weighted GRE sequences were obtained using dynamic MRI. All images were prospectively interpreted by two observers. The MR images were correlated with the histopathological findings of wide-area sections of prostatectomy specimens. Results: For the detection of extracapsular growth and seminal vesicle infiltration (T2 versus T3) the accuracy was between 94% and 97% (sensitivity 100%, specificity between 87% and 93%, observer 1 and 2). In two cases with a histologically proven stadium pT2b, observer 1 had diagnosed stadium pT3a. The results of observer 2 were marginally better in only one case, which was histologically proven to be pT2b and overstaged as pT3a. MRI did not lead to under-staging of a single tumor with regard to the differentiation between T2 and T3. Overall, the staging of the tumor stages (T1-T4) was correct in 25 of 33 cases (75%). The dynamic MRI showed no improvement regarding sensitivity (100%) and specificity (62%) and achieved a staging accuracy of only 75%. (orig.) [German] Zielsetzung: Evaluation der diagnostischen Wertigkeit der kombinierten Endorektal-Body-Array-Technik hinsichtlich des Stagings von Prostatakarzinomen, insbesondere der in der Abgrenzung der Stadien T2 gegen T3. Material und Methodik: Bei 42 Patienten mit bioptisch gesichertem oder klinisch hochgradigem Verdacht auf ein Prostatakarzinom wurden MRT-Untersuchungen an einem 1,5 Tesla-Geraet (Siemens

  2. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    Science.gov (United States)

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  3. End-Fire Phased Array 5G Antenna Design Using Leaf-Shaped Bow-Tie Elements for 28/38 GHz MIMO Applications

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2016-01-01

    In this paper, a new design of mm-Wave phased array 5G antenna for multiple-input multiple-output (MIMO) applications has been introduced. Two identical linear phased arrays with eight leaf-shaped bow-tie antenna elements have been used at different sides of the mobile-phone PCB. An Arlon AR 350...... dielectric with properties of h=0.5 mm, ε=3.5, and δ=0.0026 has been used as a substrate of the proposed design. The antenna is working in the frequency range of 25 to 40 GHz (more than 45% FBW) and can be easily fit into current handheld devices. The proposed MIMO antenna has good radiation performances...... at 28 and 38 GHz which both are powerful candidates to be the carrier frequency of the future 5G cellular networks....

  4. An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform

    Directory of Open Access Journals (Sweden)

    Xining Yu

    2016-09-01

    Full Text Available This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language.

  5. Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network

    Science.gov (United States)

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-01-01

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602

  6. Characterization of the optical beam emitted by high-power phase-locked arrays of diode lasers (P = 1 W CW)

    Science.gov (United States)

    Sobczak, Grzegorz; Dabrowska, ElŻbieta; Teodorczyk, Marian; Kalbarczyk, Joanna; Malag, Andrzej

    2013-07-01

    The quality of the beam emitted by high-power laser diodes is still the main disadvantage of these devices. One of the ways to improve it is to design diode as a matrix of narrow active stripes - so called: phase-locked arrays. The optical coupling which is occurs in such devices causes the emission in the form of a few almost diffraction limited beams (lobes). Unfortunately, because of temperature dependence of refractive indices this coupling often disappears at high drive currents. In this paper the CW operation (up to 4Ith) of the phase-locked semiconductor laser arrays is reported. The devices are based on asymmetric heterostructure which is designed for improving thermal and electrical resistances. The single supermode operation is obtained and the lasers are emitted up to 1 W of the optical power in CW.

  7. Affine cryptosystem of double-random-phase encryption based on the fractional Fourier transform.

    Science.gov (United States)

    Xin, Zhou; Sheng, Yuan; Sheng-wei, Wang; Jian, Xie

    2006-11-20

    An affine mapping mathematical expression of the double-random-phase encryption technique has been deduced utilizing the matrix form of discrete fractional Fourier transforms. This expression clearly describes the encryption laws of the double-random-phase encoding techniques based on both the fractional Fourier transform and the ordinary Fourier transform. The encryption process may be regarded as a substantial optical realization of the affine cryptosystem. It has been illustrated that the encryption process converts the original image into a white Gaussian noise with a zero-mean value. Also, the decryption process converts the data deviations of the encrypted image into white Gaussian noises, regardless of the type of data deviations. These noises superimpose on the decrypted image and degrade the signal-to-noise ratio. Numerical simulations have been implemented for the different types of noises introduced into the encrypted image, such as the white noise with uniform distribution probability, the white noise with Gaussian distribution probability, colored noise, and the partial occlusion of the encrypted image.

