WorldWideScience

Sample records for random phase property

  1. Masking property of quantum random cipher with phase mask encryption

    Science.gov (United States)

    Sohma, Masaki; Hirota, Osamu

    2014-10-01

    The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.

  2. The random phase property and the Lyapunov spectrum for disordered multi-channel systems

    CERN Document Server

    Roemer, Rudolf A

    2009-01-01

    A random phase property establishing a link between quasi-one-dimensional random Schroedinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the full hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-And...

  3. Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media.

    Science.gov (United States)

    Kalyuzhnyi, Y V; Holovko, M; Patsahan, T; Cummings, P T

    2014-12-18

    The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

  4. Monotone Increasing Properties and Their Phase Transitions in Uniform Random Intersection Graphs

    CERN Document Server

    Zhao, Jun; Gligor, Virgil

    2015-01-01

    Uniform random intersection graphs have received much interest and been used in diverse applications. A uniform random intersection graph with $n$ nodes is constructed as follows: each node selects a set of $K_n$ different items uniformly at random from the same pool of $P_n$ distinct items, and two nodes establish an undirected edge in between if and only if they share at least one item. For such graph denoted by $G(n, K_n, P_n)$, we present the following results in this paper. First, we provide an exact analysis on the probabilities of $G(n, K_n, P_n)$ having a perfect matching and having a Hamilton cycle respectively, under $P_n = \\omega\\big(n (\\ln n)^5\\big)$ (all asymptotic notation are understood with $n \\to \\infty$). The analysis reveals that just like ($k$-)connectivity shown in prior work, for both properties of perfect matching containment and Hamilton cycle containment, $G(n, K_n, P_n)$ also exhibits phase transitions: for each property above, as $K_n$ increases, the limit of the probability that $G...

  5. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    Science.gov (United States)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  6. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.

    Science.gov (United States)

    Burow, Asbjörn M; Bates, Jefferson E; Furche, Filipp; Eshuis, Henk

    2014-01-14

    The random phase approximation (RPA) is an increasingly popular method for computing molecular ground-state correlation energies within the adiabatic connection fluctuation-dissipation theorem framework of density functional theory. We present an efficient analytical implementation of first-order RPA molecular properties and nuclear forces using the resolution-of-the-identity (RI) approximation and imaginary frequency integration. The centerpiece of our approach is a variational RPA energy Lagrangian invariant under unitary transformations of occupied and virtual reference orbitals, respectively. Its construction requires the solution of a single coupled-perturbed Kohn-Sham equation independent of the number of perturbations. Energy gradients with respect to nuclear displacements and other first-order properties such as one-particle densities or dipole moments are obtained from partial derivatives of the Lagrangian. Our RPA energy gradient implementation exhibits the same [Formula: see text] scaling with system size N as a single-point RPA energy calculation. In typical applications, the cost for computing the entire gradient vector with respect to nuclear displacements is ∼5 times that of a single-point RPA energy calculation. Derivatives of the quadrature nodes and weights used for frequency integration are essential for RPA gradients with an accuracy consistent with RPA energies and can be included in our approach. The quality of RPA equilibrium structures is assessed by comparison to accurate theoretical and experimental data for covalent main group compounds, weakly bonded dimers, and transition metal complexes. RPA outperforms semilocal functionals as well as second-order Møller-Plesset (MP2) theory, which fails badly for the transition metal compounds. Dipole moments of polarizable molecules and weakly bound dimers show a similar trend. RPA harmonic vibrational frequencies are nearly of coupled cluster singles, doubles, and perturbative triples quality

  7. Phase Diagrams, Criticality, and Local Properties of Spin Glasses and Random-Field Ising Models from Renormalization - Calculations.

    Science.gov (United States)

    Hartford, Edward John

    This position-space renormalization-group study focuses on two systems with quenched disorder: the Ising spin glass and the asymmetric random-field Ising model. We have employed the Migdal-Kadanoff approach to determine local recursion relations and have retained the full correlated probability distribution of interactions and fields at each iteration in a series of histograms. We find an equilibrium spin-glass phase in three dimensions, but not in two. The spin glass is characterized by a distribution of effective interactions that broadens under iteration, signaling both the long-range order of the phase and the importance of competing interactions on all length scales. We have introduced a method to calculate the distribution of local properties by differentiating the free energy with respect to a particular magnetic field or interaction. Within the spin-glass phase, the nearest neighbor correlation ranges from negative one to one, showing the strong correlations and the local variation within the phase. The spin-glass-to-paramagnet phase transition is second order, with a smooth specific heat indicated by a negative critical exponent alpha. The multicritical point separating the spin-glass, paramagnetic, and ferromagnetic phases lies along the Nishimori line and also has a nondivergent specific heat. When the system undergoes quenched dilution, the resulting critical and multicritical behaviors are identical to those of the undiluted system. Even the addition of an infinitesimal magnetic field destroys the long-range spin-glass order; however, the characteristic broadening of the distribution continues for several iterations for small fields and low temperatures, suggesting the persistence of sizable spin-glass domains. Our study of the asymmetric random-field Ising model is motivated by recent experiments on phase transitions in porous media and mean-field treatments, which suggest that new critical behavior could occur when the distribution of fields is

  8. Solid-Phase Random Glycosylation

    DEFF Research Database (Denmark)

    Agoston, K.; Kröger, Lars; Dekany, Gyula

    2009-01-01

    Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...

  9. Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid

    Science.gov (United States)

    Shu, Yu-Rong; Yao, Dao-Xin; Ke, Chih-Wei; Lin, Yu-Cheng; Sandvik, Anders W.

    2016-11-01

    We use a strong-disorder renormalization group (SDRG) method and ground-state quantum Monte Carlo (QMC) simulations to study S =1 /2 spin chains with random couplings, calculating disorder-averaged spin and dimer correlations. The QMC simulations demonstrate logarithmic corrections to the power-law decaying correlations obtained with the SDRG scheme. The same asymptotic forms apply both for systems with standard Heisenberg exchange and for certain multispin couplings leading to spontaneous dimerization in the clean system. We show that the logarithmic corrections arise in the valence-bond (singlet pair) basis from a contribution that cannot be generated by the SDRG scheme. In the model with multispin couplings, where the clean system dimerizes spontaneously, random singlets form between spinons localized at domain walls in the presence of disorder. This amorphous valence-bond solid is asymptotically a random-singlet state and only differs from the random-exchange Heisenberg chain in its short-distance properties.

  10. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting

    2016-01-01

    , with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications......Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify...... the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting...

  11. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...

  12. Random-phase metasurfaces at optical wavelengths

    Science.gov (United States)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  13. Investigation of the self-healing properties of shape memory polyurethane coatings with the 'odd random phase multisine' electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jorcin, Jean-Baptiste, E-mail: jb.jorcin@gmail.co [Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Scheltjens, Gill [Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium)] [Research Group Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Van Ingelgem, Yves; Tourwe, Els [Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Van Assche, Guy [Research Group Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); De Graeve, Iris [Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Van Mele, Bruno [Research Group Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Terryn, Herman; Hubin, Annick [Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium)

    2010-08-30

    The aim of this work is to study the physical self-healing properties of shape memory polyurethanes (SMPUs) with cerium ions on top of a pure aluminum substrate. To achieve this, the 'odd random phase multisine' electrochemical impedance spectroscopy (EIS) is used. The additional information given by this technique (stochastic noise, non-linear and non-stationary behavior of the sample during the measurement) has been useful to verify the quality of the measurement. Moreover, combined with a fitting algorithm weighted by the stochastic noise, these elements of information proved powerful in rejecting, accepting or improving electrical equivalent circuit models used to fit the impedance spectra. These SMPU consist of two parts: a soft matrix in caprolactone and a hard part in polyurethane. SMPU with 12, 30 and 41% of hard phase were investigated. The results showed that a physical self-healing can be observed for the coating with 12% of hard phase.

  14. Random Phases and Energy Dispersion

    Institute of Scientific and Technical Information of China (English)

    刘全慧; 刘天贵; 班卫全

    2003-01-01

    Using 2N + 1 successive stationary states centred at nth, we construct a rectangular wavepacket in which the stationary states are superimposed with the equal weight √2N + 1. With the requirement of the wavepacket to be a quasi-classical state, the number N is determined by minimizing the uncertainty △x△p. Since the stationary state can only be determined to within an arbitrary multiplicative complex phase factor of unit magnitude, a number of N is obtained as a set of the phases are given. For a harmonic oscillator, when all of the phase factors are essentially the same, we have N ≈ [61/3n2/3] with [x] signifying the integral part of positive number x. When every phase in the phase factors is given by a random number generated in a closed interval [0, 2π] and when n ≥ 10, the probability of appearance of N is roughly 1/2N when N = 1 to 7, and does not exceed 0.01 whenN ≥ 8.

  15. Effect of Mo on the phase stability and elastic mechanical properties of Ti-Mo random alloys from ab initio calculations.

    Science.gov (United States)

    Cao, Peiyu; Tian, F Y; Wang, Yandong

    2017-08-23

    Ti-Mo alloys are promising materials for shape memory alloys and biomedical materials. Whereas, the appearance of metastable ω phase can cause embrittlement and destroy the shape memory effect. In order to avoid the ω phase, the effect of Mo on the temperature dependent lattice parameters, phase stability and elastic mechanical properties of β, α, and ω Ti1-xMox (x = 0~2.0) random alloys was systematically investigated by using the exact muffin-tin orbitals method in combination with the coherent potential approximation. The theoretical predictions for the lattice parameters are in good agreement with the available experiments. Results show that β Ti0.96Mo0.04 can almost transform to ω phase without lattice deformation and volume change, which suggests that the athermal ω phase is easier to precipitate and grow near 4 at.% Mo content in the β Ti1-xMox alloys. The critical content of Mo for the competed stabilization of β phase at T = 300 K is ~11.2 at.%. Its valence electron concentration of 4.224 is viewed as a necessary criterion for the competed phase stability. The calculations of formation energy are used to explain successfully why the partitioning of Mo can be found in Ti0.91Mo0.09 alloy after annealing. Through the analysis of formation energy, both Mo addition and increasing temperature can stabilize the β phase. The calculated Cauchy pressure, Pugh's ratio, Poisson ratio, and Young's modulus suggests that ω phase is intrinsically brittle and has large Young's modulus compared with β and α phases. © 2017 IOP Publishing Ltd.

  16. Critical properties of random Potts models

    Science.gov (United States)

    Kinzel, Wolfgang; Domany, Eytan

    1981-04-01

    The critical properties of Potts models with random bonds are considered in two dimensions. A position-space renormalization-group procedure, based on the Migdal-Kadanoff method, is developed. While all previous position-space calculations satisfied the Harris criterion and the resulting scaling relation only approximately, we found conditions under which these relations are exactly satisfied, and constructed our renormalization-group procedure accordingly. Numerical results for phase diagrams and thermodynamic functions for various random-bond Potts models are presented. In addition, some exact results obtained using a duality transformation, as well as an heuristic derivation of scaling properties that correspond to the percolation problem are given.

  17. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  18. Electrical Properties of Ag-Doped Ge2Sb2Te5 Films Used for Phase Change Random Access Memory

    Institute of Scientific and Technical Information of China (English)

    XIA Ji-Lin; LIU Bo; SONG Zhi-Tang; FENG Song-Lin; CHEN Bomy

    2005-01-01

    @@ Ag-doped Ge2Sb2 Te5 films were deposited by rf magnetron sputtering on SiO2/Si substrates.The content of Ag ranging from 4.5 to 11.3 at.% is determined by inductively coupled plasma atomic emission spectrometry.The crystallization temperature of Ag-doped Ge2Sb2 Te5 increases with the increasing Ag content and the stability of phase change film is improved greatly.Structures were measured by x-ray diffraction and the face-centered-cubic structure was more stable after Ag doping.Four-point probe was used to measure the sheet resistance of Agdoped Ge2Sb2 Te5 films annealed at different temperatures and it is indicated that Ag atoms increase the sheet resistance of Ge2Sb2 Te5 thin film when the annealing temperature is higher than about 360℃, which is beneficial for reducing the reset current.Current-voltage curves were tested and it is demonstrated that 4.5 at.% Ag doping into the Ge2Sb2Te5 film can reduce the threshold current from 1.46mA to 0.25mA and can only increase the threshold voltage slightly, which is very useful for low energy consumption.

  19. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    Energy Technology Data Exchange (ETDEWEB)

    Oosthoek, J. L. M.; Kooi, B. J., E-mail: B.J.Kooi@rug.nl [Zernike Institute for Advanced Materials and Materials innovation institute M2i, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Voogt, F. C.; Attenborough, K. [NXP, Gerstweg 2, 6534 AE Nijmegen (Netherlands); Verheijen, M. A. [Department of Applied Physics, Eindhoven University of Technology, NL-5600 MB Eindhoven (Netherlands); Philips Innovation Services Eindhoven, High Tech Campus 11, NL-5656 AE Eindhoven (Netherlands); Hurkx, G. A. M. [NXP Semiconductors, High Tech Campus 60, 5656 AE Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors, Kapeldreef 75, B 3001 Leuven (Belgium)

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  20. Improvement of Electrical Properties of the Ge2Sb2Te5 Film by Doping Si for Phase-Change Random Access Memory

    Institute of Scientific and Technical Information of China (English)

    QIAO Bao-Wei; FENG Jie; LAI Yun-Feng; LING Yun; LIN Yin-Yin; TANG Ting-Ao; CAI Bing-Chu; CHEN Bomy

    2006-01-01

    Si-doped Ge2Sb2Te5 films have been prepared by dc magnetron co-sputtering with Ge2Sb2Te5 and Si targets. The addition of Si in the Ge2Sb2Te5 film results in the increase of both crystallization temperature and phasetransition temperature from face-centred-cubic (fcc) phase to hexagonal (hex) phase. The resistivity of the Ge2Sb2Te5 film shows a significant increase with the Si doping. When doping 11.8 at.% of Si in the film, the resistivity after 460℃ annealing increases from 1 to 11mΩ·cm and dynamic resistance increase from 64 to 99Ω compared to the undoped Ge2Sb2Te5 film. This is very helpful to writing current reduction of phase-change random access memory.

  1. Faddeev Random Phase Approximation for Molecules

    CERN Document Server

    Degroote, Matthias; Barbieri, Carlo

    2010-01-01

    The Faddeev Random Phase Approximation is a Green's function technique that makes use of Faddeev-equations to couple the motion of a single electron to the two-particle--one-hole and two-hole--one-particle excitations. This method goes beyond the frequently used third-order Algebraic Diagrammatic Construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are described at the level of the Random Phase Approximation. This paper presents the first results for diatomic molecules at equilibrium geometry. The behavior of the method in the dissociation limit is also investigated.

  2. Faddeev Random Phase Approximation applied to molecules

    CERN Document Server

    Degroote, Matthias

    2012-01-01

    This Ph.D. thesis derives the equations of the Faddeev Random Phase Approximation (FRPA) and applies the method to a set of small atoms and molecules. The occurence of RPA instabilities in the dissociation limit is addressed in molecules and by the study of the Hubbard molecule as a test system with reduced dimensionality.

  3. Critical Properties of Pure and Random Antiferromagnets

    DEFF Research Database (Denmark)

    Cowley, R. A.; Carneiro, K.

    1980-01-01

    Neutron scattering techniques have been used to study the critical properties of CoF2 and the randomly mixed systems: Co/ZnF2 and KMn/NiF3. The results for CoF2 are in excellent accord with the critical properties of the three-dimensional Ising model. In all of the random crystals studied the tra...

  4. A third-order phase transition in random tilings

    CERN Document Server

    Colomo, F

    2013-01-01

    We consider the domino tilings of an Aztec diamond with a cut-off corner of macroscopic square shape and given size, and address the bulk properties of tilings as the size is varied. We observe that the free energy exhibits a third-order phase transition when the cut-off square, increasing in size, reaches the arctic ellipse---the phase separation curve of the original (unmodified) Aztec diamond. We obtain this result by studying the thermodynamic limit of certain nonlocal correlation function of the underlying six-vertex model with domain wall boundary conditions, the so-called emptiness formation probability (EFP). We consider EFP in two different representations: as a tau-function for Toda chains and as a random matrix model integral. The latter has a discrete measure and a linear potential with hard walls; the observed phase transition shares properties with both Gross-Witten-Wadia and Douglas-Kazakov phase transitions.

  5. Anomalous transport properties of a two-phase system of HTSC + NiTiO sub 3 paramagnetics, forming the net of random Josephson junctions

    CERN Document Server

    Petrov, M I; Shajkhutdinov, K A; Popkov, S I

    2002-01-01

    The magnetoresistive properties of the 92.5 at % Y sub 3 sub / sub 4 Lu sub 1 sub / sub 4 Ba sub 2 Cu sub 3 O sub 7 + 7.5 at % NiTiO sub 3 composites, representing the net of random tunnel transitions of the Josephson type, are synthesized and studied. The area, whereon R does not depend on the j-current and slightly depends on the H magnetic field is identified on the temperature dependences of the electric resistance R(T) of the composites with the NiTiO sub 3 paramagnetic compound below the temperature of the HTSC T sub c transition. The anomalous behavior of the HTSC + NiTiO sub 3 composites is explained by the effect of the Ni atoms magnetic moments in the dielectric barriers on the current transport

  6. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  7. Extended Quark Potential Model from Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.

  8. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  9. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  10. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We investigate various approximations to the correlation energy of a H2 molecule in the dissociation limit, where the ground state is poorly described by a single Slater determinant. The correlation energies are derived from the density response function and it is shown that response functions...... derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...

  11. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  12. Goldstone modes in the random phase approximation

    CERN Document Server

    Neergård, Kai

    2016-01-01

    I show that the kernel of the random phase approximation (RPA) matrix based on a stable Hartree, Hartree-Fock, Hartree-Bogolyubov or Hartree-Fock-Bogolyubov mean field solution is decomposed into a subspace with a basis whose vectors are associated, in the equivalent formalism of a classical Hamiltonian linear in canonic coordinates, with conjugate momenta of cyclic coordinates (Goldstone modes) and a subspace with a basis whose vectors are associated with pairs of conjugate canonic coordinates that do not enter the Hamiltonian at all. In a subspace complementary to the one spanned by all these coordinates including the conjugate coordinates of the Goldstone momenta, the RPA matrix behaves as in the case of a zerodimensional kernel. This result was derived very recently by Nakada as a corollary to a general analysis of RPA matrices based on both stable and unstable mean field solutions. The present proof does not rest on Nakada's general results.

  13. Statistical properties of random density matrices

    CERN Document Server

    Sommers, H J; Sommers, Hans-Juergen; Zyczkowski, Karol

    2004-01-01

    Statistical properties of ensembles of random density matrices are investigated. We compute traces and von Neumann entropies averaged over ensembles of random density matrices distributed according to the Bures measure. The eigenvalues of the random density matrices are analyzed: we derive the eigenvalue distribution for the Bures ensemble which is shown to be broader then the quarter--circle distribution characteristic of the Hilbert--Schmidt ensemble. For measures induced by partial tracing over the environment we compute exactly the two-point eigenvalue correlation function.

  14. Statistical properties of random density matrices

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, Hans-Juergen [Fachbereich Physik, Universitaet Duisburg-Essen, Campus Essen, 45117 Essen (Germany); Zyczkowski, Karol [Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagiellonski, ul. Reymonta 4, 30-059 Cracow (Poland)

    2004-09-03

    Statistical properties of ensembles of random density matrices are investigated. We compute traces and von Neumann entropies averaged over ensembles of random density matrices distributed according to the Bures measure. The eigenvalues of the random density matrices are analysed: we derive the eigenvalue distribution for the Bures ensemble which is shown to be broader then the quarter-circle distribution characteristic of the Hilbert-Schmidt ensemble. For measures induced by partial tracing over the environment we compute exactly the two-point eigenvalue correlation function.

  15. A novel random phase-shifting digital holographic microscopy method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.

  16. Random phase wave: a soluble non-Markovian system

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.

    1977-12-01

    The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.

  17. Transport properties of anyons in random topological environments

    Science.gov (United States)

    Zatloukal, V.; Lehman, L.; Singh, S.; Pachos, J. K.; Brennen, G. K.

    2014-10-01

    The quasi-one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviors are identified. We analytically demonstrate that all types of Abelian anyons localize purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localize. This is due to their entanglement with the anyonic environment, which effectively induces dephasing. Our study demonstrates that localization properties strongly depend on nonlocal topological interactions, and it provides a clear distinction in the transport properties of Abelian and non-Abelian anyons.

  18. THE ANALYTICAL PROPERTIES FOR HOMOGENEOUS RANDOM TRANSITION FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The concepts of Markov process in random environment and homogeneous random transition functions are introduced. The necessary and sufficient conditions for homogeneous random transition function are given. The main results in this article are the analytical properties, such as continuity, differentiability, random Kolmogorov backward equation and random Kolmogorov forward equation of homogeneous random transition functions.

  19. Properties of effective noise for systems with quenched randomness

    Science.gov (United States)

    Majaniemi, Sami

    2001-03-01

    The fluid-fluid phase boundary wandering in a disordered medium such as a Hele-Shaw cell filled with porous material experiences exotic correlations which are quite different from the static correlations characterizing the material properties of the medium. The equation of motion for the phase boundary is obtained by projecting out the bulk degrees of freedom. It is used to determine the noise properties of the nonlinear Langevin equation describing the dynamics of lower dimensional collective coordinates like interfaces and contact lines. Effect of local conservation law at the level of bulk dynamics changes the universal properties of the fluctuation of collective coordinates in a non-trivial way. As a particular example we use the refinements of the spontaneous imbibition model originally introduced for wetting of random medium [1]. [1] M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Eur. Phys. J. B 15, 701 (2000).

  20. Scaling Properties of Multilayer Random Networks

    CERN Document Server

    Méndez-Bermúdez, J A; Rodrigues, Francisco A; Moreno, Yamir

    2016-01-01

    Multilayer networks are widespread in natural and manmade systems. Key properties of these networks are their spectral and eigenfunction characteristics, as they determine the critical properties of many dynamics occurring on top of them. In this paper, we numerically demonstrate that the normalized localization length $\\beta$ of the eigenfunctions of multilayer random networks follows a simple scaling law given by $\\beta=x^*/(1+x^*)$, with $x^*=\\gamma(b_{\\text{eff}}^2/L)^\\delta$, $\\gamma,\\delta\\sim 1$ and $b_{\\text{eff}}$ being the effective bandwidth of the adjacency matrix of the network, whose size is $L=M\\times N$. The reported scaling law for $\\beta$ might help to better understand criticality in multilayer networks as well as to predict the eigenfunction localization properties of them.

  1. Scaling properties of multilayer random networks

    Science.gov (United States)

    Méndez-Bermúdez, J. A.; de Arruda, Guilherme Ferraz; Rodrigues, Francisco A.; Moreno, Yamir

    2017-07-01

    Multilayer networks are widespread in natural and manmade systems. Key properties of these networks are their spectral and eigenfunction characteristics, as they determine the critical properties of many dynamics occurring on top of them. Here, we numerically demonstrate that the normalized localization length β of the eigenfunctions of multilayer random networks follows a simple scaling law given by β =x*/(1 +x*) , with x*=γ (beff2/L ) δ , δ ˜1 , and beff being the effective bandwidth of the adjacency matrix of the network, whose size is L . The scaling law for β , that we validate on real-world networks, might help to better understand criticality in multilayer networks and to predict the eigenfunction localization properties of them.

  2. Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices

    Science.gov (United States)

    Lima, F. W. S.

    2016-01-01

    On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium.

  3. Random shortcuts induce phase synchronization in complex Chua systems

    Institute of Scientific and Technical Information of China (English)

    Wei Du-Qu; Luo Xiao-Shu; Qin Ying-Hua

    2009-01-01

    This paper studies how phase synchronization in complex networks depends on random shortcuts, using the piecewise-continuous chaotic Chua system as the nodes of the networks. It is found that for a given coupling strength,when the number of random shortcuts is greater than a threshold the phase synchronization is induced. Phase synchronization becomes evident and reaches its maximum as the number of random shortcuts is further increased. These phenomena imply that random shortcuts can induce and enhance the phase synchronization in complex Chua systems.Furthermore, the paper also investigates the effects of the coupling strength and it is found that stronger coupling makes it easier to obtain the complete phase synchronization.

  4. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  5. Key-space analysis of double random phase encryption technique

    Science.gov (United States)

    Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.

  6. Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force

    Institute of Scientific and Technical Information of China (English)

    TIAN Yuan; MA Zhong-Yu; Ring Peter

    2009-01-01

    In our previous work [Phys. Lett. (to be published), Chin. Phys. Lett. 23 (2006) 3226], we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA ) with this separable pairing interaction and calculate the excitation energies of the first excited 2+ .states and reduced B(E2; 0+ → 2+) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction.

  7. Decryption of a random-phase multiplexing recording system

    Science.gov (United States)

    Chang, Chi-Ching; Liu, Jung-Ping; Lee, Hsiao-Yi; Lin, Ching-Yang; Chang, Tsung-Chien; Yau, Hon-Fai

    2006-03-01

    In practice, decrypting a random-phase encrypted volume holographic data storage system is impossible unless the original random-phase plate for the encryption is available. However, this study demonstrates that under certain conditions, ways are available that can decrypt an encrypted photorefractive LiNbO3 crystal holographic storage system. In addition to presenting experimental results that show the efficacy of this decryption approach, problems and difficulties in the experiments are discussed.

  8. Statistical properties of random scattering matrices

    CERN Document Server

    Seba, P; Zakrzewski, J A; Seba, Petr; Zyczkowski, Karol; Zakrzewski, Jakub

    1996-01-01

    We discuss the properties of eigenphases of S--matrices in random models simulating classically chaotic scattering. The energy dependence of the eigenphases is investigated and the corresponding velocity and curvature distributions are obtained both theoretically and numerically. A simple formula describing the velocity distribution (and hence the distribution of the Wigner time delay) is derived, which is capable to explain the algebraic tail of the time delay distribution observed recently in microwave experiments. A dependence of the eigenphases on other external parameters is also discussed. We show that in the semiclassical limit (large number of channels) the curvature distribution of S--matrix eigenphases is the same as that corresponding to the curvature distribution of the underlying Hamiltonian and is given by the generalized Cauchy distribution.

  9. Probability, random processes, and ergodic properties

    CERN Document Server

    Gray, Robert M

    1988-01-01

    This book has been written for several reasons, not all of which are academic. This material was for many years the first half of a book in progress on information and ergodic theory. The intent was and is to provide a reasonably self-contained advanced treatment of measure theory, prob ability theory, and the theory of discrete time random processes with an emphasis on general alphabets and on ergodic and stationary properties of random processes that might be neither ergodic nor stationary. The intended audience was mathematically inc1ined engineering graduate students and visiting scholars who had not had formal courses in measure theoretic probability . Much of the material is familiar stuff for mathematicians, but many of the topics and results have not previously appeared in books. The original project grew too large and the first part contained much that would likely bore mathematicians and dis courage them from the second part. Hence I finally followed the suggestion to separate the material and split...

  10. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  11. Thermophysical properties of coexistent phases of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, Franz J [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Saleh, Tarik A [Los Alamos National Laboratory; Schwartz, Dan S [Los Alamos National Laboratory

    2009-01-01

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  12. Thermophysical properties of coexistent phases of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Freibert, F J; Mitchell, J N; Saleh, T A; Schwartz, D S, E-mail: freibert@lanl.gov, E-mail: jeremy@lanl.gov, E-mail: tsaleh@lanl.gov, E-mail: dschwartz@lanl.gov [Nuclear Materials Science Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-15

    Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutional in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature martensitic phase transformation ({delta}{yields}{alpha}') in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 deg. C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

  13. Continuity and anomalous fluctuations in random walks in dynamic random environments: numerics, phase diagrams and conjectures

    CERN Document Server

    Avena, L

    2012-01-01

    We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.

  14. Experimental investigation of local properties and statistics of optical vortices in random wave fields

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner; Miyamoto, Y.;

    2005-01-01

    We present the first direct experimental evidence of the local properties of optical vortices in a random laser speckle field. We have observed the Berry anisotropy ellipse describing the anisotropic squeezing of phase lines close to vortex cores and quantitatively verified the Dennis angular...... momentum rule for its phase. Some statistics associated with vortices, such as density, anisotropy ellipse eccentricity, and its relation to zero crossings of real and imaginary parts of the random field, are also investigated by experiments....

  15. Critical properties of the transverse ferromagnetic spin system with random single-ion anisotropy

    Institute of Scientific and Technical Information of China (English)

    邓玲玲; 晏世雷

    2002-01-01

    A transverse ferromagnetic spin-1 system with a random single-ion anisotropy is considered in the framework of an Ising model. The effective field theory and decoupling approximation are applied to the derivation of the expressions of magnetizations for a honeycomb lattice. Special emphasis is placed on the critical properties of the system. New critical properties are obtained in a certain range of single-ion anisotropy, random concentration, and transverse field.We discuss in detail the influence of the random concentration and transverse field on the critical properties. Some phenomena have not been discovered in previous reports. Detailed descriptions of the phase transition and magnetization curves are presented.

  16. Phase transitions for information diffusion in random clustered networks

    Science.gov (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin

    2016-09-01

    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  17. Asymptotic properties of random matrices and pseudomatrices

    CERN Document Server

    Lenczewski, Romuald

    2010-01-01

    We study the asymptotics of sums of matricially free random variables called random pseudomatrices, and we compare it with that of random matrices with block-identical variances. For objects of both types we find the limit joint distributions of blocks and give their Hilbert space realizations, using operators called `matricially free Gaussian operators'. In particular, if the variance matrices are symmetric, the asymptotics of symmetric blocks of random pseudomatrices agrees with that of symmetric random blocks. We also show that blocks of random pseudomatrices are `asymptotically matricially free' whereas the corresponding symmetric random blocks are `asymptotically symmetrically matricially free', where symmetric matricial freeness is obtained from matricial freeness by an operation of symmetrization. Finally, we show that row blocks of square, lower-block-triangular and block-diagonal pseudomatrices are asymptotically free, monotone independent and boolean independent, respectively.

  18. Random phase-free computer holography and its applications

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2016-06-01

    Random phase is required in computer-generated hologram (CGH) to widely diffuse object light and to avoid its concentration on the CGH; however, the random phase causes considerable speckle noise in the reconstructed image and degrades the image quality. We introduce a simple and computationally inexpensive method that improves the image quality and reduces the speckle noise by multiplying the object light with the designed convergence light. We furthermore propose the improved method of the designed convergence light with iterative method to reduce ringing artifacts. Subsequently, as the application, a lensless zoomable holographic projection is introduced.

  19. A hybrid fringe analysis technique for the elimination of random noise in interferometric wrapped phase maps

    Science.gov (United States)

    Bhat, Gopalakrishna K.

    1994-10-01

    A fringe analysis technique, which makes use of the spatial filtering property of the Fourier transform method, for the elimination of random impulsive noise in the wrapped phase maps obtained using the phase stepping technique, is presented. Phase noise is converted into intensity noise by transforming the wrapped phase map into a continuous fringe pattern inside the digital image processor. Fourier transform method is employed to filter out the intensity noise and recover the clean wrapped phase map. Computer generated carrier fringes are used to preserve the sign information. This technique makes the two dimensional phase unwrapping process less involved, because it eliminates the local phase fluctuations, which act as pseudo 2π discontinuities. The technique is applied for the elimination of noise in a phase map obtained using electro-optic holography.

  20. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  1. Single-random-phase holographic encryption of images

    Science.gov (United States)

    Tsang, P. W. M.

    2017-02-01

    In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.

  2. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-07-07

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.

  3. Continuum Random Phase Approximation with finite-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Co' , Giampaolo [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); De Donno, Viviana [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Anguiano, Marta; Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2016-05-15

    We rewrite the Random Phase Approximation secular equations in a form which allows the treatment of the continuum part of the single-particle spectrum without approximations. Within this formalism finite-range interactions can be used without restrictions. We present some results, obtained with Gogny interactions, where the role of the continuum is relevant. (orig.)

  4. Random phase-free computer-generated hologram

    CERN Document Server

    Shimobaba, Tomoyoshi

    2015-01-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  5. Random phase-free computer-generated hologram.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-04-01

    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  6. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.;

    2001-01-01

    Methods to determine unsaturated hydraulic properties can exhibit random and nonunique behavior. We assess the causes for these behaviors by visualizing microscale phase displacement processes that occur during equilibrium retention and transient outflow experiments. For both types of experiments...

  7. Fractional Fourier transform-based optical encryption with treble random phase-encoding

    Science.gov (United States)

    Xin, Yi; Tao, Ran; Wang, Yue

    2008-03-01

    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  8. Randomly phase-locked microlaser arrays and fuzzy eigenmodes with stochastic phasing.

    Science.gov (United States)

    Riyopoulos, S

    2006-10-30

    Deviations in the cold cavity parameters, random or systematic, produce incoherently phased-locked laser arrays with unevenly distributed phase difference and intensity. The collective radiation fields constitute "fuzzy" eigenmodes; the phasing among cavities is constant in time but changes randomly from site-to-site. The existence and structure of such eigenmodes is demonstrated numerically and analyzed theoretically using the rate equations for coupled semiconductor laser cavities. Active coupling, whereby one cavity's radiation field modulates the complex gain of nearby cavities (cross-cavity hole burning), is essential for the frequency pulling allowing synchronization of the laser operating frequencies.

  9. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Srikanth K Iyer; D Manjunath

    2006-04-01

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the issues of interest in random wireless networks. We then discuss some recent results for one-dimensional networks with the nodes distributed uniformly in $(0, z)$.We then discuss some asymptotic results for networks in higher dimensions when the nodes are distributed in a finite volume. Finally we discuss some recent generalisations in considering non uniform transmission ranges and non uniform node distributions. An annotated bibliography of some of the recent literature is also provided.

  10. Resistance of the double random phase encryption against various attacks.

    Science.gov (United States)

    Frauel, Yann; Castro, Albertina; Naughton, Thomas J; Javidi, Bahram

    2007-08-06

    Several attacks are proposed against the double random phase encryption scheme. These attacks are demonstrated on computer-generated ciphered images. The scheme is shown to be resistant against brute force attacks but susceptible to chosen and known plaintext attacks. In particular, we describe a technique to recover the exact keys with only two known plain images. We compare this technique to other attacks proposed in the literature.

  11. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  12. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.

    Science.gov (United States)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan

    2015-07-27

    We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.

  13. Low Energy Properties of the Random Spin-1/2 Ferromagnetic-Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hida, Kazuo

    1996-01-01

    The low energy properties of the spin-1/2 random Heisenberg chain with ferromagnetic and antiferromagnetic interactions are studied by means of the density matrix renormalization group (DMRG) and real space renormalization group (RSRG) method for finite chains. The results of the two methods are consistent with each other. The deviation of the gap distribution from that of the random singlet phase and the formation of the large-spin state is observed even for relatively small systems. For a s...

  14. Asymptotic Properties of Multistate Random Walks. I. Theory

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Shuler, K.E.

    1985-01-01

    A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) for multistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of

  15. Absolute Uniqueness of Phase Retrieval with Random Illumination

    CERN Document Server

    Fannjiang, Albert

    2011-01-01

    Random phase or amplitude illumination is proposed to remove at once all types of ambiguity, trivial or nontrivial, at once from phase retrieval. Almost sure irreducibility is proved for {\\em any} complex-valued object of arbitrary sparsity. While this irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a new perspective and an effective method for achieving absolute uniqueness in phase retrieval for {\\em every} object, not just objects outside of a measure-zero set. In particular, almost sure absolute uniqueness is proved for complex-valued objects under a general two-point assumption. For objects of nonnegative real and imaginary parts, absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases.

  16. Multiple image encryption and watermarking by random phase matching

    Science.gov (United States)

    He, M. Z.; Cai, L. Z.; Liu, Q.; Wang, X. C.; Meng, X. F.

    2005-03-01

    Usually a set of transmitted patterns can realize encryption and/or watermarking just for one hidden image. In this paper, we propose a novel method of multiple image encryption and watermarking by random phase matching, which can encrypt and then decrypt more than one image with the same set of transmitted patterns based on the idea of double phase encoding and the wave field superposition. The principle and procedure of this method are explained. A series of computer simulations with phase-shifting interferometry have shown that two or four independent images can be encrypted and decrypted without or with watermarking successfully with one set of composite interferograms. The ability of this method to retrieve hidden image(s) from part of the transmitted patterns has also been verified. This technique can considerably raise the efficiency of data transmission, and it is particularly suitable for the image transmission via Internet.

  17. Cascading dynamics on random networks: Crossover in phase transition

    Science.gov (United States)

    Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong

    2012-02-01

    In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.

  18. Neutron diffusion in a randomly inhomogeneous multiplying medium with random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Imre, Kaya [Courant Institute of Mathematical Sciences, New York University, New York 10012 (United States); Akcasu, A. Ziya [University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2012-06-15

    Neutron diffusion in a randomly inhomogeneous multiplying medium is studied. By making use of a random phase assumption we show that the average neutron density approximately satisfies an integral equation in Fourier space, which is solved using Kummer functions. We used multi-dimensional formulation. In the case of one dimension, we obtain the result of Rosenbluth and Tao for the mean total density for large t. In the three-dimensional case, a closed form of solution is derived for the mean total neutron density. Its asymptotic behavior is also investigated for large t.

  19. Thermodynamic properties of stable and metastable phases of Pt metal

    Institute of Scientific and Technical Information of China (English)

    PENG Hong-jian; XIE You-qing; NIE Yao-zhuang

    2009-01-01

    Isometric heat capacity cv and isobaric heat capacity cp of Pt with stable and metastable phases were calculated by using pure element systematic theory. These results are in excellent agreement with of SGTE (Scientific Group Thermodata Europe) database and JANAF (Joint Army-Navy-Air Force) experimental values. The calculation results of cv and cp of Pt metal in natural state are in good agreement with those calculated by FP(first-principles) method. It is found that the electron devotion to heat capacity is important to adjust in OA(one-atom) method while calculating heat capacity. The full information about thermodynamic properties of Pt metal with stable and metastable phases, such as entropy(S), enthalpy(H) and Gibbs energy(G) were calculated from 0 K to random temperature. The results are in good agreement with JANAF experimental value. In contrast to SGTE database, the thermodynamic properties from 0 K to 298.15 K are implemented.

  20. Choice of optical system is critical for the security of double random phase encryption systems

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.

    2017-06-01

    The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.

  1. The two-body random spin ensemble and a new type of quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Pizorn, Iztok; Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Mossmann, Stefan; Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, CP 62132 Cuernavaca, Morelos (Mexico)], E-mail: tomaz.prosen@fmf.uni-lj.si

    2008-02-15

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  2. The two-body random spin ensemble and a new type of quantum phase transition

    Science.gov (United States)

    Pižorn, Iztok; Prosen, Tomaž; Mossmann, Stefan; Seligman, Thomas H.

    2008-02-01

    We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.

  3. Some Probability Properties of Random Walk in Time-Random Environment

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-min; Li Bo

    2004-01-01

    A general formulation of the stochastic model for random walk in time-random environment and an equivalent definition is established in this paper. Moreover, some basic probability relations similar to the classical case which are very useful in the corresponding research of fractal properties are given. At the end, a typical example is provided to show the recurrence and transience.

  4. Spectral properties of random triangular matrices

    CERN Document Server

    Basu, Riddhipratim; Ganguly, Shirshendu; Hazra, Rajat Subhra

    2011-01-01

    We provide a relatively elementary proof of the existence of the limiting spectral distribution (LSD) of symmetric triangular patterned matrices and also show their joint convergence. We also derive the expressions for the moments of the LSD of the symmetric triangular Wigner matrix using properties of Catalan words.

  5. Symmetry properties with pupil phase-filters.

    Science.gov (United States)

    Ledesma, Silvia; Campos, J; Escalera, J; Yzuel, M

    2004-05-31

    Pupil filters can modify the three dimensional response of an optical system. In this paper, we study different pupil symmetries that produce a predictable image behavior. We show that different pupil-filters that satisfy certain symmetry conditions can produce axial responses which are either identical or mirror reflected. We also establish the differences in the symmetry properties between amplitude-only filters and phase-only filters. In particular, we are interested in phase filters that produce transverse superresolution with axial superresolution or high depth of focus.

  6. Fully phase image encryption using double random-structured phase masks in gyrator domain.

    Science.gov (United States)

    Singh, Hukum; Yadav, A K; Vashisth, Sunanda; Singh, Kehar

    2014-10-01

    We propose a method for fully phase image encryption based on double random-structured phase mask encoding in the gyrator transform (GT) domain. The security of the system is strengthened by parameters used in the construction of a structured phase mask (SPM) based on a devil's vortex Fresnel lens (DVFL). The input image is recovered using the correct parameters of the SPMs, transform orders of the GT, and conjugate of the random phase masks. The use of a DVFL-based SPM enhances security by increasing the key space for encryption, and also overcomes the problem of axis alignment associated with an optical setup. The proposed scheme can also be implemented optically. The computed values of mean squared error between the retrieved and the original image show the efficacy of the proposed scheme. We have also investigated the scheme's sensitivity to the encryption parameters, and robustness against occlusion and multiplicative Gaussian noise attacks.