  8. Band-phase-randomized Surrogates to assess nonlinearity in non-stationary time series

    CERN Document Server

    Guarin, Diego; Orozco, Alvaro

    2011-01-01

    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency band. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. When apply...

  9. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    Science.gov (United States)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  10. Robustness of double random phase encoding spread-space spread-spectrum image watermarking technique

    Science.gov (United States)

    Liu, Shi; Hennelly, Bryan M.; Sheridan, John T.

    2013-09-01

    In this paper the robustness of a recently proposed image watermarking scheme is investigated, namely the Double Random Phase Encoding spread-space spread-spectrum watermarking (DRPE SS-SS) technique. In the DRPE SS-SS method, the watermark is in the form of a digital barcode image which is numerically encrypted using a simulation of the optical DRPE process. This produces a random complex image, which is then processed to form a real valued random image with a low number of quantization levels. This signal is added to the host image. Extraction of the barcode, involves applying an inverse DRPE process to the watermarked image followed by a low pass filter. This algorithm is designed to utilize the capability of the DRPE to reversibly spread the energy of the watermarking information in both the space and spatial frequency domains, and the energy of the watermark in any spatial or spatial frequency bin is very small. The common geometric transformations and signal processing operations are performed using both the informed and the blind detections for different barcode widths and different quantization levels. The results presented indicate that the DRPE SS-SS method is robust to scaling, JPEG compression distortion, cropping, low pass and high pass filtering. It is also demonstrated that the bigger the barcode width is, the lower the false positive rate will be.

  11. Influence of liquid crystalline phases on the tunability of a random laser

    Science.gov (United States)

    Trull, José; Salud, Josep; Diez-Berart, Sergio; López, David O.

    2017-05-01

    In this paper, we report the temperature behavior of an optimized disordered photonic system-based liquid crystal by means of heat capacity and refractive index measurements. The scattering system is formed by a porous borosilicate glass random matrix (about 60%) infiltrated with a smectogenic liquid crystal (about 16%) and a small amount of laser dye (0.1%). The rest of the scattering system is about 24% air, giving rise to a high refractive index contrast scattering system. Such a system has the functionality to change the refractive index contrast with temperature due to the liquid crystal temperature behavior. The system, optically pumped by the second harmonic of a Q -switched Nd:YAG pulsed laser working at 532 nm, exhibits random laser action, the threshold of which depends upon the liquid crystalline mesophase. Temperatures of existence of the smectic-B phase correspond to the most optimized random laser. In such a mesophase, the transport mean free path has been determined as about 16 μm in a coherent backscattering experiment.

  12. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla.

    Science.gov (United States)

    Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M

    2004-08-01

    To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.

  13. Value of MRI performed with phased-array coil in the diagnosis and pre-operative classification of perianal and anal fistulas.

    Science.gov (United States)

    Maccioni, F; Colaiacomo, M C; Stasolla, A; Manganaro, L; Izzo, L; Marini, M

    2002-01-01

    To assess the value of MRI performed with phased-array coil in the diagnosis and preoperative staging of perianal and anal fistulas. 20 patients (13 with Crohn's disease) with clinical evidence or suspicion of anal fistulas underwent pelvic MRI (1.5 T) performed with phased-array coil. Images were obtained in the axial and coronal planes using TSE T2-weighted high resolution sequences with and without fat suppression, T2-weighted HASTE and T1-weighted FLASH sequences, with and without fat suppression, before and after gadolinium enhancement. The following parameters were considered: presence of a fistula and relation with the sphincters, and presence of abscesses or complications. All patients underwent surgery. The MRI and surgical findings were assessed using the Park's fistula-in-ano classification and the St. James MR imaging classification of perianal fistulas. Surgery was considered the gold standard. MRI documented no evidence of fistula in 2 patients, intersphinteric fistulas in 5 (grade 1 and 2 St. James), trans-sphincteric fistulas in 9 (grade 3 and 4 St. James), translevator in 2 (grade 5) and complex ano-rectum-vaginal fistulas in 2. Concordance with surgery was 90%. MRI is an accurate technique for the identification and classification of anal and perianal fistulas and their complications. In our experience the phased-array coil offers both high field of view and spatial resolution, enabling the demonstration of perianal pathology.