  7. Multifractal properties of the random resistor network

    Science.gov (United States)

    Barthelemy; Buldyrev; Havlin; Stanley

    2000-04-01

    We study the multifractal spectrum of the current in the two-dimensional random resistor network at the percolation threshold. We consider two ways of applying the voltage difference: (i) two parallel bars, and (ii) two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves for small i as P(i) approximately 1/i, where i is the current. As a consequence, the moments of i of order q

  8. SOME PROPERTIES OF MULTIPLE TAYLOR SERIES AND RANDOM TAYLOR SERIES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Some polar coordinates are used to determine the domain and the ball of convergence of a multiple Taylor series. In this domain and in this ball the series converges,converges absolutely and converges uniformly on any compact set. Growth and other properties of the series may also be studied. For some random multiple Taylor series there are some corresponding properties.

  9. Statistical properties of several models of fractional random point processes

    Science.gov (United States)

    Bendjaballah, C.

    2011-08-01

    Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.

  10. Doorway States in the Random-Phase Approximation

    CERN Document Server

    De Pace, A; Weidenmueller, H A

    2014-01-01

    By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  11. Doorway states in the random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    De Pace, A., E-mail: depace@to.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Molinari, A. [Dipartimento di Fisica Teorica dell’Università di Torino, via P.Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Weidenmüller, H.A. [Max-Planck-Institut für Kernphysik, D-69029 Heidelberg (Germany)

    2014-12-15

    By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.

  12. Information hiding based on double random-phase encoding and public-key cryptography.

    Science.gov (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li

    2009-03-01

    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  13. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Xu, Hui; Zhang, Yingping [School of Architecture, Tsinghua University, Beijing 100084 (China)

    2003-12-01

    Phase change microcapsule slurry and phase change emulsion are two novel two-phase heat transfer fluids. Compared with a conventional single-phase heat transfer fluid such as water, their apparent specific heats in the phase change temperature range are greatly increased. Due to this, the heat transfer ability and energy transport ability can be obviously improved. Therefore, they have many potentially important applications in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this paper, a phase change emulsion was prepared by mixing film synthesis, and a phase change microcapsule slurry was prepared by in situ polymerization with polystyrene, polymethyl methacrylate, polyethyl methacrylate as encapsulation material, respectively. Physical properties, such as viscosity, diameter and its distribution of microcapsule and emulsion were investigated. The relationship between the concentration of tetradecane and physical properties have been discussed in detail. Meanwhile, the thermal physical properties of these two fluids were determined by DSC. Also, the influence of tetradecane concentration on phase change temperature and phase change heat has been discussed.

  14. Preparation, physical property and thermal physical property of phase change microcapsule slurry and phase change emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rui Yang [Tsinghua Univ., Dept. of Chemical Engineering, Beijing (China); Hui Xu; Yingping Zhang [Tsinghua Univ., School of Architecture, Beijing (China)

    2003-12-01

    Phase change microcapsule slurry and phase change emulsion are two novel two-phase heat transfer fluids. Compared with a conventional single-phase heat transfer fluid such as water, their apparent specific heats in the phase change temperature range are greatly increased. Due to this, the heat transfer ability and energy transport ability can be obviously improved. Therefore, they have many potentially important applications in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this paper, a phase change emulsion was prepared by mixing film synthesis, and a phase change microcapsule slurry was prepared by in situ polymerization with polystyrene, polymethyl methacrylate, polyethyl methacrylate as encapsulation material, respectively. Physical properties, such as viscosity, diameter and its distribution of microcapsule and emulsion were investigated. The relationship between the concentration of tetradecane and physical properties have been discussed in detail. Meanwhile, the thermal physical properties of these two fluids were determined by DSC. Also, the influence of tetradecane concentration on phase change temperature and phase change heat has been discussed. (Author)

  15. Detection of phase randomly distributed weak transient signal using chaos

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In practical communication and radar system s, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of the signal, the method of using a group of nonlinear differential equations is presented. The theory of this chaos-based detection is analyzed. Computer simulation indicates that the shortest lasting time of the transient signal that can be detected out is 12 periods, the detection error of arrival time is less than 7/8 signal's period, the detection characteristics are got using Monte-Carlo simulation.

  16. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  17. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2011-01-01

    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...

  18. The decryption of random phase multiplexing encoding system

    Science.gov (United States)

    Lee, Hsiao-Yi; Liu, Jung-Ping; Chang, Chi-Ching; Yau, Hon-Fai; Chang, Tsung-Chien

    2004-10-01

    Random-phase-multiplexing storage using photorefractive crystals is one of the most important topics in the field of photorefractive optics. To achieve random phase recording, we can use a diffuser to encrypt the reference light in a holographic recording setup. To decrypt the recorded pattern, the same diffuser used in encryption must be used in the reconstruction light, and it must be set in the original orientation. In this way, a number of 2-D patterns can be stored in a single photorefractive crystal with a single diffuser set at different orientations for different patterns. A merit in this recording method is that the encryption is virtually not possible to be decrypted if the original diffuser for encrypting is not available. In this paper, we proposed a way to decrypt the encrypted information in a photorefractive lithium niobate crystal without the possession of the original diffuser. In this method, we suppose somehow we know one of the patterns stored in the crystal, and then we retrieve the original diffuser with this pattern. And ultimately all the other patterns stored in the crystal are decrypted and retrieved with this retrieved diffuser.

  19. Properties and simulation of α-permanental random fields

    DEFF Research Database (Denmark)

    Møller, Jesper; Rubak, Ege Holger

    An α-permanental random field is briefly speaking a model for a collection of random variables with positive associations, where α is a positive number and the probability generating function is given in terms of a covariance or more general function so that density and moment expressions are given...... by certain α-permanents. Though such models possess many appealing probabilistic properties, many statisticians seem unaware of  α-permanental random fields and their potential applications. The purpose of this paper is first to summarize useful probabilistic results using the simplest possible setting...

  20. Linear processes in high dimensions: Phase space and critical properties

    Science.gov (United States)

    Mastromatteo, Iacopo; Bacry, Emmanuel; Muzy, Jean-François

    2015-04-01

    In this work we investigate the generic properties of a stochastic linear model in the regime of high dimensionality. We consider in particular the vector autoregressive (VAR) model and the multivariate Hawkes process. We analyze both deterministic and random versions of these models, showing the existence of a stable phase and an unstable phase. We find that along the transition region separating the two regimes the correlations of the process decay slowly, and we characterize the conditions under which these slow correlations are expected to become power laws. We check our findings with numerical simulations showing remarkable agreement with our predictions. We finally argue that real systems with a strong degree of self-interaction are naturally characterized by this type of slow relaxation of the correlations.

  1. Ferromagnetic Properties of Bond-Dilution and Random Positive or Negative Uniaxial Anisotropy Blume-Capel Model

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai-Xia; YAN Shi-Lei

    2004-01-01

    We study the ferromagnetic properties of spin-1 system, which is considered in the frame of the bond dilution and random positive or negative anisotropy Blume-Capel model in the effective field theory and a cutting approximation. The investigation of phase diagrams displays some rich properties of the trajectory of tricritical point, reentrant henomena at low temperatures. Under certain both bond concentrations and random negative anisotropy, there are new transition lines of double tricritical points. So special emphasis is placed on the influence of the bond dilution and random anisotropy on phase diagrams. The magnetizations of the system are also discussed. Some results have not been evealed in previous reports.

  2. Testing a random phase approximation for bounded turbulent flow

    Science.gov (United States)

    Ulitsky, Mark; Clark, Tim; Turner, Leaf

    1999-05-01

    Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.

  3. Scaling Properties of the Number of Random Sequential Adsorption Iterations Needed to Generate Saturated Random Packing

    Science.gov (United States)

    Cieśla, Michał

    2016-11-01

    The properties of the number of iterations in random sequential adsorption protocol needed to generate finite saturated random packing of spherically symmetric shapes were studied. Numerical results obtained for one, two, and three dimensional packings were supported by analytical calculations valid for any dimension d. It has been shown that the number of iterations needed to generate finite saturated packing is subject to Pareto distribution with exponent -1-1/d and the median of this distribution scales with packing size according to the power-law characterized by exponent d. Obtained results can be used in designing effective random sequential adsorption simulations.

  4. Optical double image security using random phase fractional Fourier domain encoding and phase-retrieval algorithm

    Science.gov (United States)

    Rajput, Sudheesh K.; Nishchal, Naveen K.

    2017-04-01

    We propose a novel security scheme based on the double random phase fractional domain encoding (DRPE) and modified Gerchberg-Saxton (G-S) phase retrieval algorithm for securing two images simultaneously. Any one of the images to be encrypted is converted into a phase-only image using modified G-S algorithm and this function is used as a key for encrypting another image. The original images are retrieved employing the concept of known-plaintext attack and following the DRPE decryption steps with all correct keys. The proposed scheme is also used for encryption of two color images with the help of convolution theorem and phase-truncated fractional Fourier transform. With some modification, the scheme is extended for simultaneous encryption of gray-scale and color images. As a proof-of-concept, simulation results have been presented for securing two gray-scale images, two color images, and simultaneous gray-scale and color images.

  5. Analytic interatomic forces in the random phase approximation

    CERN Document Server

    Ramberger, Benjamin; Kresse, Georg

    2016-01-01

    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the GW approximation. This relationship allows to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  6. Accuracy of the Faddeev Random Phase Approximation for Light Atoms

    CERN Document Server

    Barbieri, C; Degroote, M

    2010-01-01

    The accuracy of the Faddeev random phase approximation (FRPA) method is tested by calculating the total and ionization energies of a set of light atoms up to Ar. Comparisons are made with the results of coupled-cluster singles and doubles (CCSD), third-order algebraic diagrammatic construction [ADC(3)], and with the experiment. It is seen that even for two-electron systems, He and Be-2+, the inclusion of RPA effects leads to satisfactory results and therefore it does not over-correlate the ground state. The FRPA becomes progressively better for larger atomic numbers where it gives about 5 mH more correlation energy and it shifts ionization potentials by 2-10 mH, with respect to its sister method ADC(3). The corrections for ionization potentials consistently reduce the discrepancies with the experiment.

  7. Surface wake in the random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F.J. (Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del Pais Vasco, Apartado 649, 20080 San Sebastian (Spain)); Echenique, P.M. (Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Apartado 1072, 20080 San Sebastian (Spain))

    1993-11-01

    The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons ([approx]1.3[ital v][sub [ital F

  8. A mathematical formulation of the random phase approximation for crystals

    CERN Document Server

    Cances, Eric

    2011-01-01

    This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cances and M. Lewin, Arch. Rational Mech. Anal., 197 (2010) 139--177] to the time-dependent setting. In particular, we prove the existence and uniqueness of the nonlinear Hartree dynamics, also called the random phase approximation in the physics literature, in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell-Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.

  9. Improvement of the image quality of random phase--free holography using an iterative method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in the amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.

  10. Random matrix analysis of localization properties of gene coexpression network.

    Science.gov (United States)

    Jalan, Sarika; Solymosi, Norbert; Vattay, Gábor; Li, Baowen

    2010-04-01

    We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range and deviates afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: (a) The nondegenerate part that follows RMT. (b) The nondegenerate part, at both ends and at intermediate eigenvalues, which deviates from RMT and expected to contain information about important nodes in the network. (c) The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.

  11. Random lasing in structures with multi-scale transport properties

    CERN Document Server

    Leonetti, Marco

    2013-01-01

    In a random laser (RL), a system possessing in itself both resonator and amplifying medium while lacking of a macroscopic cavity, the feedback is provided by the scattering, which forces light to travel across very long random paths. Here we demonstrate that RL properties may be tuned by the topology of the scattering system retaining unchanged scattering strength and gain efficiency. This is possible in a system based on sparse clusters, possessing two relevant structural lengths: the macroscopic inter cluster separation and the mesoscopic intra-cluster mean free path.

  12. Multi-scale random sets: from morphology to effective properties and to fracture statistics

    Energy Technology Data Exchange (ETDEWEB)

    Jeulin, Dominique, E-mail: dominique.jeulin@mines-paristech.fr [Centre de Morphologie Mathematique, Mathematiques et Systemes, Mines ParisTech 35 rue Saint-Honore, F77300 Fontainebleau (France)

    2011-09-15

    Complex microstructures in materials often involve multi-scale heterogeneous textures, modelled by random sets derived from Mathematical Morphology. Starting from 2D or 3D images, a complete morphological characterization by image analysis is performed, and used for the identification of a model of random structure. From morphological models, simulations of realistic microstructures are introduced in a numerical solver to compute appropriate fields (electric, elastic stress or strain, ...) and to estimate the effective properties by numerical homogenization, accounting for scale dependent statistical fluctuations of the fields. Our approach is illustrated by various examples of multi-scale models: Boolean random sets based on Cox point processes and various random grains (spheres, cylinders), showing a very low percolation threshold, and therefore a high conductivity or high elastic moduli for a low volume fraction of a second phase. Multiscale Cox point processes are also a source of instructive models of fracture statistics, such as multiscale weakest link models.

  13. Magnetic properties of mixed Ising system with random field

    Institute of Scientific and Technical Information of China (English)

    Liang Ya-Qiu; Wei Guo-Zhu; Zhang Qi; Qiu Wei; Zang Shu-Liang

    2004-01-01

    A spin-1/2 and spin-3/2 mixed Ising system in a random field is studied by the use of effective-field theory with correlations. The phase diagrams and thermal behaviours of magnetizations are investigated numerically for the honeycomb lattice (z=3) and square lattice (z=4) respectively. The tricritical behaviours for both honeycomb and square lattices, as well as the reentrant behaviour for the square lattice are found.

  14. The chiral phase transition in a random matrix model with molecular correlations

    CERN Document Server

    Wettig, T; Weidenmüller, H A; Wettig, Tilo

    1995-01-01

    The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.

  15. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  16. Ultraviolet-visible bulk optical properties of randomly distributed soot.

    Science.gov (United States)

    Renard, J B; Hadamcik, E; Brogniez, C; Berthet, G; Worms, J C; Chartier, M; Pirre, M; Ovarlez, J; Ovarlez, H

    2001-12-20

    The presence of soot in the lower stratosphere was recently established by in situ measurements. To isolate their contribution to optical measurements from that of background aerosol, the soot's bulk optical properties must be determined. Laboratory measurements of extinction and polarization of randomly distributed soot were conducted. For all soot, measurements show a slight reddening extinction between 400 and 700 nm and exhibit a maximum of 100% polarization at a scattering angle of 75 +/- 5 degrees. Such results cannot be reproduced by use of Mie theory assumptions. The different optical properties of soot and background stratospheric aerosol could allow isolation of soot in future analyses of stratospheric measurements.

  17. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  18. Ultrasonic atomization: effect of liquid phase properties.

    Science.gov (United States)

    Avvaru, Balasubrahmanyam; Patil, Mohan N; Gogate, Parag R; Pandit, Aniruddha B

    2006-02-01

    Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.

  19. Phase Transitions in Sampling Algorithms and the Underlying Random Structures

    Science.gov (United States)

    Randall, Dana

    Sampling algorithms based on Markov chains arise in many areas of computing, engineering and science. The idea is to perform a random walk among the elements of a large state space so that samples chosen from the stationary distribution are useful for the application. In order to get reliable results, we require the chain to be rapidly mixing, or quickly converging to equilibrium. For example, to sample independent sets in a given graph G, the so-called hard-core lattice gas model, we can start at any independent set and repeatedly add or remove a single vertex (if allowed). By defining the transition probabilities of these moves appropriately, we can ensure that the chain will converge to a use- ful distribution over the state space Ω. For instance, the Gibbs (or Boltzmann) distribution, parameterized by Λ> 0, is defined so that p(Λ) = π(I) = Λ|I| /Z, where Z = sum_{J in Ω} Λ^{|J|} is the normalizing constant known as the partition function. An interesting phenomenon occurs as Λ is varied. For small values of Λ, local Markov chains converge quickly to stationarity, while for large values, they are prohibitively slow. To see why, imagine the underlying graph G is a region of the Cartesian lattice. Large independent sets will dominate the stationary distribution π when Λ is sufficiently large, and yet it will take a very long time to move from an independent set lying mostly on the odd sublattice to one that is mostly even. This phenomenon is well known in the statistical physics community, and characterizes by a phase transition in the underlying model.

  20. Random Overlap Structures: Properties and Applications to Spin Glasses

    CERN Document Server

    Arguin, Louis-Pierre

    2010-01-01

    Random Overlap Structures (ROSt's) are random elements on the space of probability measures on the unit ball of a Hilbert space, where two measures are identified if they differ by an isometry. In spin glasses, they arise as natural limits of Gibbs measures under the appropriate algebra of functions. We prove that the so called `cavity mapping' on the space of ROSt's is continuous, leading to a proof of the stochastic stability conjecture for the limiting Gibbs measures of a large class of spin glass models. Similar arguments yield the proofs of a number of other properties of ROSt's that may be useful in future attempts at proving the ultrametricity conjecture. Lastly, assuming that the ultrametricity conjecture holds, the setup yields a constructive proof of the Parisi formula for the free energy of the Sherrington-Kirkpatrick model by making rigorous a heuristic of Aizenman, Sims and Starr.

  1. Electron correlation effects beyond the random phase approximation

    Science.gov (United States)

    Fan, J. D.; Malozovsky, Y. M.

    2016-04-01

    The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a

  2. Transport properties of a ladder with two random dimer chains

    Institute of Scientific and Technical Information of China (English)

    Hu Donng-Sheng; Zhu Chen-Ping; Zhang Yong-Mei

    2011-01-01

    We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains.

  3. Viscoelastic Properties of Fluorinated Ethylene-Propylene (FEP) Random Copolymers

    Science.gov (United States)

    Curtin, Megan; Wright, Benjamin; Ozisik, Rahmi

    Florinated ethylene-propylene (FEP) random copolymers contain tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) repeat units. FEP is an excellent alternative to poly(tetrafluoroethylene), PTFE, which cannot be melt processed due to its high molecular weight and extensive crystallinity. On the other hand, FEP is a melt processible polymer and offers similar if not the same properties as PTFE. Many studies have been performed on FEP over the years, however, the properties of these polymers strongly depend on the HFP concentration and molecular weight (distribution). Just like PTFE, FEP cannot be dissolved in many solvents, therefore, obtaining molecular weight distribution of these polymers is not possible with commonly used methods. In the current study, we perform rheological analysis of various FEPs and obtain their molecular weight distributions by employing the Tuminello method. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  4. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems

    Science.gov (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-12-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  5. Shaping the spectrum of random-phase radar waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  6. Numerical simulations of the phase transition property of the explosive percolation model on Erd¨os R´enyi random network∗%Erd¨os R´enyi随机网络上爆炸渗流模型相变性质的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    李炎; 唐刚; 宋丽建; 寻之朋; 夏辉; 郝大鹏

    2013-01-01

      基于改进的Newman和Ziff算法以及有限尺寸标度理论,通过对表征渗流相变特征物理量的序参量、平均集团尺寸、二阶矩、标准偏差及尺寸不均匀性的数值模拟,分析研究了Erd¨os R´enyi随机网络上Achlioptas爆炸渗流模型的相变性质。研究表明:尽管序参量表现出了不连续相变的特征,但序参量以及其他特征物理量仍具有连续相变的幂律标度行为。因此严格地说, Erd¨os R´enyi随机网络中的爆炸渗流相变是一种奇异相变,它既不是标准的不连续相变,又与常规随机渗流表现出的连续相变处于不同的普适类。%Based on the modified Newman and Ziff algorithm combined with the finite-size scaling theory, in this present work we ana-lytically study the phase transition property of the explosive percolation model induced by Achlioptas process on the Erd¨os R´enyi random network via numerical simulations for the basic percolation quantities including the order parameter, the average cluster size, the moments, the standard deviation and the cluster heterogeneity. It is explicitly shown that all these relevant quantities display a typical power-law scaling behavior, which is the characteristic of continuous phase transition at the percolation threshold despite the fact that the order parameter presents a certain feature of discontinuous transition at the same time. Strictly, the explosive percolation transition during the Erd¨os R´enyi random network is a singular transition, which means that it is neither a standard discontinuous phase transition nor the continuous transition in the regular random percolation model.

  7. Ferrimagnetic Properties of Bond Dilution Mixed Blume-Capel Model with Random Single-Ion Anisotropy

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; YAN Shi-Lei

    2005-01-01

    We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory.The system is considered in the framework of bond dilution mixed Blume-Capel model (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points.Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random single-ion anisotropy.Some results have not been revealed in Previous papers and predicted by Néel theory of ferrimagnetism.

  8. A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties subject to Random Excitation

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.

    there is a significant reduction in the number of equations to be solved. The method is illustrated for a five-story shear-frame structure with nonlinear interstory restoring forces and random damping and stiffness properties. The results of the proposed method are compared to those estimated by extensive Monte Carlo......A method for computing the lower-order moments of randomly-excited multi-degree-of-freedom (MDOF) systems with random structural properties is proposed. The method is grounded in the techniques of stochastic calculus, utilizing a Markov diffusion process to model the structural system with random...

  9. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  10. Linear response of light deformed nuclei investigated by self-consistent quasiparticle random-phase-approximation

    CERN Document Server

    Losa, C; Dossing, T; Vigezzi, E; Broglia, R A

    2010-01-01

    We present a calculation of the properties of vibrational states in deformed, axially--symmetric even--even nuclei, within the framework of a fully self--consistent Quasparticle Random Phase Approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed ${}^{24}{}^{-}{}^{26}$Mg, ${}^{34}$Mg isotopes are presented and compared to experimental findings.

  11. Collective Modes in a Superfluid Neutron Gas within the Quasiparticle Random-Phase Approximation

    CERN Document Server

    Martin, Noël

    2014-01-01

    We study collective excitations in a superfluid neutron gas at zero temperature within the quasiparticle random phase approximation. The particle-hole residual interaction is obtained from a Skyrme functional, while a separable interaction is used in the pairing channel which gives a realistic density dependence of the pairing gap. In accordance with the Goldstone theorem, we find an ungapped collective mode (analogous to the Bogoliubov-Anderson mode). At low momentum, its dispersion relation is approximately linear and its slope coincides with the hydrodynamic speed of sound calculated with the Skyrme equation of state. The response functions are compared with those obtained within the Landau approximation. We also compute the contribution of the collective mode to the specific heat of the neutron gas, which is relevant for the thermodynamic properties of the inner crust of neutron stars.

  12. Phase-locking-level statistics of coupled random fiber lasers.

    Science.gov (United States)

    Fridman, Moti; Pugatch, Rami; Nixon, Micha; Friesem, Asher A; Davidson, Nir

    2012-10-01

    We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We found that the measured distribution of the phase locking level of such coupled lasers can be described by the generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled lasers, and the calculated results are in good agreement with the experimental results.

  13. Fluorescence properties of Laurdan in cochleate phases.

    Science.gov (United States)

    Ramani, Karthik; Balasubramanian, Sathyamangalam V

    2003-12-03

    Cochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g. Ca2+) and negatively charged phospholipids such as phosphatidylserine (PS). In the present study, we investigated the utility of fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) to monitor cochleate phase formation. Following addition of Ca2+ to Laurdan labeled lipid vesicles comprised of brain phosphatidylserine (BPS), a significant blue shift in the emission peak maximum of Laurdan was observed and the spectral features were distinct from those observed for the gel and liquid-crystalline (LC) phases. This is consistent with the formation of anhydrous cochleate cylinders that was further confirmed by electron microscopy studies. Due to dipolar relaxation, excitation and emission generalized polarization (GPEx and GPEm) indicate transition from a LC to a rigid and dehydrated (RD) cochleate phase. These spectral changes were utilized to monitor the influence of lipid composition, ionic strength and lamellarity on the formation of cochleate phase. The results indicated that the presence of phosphatidylcholine (PC) and bulk Na+ concentration influenced the formation of cochleate structures from small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) composed of PS. The presence of PC and higher bulk Na+ concentration stabilized the PS vesicles against collapse and total loss of contents, intermediate molecular events in the formation of cochleate structures. From these studies, we conclude that Laurdan fluorescence is a sensitive and a rapid method to detect cochleate phase formation.

  14. Estimation of Fluid Properties and Phase Equilibria.

    Science.gov (United States)

    Herskowitz, M.

    1985-01-01

    Describes a course (given to junior/senior students with strong background in thermodynamics and transport phenomena) that covers the theoretical and practical aspects of properties estimation. An outline for the course is included. (JN)

  15. Retrieval of phase distributions from the quadriwave lateral shearing interferogram obtained by randomly encoded hybrid grating

    Science.gov (United States)

    Ling, Tong; Yang, Yongying; Liu, Dong; Yue, Xiumei; Jiang, Jiabin

    2015-10-01

    A wavefront retrieval method for the quadriwave lateral shearing interferogram obtained by randomly encoded hybrid grating (REHG) is proposed. The REHG consists of a binary amplitude grating and a phase chessboard, and the Faunhofer diffractions of this grating only contain the +/-1 orders in two orthogonal directions. As a result, no order selection mask is ever needed by the REHG for quadriwave lateral shearing interference. To retrieve the phase distributions from the REHG interferograms, fast Fourier transform (FFT) technique is employed at first to get the frequency spectrum. By performing inverse fast Fourier transform (IFFT) of the +1 order spectrum in the x and y directions, it is possible to extract shearing wavefronts from the interferogram in both two orthogonal directions. Using the translation property of Fourier transform, the relationship between the Fourier spectrum of the shearing wavefronts and the Fourier spectrum of the wavefront under test is deduced. The wavefront under test is retrieved by establishing an evaluation function firstly and finding the minimum value with least-square-solution. Analysis and compensations are made to reduce the errors in the testing results. Simulation experiments have shown that this method can retrieve different phase distributions without losing high-frequency information.

  16. Blind estimation of statistical properties of non-stationary random variables

    Science.gov (United States)

    Mansour, Ali; Mesleh, Raed; Aggoune, el-Hadi M.

    2014-12-01

    To identify or equalize wireless transmission channels, or alternatively to evaluate the performance of many wireless communication algorithms, coefficients or statistical properties of the used transmission channels are often assumed to be known or can be estimated at the receiver end. For most of the proposed algorithms, the knowledge of transmission channel statistical properties is essential to detect signals and retrieve data. To the best of our knowledge, most proposed approaches assume that transmission channels are static and can be modeled by stationary random variables (uniform, Gaussian, exponential, Weilbul, Rayleigh, etc.). In the majority of sensor networks or cellular systems applications, transmitters and/or receivers are in motion. Therefore, the validity of static transmission channels and the underlying assumptions may not be valid. In this case, coefficients and statistical properties change and therefore the stationary model falls short of making an accurate representation. In order to estimate the statistical properties (represented by the high-order statistics and probability density function, PDF) of dynamic channels, we firstly assume that the dynamic channels can be modeled by short-term stationary but long-term non-stationary random variable (RV), i.e., the RVs are stationary within unknown successive periods but they may suddenly change their statistical properties between two successive periods. Therefore, this manuscript proposes an algorithm to detect the transition phases of non-stationary random variables and introduces an indicator based on high-order statistics for non-stationary transmission which can be used to alter channel properties and initiate the estimation process. Additionally, PDF estimators based on kernel functions are also developed. The first part of the manuscript provides a brief introduction for unbiased estimators of the second and fourth-order cumulants. Then, the non-stationary indicators are formulated

  17. Phase errors and their effect on undulator radiation properties

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2013-01-01

    Full Text Available A detailed analysis is carried out of the various types of phase errors present in real undulator devices, and their statistical properties. The influence of phase errors on the radiation properties is also examined, distinguishing the effects on peak brightness and integrated flux, and including the effects of electron beam emittance and energy spread. The limitation of the usual expression for the reduction in intensity due to phase errors, based on the rms phase error, is explored, and a new parameter is introduced which correlates better with the reduction in integrated flux. The implications for operation of undulators in future lower emittance storage rings is also discussed.

  18. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Muraca, D., E-mail: diego.muraca@gmail.co [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina); Sanchez, F.H. [Departamento de Fisica-Instituto de Fisica de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 69, (1900), La Plata (Argentina); Pampillo, L.G.; Saccone, F.D. [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina)

    2010-03-15

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  19. Unraveling spurious properties of interaction networks with tailored random networks.

    Directory of Open Access Journals (Sweden)

    Stephan Bialonski

    Full Text Available We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  20. Unraveling spurious properties of interaction networks with tailored random networks.

    Science.gov (United States)

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  1. Collaborative Randomized Beamforming for Phased Array Radio Interferometers

    CERN Document Server

    Ocal, Orhan; Cherubini, Giovanni; Kazemi, Sanaz

    2014-01-01

    The Square Kilometre Array (SKA) will form the largest radio telescope ever built and such a huge instrument in the desert poses enormous engineering and logistic challenges. Algorithmic and architectural breakthroughs are needed. Data is collected and processed in groups of antennas before transport for central processing. This processing includes beamforming, primarily so as to reduce the amount of data sent. The principal existing technique points to a region of interest independently of the sky model and how the other stations beamform. We propose a new collaborative beamforming algorithm in order to maximize information captured at the stations (thus reducing the amount of data transported). The method increases the diversity in measurements through randomized beam- forming. We demonstrate through numerical simulation the effectiveness of the method. In particular, we show that randomized beamforming can achieve the same image quality while producing 40% less data when compared to the prevailing method m...

  2. Random property allocation: A novel geographic imputation procedure based on a complete geocoded address file.

    Science.gov (United States)

    Walter, Scott R; Rose, Nectarios

    2013-09-01

    Allocating an incomplete address to randomly selected property coordinates within a locality, known as random property allocation, has many advantages over other geoimputation techniques. We compared the performance of random property allocation to four other methods under various conditions using a simulation approach. All methods performed well for large spatial units, but random property allocation was the least prone to bias and error under volatile scenarios with small units and low prevalence. Both its coordinate based approach as well as the random process of assignment contribute to its increased accuracy and reduced bias in many scenarios. Hence it is preferable to fixed or areal geoimputation for many epidemiological and surveillance applications.

  3. Random site dilution properties of frustrated magnets on a hierarchical lattice.

    Science.gov (United States)

    Fortin, Jean-Yves

    2013-07-24

    We present a method to analyze the magnetic properties of frustrated Ising spin models on specific hierarchical lattices with random dilution. Disorder is induced by dilution and geometrical frustration rather than randomness in the internal couplings of the original Hamiltonian. The two-dimensional model presented here possesses a macroscopic entropy at zero temperature in the large size limit, very close to the Pauling estimate for spin-ice on the pyrochlore lattice, and a crossover towards a paramagnetic phase. The disorder due to dilution is taken into account by considering a replicated version of the recursion equations between partition functions at different lattice sizes. An analysis to first order in replica number allows a systematic reorganization of the disorder configurations, leading to a recurrence scheme. This method is numerically implemented to evaluate thermodynamical quantities such as specific heat and susceptibility in an external field.

  4. Optical encryption for large-sized images using random phase-free method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Sugie, Takashige; Ito, Tomoyoshi

    2015-01-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  5. Phase Transition Properties of 3D Potts Models

    CERN Document Server

    Bazavov, Alexei; Dubey, Santosh

    2008-01-01

    Using multicanonical Metropolis simulations we estimate phase transition properties of 3D Potts models for q=4 to 10: The transition temperatures, latent heats, entropy gaps, normalized entropies at the disordered and ordered endpoints, interfacial tensions, and spinodal endpoints.

  6. Optical security system using jigsaw transforms of the second random phase mask and the encrypted image in a double random phase encoding system

    Science.gov (United States)

    Singh, Madan; Kumar, Arvind; Singh, Kehar

    2008-10-01

    In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.

  7. Phase transition properties of a cylindrical ferroelectric nanowire

    Indian Academy of Sciences (India)

    Wang Ying; Yang Xiong

    2013-11-01

    Based on the transverse Ising model (TIM) and using the mean-field theory, we investigate the phase transition properties of a cylindrical ferroelectric nanowire. Two different kinds of phase diagrams are constructed. We discuss systematically the effects of exchange interactions and the transverse field parameters on the phase diagrams. Moreover, the cross-over features of the parameters from the ferroelectric dominant phase diagram to the paraelectric dominant phase diagram are determined for the ferroelectric nanowire. In addition, the polarizations of the surface shell and the core are illustrated in detail by modifying the TIM parameters.

  8. Dielectric Properties and Lattice Distortion in Rhombohedral Phase Region and Phase Coexistence Region of PZT Ceramics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-Ming; ZHONG Zhi-Cheng; HAN Xiang-Yun; YAN Wen-Sheng; SUN Hong-Zhang; YANG Feng-Xia; ZHENG Ke-Yu; WEI Nian; LI Zhi-Hua

    2005-01-01

    In this paper, the relation between the dielectric properties and the lattice distortion in the phase coexistence region is discussed using a phase statistical distribution model, and in the rhombohedral phase region the two connection equations on the dielectric properties and the lattice distortion are established. Particularly, the relation between the dielectric properties and the lattice distortion is investigated in the phase coexistence region of PZT ceramics, and the fitting value of the volume fraction of the tetragonal phase VT to composition x in the equation is determined. Further,the fitting results are well consistent with the related experimental data. It involves more profound physical process than relation between the dielectric properties and composition x.

  9. Non-equilibrium Phase Transitions: Activated Random Walks at Criticality

    Science.gov (United States)

    Cabezas, M.; Rolla, L. T.; Sidoravicius, V.

    2014-06-01

    In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.

  10. Security enhancement of the phase-shifting interferometry-based cryptosystem by independent random phase modulation in each exposure

    Science.gov (United States)

    Liao, Meihua; He, Wenqi; Lu, Dajiang; Wu, Jiachen; Peng, Xiang

    2017-02-01

    The traditional phase-shifting interferometry (PSI)-based cryptosystem is one of the most classical optical cryptosystems. It employs the Mach-Zahnder interferometer to record the intensity distributions to partly overcome the inconvenience while storing the complex-valued ciphertext in some other optical cryptosystems (e.g., double random phase encoding technique). However, it has been proven to be vulnerable to chosen-plaintext attack and known-plaintext attack. In this manuscript, we propose an alternative method to enhance the security strength of the traditional PSI-based cryptosystem. By substituting the fixed random phase mask (RPM) and the phase retarder in the reference arm with four independent and different RPMs (served as secret keys) in four exposures, we can correspondingly capture four intensity-only patterns (regarded as ciphertexts). Theoretical analysis, especially with respect to security characteristics, as well as the numerical simulations are presented to verify the feasibility and reliability of the proposed cryptosystem.

  11. Simulation of heterogeneous two-phase media using random fields and level sets

    Institute of Scientific and Technical Information of China (English)

    George STEFANOU[1,2

    2015-01-01

    The accurate and efficient simulation of random heterogeneous media is important in the framework of modeling and design of complex materials across multiple length scales. It is usually assumed that the morphology of a random microstructure can be described as a non-Gaussian random field that is completely defined by its multivariate distribution. A particular kind of non-Gaussian random fields with great practical importance is that of translation fields resulting from a simple memory-less transformation of an underlying Gaussian field with known second-order statistics. This paper provides a critical examination of existing random field models of heterogeneous two-phase media with emphasis on level-cut random fields which are a special case of translation fields. The case of random level sets, often used to represent the geometry of physical systems, is also examined. Two numerical examples are provided to illustrate the basic features of the different approaches.

  12. Thermodynamic Properties of Random Transverse Field Mixed Spin System in the Presence of Single-Ion Anisotropy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYa-Nan; YANShi-Lei

    2003-01-01

    We study the thermodynamic properties of random transverse field mixed spin system in the presence of single-ion anisotropy on a square lattice. By making use of the effective field theory and a cutting approximation, the detailed phase diagrams are described and some interesting results are found under trimodal random transverse field distribution. A small single-ion anisotropy can magnify magnetic ordering region at low temperatures and existence of a large transverse field can assist the occurrence of reentrant phenomena. With increasing disorder, second-order phase transitions are shown to change into first-order phase transitions. The trajectory of the tricritical point in the phase space as a function of disorder is presented. These indicate a strong correlation with the corresponding to trimodal transverse field distribution.

  13. Synchronization properties of coupled chaotic neurons: The role of random shared input

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rupesh [School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Bilal, Shakir [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ramaswamy, Ram [School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-06-15

    Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag–synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.

  14. A Randomized Double-Blind Crossover Study of Phase-Shift Sound Therapy for Tinnitus

    NARCIS (Netherlands)

    Heijneman, Karin M.; de Kleine, Emile; van Dijk, Pim

    2012-01-01

    Objective. The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. Study Design. A double-blind crossover randomized controlled trial. Setting. This study was conducted at the Univer

  15. A Solution Method for Linear and Geometrically Nonlinear MDOF Systems with Random Properties subject to Random Excitation

    DEFF Research Database (Denmark)

    Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.;

    A method for computing the lower-order moments of randomly-excited multi-degree-of-freedom (MDOF) systems with random structural properties is proposed. The method is grounded in the techniques of stochastic calculus, utilizing a Markov diffusion process to model the structural system with random...... structural properties. The resulting state-space formulation is a system of ordinary stochastic differential equations with random coefficient and deterministic initial conditions which are subsequently transformed into ordinary stochastic differential equations with deterministic coefficients and random...... initial conditions. This transformation facilitates the derivation of differential equations which govern the evolution of the unconditional statistical moments of response. Primary consideration is given to linear systems and systems with odd polynomial nonlinearities, for in these cases...

  16. Observable Properties of Quark-Hadron Phase Transition at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2016-01-01

    Quark-hadron phase transition is simulated by an event generator that incorporates the dynamical properties of contraction due to QCD confinement forces and randomization due to the thermal behavior of a large quark system on the edge of hadronization. Fluctuations of emitted pions in the $(\\eta,\\phi)$ space are analyzed using normalized factorial moments in a wide range of bin sizes. The scaling index $\

  17. Signal analysis and processing for random binary phase coded pulse radar

    Institute of Scientific and Technical Information of China (English)

    孙光民; 刘国岁; 顾红

    2004-01-01

    The application of the random binary phase coded signal in the CW radar system has been limited by the difficulty to isolate the tranmission and reception signal. In order to make use of the random binary phase coded signal, the random binary phase coded pulse radar (RBPC-PR) system has been studied. First, the average ambiguity function (AAF) of the RBPC-PR signal has been analyzed. Then, a statistical method of reducing the range sidelobe (RSL) is presented. Finally, a signal processing scheme of the RBPC-PR is developed. The simulation results show that by using the scheme, the jamming immunity of the system, the resolution and accuracy of distance and velocity have been improved, and the distance and velocity vagueness caused by periods can also be removed. The RSL can be reduced over 30dB by the statistical average method, thus the probability ambiguity caused by random noise can be avoided.

  18. Image encryption using the Gyrator transform and random phase masks generated by using chaos

    Science.gov (United States)

    Vilardy, Juan M.; Jimenez, Carlos J.; Perez, Ronal

    2017-06-01

    The Gyrator transform (GT), chaotic random phase masks (CRPMs) and a random permutation of the Jigsaw transform (JT) are utilized to design an images encryption-decryption system. The encryption-decryption system is based on the double random phase encoding (DRPE) in the Gyrator domain (GD), this technique uses two random phase masks (RPMs) to encode the image to encrypt (original image) into a random noise. The RPMs are generated by using chaos, these masks are CRPMs. The parameters of the chaotic function have the control of the generation of the CRPMs. We apply a random permutation to the resulting image of the DRPE technique, with the purpose of obtaining an encrypted image with a higher randomness. In order to successfully retrieve the original image (without errors or noise-free) at the output of the decryption system is necessary to have all the proper keys, which are: the rotation angles of the GTs, the parameters of the chaotic function utilized to generate the two CRPMs and the random permutation of the JT. We check and analyze the validity of the image encryption and decryption systems by means of computing simulations.

  19. Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope

    Institute of Scientific and Technical Information of China (English)

    Jian Mi; Chunxi Zhang; Zheng Li; Zhanjun Wu

    2006-01-01

    @@ Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase and light power is studied theoretically and experimentally. It is shown that with different optical and electronic parameters, the optimal bias phase is different and should be adjusted accordingly to improve the FOG precision. By choosing appropriate bias phase, the random walk coefficient of the aim FOG is reduced from 0.0026 to 0.0019 deg./h1/2.

  20. Experimental study on optical image encryption with asymmetric double random phase and computer-generated hologram.

    Science.gov (United States)

    Xi, Sixing; Wang, Xiaolei; Song, Lipei; Zhu, Zhuqing; Zhu, Bowen; Huang, Shuai; Yu, Nana; Wang, Huaying

    2017-04-03

    Optical image encryption, especially double-random-phase-based, is of great interest in information security. In this work, we experimentally demonstrate the security and feasibility of optical image encryption with asymmetric double random phase and computer-generated hologram (CGH) by using spatial light modulator. First of all, the encrypted image modulated by asymmetric double random phase is numerically encoded into real-value CGH. Then, the encoded real-value CGH is loaded on the spatial light modulator and optically decrypted in self-designed experimental system. Experimental decryption results are in agreement with numerical calculations under the prober/mistaken phase keys condition. This optical decryption technology opens a window of optical encryption practical application and shows great potential for digital multimedia product copyright protection and holographic false trademark.