  14. Stability of modulation transfer function calibration of surface profilometers using binary pseudo-random gratings and arrays with nonideal groove shapes

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitry L.; Yashchuk, Valeriy V.

    2010-03-31

    The major problem of measurement of a power spectral density (PSD) distribution of surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments, which tends to distort the PSD at higher spatial frequencies. The special mathematical properties of binary pseudo-random patterns make them an ideal basis for developing MTF calibration test surfaces. Two-dimensional binary pseudo-random arrays (BPRAs) have been fabricated and used for the MTF calibration of the MicroMap{trademark}-570 interferometric microscope with all available objectives. An investigation into the effects of fabrication imperfections on the quality of the MTF calibration and a procedure for accounting for such imperfections are presented.

  15. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial

    OpenAIRE

    Shalev Eliezer; Zafran Noah; Kadan Yfat; Garmi Gali; Nachum Zohar; Salim Raed

    2010-01-01

    Abstract Background A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Methods Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1), oxytocin (group 2) or both (group 3). A group of women who pr...

  16. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX).

    Science.gov (United States)

    Vincent, Jean-Louis; Privalle, Christopher T; Singer, Mervyn; Lorente, José A; Boehm, Erwin; Meier-Hellmann, Andreas; Darius, Harald; Ferrer, Ricard; Sirvent, Josep-Maria; Marx, Gernot; DeAngelo, Joseph

    2015-01-01

    To compare the effectiveness and safety of the hemoglobin-based nitric oxide scavenger, pyridoxalated hemoglobin polyoxyethylene, against placebo in patients with vasopressor-dependent distributive shock. Multicenter, randomized, placebo-controlled, open-label study. Sixty-one participating ICUs in six European countries (Austria, Belgium, Germany, the Netherlands, Spain, and United Kingdom). All patients admitted with distributive shock, defined as the presence of at least two systemic inflammatory response syndrome criteria, persisting norepinephrine dependence and evidence of organ dysfunction/hypoperfusion despite adequate fluid resuscitation. Patients were randomized to receive 0.25 mL/kg/hr pyridoxalated hemoglobin polyoxyethylene (20 mg Hb/kg/hr) or an equal volume of placebo, infused for up to 150 hours, in addition to conventional vasopressor therapy. The study was stopped after interim analysis showed higher mortality in the pyridoxalated hemoglobin polyoxyethylene group and an increased prevalence of adverse events. At this time, 377 patients had been randomized to pyridoxalated hemoglobin polyoxyethylene (n = 183) or placebo (n = 194). Age, gender, type of patient (medical/surgical), and Acute Physiology and Chronic Health Evaluation II scores were similar between groups. Twenty-eight-day mortality rate was 44.3% in the pyridoxalated hemoglobin polyoxyethylene group versus 37.6% in the placebo group (OR, 1.29; 95% CI, 0.85-1.95; p = 0.227). In patients with higher organ dysfunction scores (Sepsis-related Organ Failure Assessment > 13), mortality rates were significantly higher in the pyridoxalated hemoglobin polyoxyethylene group when compared with those in placebo-treated patients (60.9% vs 39.2%; p = 0.014). Survivors who received pyridoxalated hemoglobin polyoxyethylene had a longer vasopressor-free time (21.3 vs 19.7 d; p = 0.035). In this randomized, controlled phase III trial in patients with vasopressor-dependent distributive shock

  17. Luteal Phase Support in the Intrauterine Insemination (IUI Cycles: A Randomized Double Blind, Placebo Controlled Study.