  1. Electronic properties of Fibonacci and random Si-Ge chains

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, M S [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Azevedo, David L; Hadad, A [Departamento de Fisica, Universidade Federal do Maranhao 65080-040, Sao LuIs-MA (Brazil); Galvao, D S, E-mail: mvasconcelos@ect.ufrn.br [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas CP 6165, 13083-970 Campinas, SP (Brazil)

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hueckel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schroedinger equation considering up to the nearest neighbor. (paper)

  2. Electronic properties of Fibonacci and random Si-Ge chains.

    Science.gov (United States)

    Vasconcelos, M S; Azevedo, David L; Hadad, A; Galvão, D S

    2011-10-12

    In this paper we address a theoretical calculation of the electronic spectra of an Si-Ge atomic chain that is arranged in a Fibonacci quasi-periodic sequence, by using a semi-empirical quantum method based on the Hückel extended model. We apply the Fibonacci substitutional sequences in the atomic building blocks A(Si) and B(Ge) through the inflation rule or a recursion relation. In our ab initio calculations we use only a single point, which is sufficient for considering all the orbitals and charge distribution across the entire system. Although the calculations presented here are more complete than the models adopted in the literature which take into account the electronic interaction only up to the second and third neighbors, an interesting property remains in their electronic spectra: the fractality (which is the main signature of this kind of system). We discuss this fractality of the spectra and we compare them with the random arrangement of the Si-Ge atomic chain, and with previous results based on the tight-binding approximation of the Schrödinger equation considering up to the nearest neighbor.

  3. Microstructure-property relationships in digitally generated three-dimensional, two-phase, liquid phase sintered materials

    Science.gov (United States)

    Lee, Sukbin

    complete wetting of particles by matrix and the constraint that the site exchange for diffusion of voxels is allowed only for neighboring particle-matrix voxel pairs in the Monte Carlo Potts model, this model can also be used for modeling isotropic coarsening of solid particles during liquid phase sintering. Kinetic Monte Carlo simulation is used to probe the coarsening dynamics and to obtain the characteristics of the solid particles, including the volume of critical nuclei and the distribution of particle size as a function of time. It is found that the average particle volume increases linearly with time and that the particle size distributions are consistent with those obtained experimentally, as in liquid phase sintered W-Ni-Fe and Sn-Pb systems. In obtaining these results, careful consideration is given to the role of initial microstructural conditions in the subsequent evolution of the system. The other objective of this project is to explore the effect of individual microstructural parameters in the hypothetical two-phase microstructures, including ones from the proposed Monte Carlo coarsening simulation, on stress and strain rate fields when uniaxial tension is applied. Using those two-phase digital microstructures as inputs, the microstructure-property relationship study is performed using a viscoplastic simulation based on the Fast Fourier Transform (FFT) algorithm. In the simulations, the dispersed phase consists of hard BCC particles with random spatial orientations while the matrix phase is either (1) a single soft FCC crystal with a fixed spatial orientation or (2)a soft FCC polycrystalline structure with random spatial orientations. A systematic parametric study, varying selected microstructural parameters such as the volume fraction of phases, contiguity of particles and spatial distribution of particles, is employed in order to explore the mechanical response of the hypothetical microstructures under uniaxial tension. It is found that the contiguity of

  4. A simulation of the measurement of electrical conductivity in randomly generated two-phase rocks.

    Science.gov (United States)

    Mandolesi, Eric; Moorkamp, Max; Jones, Alan G.

    2014-05-01

    Geological models of the subsurface require detailed data, often unavailable from direct observation or well logs. Hence imaging the subsurface relies on models obtained by interpretation of geophysical data. Several electromagnetic (EM) geophysical methods focus on the EM properties of rocks and sediments to determine a reliable image of the subsurface, while the same electromagnetic properties are directly measured in laboratories. Often these laboratory measurements return equivocal results that are difficult to reconcile with field observations. Recently different numerical approaches have been investigated in order to understand the effects of the geometry and continuity of interconnected pathways of conductors on EM field measurements, often restricting the studies to direct current (DC) sources. Bearing in mind the time-varying nature of the natural electromagnetic sources that play a role in field measurements, we numerically simulate the effects of such EM sources on the conductivity measured on the surface of a randomly generated three-dimensional body embedded in a uniform host by using electromagnetic induction equations, thus simulating a magnetotelluric (MT) survey. A key point in such a simulation is the scalability of the problem: the deeper the target, the longer the period of the EM source is needed. On the other hand, a long period signal ignores small heterogeneous conductors in the target bulk of the material, averaging the different conductivities in a median value. Since most real rocks are poor conductors, we have modeled a two-phase mixture of rock and interconnected conductive elements (representing melts, saline fluids, sulphidic, carbonitic, or metallic sediments, etc.), randomly generated within the background host. We have compared the results from the simulated measurements with the target rock embedded at different depths with electrical conductivity predicted by both Hashin-Shtrikman (HS) bounds and an updated multi-phase Archie

  5. Numerical simulations of the phase separation properties for the thermal aged CDSS with Phase Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Xue Fei [Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Wang Zhaoxi, E-mail: wangzx03@mails.tsinghua.edu.cn [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Applied Mechanics Laboratory, Tsinghua University, Beijing 100084 (China); Zhang Guodong [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Qu Baoping; Shi Huiji [Applied Mechanics Laboratory, Tsinghua University, Beijing 100084 (China); Shu Guogang [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Liu Wei [Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2011-07-15

    Highlights: > Thermal aging causes the Cr-rich phase precipitate and form clusters. > Phase field dynamic model is used for simulating the phase separation coarsening. > Damage initiated more easily in the ferrite matrix for the Cr clusters. - Abstract: Experiments and numerical simulations with Phase Field Model and Finite Element Analysis were carried out to investigate the phase separation dynamic properties and the corresponding thermal aging degradation mechanism. Experimental results from transmission electron microscopy and atomic force microscopy show that thermal aging causes the Cr-rich phase precipitate and form clusters. A phase field dynamic model was developed with constitutive relations and empirical potential functions to investigate the phase separation dynamics in the ferrite phase. Numerical results integrated with cell dynamical system method show clearly the micro structure morphology and the phase separation coarsening with aging time. The evolution process of the phase separation was quantitatively illustrated and reproduced macroscopically. The scattering pattern becomes clearer and the corresponding radius becomes smaller along with the increasing aging time. The average characteristic length increases firstly then decreases and enters a more stable stage. With the increment of the local Cr concentration, the evolution of the phase morphology was quite different. Finite Element Analysis simulation results with the Gurson-Tvergaard-Needleman void model show that the damage initiated more easily in the ferrite matrix for the Cr atoms forming clusters with increasing aging time. The phenomenological simulations with Phase Field Model and Finite Element Analysis were in remarkably good agreement with experimental results and analytical considerations.

  6. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used...... in an iterative phase retrieval algorithm based on a wave-propagation equation. The technique offers a whole-field and high-resolution wavefront reconstruction of unstained microstructures. Phase maps of photoresist targets and human cheek cells are obtained to demonstrate the effectiveness of our method. (C......) 2010 Optical Society of America...

  7. Destruction of first-order phase transition in a random-field Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Crokidakis, Nuno; Nobre, Fernando D [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ (Brazil)], E-mail: nuno@if.uff.br, E-mail: fdnobre@cbpf.br

    2008-04-09

    The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width {sigma}. It is argued that this distribution is more appropriate for a theoretical description of real systems than other simpler cases, i.e. the bimodal ({sigma} = 0) and single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destroyed for increasing values of {sigma}, similarly to what happens in the compound Fe{sub x}Mg{sub 1-x}Cl{sub 2}, whose finite-temperature first-order phase transition is presumably destroyed by an increase in the field randomness.

  8. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan

    2010-01-01

    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  9. Asymptotic key generation rates with phase-randomized coherent light by decoy method

    CERN Document Server

    Hayashi, M

    2007-01-01

    The asymptotic key generation (AKG) rates of quantum key distribution (QKD) with the decoy method are discussed in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of intensities. For this purpose, we derive a useful convex expansion of the phase-randomized coherent state. We also derive upper bounds of AKG rates on a natural and concrete channel model. Using these upper bounds, we numerically check that the AKG rates are almost saturated when the number of intensities is three.

  10. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  11. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  12. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Science.gov (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  13. Random phase approximation with second-order screened exchange for current-carrying atomic states

    Science.gov (United States)

    Zhu, Wuming; Zhang, Liang; Trickey, S. B.

    2016-12-01

    The direct random phase approximation (RPA) and RPA with second-order screened exchange (SOSEX) have been implemented with complex orbitals as a basis for treating open-shell atoms. Both RPA and RPA+SOSEX are natural implicit current density functionals because the paramagnetic current density implicitly is included through the use of complex orbitals. We confirm that inclusion of the SOSEX correction improves the total energy accuracy substantially compared to RPA, especially for smaller-Z atoms. Computational complexity makes post self-consistent-field (post-SCF) evaluation of RPA-type expressions commonplace, so orbital basis origins and properties become important. Sizable differences are found in correlation energies, total atomic energies, and ionization energies for RPA-type functionals evaluated in the post-SCF fashion with orbital sets obtained from different schemes. Reference orbitals from Kohn-Sham calculations with semi-local functionals are more suitable for RPA+SOSEX to generate accurate total energies, but reference orbitals from exact exchange (non-local) yield essentially energetically degenerate open-shell atom ground states. RPA+SOSEX correlation combined with exact exchange calculated from a hybrid reference orbital set (half the exchange calculated from exact-exchange orbitals, the other half of the exchange from orbitals optimized for the Perdew-Burke-Ernzerhof (PBE) exchange functional) gives the best overall performance. Numerical results show that the RPA-like functional with SOSEX correction can be used as a practical implicit current density functional when current effects should be included.

  14. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution

    Science.gov (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei

    2016-05-01

    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  15. First-order corrections to random-phase approximation GW calculations in silicon and diamond

    Science.gov (United States)

    Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.

    1998-05-01

    We report on ab initio calculations of the first-order corrections in the screened interaction W to the random-phase approximation polarizability and to the GW self-energy, using a noninteracting Green's function, for silicon and diamond. It is found that the first-order vertex and self-consistency corrections to the polarizability largely compensate each other. This does not hold, however, for the first-order corrections to the GW gap. For silicon the compensation between the first-order vertex and self-consistency correction contributions to the gap is only about 35%, while for diamond it is even absent. The resulting gap values are significantly and systematically too large, the direct gaps for silicon and diamond being 0.4 eV and 0.7 eV larger than their GW values, respectively. The success of GW in predicting electronic properties of, e.g., silicon and diamond can therefore apparently not be understood in terms of ``small'' corrections to GW to first order in W using a noninteracting Green's function.

  16. Electronic properties and phase transitions in low-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A M [Department of Physics, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva 84105 (Israel)], E-mail: pan@bgu.ac.il

    2008-07-23

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX{sub 2} (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX{sub 2} compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  17. Phase diagram and thermal properties of strong-interaction matter

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin; Qin, Si-Xue; Roberts, Craig D.; Schmidt, Sebastian M.

    2016-05-20

    We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  18. Phase Structure and Transport Properties of Dense Quark Matter

    CERN Document Server

    Schaefer, Thomas

    2010-01-01

    We provide a summary of our current knowledge of the phase structure of very dense quark matter. We concentrate on the question how the ground state at asymptotically high density -- color-flavor-locked (CFL) matter -- is modified as the density is lowered. We discuss the nature of the quasi-particle excitations, and present work on the transport properties of dense QCD matter.

  19. Defects, phase transformations and magnetic properties of lithium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, R.K.

    1977-03-01

    Achieving suitable magnetic properties in ceramic ferrites through thermomechanical treatments rather than through varying the processing and fabrication parameters alone has been investigated. Ferrimagnetic lithium ferrite and some other spinel structure materials were chosen for this investigation. Extensive characterization of phase transformations and lattice defects was done.

  20. Phase Diagrams and Tricritical Behaviour of the Spin-2 Ising Model in a Longitudinal Random Field

    Institute of Scientific and Technical Information of China (English)

    LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Qi; SONG Guo-Li

    2004-01-01

    @@ Within the framework of the effective-field theory with correlations, we study the ferromagnetic spin-2 randomfield Ising model (RFIM) in the presence of a crystal field on honeycomb (z = 3), square (z = 4) and simple cubic (z = 6) lattices. The effects of the crystal field and the longitudinal random field on the phase diagrams are investigated. Some characteristic features of the phase diagrams, such as the tricritical phenomena, reentrant phenomena and existence of two tricritical points, are found.

  1. Localization properties of random-mass Dirac fermions from real-space renormalization group.

    Science.gov (United States)

    Mkhitaryan, V V; Raikh, M E

    2011-06-24

    Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.

  2. New eco-friendly random copolyesters based on poly(propylene cyclohexanedicarboxylate: Structure-properties relationships

    Directory of Open Access Journals (Sweden)

    L. Genovese

    2015-11-01

    Full Text Available A series of novel random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate (PPCE containing neo -pentyl glycol sub-unit (P(PCExNCEy were synthesized and characterized in terms of molecular and solid-state properties. In addition, biodegradability studies in compost have been conducted. The copolymers displayed a high and similar thermal stability with respect to PPCE. At room temperature, all the copolymers appeared as semicrystalline materials: the main effect of copolymerization was a lowering of crystallinity degree (χc and a decrease of the melting temperature compared to the parent homopolymer. In particular, Wide Angle X-Ray diffraction (WAXD measurements indicated that P(PCExNCEy copolymers are characterized by cocrystallization, PNCE counits cocrystallizing in PPCE crystalline phase. Final properties and biodegradation rate of the materials under study were strictly dependent on copolymer composition and χc. As a matter of fact, the elastic modulus and the elongation at break decreased and increased, respectively, as neopentyl glycol cyclohexanedicarboxylate (NCE unit content was increased. The presence of a rigid-amorphous phase was evidenced by means of Dynamic Mechanical Thermal Analysis (DMTA analysis in all the samples under investigation. Lastly, the biodegradation rate of P(PCExNCEy copolymers was found to slightly increase with the increasing of NCE molar content.

  3. A random walk with a branching system in random environments

    Institute of Scientific and Technical Information of China (English)

    Ying-qiu LI; Xu LI; Quan-sheng LIU

    2007-01-01

    We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.

  4. Security enhancement of double-random phase encryption by iterative algorithm

    Science.gov (United States)

    Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Li, Si-Min; Ren, Zhi-Cheng; Tu, Chenghou; Wang, Hui-Tian

    2014-08-01

    We propose an approach to enhance the security of optical encryption based on double-random phase encryption in a 4f system. The phase key in the input plane of the 4f system is generated by the Yang-Gu algorithm to control the phase of the encrypted information in the output plane of the 4f system, until the phase in the output plane converges to a predesigned distribution. Only the amplitude of the encrypted information must be recorded as a ciphertext. The information, which needs to be transmitted, is greatly reduced. We can decrypt the ciphertext with the aid of the predesigned phase distribution and the phase key in the Fourier plane. Our approach can resist various attacks.

  5. Single-random phase encoding architecture using a focus tunable lens

    Science.gov (United States)

    Mosso, E. F.; Bolognini, N.; Pérez, D. G.

    2016-02-01

    We propose a new nonlinear optical architecture based on a focus tunable lens and an iterative phase retrieval algorithm. It constitutes a compact encryption system that uses a single-random phase key to simultaneously encrypt (decrypt) amplitude and phase data. Summarily, the information encoded in a transmittance object (phase and amplitude) is randomly modulated by a diffuser when a laser beam illuminates it; once the beam reaches a focus tunable lens, different subjective speckle distributions are registered at some image plane as the focal length is tuned to different values. This set of speckle patterns constitutes a delocalized ciphertext, which is used in an iterative phase retrieval algorithm to reconstruct a complex ciphertext. The original data are decrypted propagating this ciphertext through a virtual optical system. In this system, amplitude data are straightforwardly decrypted while phase data can only be restored if the random modulation produced in the encryption process is compensated. Thus, an encryption-decryption process and authentication protocol can simultaneously be performed. We validate the feasibility of our proposal with simulated and experimental results.

  6. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sara Llufriu

    Full Text Available Uncontrolled studies of mesenchymal stem cells (MSCs in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL on magnetic resonance imaging (MRI at 6 months and at the end of the study.Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS 3.0-6.5 were randomized to receive IV 1-2×10(6 bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite, and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects.At baseline 9 patients were randomized to receive MSCs (n = 5 or placebo (n = 4. One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1-8.8 vs 12.3, 95% CI = 4.4-34.5, p = 0.064, and at the end of study to reduced mean GEL (-2.8±5.9 vs 3±5.4, p = 0.075. No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+ cells in blood of MSCs treated patients.Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266.

  7. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Nie, You-Qi; Liu, Yang; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Leilei; Payne, Frank [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2015-06-15

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  8. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    Science.gov (United States)

    Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei

    2015-06-01

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.

  9. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    Science.gov (United States)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  10. Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs

    Science.gov (United States)

    Gaudillière, Alexandre; Scoppola, Benedetto; Scoppola, Elisabetta; Viale, Massimiliano

    2011-12-01

    We give a rigorous proof of two phase transitions for a disordered statistical mechanics system used to define an algorithm to find large cliques inside Erdös random graphs. Such a system is a conservative probabilistic cellular automaton inspired by the cavity method originally introduced in spin glass theory.

  11. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    Science.gov (United States)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  12. Scaling properties of phase-change line memory

    Institute of Scientific and Technical Information of China (English)

    Du Xiao-Feng; Song San-Nian; Song Zhi-Tang; Liu Wei-Li; Lü Shi-Long; Gu Yi-Feng; Xue Wei-Jia; Xi Wei

    2012-01-01

    Phase-change line memory cells with different line widths are fabricated using focused-ion-beam deposited C-Pt as a hard mask.The electrical performance of these memory devices was characterized.The current-voltage (I-V) and resistance-voltage (R-V) characteristics demonstrate that the power consumption decreases with the width of the phase-change line.A three-dimensional simulation is carried out to further study the scaling properties of the phase-change line memory.The results show that the resistive amorphous (RESET) power consumption is proportional to the cross-sectional area of the phase-change line,but increases as the line length decreases.

  13. Focusing properties of phase-only generalized Fibonacci photon sieves

    Science.gov (United States)

    Ke, Jie; Zhang, Junyong

    2016-06-01

    We propose a new algorithm to extend the standard Fibonacci photon sieve to the phase-only generalized Fibonacci photon sieve (GFiPS) and find that the focusing properties of the phase-only GFiPS are only relevant to the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones on the basis of the generalized Fibonacci sequences, we not only realize adjustable bifocal lengths, but also give their corresponding analytic expressions. Besides, we investigate a special phase-only GFiPS, a spiral-phase GFiPS, which can present twin vortices along the axial coordinate. Compared with the single focusing system, bifocal system can be exploited to enhance the processing speed, and offer a broad range of applications, such as direct laser writing, optical tweezers or atom trapping and paralleled fluorescence microscope.

  14. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot

    2010-10-17

    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  15. Phase statistics of light wave reflected from one-dimensional optical disordered media and its effects on light transport properties

    CERN Document Server

    Pradhan, Prabhakar

    2015-01-01

    Light wave reflection from optical disordered media is always associate with its phase, and the phase statistics influence the reflection statistics. We report a detailed numerical study of the statistics of the reflection coefficient RR* and its associated phase(theta) for plane electromagnetic waves reflected from one dimensional (1D) Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. We solve numerically the full Fokker-Planck (FP) equation for the joint probability distribution in the RR* - phase(theta) space for different lengths of the sample with different disorder strengths. The statistical optical transport properties of 1D optical disordered media are calculated using the full FP equation numerically. This constitutes a complete solution for the reflection phase statistics and its effects on light transport properties in a 1D Gaussian white-noise disordered optical potentials. Our results show the regime of the validation of the random phase approximations...

  16. Thermodynamic Property Model of Wide-Fluid Phase Propane

    Directory of Open Access Journals (Sweden)

    I Made Astina

    2007-05-01

    Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.

  17. Structural, electronic and optical properties of brookite phase titanium dioxide

    Science.gov (United States)

    Samat, M. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-04-01

    Structural, electronic and optical properties of titanium dioxide (TiO2) in brookite phase were studied via first-principles calculations in the framework of density functional theory (DFT). The exchange-correlation functional from local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the properties of brookite TiO2. The structural parameters of brookite in orthorhombic structure (Pbca space group) are in good agreement with the previous theoretical and experimental data. The obtained direct band gaps from GGA are slightly higher than LDA. Both LDA and GGA band gaps underestimate the experimental band gap due to the well-known limitation of DFT. The density of states (DOS) displays the hybridization of O 2p and Ti 3d states and Mulliken population analysis presents the net charge of Ti and O atoms in brookite. The dielectric function was also analyzed together with other optical properties such as refractive index, reflectivity, loss function and absorption coefficient. The first-principles calculations on the least studied TiO2 in brookite phase using different exchange-correlation functional from LDA and GGA provide theoretical understanding about its structural, electronic and optical properties. Besides, these results would give a better support for technological applications concerning TiO2 materials using brookite phase.