    Directory of Open Access Journals (Sweden)

    Batool Hossein Rashidi

    2014-12-01

    Full Text Available To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG, in sub fertile couples.This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg and hMG (75 IU in preparation for the IUI cycle. Study group (n = 127 received luteal phase support in the form of vaginal progesterone (400 mg twice a day, and control group (n = 126 received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups.The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3. The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45.It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  18. Luteal Phase Support in the Intrauterine Insemination (IUI) Cycles: A Randomized Double Blind, Placebo Controlled Study.

    Science.gov (United States)

    Hossein Rashidi, Batool; Davari Tanha, Fatemeh; Rahmanpour, Haleh; Ghazizadeh, Mahya

    2014-12-01

    To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI) cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG), in sub fertile couples. This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg) and hMG (75 IU) in preparation for the IUI cycle. Study group (n = 127) received luteal phase support in the form of vaginal progesterone (400 mg twice a day), and control group (n = 126) received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups. The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3). The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45). It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  19. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    Science.gov (United States)

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  20. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.

    Science.gov (United States)

    Matte, Guillaume M; Van Neer, Paul L M J; Danilouchkine, Mike G; Huijssen, Jacob; Verweij, Martin D; de Jong, Nico

    2011-03-01

    Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics--dubbed the superharmonics--could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared with

  1. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  2. Rectal cancer confined to the bowel wall: the role of 3 Tesla phased-array MR imaging in T categorization.

    Science.gov (United States)

    Çolakoğlu Er, Hale; Peker, Elif; Erden, Ayşe; Erden, İlhan; Geçim, Ethem; Savaş, Berna

    2017-11-21

    To determine the diagnostic value of 3 Tesla MR imaging in detection of mucosal (Tis), submucosal (T1) and muscularis propria (T2) invasion in patients with early rectal cancer. A total of 50 consecutive patients who underwent 3 Tesla MR imaging and curative-intent intervention for MRI-staged Tis/T1/T2 rectal cancer from March 2012 to December 2016 were included. The radiological T category of each rectal tumour was compared retrospectively with histopathological results assessed according to the tumor, node, metastasis (TNM) classification. The sensitivities, specificities, and overall accuracy rates of 3 Tesla MR imaging for Tis, T1, and T2 cases were calculated using MedCalc statistical software v. 16. The sensitivity, specificity, PPV, NPV of 3 Tesla MR imaging in T categorization for T2 were: 93.7% [95% CI (0.79-0.99)], 77.7% [95% CI (0.52-0.93)], 88.2% [95% CI (0.75-0.94)] and 87.5% [95% CI (0.64-0.96)]; for T1 were 92% [95% CI (0.63-0.99)], 91.8% [95% CI (0.78-0.98)], 80% [95% CI (0.57-0.92)] and 97.1% [95% CI (0.83-0.99)]; for Tis were: 20% [95% CI (0.51-0.71)], 100% [95% CI (0.92-1)], 100%, 91.8% [95% CI (0.87-0.94)], respectively. MR categorization accuracy rates for T2, T1 and Tis were calculated as 88, 92 and 92%, respectively. 3 Tesla MR imaging seems to be useful for accurate categorization of T-stage in early rectal cancer, especially for T1 cancers. The method is not a reliable tool to detect Tis cases. The potential for overstaging and understaging of the technique should be realized and taken into consideration when tailoring the treatment protocol for each patient. Advances in knowledge: High-resolution MR with phased-array coil is being increasingly used in the pre-operative assessment of rectal cancer. 3 Tesla high-resolution MR imaging allows improved definition of bowel wall and tumour infiltration.

  3. Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition.