  18. RANDOM MICROSTRUCTURE FINITE ELEMENT METHOD AND ITS VERIFICATION FOR EFFECTIVE PROPERTIES OF COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present study aims at developing a new method-Random M icrostructure Finite Element Method (RMFEM)for the effective properties of composite materials . In this method, a random microstructure model is used to simulate the microstructure of the real composite materials. The physical fields in such a randm microstructure model under specified boundary and initial conditions are analyzed by finite element method. The effective properties of composite materials can be obtained from the analysis results. As verification, some effective properties of composite materials, such as elastic module,thermal expansion coefficient, thermal conductivity and elastoplastic properties, are investigated by random microstructure finite element method. The numerical results are given together with the experimental data. It i- revealed that the random microstructure finite element method is a very valid method for the determination of the effective properties of composite materials.

  19. Topological phases and transport properties of screened interacting quantum wires

    Science.gov (United States)

    Xu, Hengyi; Xiong, Ye; Wang, Jun

    2016-10-01

    We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.

  20. Hacking on decoy-state quantum key distribution system with partial phase randomization

    Science.gov (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2014-04-01

    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  1. Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A. Nihat

    2011-03-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.

  2. Tensor renormalization group: local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness.

    Science.gov (United States)

    Güven, Can; Hinczewski, Michael; Berker, A Nihat

    2010-11-01

    The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.

  3. An ultrafast quantum random number generator based on quantum phase fluctuations

    CERN Document Server

    Xu, Feihu; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-01-01

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we propose and experimentally demonstrate an ultrafast QRNG at a rate over 6 Gb/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with post-processing. We quantify the quantum randomness through min-entropy by modeling our system, and employ two extractors, Trevisan's extractor and Toeplitz-hashing, to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  4. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions

    Science.gov (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki

    2017-04-01

    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  5. Asymptotic Properties of Random Subsets of Projective Spaces.

    Science.gov (United States)

    1980-12-01

    large r, K takes one of at most two values dependingr on r. This theorem is analogous to a result of Bollobas and Erdos on the clique number of a random...approach does not seem eat;ily amenable to nrobabilistic analysis. The theorems of this paper may be informally summarized as follows. Fix a prime power q...Verlag, New York, Heidelberg, Berlin, 1979). 3. B. Bollobas and P. Erdo s, Cliques in random graphs, Math. Proc. Camb. Phil. Soc. 80 (1976), 419-427. 4

  6. Morphology and crystalline-phase-dependent electrical insulating properties in tailored polypropylene for HVDC cables

    Science.gov (United States)

    Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2016-11-01

    Polypropylene (PP) has become one promising material to potentially replace the cross-link polyethylene used for high voltage direct current cables. Besides the isotactic polypropylene, the block polypropylene (b-PP) and random polypropylene (r-PP) can be synthesized through the copolymerization of ethylene and propylene molecules. In this letter, the effect of morphology and crystalline phases on the insulating electrical properties of PP was investigated. It was found that the introduction of polyethylene monomer resulted in the formation of β and γ phases in b-PP and r-PP. The results from the characteristic trap energy levels indicated that the β and γ phases could induce deep electron traps which enable to capture the carriers. And the space charge accumulation was obviously suppressed. Besides, the decreased electrical conductivity was observed in b-PP and r-PP. It is attributed to the existence of deep traps which can effectively reduce the carrier mobility and density in materials.

  7. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  8. Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources.

    Science.gov (United States)

    Hong, Peilong; Li, Liming; Liu, Jianji; Zhang, Guoquan

    2016-03-29

    Young's double-slit or two-beam interference is of fundamental importance to understand various interference effects, in which the stationary phase difference between two beams plays the key role in the first-order coherence. Different from the case of first-order coherence, in the high-order optical coherence the statistic behavior of the optical phase will play the key role. In this article, by employing a fundamental interfering configuration with two classical point sources, we showed that the high- order optical coherence between two classical point sources can be actively designed by controlling the statistic behavior of the relative phase difference between two point sources. Synchronous position Nth-order subwavelength interference with an effective wavelength of λ/M was demonstrated, in which λ is the wavelength of point sources and M is an integer not larger than N. Interestingly, we found that the synchronous position Nth-order interference fringe fingerprints the statistic trace of random phase fluctuation of two classical point sources, therefore, it provides an effective way to characterize the statistic properties of phase fluctuation for incoherent light sources.

  9. Thermodynamic Properties of Random Transverse Field Mixed Spin System in the Presence of Single-Ion Anisotropy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-Nan; YAN Shi-Lei

    2003-01-01

    We study the thermodynamic properties of random transverse field mixed spin system in the presence ofsingle-ion anisotropy on a square lattice. By making use of the effective field theory and a cutting approximation, thedetailed phase diagrams are described and some interesting results are found under trimodal random transverse fielddistribution. A smallsingle-ion anisotropy can magnify magnetic ordering region at low temperatures and existence ofa large transverse field can assist the occurrence of reentrant phenomena. With increasing disorder, second-order phasetransitions are shown to change into first-order phase transitions. The trajectory of the tricritical point in the phasespace as a function of disorder is presented. These indicate a strong correlation with the corresponding to trimodaltransverse field distribution.

  10. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  11. The Randomized CRM: An Approach to Overcoming the Long-Memory Property of the CRM.

    Science.gov (United States)

    Koopmeiners, Joseph S; Wey, Andrew

    2017-03-01

    The primary object of a Phase I clinical trial is to determine the maximum tolerated dose (MTD). Typically, the MTD is identified using a dose-escalation study, where initial subjects are treated at the lowest dose level and subsequent subjects are treated at progressively higher dose levels until the MTD is identified. The continual reassessment method (CRM) is a popular model-based dose-escalation design, which utilizes a formal model for the relationship between dose and toxicity to guide dose finding. Recently, it was shown that the CRM has a tendency to get "stuck" on a dose level, with little escalation or de-escalation in the late stages of the trial, due to the long-memory property of the CRM. We propose the randomized CRM (rCRM), which introduces random escalation and de-escalation into the standard CRM dose-finding algorithm, as well as a hybrid approach that incorporates escalation and de-escalation only when certain criteria are met. Our simulation results show that both the rCRM and the hybrid approach reduce the trial-to-trial variability in the number of cohorts treated at the MTD but that the hybrid approach has a more favorable tradeoff with respect to the average number treated at the MTD.

  12. Ground State Properties of Many-Body Systems in the Two-Body Random Ensemble and Random Matrix Theory

    CERN Document Server

    Santos, L F; Jacquod, P; Kusnezov, Dimitri; Jacquod, Ph.

    2002-01-01

    We explore generic ground-state and low-energy statistical properties of many-body bosonic and fermionic one- and two-body random ensembles (TBRE) in the dense limit, and contrast them with Random Matrix Theory (RMT). Weak differences in distribution tails can be attributed to the regularity or chaoticity of the corresponding Hamiltonians rather than the particle statistics. We finally show the universality of the distribution of the angular momentum gap between the lowest energy levels in consecutive J-sectors for the four models considered.

  13. A phase 3 randomized trial comparing inolimomab vs usual care in steroid-resistant acute GVHD.

    Science.gov (United States)

    Socié, Gérard; Vigouroux, Stéphane; Yakoub-Agha, Ibrahim; Bay, Jacques-Olivier; Fürst, Sabine; Bilger, Karin; Suarez, Felipe; Michallet, Mauricette; Bron, Dominique; Gard, Philippe; Medeghri, Zakaria; Lehert, Philippe; Lai, Chinglin; Corn, Tim; Vernant, Jean-Paul

    2017-02-02

    Treatment of steroid-resistant acute graft-versus-host disease (GVHD) remains an unmet clinical need. Inolimomab, a monoclonal antibody to CD25, has shown encouraging results in phase 2 trials. This phase 3 randomized, open-label, multicenter trial compared inolimomab vs usual care in adult patients with steroid-refractory acute GVHD. Patients were randomly selected to receive treatment with inolimomab or usual care (the control group was treated with antithymocyte globulin [ATG]). The primary objective was to evaluate overall survival at 1 year without changing baseline allocated therapy. A total of 100 patients were randomly placed: 49 patients in the inolimomab arm and 51 patients in the ATG arm. The primary criteria were reached by 14 patients (28.5%) in the inolimomab and 11 patients (21.5%) in the ATG arms, with a hazard ratio of 0.874 (P = .28). With a minimum follow-up of 1 year, 26 (53%) and 31 (60%) patients died in the inolimomab and ATG arms, respectively. Adverse events were similar in the 2 arms, with fewer viral infections in the inolimomab arm compared with the ATG arm. The primary end point of this randomized phase 3 trial was not achieved. The lack of a statistically significant effect confirms the need for development of more effective treatments for acute GVHD. This trial is registered to https://www.clinicaltrialsregister.eu/ctr-search/search as EUDRACT 2007-005009-24.

  14. PHASE TRANSITION PROPERTIES OF A TWO COMPONENT FINITE MAGNETIC SUPERLATTICE

    Institute of Scientific and Technical Information of China (English)

    WANG XIAO-GUANG; LIU NING-NING; PAN SHAO-HUA; YANG GUO-ZHEN

    2000-01-01

    We study an (l, n) finite superlattice, which consists of two alternative magnetic materials(components) of l and n atomic layers, respectively. Based on the Ising model, we examine the phase transition properties of the magnetic superlattice. By transfer matrix method we derive the equation for Curie temperature of the superlattice. Numerical results are obtained for the dependence of Curie temperature on the thickness and exchange constants of the superlattice.

  15. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  16. Solution Methods for Structures with Random Properties Subject to Random Excitation

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.

    perturbation approach and a Markovian method. The second order perturbation approach is grounded on the total probability theorem and can be compactly written. Moreover, the problem to be solved is independent of the dimension of the random variables involved. The Markovian approach suggests transforming...... by the cumulant neglect closure method applied at the fourth order level....

  17. Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate

    CERN Document Server

    Stivala, Salvatore; Pasquazi, Alessia; Oliveri, Roberto L; Morandotti, Roberto; Assanto, Gaetano; 10.1364/OL.35.000363

    2012-01-01

    We observe second harmonic generation via random quasi-phase-matching in a 2.0 \\mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.

  18. Phase behaviors and membrane properties of model liposomes: Temperature effect

    Science.gov (United States)

    Wu, Hsing-Lun; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-09-01

    The phase behaviors and membrane properties of small unilamellar vesicles have been explored at different temperatures by dissipative particle dynamics simulations. The vesicles spontaneously formed by model lipids exhibit pre-transition from gel to ripple phase and main transition from ripple to liquid phase. The vesicle shape exhibits the faceted feature at low temperature, becomes more sphere-like with increasing temperature, but loses its sphericity at high temperature. As the temperature rises, the vesicle size grows but the membrane thickness declines. The main transition (Tm) can be identified by the inflection point. The membrane structural characteristics are analyzed. The inner and outer leaflets are asymmetric. The length of the lipid tail and area density of the lipid head in both leaflets decrease with increasing temperature. However, the mean lipid volume grows at low temperature but declines at high temperature. The membrane mechanical properties are also investigated. The water permeability grows exponentially with increasing T but the membrane tension peaks at Tm. Both the bending and stretching moduli have their minima near Tm. Those results are consistent with the experimental observations, indicating that the main signatures associated with phase transition are clearly observed in small unilamellar vesicles.

  19. Path properties of lp-valued Gaussian random fields

    Institute of Scientific and Technical Information of China (English)

    Yong-Kab; CHOI

    2007-01-01

    )[16]Book S A,Shore T R.On large intervals in the Cs(o)rg(o)-Révész theorem on increments of a Wiener process.Z Wahrsch Verw Gebiete,46:1-11 (1978)[17]Choi Y K,K(o)no N.How big are the increments of a two-parameter Gaussian process? J Theoret Probab,12(1):105-129 (1999)[18]Lin Z Y,Choi Y K.Some limit theorems for fractional Levy Brownian fields.Stoch Proc & Their Appl,82:229-244 (1999)[19]Lin Z Y,Lee S H,Hwang K S et al.Some limit theorems on the increments of lp-valued multi-parameter Gaussian processes.Acta Math Sinica,English Ser,20(6):1019-1028 (2004)[20]Slepian D.The one-sided barrier problem for Gaussian noise.Bell System Tech J,41:463-501 (1962)[21]Choi Y K,Lin Z Y,Sung H S et al.Limit behaviors for the increments of a d-dimensional multi-parameter Gaussian process.J Korean Math Soc,42(6):1265-1278 (2005)[22]Leadbetter M R,Lindgren G,Rootzen H.Extremes and Related Properties of Random Sequences and Processes.New York:Springer-Verlag,1983[23]Li W V,Shao Q M.A normal comparison inequality and its applications.Probab Theory & Rel Fields,122:494-508 (2002)

  20. Pseudo-random renormalization group forward and inverse modeling of the electrical properties of some carbonate rocks

    Science.gov (United States)

    Gomaa, Mohamed M.; Kassab, Mohamed A.

    2016-12-01

    Electrical properties of carbonate rocks from North Sinai, Egypt, were investigated experimentally in the frequency domain (100 Hz to 100 kHz). Changes between electrical properties were attributed to changes in mineral composition and texture of samples. Asymmetric mixture laws cannot describe electrical behavior of heterogeneous rocks in the mentioned frequency range. A theoretical pseudo-random renormalization group (PRNG) method was developed to model electrical behavior of rock mixtures. The main goal of this paper is to make forward and inverse modeling using PRNG method for the electrical properties as a function of frequency for carbonate rocks with texture. In PRNG method four phases were used to take into account the texture in the samples. Four phases are the best that we could use in the model. We are trying to increase the competence of the model in the near future. In these four phases mainly conducting constituents (silt and clay) and mainly insulating constituents (sand, air and carbonate) may coat each other. With appropriately chosen coatings for the four phases, the PRNG method can reasonably model the electrical properties of the samples in the measured frequency range. Thus, an inverse problem is used to find the detailed structure of the four phases, which leads to the measured electrical properties of the samples, taking into account the measured concentrations of the different constituents of the samples. The inverse problem is based on minimizing the misfit between the measured frequency response for the conductivity and the dielectric constant and those obtained theoretically from the PRNG method. It was shown that the texture plays an important role in determining the A.C. electrical properties of heterogeneous samples.

  1. Phase equilibria, structure and properties of Y-Ba ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Shamrai, V.F.; Efimov, Yu.V.; Karpinskii, O.G.; Babareko, A.A.; Leitus, G.M.; Frolova, T.M.; Myasnikova, E.A.; Postnikov, A.M.; Savel' yeva, M.E.; Lipikhin, Yu.L. (A.A. Baikov Inst. of Metallurgy, Academy of Sciences, Moscow (USSR))

    1990-05-01

    XRD, microscopy, chemical and activation analysis, together with measurement of Tc and some other properties, have been used to study changes in phase composition, microstructure, crystal structure, texture and composition-property diagrams of high temperature Y-Ba superconductors (single-crystal and polycrystalline specimens and cold-rolled strips) with variations in preparation, heat treatment, deformation and temperature. When prepared by conventional solid state reactions, specimens of the Y-Ba ceramic are generally polyphase (orthorhombic superconducting 123 phase, 2115 phase, sometimes BaCuO{sub 2}, and residual amounts of the initial oxides). The non-equilibrium specimens also contain Y{sub x}Ba{sub y}O{sub z}-type phases. Homogeneous single-phase (as shown by XRD) specimens of the 123-type phase with Tc=88-92 K (containing under 2-5 vol.% second phase, predominantly 2115) are obtained by repeated wet grinding, mixing and solid state annealing at 920-930degC, in air and under oxygen, of the initial mixture of oxides, including BaO{sub 2}. The manner in which the lattice periods of the orthorhombic 123 phase (Tc=92 K) vary with temperature displays an anomaly near Tc that correlates with the thermal behaviour of the Debye temperature. The lattice parameters of a YBa{sub 2}Cu{sub 3}O{sub 6.6} orthorhombic crystal have been studied at 91 and 293 K to ascertain the occupancy of the oxygen positions. Cooling the orthorhombic crystals involves the compression of the triple layers formed by two sheets of CuO{sub 5} pyramids, with their vertices facing the Cu1-O1-Cu1 chains. The compression is mainly due to a reduction in the Cu1-O2 distance. Centrally located in the ''a'' edges, the oxygen atoms may ''trigger'' the interchain interaction. Rolling of the 123 phase powder and strip with the addition of a plasticizer causes brittle cleavage of the crystals and gives rise to the (001) (110) basal texture.

  2. Si1Sb2Te3 phase change material for chalcogenide random access memory

    Institute of Scientific and Technical Information of China (English)

    Zhang Ting; Song Zhi-Tang; Liu Bo; Liu Wei-Li; Feng Song-Lin; Chen Bomy

    2007-01-01

    This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory.Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase.The film holds a threshold current about 0.155 mA,which is smaller than the value 0.31 mA of Ge2Sb2Te5 film.Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at~180°C and changes to hexagonal structure at~270°C.Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method.Data retention of the films was characterized as well.

  3. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Science.gov (United States)

    Jin, Bo; Kim, Jungsik; Pi, Dong-Hai; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-12-01

    Phase change random access memory (PCRAM) devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM) and the encapsulating layer material (YELM) according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM) while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  4. The phase diagram of random Boolean networks with nested canalizing functions

    CERN Document Server

    Peixoto, Tiago P

    2010-01-01

    We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number $b_t$ of nodes with value one, and the network sensitivity $\\lambda$, and we compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 2004 101 49 17102-7], these networks have a rich phase diagram, were both the "chaotic" and frozen phases are present, as well as an oscillatory regime of the value of $b_t$. We argue that the presence of only the frozen phase in the work of Kauffman et al. was due simply to the specific parametrization used, and is not an inherent feature of this class of functions. However, these networks are significantly more stable than the variants where all possible Boolean functions are allowed.

  5. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  6. Phase diagram and criticality of the random anisotropy model in the large-N limit

    Science.gov (United States)

    Mouhanna, Dominique; Tarjus, Gilles

    2016-12-01

    We revisit the thermodynamic behavior of the random-anisotropy O(N ) model by investigating its large-N limit. We focus on the system at zero temperature where the mean-field-like artifacts of the large-N limit are less severe. We analyze the connection between the description in terms of self-consistent Schwinger-Dyson equations and the functional renormalization group. We provide a unified description of the phase diagram and critical behavior of the model and clarify the nature of the possible "glassy" phases. Finally we discuss the implications of our findings for the finite-N and finite-temperature systems.

  7. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview

    Science.gov (United States)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2017-05-01

    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  8. Impulse attack-free four random phase mask encryption based on a 4-f optical system.

    Science.gov (United States)

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2009-04-20

    Optical encryption methods based on double random phase encryption (DRPE) have been shown to be vulnerable to different types of attacks. The Fourier plane random phase mask (RPM), which is the most important key, can be cracked with a single impulse function attack. Such an attack is viable because the Fourier transform of a delta function is a unity function. Formation of a unity function can be avoided if RPMs are placed in front of both lenses in a 4-f optical setup, thereby protecting the DRPE from an impulse attack. We have performed numerical simulations to verify the proposed scheme. Resistance of this scheme is checked against the brute force and the impulse function attacks. The experimental results validate the feasibility of the scheme.

  9. Simulation of single-photon state tomography using phase-randomized coherent states

    CERN Document Server

    Valente, P

    2016-01-01

    We have experimentally simulated the quantum state tomography of single-photon states of temporal modes of duration T and constant amplitude using phase randomized coherent states (PRCS). A stationary laser beam, whose phase relative to a local oscillator is varied at random, was used as a multiple realization of a PRCS of the temporal mode. The quadrature fluctuations histograms corresponding to the marginal distributions of the PRCS, were acquired with an oscilloscope using a sampling period T. Following a recent suggestion by Yuan et al \\cite{YUAN16}, we have derived estimates for the marginal distribution of the single-photon state. Based on these estimates, the approximate Wigner function and density matrix of the single-photon state were reconstructed with good precision. The sensitivity of the simulation to experimental errors and the number of PRCS used is addressed.

  10. Phase diagram of the classical Heisenberg model in a trimodal random field distribution

    Science.gov (United States)

    Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo

    2016-11-01

    The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.