    Science.gov (United States)

    Ostilli, Massimo; Bianconi, Ginestra

    2015-04-01

    Random geometric graphs (RGGs) can be formalized as hidden-variables models where the hidden variables are the coordinates of the nodes. Here we develop a general approach to extract the typical configurations of a generic hidden-variables model and apply the resulting equations to RGGs. For any RGG, defined through a rigid or a soft geometric rule, the method reduces to a nontrivial satisfaction problem: Given N nodes, a domain D, and a desired average connectivity 〈k〉, find, if any, the distribution of nodes having support in D and average connectivity 〈k〉. We find out that, in the thermodynamic limit, nodes are either uniformly distributed or highly condensed in a small region, the two regimes being separated by a first-order phase transition characterized by a O(N) jump of 〈k〉. Other intermediate values of 〈k〉 correspond to very rare graph realizations. The phase transition is observed as a function of a parameter a∈[0,1] that tunes the underlying geometry. In particular, a=1 indicates a rigid geometry where only close nodes are connected, while a=0 indicates a rigid antigeometry where only distant nodes are connected. Consistently, when a=1/2 there is no geometry and no phase transition. After discussing the numerical analysis, we provide a combinatorial argument to fully explain the mechanism inducing this phase transition and recognize it as an easy-hard-easy transition. Our result shows that, in general, ad hoc optimized networks can hardly be designed, unless to rely to specific heterogeneous constructions, not necessarily scale free.

  4. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-05-19

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  5. Pseudo-random-bit-sequence phase modulation for reduced errors in a fiber optic gyroscope.

    Science.gov (United States)

    Chamoun, Jacob; Digonnet, Michel J F

    2016-12-15

    Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073  deg/√h and a drift of 0.023  deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.

  6. Dielectric matrix formulation of correlation energies in the Random Phase Approximation (RPA): inclusion of exchange effects

    CERN Document Server

    Mussard, Bastien; Jansen, Georg; Angyan, Janos

    2016-01-01

    Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...

  7. Insight into organic reactions from the direct random phase approximation and its corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ruzsinszky, Adrienn [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Zhang, Igor Ying; Scheffler, Matthias [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-10-14

    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11) represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.

  8. Experiment for estimating phase velocity and power fraction of Love wave from three component microtremor array observation in Morioka area; Moriokashiiki deno bido no sanseibun array kansoku ni yoru love ha no iso sokudo oyobi power hi suitei no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Yakuwa, A.; Saito, T. [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.

  9. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial

    Science.gov (United States)

    Motzer, Robert J.; Rini, Brian I.; McDermott, David F.; Redman, Bruce G.; Kuzel, Timothy M.; Harrison, Michael R.; Vaishampayan, Ulka N.; Drabkin, Harry A.; George, Saby; Logan, Theodore F.; Margolin, Kim A.; Plimack, Elizabeth R.; Lambert, Alexandre M.; Waxman, Ian M.; Hammers, Hans J.

    2015-01-01

    Purpose Nivolumab is a fully human immunoglobulin G4 programmed death–1 immune checkpoint inhibitor antibody that restores T-cell immune activity. This phase II trial assessed the antitumor activity, dose-response relationship, and safety of nivolumab in patients with metastatic renal cell carcinoma (mRCC). Patients and Methods Patients with clear-cell mRCC previously treated with agents targeting the vascular endothelial growth factor pathway were randomly assigned (blinded ratio of 1:1:1) to nivolumab 0.3, 2, or 10 mg/kg intravenously once every 3 weeks. The primary objective was to evaluate the dose-response relationship as measured by progression-free survival (PFS); secondary end points included objective response rate (ORR), overall survival (OS), and safety. Results A total of 168 patients were randomly assigned to the nivolumab 0.3- (n = 60), 2- (n = 54), and 10-mg/kg (n = 54) cohorts. One hundred eighteen patients (70%) had received more than one prior systemic regimen. Median PFS was 2.7, 4.0, and 4.2 months, respectively (P = .9). Respective ORRs were 20%, 22%, and 20%. Median OS was 18.2 months (80% CI, 16.2 to 24.0 months), 25.5 months (80% CI, 19.8 to 28.8 months), and 24.7 months (80% CI, 15.3 to 26.0 months), respectively. The most common treatment-related adverse event (AE) was fatigue (24%, 22%, and 35%, respectively). Nineteen patients (11%) experienced grade 3 to 4 treatment-related AEs. Conclusion Nivolumab demonstrated antitumor activity with a manageable safety profile across the three doses studied in mRCC. No dose-response relationship was detected as measured by PFS. These efficacy and safety results in mRCC support study in the phase III setting. PMID:25452452

  10. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    Science.gov (United States)

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  11. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    Science.gov (United States)

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  12. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    Directory of Open Access Journals (Sweden)

    Leonardo W. T. Silva

    2014-08-01

    Full Text Available In launching operations, Rocket Tracking Systems (RTS process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs with phased arrays (PAs. These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs, the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs. For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  13. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detectio......-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.......Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection......-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP...