  11. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  12. Implementation of the direct evaluation of strains using a phase analysis code for random patterns

    CERN Document Server

    Molimard, Jérôme

    2011-01-01

    A new approach for decoding directly strains from surfaces encoded with random patterns has been developed and validated. It is based on phase analysis of small region of interest. Here we adapt to random patterns new concepts proposed by Badulescu (2009) on the grid method. First metrological results are encouraging: resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9 pixels (ZOI 64 \\times 64 pixels2). Random noise has to be carefully controlled. A numerical example shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite is developed. Fabric intertwining is studied using a tensile test. Over-strains are clearly visible, and results connect well with the previous studies

  13. Hartree-Fock and Random Phase Approximation theories in a many-fermion solvable model

    CERN Document Server

    Co', Giampaolo

    2016-01-01

    We present an ideal system of interacting fermions where the solutions of the many-body Schroedinger equation can be obtained without making approximations. These exact solutions are used to test the validity of two many-body effective approaches, the Hartree-Fock and the Random Phase Approximation theories. The description of the ground state done by the effective theories improves with increasing number of particles.

  14. Solutions of random-phase approximation equation for positive-semidefinite stability matrix

    CERN Document Server

    Nakada, H

    2016-01-01

    It is mathematically proven that, if the stability matrix $\\mathsf{S}$ is positive-semidefinite, solutions of the random-phase approximation (RPA) equation are all physical or belong to Nambu-Goldstone (NG) modes, and the NG-mode solutions may form Jordan blocks of $\\mathsf{N\\,S}$ ($\\mathsf{N}$ is the norm matrix) but their dimension is not more than two. This guarantees that the NG modes in the RPA can be separated out via canonically conjugate variables.

  15. Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Jonathan, E-mail: engelj@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Mustonen, M. T., E-mail: mika.mustonen@yale.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06052 (United States)

    2016-06-21

    We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.

  16. What makes a phase transition? Analysis of the random satisfiability problem

    CERN Document Server

    Zweig, K A; Vicsek, T; 10.1016/j.physa.2009.12.051

    2010-01-01

    In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions ...

  17. The mechanical properties of phase separated protein droplets

    Science.gov (United States)

    Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony

    In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.

  18. THE SYSTEM NEODYMIUM - MANGANESE (STRUCTURES, MAGNETIC PROPERTIES, PHASE DIAGRAM), THE PHASE DIAGRAMS YB-HG AND TB-HG,

    Science.gov (United States)

    ALLOYS, YTTERBIUM, TERBIUM, MANGANESE ALLOYS, MERCURY ALLOYS, X RAY DIFFRACTION, X RAY SPECTROSCOPY, DIFFERENTIAL THERMAL ANALYSIS, PHASE DIAGRAMS , MAGNETIC PROPERTIES, CRYSTAL STRUCTURE, METALLOGRAPHY, AUSTRIA

  19. Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    CERN Document Server

    Bialonski, Stephan; Lehnertz, Klaus; 10.1371/journal.pone.0022826

    2012-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erd\\H{o}s-R\\'{e}nyi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way i...

  20. Strong mixing properties of max-infinitely divisible random fields

    CERN Document Server

    Dombry, Clément

    2012-01-01

    Let $\\eta=(\\eta(t))_{t\\in T}$ be a sample continuous max-infinitely random field on a locally compact metric space $T$. For a closed subset $S\\in T$, we note $\\eta_{S}$ the restriction of $\\eta$ to $S$. We consider $\\beta(S_1,S_2)$ the absolute regularity coefficient between $\\eta_{S_1}$ and $\\eta_{S_2}$, where $S_1,S_2$ are two disjoint closed subsets of $T$. Our main result is a simple upper bound for $\\beta(S_1,S_2)$ involving the exponent measure $\\mu$ of $\\eta$: we prove that $\\beta(S_1,S_2)\\leq 2\\int \\bbP[\\eta\

  1. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  2. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  3. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    Science.gov (United States)

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  4. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    Science.gov (United States)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  5. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  6. Many-body localization phase transition: A simplified strong-randomness approximate renormalization group

    Science.gov (United States)

    Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.

    2016-06-01

    We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.

  7. The 'emergent scaling' phenomenon and the dielectric properties of random resistor-capacitor networks

    CERN Document Server

    Bouamrane, R

    2003-01-01

    An efficient algorithm, based on the Frank-Lobb reduction scheme, for calculating the equivalent dielectric properties of very large random resistor-capacitor (R-C) networks has been developed. It has been used to investigate the network size and composition dependence of dielectric properties and their statistical variability. The dielectric properties of 256 samples of random networks containing: 512, 2048, 8192 and 32 768 components distributed randomly in the ratios 60% R-40% C, 50% R-50% C and 40% R-60% C have been computed. It has been found that these properties exhibit the anomalous power law dependences on frequency known as the 'universal dielectric response' (UDR). Attention is drawn to the contrast between frequency ranges across which percolation determines dielectric response, where considerable variability is found amongst the samples, and those across which power laws define response where very little variability is found between samples. It is concluded that the power law UDRs are emergent pr...

  8. Radio Variability and Random Walk Noise Properties of Four Blazars

    CERN Document Server

    Park, Jong-Ho

    2014-01-01

    We present the results of a time series analysis of the long-term radio lightcurves of four blazars: 3C 279, 3C 345, 3C 446, and BL Lacertae. We exploit the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program which provides densely sampled lightcurves spanning 32 years in time in three frequency bands located at 4.8, 8, and 14.5 GHz. Our sources show mostly flat or inverted (spectral indices -0.5 < alpha < 0) spectra, in agreement with optically thick emission. All lightcurves show strong variability on all time scales. Analyzing the time lags between the lightcurves from different frequency bands, we find that we can distinguish high-peaking flares and low-peaking flares in accord with the classification of Valtaoja et al. (1992). The periodograms (temporal power spectra) of the observed lightcurves are consistent with random-walk powerlaw noise without any indication of (quasi-)periodic variability. The fact that all four sources studied are in agreement with...

  9. The Study of the Thermoelectric Properties of Phase Change Materials

    Science.gov (United States)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  10. Coulomb and spin-orbit interactions in random phase approximation calculations

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2013-01-01

    We present a fully self-consistent computational framework composed by Hartree-Fock plus ran- dom phase approximation where the spin-orbit and Coulomb terms of the interaction are included in both steps of the calculations. We study the effects of these terms of the interaction on the random phase approximation calculations, where they are usually neglected. We carry out our investigation of excited states in spherical nuclei of oxygen, calcium, nickel, zirconium, tin and lead isotope chains. We use finite-range effective nucleon-nucleon interactions of Gogny type. The size of the effects we find is, usually, of few hundreds of keV. There are not simple approximations which can be used to simulate these effects since they strongly depend on all the variables related to the excited states, angular momentum, parity, excitation energy, isoscalar and isovector characters. Even the Slater approximation developed to account for the Coulomb exchange terms in Hartree-Fock is not valid in random phase approximation ca...

  11. Chaos Control for Coupling of the Double-Well Duffing System Based on Random Phase Disturbance

    Science.gov (United States)

    Wu, Gang; Li, Longsuo; Cong, Xinrong

    2013-06-01

    Non-feedback methods of chaos control are suited for practical applications. For possible practical applications of the control methods, the robustness of the methods in the presence of noise is of special interest. The noise can be in the form of external disturbances to the system or in the form of uncertainties due to inexact model of the system. This paper deals with the effect of random phase disturbance for a class of coupling of the Double-Well Duffing system in the presence of the noise. Lyapunov index is an important indicator to describe chaos. When the sign of the top Lyapunov exponent is positive, the system is chaotic. We compute top Lyapunov exponent by the Khasminskii's transform formula of spherical coordinate and extension of Wedig's algorithm based on linear stochastic system. With the change of the average of top Lyapunov exponent sign, we show that random phase can suppress chaos. Finally Poincaré map and phase portraits analysis are studied to confirm the obtained results.

  12. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    Science.gov (United States)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  13. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  14. Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions.

    Science.gov (United States)

    Neuhauser, Daniel; Rabani, Eran; Baer, Roi

    2013-04-04

    A fast method is developed for calculating the random phase approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix, and the trace is taken by a stochastic approach using random perturbation vectors. For a fixed statistical error in the total energy per electron, the method scales, at most, quadratically with the system size; however, in practice, due to self-averaging, it requires less statistical sampling as the system grows, and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. We find that the RPA correlation energies per electron are largely independent of the nanocrystal size. In addition, we show that a correlated sampling technique enables calculation of the energy difference between two slightly distorted configurations with scaling and a statistical error similar to that of the total energy per electron.

  15. A comprehensive survey of M(2)AX phase elastic properties.

    Science.gov (United States)

    Cover, M F; Warschkow, O; Bilek, M M M; McKenzie, D R

    2009-07-29

    M(2)AX phases are a family of nanolaminate, ternary alloys that are composed of slabs of transition metal carbide or nitride (M(2)X) separated by single atomic layers of a main group element. In this combination, they manifest many of the beneficial properties of both ceramic and metallic compounds, making them attractive for many technological applications. We report here the results of a large scale computational survey of the elastic properties of all 240 elemental combinations using first-principles density functional theory calculations. We found correlations revealing the governing role of the A element and its interaction with the M element on the c axis compressibility and shearability of the material. The role of the X element is relatively minor, with the strongest effect seen in the in-plane constants C(11) and C(12). We identify several elemental compositions with extremal properties such as W(2)SnC, which has by far the lowest value of C(44), suggesting potential applications as a high-temperature dry lubricant.

  16. Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    CAO Li-Gang; MA Zhong-Yu

    2004-01-01

    @@ The quasiparticle relativistic random phase approximation (QRRPA) is formulated based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the Bardeen-Cooper-Schrieffer approximation with a constant pairing gap. The numerical calculations are performed in the case of various isoscalar giant resonances of nucleus 120Sn with parameter set NL3. The calculated results show that the QRRPA approach could satisfactorily reproduce the experimental data of the energies of low-lying states.

  17. Comparison of Gamow-Teller strengths in the random phase approximation

    CERN Document Server

    Nabi, Jameel-Un

    2012-01-01

    The Gamow-Teller response is astrophysically important for a number of nuclides, particularly around iron. The random phase approximation (RPA) is an efficient way to generate strength distributions. In order to better understand both theoretical systematics and uncertainties, we compare the Gamow-Teller strength distributions for a suite of nuclides and for a suite of interactions, including semi-realistic interactions in the $1p$-$0f$ space with the RPA and a separable multi-shell interaction in the quasi-particle RPA. We also compare with experimental results for GT$_-$ on ${54}$Fe.

  18. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  19. Collective Multipole excitations of exotic nuclei in relativistic continuum random phase approximation

    CERN Document Server

    Yang, Ding; Ma, Zhongyu

    2013-01-01

    Journal of Combinatorial Theory, Series B, 98(1):173-225, 2008n exotic nuclei are studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function. Different from the cases in stable nuclei, there are strong low-energy excitations in neutron-rich nuclei and proton-rich nuclei. The neutron or proton excess pushes the centroid of the strength function to lower energies and increases the fragmentation of the strength distribution. The effect of treating the contribution of continuum exactly are also discussed.

  20. Dual random phase encoding: a temporal approach for fiber optic applications.

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Duchowicz, Ricardo; Torroba, Roberto; Sicre, Enrique E

    2008-04-10

    We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.

  1. Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory

    Science.gov (United States)

    Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee

    2011-04-01

    The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.

  2. Generalized model of double random phase encoding based on linear algebra

    Science.gov (United States)

    Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro

    2013-01-01

    We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.

  3. Cryptographic salting for security enhancement of double random phase encryption schemes

    Science.gov (United States)

    Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto

    2017-10-01

    Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.

  4. Continuum quasiparticle random phase approximation for astrophysical direct neutron capture reaction of neutron-rich nuclei

    OpenAIRE

    Matsuo, Masayuki

    2014-01-01

    We formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random phase approximation (QRPA). A focus is put on very neutron-rich nuclei and low-energy neutron kinetic energy in the range of O(1 keV) - O(1 MeV), relevant for the rapid neutron-capture process of nucleosynthesis. We begin with the photo-absorption cross section and the E1 strength function, t...

  5. Random-phase approximation and its applications in computational chemistry and materials science

    Science.gov (United States)

    Ren, Xinguo; Rinke, Patrick; Joas, Christian; Scheffler, Matthias

    2012-11-01

    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.

  6. Optical information authentication via compressed sensing and double random phase encoding

    Science.gov (United States)

    Chen, Junxin; Bao, Nan; Zhu, Zhi-liang

    2017-10-01

    This paper presents a novel information authentication scheme via compressed sensing and double random phase encoding. Two alternative architectures have been investigated, in which significantly compressed data with micro percentage is sufficient for authentication. At the decoder end, a noise-like image with no leakage of the plaintext is recovered and subsequently authenticated using a nonlinear optical correlation approach. The authentication effectiveness, noise resistance and security performance of the proposed scheme have been experimentally validated. This work was supported by the Fundamental Research Funds for the Central Universities (N162410002-4, N151904002), the National Natural Science Foundation of China (No. 61374178).

  7. Twin-image reduction method for in-line digital holography using periphery and random reference phase-shifting techniques

    Science.gov (United States)

    Oshima, Teppei; Matsudo, Yusuke; Kakue, Takashi; Arai, Daisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-09-01

    Digital holography has the twin image problem that unwanted lights (conjugate and direct lights) overlap in the object light in the reconstruction process. As a method for extracting only the object light, phase-shifting digital holography is widely used; however, this method is not applicable for the observation of moving objects, because this method requires the recording of plural holograms. In this study, we propose a twin-image reduction method by combining the "periphery" method with the "random phase-shifting" method. The proposed method succeeded in improving the reconstruction quality, compared to other one-shot recording methods ("parallel phase-shifting digital holography" and "random phase-shifting").

  8. Effect of the degree of disorder on electronic and optical properties in random superlattices

    Science.gov (United States)

    Wang, E. G.; Su, W. P.; Ting, C. S.

    1994-01-01

    A three-dimensional tight-binding calculation is developed and used to study disorder effects in a realistic random superlattice. With increasing disorder, a tendency of possible indirect-direct band-gap transition is suggested. Direct evidence of mobility edges between localized and extended states in three-dimensional random systems is given. As system disorder increases, the optical absorption intensities increase dramatically from five to forty-five times stronger than the ordered (GaAs)(sub 1)/(AlAs)(sub 1) superlattice. It is believed that the degree of disorder significantly affects electronic and optical properties of GaAs/AlAs random superlattices.

  9. Computer and graphics modeling of heat transfer and phase change in a wall with randomly imbibed PCM

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A.D.

    1989-03-01

    We describe the theoretical basis and computer implementation of a simulation code for heat transfer and phase change in a rectangular 2-dimensional region in which PCM has been randomly placed with a preassigned volume fraction.

  10. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia : 2-year follow-up from a randomized phase 3 trial (DASISION)

    NARCIS (Netherlands)

    Kantarjian, Hagop M.; Shah, Neil P.; Cortes, Jorge E.; Baccarani, Michele; Agarwal, Mohan B.; Soledad Undurraga, Maria; Wang, Jianxiang; Kassack Ipina, Juan Julio; Kim, Dong-Wook; Ogura, Michinori; Pavlovsky, Carolina; Junghanss, Christian; Milone, Jorge H.; Nicolini, Franck E.; Robak, Tadeusz; Van Droogenbroeck, Jan; Vellenga, Edo; Bradley-Garelik, M. Brigid; Zhu, Chao; Hochhaus, Andreas

    2012-01-01

    Dasatinib is a highly potent BCR-ABL inhibitor with established efficacy and safety in imatinib-resistant/-intolerant patients with chronic myeloid leukemia (CML). In the phase 3 DASISION trial, patients with newly diagnosed chronic-phase (CP) CML were randomized to receive dasatinib 100 mg (n = 259

  11. High energy X-ray phase and dark-field imaging using a random absorption mask

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  12. Dual-channel in-line digital holographic double random phase encryption.

    Science.gov (United States)

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-10-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated.

  13. Angular momentum coupling and symmetries of the random phase approximation equations

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.J.H.; De Kock, P.R. (Stellenbosch Univ. (South Africa). Dept. of Physics)

    1985-06-01

    This article presents a formal and tensor-algebraic reduction of the state vectors of a many-fermion system, which are described by the random phase approximation (RPA), to eigenvectors of the square and the z-component of the angular-momentum operator. The angular momentum coupled RPA equations are obtained in a concise manner by the reduction of the uncoupled equations to a set of independent equations for each irreducible component of the RPA state vector. These equations are also rewritten in a form which is symmetric with regard to the treatment of particle and hole states and it is finally shown how this symmetry can be neatly incorporated by a specific phase convention for the initial basis vectors. The required coupling of angular momentum characterized creation and annihilation operators for particles to similar operators for particle-hole pairs which then form the components of a contrastandard tensorial set, is also formally presented.

  14. Workshop on Strategic Behavior and Phase Transitions in Random and Complex Combinatorial Structures : Extended Abstracts

    CERN Document Server

    Kirousis, Lefteris; Ortiz-Gracia, Luis; Serna, Maria

    2017-01-01

    This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been e...

  15. Low-noise multiple watermarks technology based on complex double random phase encoding method

    Science.gov (United States)

    Zheng, Jihong; Lu, Rongwen; Sun, Liujie; Zhuang, Songlin

    2010-11-01

    Based on double random phase encoding method (DRPE), watermarking technology may provide a stable and robust method to protect the copyright of the printing. However, due to its linear character, DRPE exist the serious safety risk when it is attacked. In this paper, a complex coding method, which means adding the chaotic encryption based on logistic mapping before the DRPE coding, is provided and simulated. The results testify the complex method will provide better security protection for the watermarking. Furthermore, a low-noise multiple watermarking is studied, which means embedding multiple watermarks into one host printing and decrypt them with corresponding phase keys individually. The Digital simulation and mathematic analysis show that with the same total embedding weight factor, multiply watermarking will improve signal noise ratio (SNR) of the output printing image significantly. The complex multiply watermark method may provide a robust, stability, reliability copyright protection with higher quality printing image.

  16. Two-phase flow properties in aperture-based fractures under normal deformation conditions: Analytical approach and numerical simulation

    Science.gov (United States)

    Ye, Zuyang; Liu, Hui-Hai; Jiang, Qinghui; Liu, Yanzhang; Cheng, Aiping

    2017-02-01

    A systematic method has been proposed to estimate the two-phase flow properties of horizontal fractures under normal deformation condition. Based on Gaussian aperture distributions and the assumption of local parallel plate model, a simple model was obtained in closed form to predict the capillary pressure-saturation relationships for both wetting and non-wetting phases. Three conceptual models were also developed to characterize the relative permeability behaviors. In order to investigate the effect of normal deformation on two-phase flow properties, the normal deformation could be represented with the maximum void space closure on the basis of penetration model. A rigorous successive random addition (SRA) method was used to generate the aperture-based fractures and a numerical approach based on invasion percolation (IP) model was employed to model capillary-dominated displacements between wetting and non-wetting phases. The proposed models were partially verified by a laboratory dataset and numerical calculations without consideration of deformation. Under large normal deformations, it was found that the macroscopic model is in better agreement with simulated observations. The simulation results demonstrated that the two-phase flow properties including the relationships between capillary pressure, relative permeability and saturation, phase interference, phase structures, residual-saturation-rated parameters and tortuosity factor, were highly sensitive to the spatial correlation of aperture distribution and normal deformation.

  17. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer

    OpenAIRE

    Nanda, Rita; Stringer-Reasor, Erica M.; Saha, Poornima; Kocherginsky, Masha; Gibson, Jean; Libao, Bernadette; Hoffman, Philip C.; Obeid, Elias; Merkel, Douglas E.; Khramtsova, Galina; Skor, Maxwell; Krausz, Thomas; Cohen, Ronald N.; Ratain, Mark J.; Fleming, Gini F.

    2016-01-01

    Purpose Glucocorticoid receptor (GR) overexpression is associated with poor prognosis ER-negative breast cancer. GR antagonism with mifepristone increases chemotherapy-induced breast cancer cell death, therefore we conducted a phase I clinical trial of mifepristone and nab-paclitaxel in advanced breast cancer. Methods A novel randomized phase I design was used to assess the effect of mifepristone on nab-paclitaxel pharmacokinetics and toxicity. Patients were randomized to placebo or mifeprist...

  18. A randomized phase II trial of tacrolimus, mycophenolate mofetil and sirolimus after non-myeloablative unrelated donor transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian; Maloney, David G; Storer, Barry E

    2014-01-01

    The study is a randomized phase II trial investigating graft-versus-host disease prophylaxis after non-myeloablative (90 mg/m(2) fludarabine and 2 Gy total body irradiation) human leukocyte antigen matched unrelated donor transplantation. Patients were randomized as follows: arm 1 - tacrolimus 18...