  14. Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition

    Science.gov (United States)

    Rafiq Abuturab, Muhammad

    2018-01-01

    A new asymmetric multiple information cryptosystem based on chaotic spiral phase mask (CSPM) and random spectrum decomposition is put forwarded. In the proposed system, each channel of secret color image is first modulated with a CSPM and then gyrator transformed. The gyrator spectrum is randomly divided into two complex-valued masks. The same procedure is applied to multiple secret images to get their corresponding first and second complex-valued masks. Finally, first and second masks of each channel are independently added to produce first and second complex ciphertexts, respectively. The main feature of the proposed method is the different secret images encrypted by different CSPMs using different parameters as the sensitive decryption/private keys which are completely unknown to unauthorized users. Consequently, the proposed system would be resistant to potential attacks. Moreover, the CSPMs are easier to position in the decoding process owing to their own centering mark on axis focal ring. The retrieved secret images are free from cross-talk noise effects. The decryption process can be implemented by optical experiment. Numerical simulation results demonstrate the viability and security of the proposed method.

  15. Mavoglurant in Parkinson's patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies.

    Science.gov (United States)

    Trenkwalder, Claudia; Stocchi, Fabrizio; Poewe, Werner; Dronamraju, Nalina; Kenney, Chris; Shah, Amy; von Raison, Florian; Graf, Ana

    2016-07-01

    Two phase 2 randomized, double-blind studies were designed to evaluate efficacy and safety of immediate-release (study 1) and modified-release (study 2) mavoglurant formulations in PD l-dopa-induced dyskinesia. Patients were randomized to mavoglurant 100-mg or placebo (4:3) groups (study 1) and mavoglurant 200-mg, mavoglurant 150-mg, or placebo (2:1:1) groups (study 2). Primary outcome was antidyskinetic efficacy, as measured by change from baseline to week 12 in modified Abnormal Involuntary Movement Scale total score. Differences in least-squares mean (standard error) change in modified Abnormal Involuntary Movement Scale total score in week 12 did not reach statistical significance in either study (study 1: mavoglurant 100 mg twice a day versus placebo, 1.7 [1.31]; study 2: mavoglurant 150 mg twice a day (-1.3 [1.16]) and 200 mg twice a day (-0.2 [1.03]) versus placebo). Adverse events incidence was higher with mavoglurant than with placebo. Both studies failed to meet the primary objective of demonstrating improvement of dyskinesia with mavoglurant treatment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  16. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  17. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial

    Science.gov (United States)

    Van Coevorden, Frits; Punt, Cornelis J. A.; Pierie, Jean-Pierre E. N.; Borel-Rinkes, Inne; Ledermann, Jonathan A.; Poston, Graeme; Bechstein, Wolf; Lentz, Marie-Ange; Mauer, Murielle; Folprecht, Gunnar; Van Cutsem, Eric; Ducreux, Michel; Nordlinger, Bernard

    2017-01-01

    Background: Tumor ablation is often employed for unresectable colorectal liver metastases. However, no survival benefit has ever been demonstrated in prospective randomized studies. Here, we investigate the long-term benefits of such an aggressive approach. Methods: In this randomized phase II trial, 119 patients with unresectable colorectal liver metastases (n  38%) was met. We now report on long-term OS results. All statistical tests were two-sided. The analyses were according to intention to treat. Results: At a median follow up of 9.7 years, 92 of 119 (77.3%) patients had died: 39 of 60 (65.0%) in the combined modality arm and 53 of 59 (89.8%) in the systemic treatment arm. Almost all patients died of progressive disease (35 patients in the combined modality arm, 49 patients in the systemic treatment arm). There was a statistically significant difference in OS in favor of the combined modality arm (hazard ratio [HR] = 0.58, 95% confidence interval [CI] = 0.38 to 0.88, P = .01). Three-, five-, and eight-year OS were 56.9% (95% CI = 43.3% to 68.5%), 43.1% (95% CI = 30.3% to 55.3%), 35.9% (95% CI = 23.8% to 48.2%), respectively, in the combined modality arm and 55.2% (95% CI = 41.6% to 66.9%), 30.3% (95% CI = 19.0% to 42.4%), 8.9% (95% CI = 3.3% to 18.1%), respectively, in the systemic treatment arm. Median OS was 45.6 months (95% CI = 30.3 to 67.8 months) in the combined modality arm vs 40.5 months (95% CI = 27.5 to 47.7 months) in the systemic treatment arm. Conclusions: This phase II trial is the first randomized study demonstrating that aggressive local treatment can prolong OS in patients with unresectable colorectal liver metastases. PMID:28376151

  18. A Locust Phase Change Model with Multiple Switching States and Random Perturbation

    Science.gov (United States)

    Xiang, Changcheng; Tang, Sanyi; Cheke, Robert A.; Qin, Wenjie

    2016-12-01

    Insects such as locusts and some moths can transform from a solitarious phase when they remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key to effective management of outbreaks of species such as the desert locust Schistocercagregaria is early detection of when they are in the threshold state between the two phases, followed by timely control of their hopper stages before they fledge because the control of flying adult swarms is costly and often ineffective. Definitions of gregarization thresholds should assist preventive control measures and avoid treatment of areas that might not lead to gregarization. In order to better understand the effects of the threshold density which represents the gregarization threshold on the outbreak of a locust population, we developed a model of a discrete switching system. The proposed model allows us to address: (1) How frequently switching occurs from solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur, the existence of which indicate that solutions with larger amplitudes can switch to a stable attractor with a value less than the switching threshold density?; and (3) How does random perturbation influence the switching pattern? Our results show that both subsystems have refuge equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak equilibrium points and bistable equilibria can coexist for a wide range of parameters and can switch from one to another. This type of switching is sensitive to the intrinsic growth rate and the initial values of the locust population, and may result in locust population outbreaks and phase switching once a small perturbation occurs. Moreover, the simulation results indicate that the switching transient patterns become identical after some generations, suggesting that the evolving process of the perturbation system is not related to the initial value after some fixed number of

  19. Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Bunketorp-Käll, Lina; Lundgren-Nilsson, Åsa; Samuelsson, Hans; Pekny, Tulen; Blomvé, Karin; Pekna, Marcela; Pekny, Milos; Blomstrand, Christian; Nilsson, Michael

    2017-07-01

    Treatments that improve function in late phase after stroke are urgently needed. We assessed whether multimodal interventions based on rhythm-and-music therapy or horse-riding therapy could lead to increased perceived recovery and functional improvement in a mixed population of individuals in late phase after stroke. Participants were assigned to rhythm-and-music therapy, horse-riding therapy, or control using concealed randomization, stratified with respect to sex and stroke laterality. Therapy was given twice a week for 12 weeks. The primary outcome was change in participants' perception of stroke recovery as assessed by the Stroke Impact Scale with an intention-to-treat analysis. Secondary objective outcome measures were changes in balance, gait, grip strength, and cognition. Blinded assessments were performed at baseline, postintervention, and at 3- and 6-month follow-up. One hundred twenty-three participants were assigned to rhythm-and-music therapy (n=41), horse-riding therapy (n=41), or control (n=41). Post-intervention, the perception of stroke recovery (mean change from baseline on a scale ranging from 1 to 100) was higher among rhythm-and-music therapy (5.2 [95% confidence interval, 0.79-9.61]) and horse-riding therapy participants (9.8 [95% confidence interval, 6.00-13.66]), compared with controls (-0.5 [-3.20 to 2.28]); P =0.001 (1-way ANOVA). The improvements were sustained in both intervention groups 6 months later, and corresponding gains were observed for the secondary outcomes. Multimodal interventions can improve long-term perception of recovery, as well as balance, gait, grip strength, and working memory in a mixed population of individuals in late phase after stroke. URL: http//www.ClinicalTrials.gov. Unique identifier: NCT01372059. © 2017 American Heart Association, Inc.

  20. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.