  19. Phase Transitions on Fixed Connected Graphs and Random Graphs in the Presence of Noise

    CERN Document Server

    Liu, Jialing; Sehgal, Hullas; Olson, Joshua M; Liu, Haifeng; Elia, Nicola

    2008-01-01

    In this paper, we study the phase transition behavior emerging from the interactions among multiple agents in the presence of noise. We propose a simple discrete-time model in which a group of non-mobile agents form either a fixed connected graph or a random graph process, and each agent, taking bipolar value either +1 or -1, updates its value according to its previous value and the noisy measurements of the values of the agents connected to it. We present proofs for the occurrence of the following phase transition behavior: At a noise level higher than some threshold, the system generates symmetric behavior (vapor or melt of magnetization) or disagreement; whereas at a noise level lower than the threshold, the system exhibits spontaneous symmetry breaking (solid or magnetization) or consensus. The threshold is found analytically. The phase transition occurs for any dimension. Finally, we demonstrate the phase transition behavior and all analytic results using simulations. This result may be found useful in t...

  20. Thirty-two phase sequences design with good autocorrelation properties

    Indian Academy of Sciences (India)

    S P Singh; K Subba Rao

    2010-02-01

    Polyphase Barker Sequences are finite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difficult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modified Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.

  1. Thermodynamic properties and phase equilibria of selected Heusler compounds

    Science.gov (United States)

    Yin, Ming

    Heusler compounds are ternary intermetallics with many promising properties such as spin polarization and magnetic shape memory effect. A better understanding of their thermodynamic properties facilitates future design and development. Therefore, standard enthalpies of formation and heat capacities from room temperature to 1500 K of selected Heusler compounds X2YZ (X = Co, Fe, Ni, Pd, Rh, Ru; Y = Co, Cu, Fe, Hf, Mn, Ni, Ti, V, Zr; Z = Al, Ga, In, Si, Ge, Sn) and half-Heusler compounds XYSn (X = Au, Co, Fe, Ir, Ni, Pd, Pt, Rh; Y = Hf, Mn, Ti, Zr) were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation were compared with those predicted from ab initio calculations and the extended semi-empirical Miedema's model. Trends in standard enthalpy of formation with respect to the periodic classification of elements were discussed. The effect of a fourth element (Co, Cu, Fe, Pd; Ti, V; Al, Ga, In, Si, Ge) on the standard enthalpy of formation of Ni2MnSn was also investigated. Lattice parameters of the compounds with an L21 structure were determined using X-ray powder diffraction analysis. Differential scanning calorimetry was used to determine melting points and phase transformation temperatures. Phase relationships were investigated using scanning electron microscopy with an energy dispersive spectrometer. The isothermal section of the Fe-Sn-Ti ternary system at 873 K was established using equilibrated alloys. Three ternary compounds including the Heusler compound Fe2SnTi were observed. A new ternary compound Fe5Sn9Ti 6 was reported and the crystal structure of FeSnTi2 was determined for the first time.

  2. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi(3+))-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co(2+) by trivalent Bi(3+) cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi(3+) doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi(3+)-addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi(3+)-doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi(3+)-doping in enhancing the magnetic properties of cobalt ferrite.

  3. Synthesis and magnetic properties of single phase titanomagnetites

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthal, W., E-mail: wms@andrew.cmu.edu; Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Mesa, J. L.; Diaz-Michelena, M. [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Maicas, M. [Universidad Politecnica de Madrid, ISOM-ETSIT, Madrid (Spain)

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  4. Optical cryptosystem of color images using random phase masks in the fractional wavelet transform domain

    Science.gov (United States)

    Singh, Hukum

    2016-05-01

    An optical color image encryption in the Fractional Wavelet Transform (FWT) domain is carried out. The original images are segregated into three colors components: R (red), G (green) and B (blue). After that the components are encrypted separately using double random phase encoding (DRPE) in the FWT domain. Random phase masks (RPMs) are used in the input as well as in Fourier plane. The images to be encrypted are transformed with the discrete wavelet transform (DWT), the resulting coefficients from the DWT are multiplied each one by masks different form RPM. Masks are independent each other and the results are applied an inverse discrete Wavelet Transform (IDWT), obtaining the encrypted images. The input images are recovered from their corresponding encrypted images by using the correct parameters of the FWT, and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family and fractional orders associated with the FWT are extra keys that access difficulty an attacker; thereby the scheme is more secure as compared to conventional techniques. The sensitivity of proposed scheme is verified with encryption parameters, occlusions, and noise attacks.

  5. Band-phase-randomized Surrogates to assess nonlinearity in non-stationary time series

    CERN Document Server

    Guarin, Diego; Orozco, Alvaro

    2011-01-01

    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency band. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. When apply...

  6. Properties of Super-Poisson Processes and Super-Random Walks with Spatially Dependent Branching Rates

    Institute of Scientific and Technical Information of China (English)

    Yan Xia REN

    2008-01-01

    The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.

  7. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    Science.gov (United States)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  8. The Restricted Isometry Property for Time-Frequency Structured Random Matrices

    Science.gov (United States)

    2011-06-16

    Baraniuk, R.G., Davenport, M., DeVore, R.A., Wakin, M.: A simple proof of the restricted isom- etry property for random matrices. Constr . Approx. 28(3...Bernoulli and subgaussian ensembles. Constr . Approx. 28(3), 277–289 (2009) [35] Middleton, D.: Channel modeling and threshold signal processing in underwater

  9. Effective system properties and spectral density in random vibration with parametric excitation

    DEFF Research Database (Denmark)

    Krenk, Steen; Lin, Y. K.; Rüdinger, Finn

    2002-01-01

    The characteristic frequency and bandwidth of the random response to parametric excitation may be influenced by the excitation process. It is demonstrated that the effrective stiffness and damping properties can be expressed as conditional mean values for given displacement and energy levels...

  10. RANDOM MICROSTRUCTURE FINITE ELEMENT METHOD FOR EFFECTIVE NONLINEAR PROPERTIES OF COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.

  11. Computing the Expected Values of some Properties of Randomly Weighted Graphs

    CERN Document Server

    Emek, Yuval; Shavitt, Yuval

    2009-01-01

    Consider the setting of \\emph{randomly weighted graphs}, namely, graphs whose edge weights are independent discrete random variables with finite support over the non-negative reals. Given a randomly weighted graph $G$, we are interested in computing the expected values of various graph properties of $G$. In particular, we focus on the problem of computing the expected diameter of $G$. It is easy to show that this problem is \\SharpP-hard even in the restricted case in which all edge weights are identically distributed. In this paper we prove that this problem admits a \\emph{fully polynomial time randomized approximation scheme (FPRAS)}. Our technique can also be used to derive an FPRAS for the problem of computing the expected weight of an MST of $G$.

  12. Double-random-phase encryption with photon counting for image authentication using only the amplitude of the encrypted image.

    Science.gov (United States)

    Wang, Yong; Markman, Adam; Quan, Chenggen; Javidi, Bahram

    2016-11-01

    We present a photon-counting double-random-phase encryption technique that only requires the photon-limited amplitude of the encrypted image for decryption. The double-random-phase encryption is used to encrypt an image, generating a complex image. Photon counting is applied to the amplitude of the encrypted image, generating a sparse noise-like image; however, the phase information is not retained. By not using the phase information, the encryption process is simplified, allowing for intensity detection and also less information to be recorded. Using a phase numerically generated from the correct encryption keys together with the photon-limited amplitude of the encrypted image, we are able to decrypt the image. Moreover, nonlinear correlation algorithms can be used to authenticate the decrypted image. Both amplitude-based and full-phase encryption using the proposed method are investigated. Preliminary computational results and performance evaluation are presented.

  13. Super-rough glassy phase of the random field XY model in two dimensions.

    Science.gov (United States)

    Perret, Anthony; Ristivojevic, Zoran; Le Doussal, Pierre; Schehr, Grégory; Wiese, Kay J

    2012-10-12

    We study both analytically, using the renormalization group (RG) to two loop order, and numerically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional XY model with quenched random symmetry-breaking fields and without vortices. In the super-rough glassy phase, i.e., below the critical temperature T(c), the disorder and thermally averaged correlation function B(r) of the phase field θ(x), B(r)=([θ(x)-θ(x+r)](2)) behaves, for r > a, as B(r) is approximately equal to A(τ)ln(2)(r/a) where r=|r| and a is a microscopic length scale. We derive the RG equations up to cubic order in τ=(T(c)-T)/T(c) and predict the universal amplitude A(τ)=2τ(2)-2τ(3)+O(τ(4)). The universality of A(τ) results from nontrivial cancellations between nonuniversal constants of RG equations. Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(τ) numerically and obtain a remarkable agreement with our analytical prediction, up to τ≈0.5.

  14. Luteal Phase Support in the Intrauterine Insemination (IUI Cycles: A Randomized Double Blind, Placebo Controlled Study.

    Directory of Open Access Journals (Sweden)

    Batool Hossein Rashidi

    2014-12-01

    Full Text Available To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG, in sub fertile couples.This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg and hMG (75 IU in preparation for the IUI cycle. Study group (n = 127 received luteal phase support in the form of vaginal progesterone (400 mg twice a day, and control group (n = 126 received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups.The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3. The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45.It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  15. Magnetic properties of a transverse spin- Ising model with random longitudinal field

    Science.gov (United States)

    Liang, Ya-Qiu; Wei, Guo-Zhu; Song, Guo-Li

    2004-12-01

    Within the framework of the effective-field theory with correlations, a spin- transverse Ising model in the longitudinal random-field on a honeycomb lattice is studied. The phase diagrams and the behavior of the tricritical point are examined. The possible re-entrance phenomena displayed by the system due to the competition effects that occur for the appropriate ranges of the random and transverse field are investigated. The longitudinal and transverse magnetizations, the longitudinal quadrupolar moments and internal energy are given numerically for a honeycomb lattice (z = 3).

  16. Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data.

    Science.gov (United States)

    Elschner, Robert; de Melo, Alessandro Marques; Bunge, Christian-Alexander; Petermann, Klaus

    2007-01-15

    We studied the amplitude and phase noise suppression properties of an all-optical regenerator for differential phase-shift keying data. A detailed analytical investigation is performed and compared with numerical simulations for different working points. The results show that both amplitude and phase can be regenerated. However, simultaneous amplitude and phase noise suppression is possible only if the phase degradation is stronger than the amplitude degradation, for instance, due to nonlinear phase noise.

  17. Balance of optical, structural, and electrical properties of textured liquid phase crystallized Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Preidel, V., E-mail: veit.preidel@helmholtz-berlin.de; Amkreutz, D.; Haschke, J.; Wollgarten, M.; Rech, B.; Becker, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Renewable Energy, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-06-14

    Liquid phase crystallized Si thin-film solar cells on nanoimprint textured glass substrates exhibiting two characteristic, but distinct different surface structures are presented. The impact of the substrate texture on light absorption, the structural Si material properties, and the resulting solar cell performance is analyzed. A pronounced periodic substrate texture with a vertical feature size of about 1 μm enables excellent light scattering and light trapping. However, it also gives rise to an enhanced Si crystal defect formation deteriorating the solar cell performance. In contrast, a random pattern with a low surface roughness of 45 nm allows for the growth of Si thin films being comparable to Si layers on planar reference substrates. Amorphous Si/crystalline Si heterojunction solar cells fabricated on the low-roughness texture exhibit a maximum open circuit voltage of 616 mV and internal quantum efficiency peak values exceeding 90%, resulting in an efficiency potential of 13.2%. This demonstrates that high quality crystalline Si thin films can be realized on nanoimprint patterned glass substrates by liquid phase crystallization inspiring the implementation of tailor-made nanophotonic light harvesting concepts into future liquid phase crystallized Si thin film solar cells on glass.

  18. Phase stability and elastic properties of Cr-V alloys.

    Science.gov (United States)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-02-20

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson's ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson's ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  19. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  20. Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition.

    Science.gov (United States)

    Ostilli, Massimo; Bianconi, Ginestra

    2015-04-01

    Random geometric graphs (RGGs) can be formalized as hidden-variables models where the hidden variables are the coordinates of the nodes. Here we develop a general approach to extract the typical configurations of a generic hidden-variables model and apply the resulting equations to RGGs. For any RGG, defined through a rigid or a soft geometric rule, the method reduces to a nontrivial satisfaction problem: Given N nodes, a domain D, and a desired average connectivity 〈k〉, find, if any, the distribution of nodes having support in D and average connectivity 〈k〉. We find out that, in the thermodynamic limit, nodes are either uniformly distributed or highly condensed in a small region, the two regimes being separated by a first-order phase transition characterized by a O(N) jump of 〈k〉. Other intermediate values of 〈k〉 correspond to very rare graph realizations. The phase transition is observed as a function of a parameter a∈[0,1] that tunes the underlying geometry. In particular, a=1 indicates a rigid geometry where only close nodes are connected, while a=0 indicates a rigid antigeometry where only distant nodes are connected. Consistently, when a=1/2 there is no geometry and no phase transition. After discussing the numerical analysis, we provide a combinatorial argument to fully explain the mechanism inducing this phase transition and recognize it as an easy-hard-easy transition. Our result shows that, in general, ad hoc optimized networks can hardly be designed, unless to rely to specific heterogeneous constructions, not necessarily scale free.

  1. Local dependence in random graph models: characterization, properties and statistical inference.

    Science.gov (United States)

    Schweinberger, Michael; Handcock, Mark S

    2015-06-01

    Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with 'ground truth'.

  2. Convergence properties of polynomial chaos approximations for L2 random variables.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea (Cornell University, Ithaca, NY)

    2007-03-01

    Polynomial chaos (PC) representations for non-Gaussian random variables are infinite series of Hermite polynomials of standard Gaussian random variables with deterministic coefficients. For calculations, the PC representations are truncated, creating what are herein referred to as PC approximations. We study some convergence properties of PC approximations for L{sub 2} random variables. The well-known property of mean-square convergence is reviewed. Mathematical proof is then provided to show that higher-order moments (i.e., greater than two) of PC approximations may or may not converge as the number of terms retained in the series, denoted by n, grows large. In particular, it is shown that the third absolute moment of the PC approximation for a lognormal random variable does converge, while moments of order four and higher of PC approximations for uniform random variables do not converge. It has been previously demonstrated through numerical study that this lack of convergence in the higher-order moments can have a profound effect on the rate of convergence of the tails of the distribution of the PC approximation. As a result, reliability estimates based on PC approximations can exhibit large errors, even when n is large. The purpose of this report is not to criticize the use of polynomial chaos for probabilistic analysis but, rather, to motivate the need for further study of the efficacy of the method.

  3. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    Science.gov (United States)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  4. Roles of Antinucleon Degrees of Freedom in the Relativistic Random Phase Approximation

    CERN Document Server

    Kurasawa, Haruki

    2015-01-01

    Roles of antinucleon degrees of freedom in the relativistic random phase approximation(RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated with a usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations takes into account only a part of the nucleon-antinucleon states, in order to avoid the divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation which describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, excitation energies of the spurious state and giant monop...

  5. A study of key features of random atmospheric disturbance models for the approach flight phase

    Science.gov (United States)

    Heffley, R. K.

    1977-01-01

    An analysis and brief simulator experiment were performed to identify and classify important features of random turbulence for the landing approach flight phase. The analysis of various wind models was carried out within the context of the longitudinal closed-loop pilot/vehicle system. The analysis demonstrated the relative importance of atmospheric disturbance scale lengths, horizontal versus vertical gust components, decreasing altitude, and spectral forms of disturbances versus the pilot/vehicle system. Among certain competing wind models, the analysis predicted no significant difference in pilot performance. This was confirmed by a moving base simulator experiment which evaluated the two most extreme models. A number of conclusions were reached: attitude constrained equations do provide a simple but effective approach to describing the closed-loop pilot/vehicle. At low altitudes the horizontal gust component dominates pilot/vehicle performance.

  6. Dielectric matrix formulation of correlation energies in the Random Phase Approximation (RPA): inclusion of exchange effects

    CERN Document Server

    Mussard, Bastien; Jansen, Georg; Angyan, Janos

    2016-01-01

    Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...

  7. Phase transition in a random fragmentation problem with applications to computer science

    Energy Technology Data Exchange (ETDEWEB)

    Dean, David S.; Majumdar, Satya N. [IRSAMC, Laboratoire de Physique Quantique (UMR 5626 du CNRS), Universite Paul Sabatier, Toulouse (France)

    2002-08-16

    We study a fragmentation problem where an initial object of size x is broken into m random pieces provided x>x{sub 0} where x{sub 0} is an atomic cut-off. Subsequently, the fragmentation process continues for each of those daughter pieces whose sizes are bigger than x{sub 0}. The process stops when all the fragments have sizes smaller than x{sub 0}. We show that the fluctuation of the total number of splitting events, characterized by the variance, generically undergoes a nontrivial phase transition as one tunes the branching number m through a critical value m=m{sub c}. For mm{sub c} they are anomalously large and non-Gaussian. We apply this general result to analyse two different search algorithms in computer science. (author). Letter-to-the-editor.

  8. Driven random-phase three-wave interactions: Cycles, bursts, and stochasticity

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, P.A. (School of Physics, University of Sydney, NSW 2006 (Australia))

    1992-11-01

    Steadily driven, undriven, and stochastically driven three-wave decay processes involving groups of random-phase waves are investigated analytically and numerically. Steadily driven systems in which one product wave is suppressed exhibit neutrally stable Lotka--Volterra cycles, as for the true two-component case, whereas three-component systems are stable below a critical driver strength and unstable beyond that point. Initially unstable, but undriven, systems produce bursts of product waves, after which the parent waves fall to a final level that is an exponentially decreasing function of their initial level. Three-component systems where the product waves have near-equal dissipation rates are an exception to the latter behavior; in such systems the final parent-wave level is almost independent of the initial one. Stochastic driving gives rise to bursts of product waves in a cycle of fluctuating period, whereas a low-level noise source tends to stabilize the system.

  9. {beta}-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Niksic, T.; Marketin, T.; Vretenar, D. [Zagreb Univ. (Croatia). Faculty of Science, Physics Dept.; Paar, N. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Ring, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2004-12-08

    The fully consistent relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is employed in the calculation of {beta}-decay half-lives of neutron-rich nuclei in the N{approx}50 and N{approx}82 regions. A new density-dependent effective interaction, with an enhanced value of the nucleon effective mass, is used in relativistic Hartree-Bogolyubov calculation of nuclear ground states and in the particle-hole channel of the PN-RQRPA. The finite range Gogny D1S interaction is employed in the T=1 pairing channel, and the model also includes a proton-neutron particle-particle interaction. The theoretical half-lives reproduce the experimental data for the Fe, Zn, Cd, and Te isotopic chains, but overestimate the lifetimes of Ni isotopes and predict a stable {sup 132}Sn. (orig.)

  10. Time-dependent Relativistic Mean-field Theory and Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    P.Ring; D.Vretenar; A.Wandelt; NguyenVanGiai; MAZhong-yu; CAOLi-gang

    2001-01-01

    The relativistic random phase approximation (RRPA) is derived from the time-dependent relativistic mean field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also ah configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116Sn. It is shown that

  11. Quantum Phase Transition in the Two-Dimensional Random Transverse-Field Ising Model

    Science.gov (United States)

    Pich, C.; Young, A. P.

    1998-03-01

    We study the quantum phase transition in the random transverse-field Ising model by Monte Carlo simulations. In one-dimension it has been established that this system has the following striking behavior: (i) the dynamical exponent is infinite, and (ii) the exponents for the divergence of the average and typical correlation lengths are different. An important issue is whether this behavior is special to one-dimension or whether similar behavior persists in higher dimensions. Here we attempt to answer this question by studies of the two-dimensional model. Our simulations use the Wolff cluster algorithm and the results are analyzed by anisotropic finite size scaling, paying particular attention to the Binder ratio of moments of the order parameter distribution and the distribution of the spin-spin correlation functions for various distances.

  12. Evaluation of ground state entanglement in spin systems with the random phase approximation

    CERN Document Server

    Matera, J M; Canosa, N

    2010-01-01

    We discuss a general treatment based on the mean field plus random phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method, becoming straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with $XYZ$ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity breaking mean field state, together with parity restoration effects, are discussed in detail. In the case of a uniformly connected $XYZ$ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin $s$ pair is also discussed.

  13. Evaluation of ground-state entanglement in spin systems with the random phase approximation

    Science.gov (United States)

    Matera, J. M.; Rossignoli, R.; Canosa, N.

    2010-11-01

    We discuss a general treatment based on the mean field plus random-phase approximation (RPA) for the evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a tractable general method that becomes straightforward in translationally invariant arrays. The method is examined in arrays of arbitrary spin with XYZ couplings of general range in a uniform transverse field, where the RPA around both the normal and parity-breaking mean-field state, together with parity-restoration effects, is discussed in detail. In the case of a uniformly connected XYZ array of arbitrary size, the method is shown to provide simple analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between any two subsystems, which become exact for large spin. The limit case of a spin s pair is also discussed.

  14. A cubic scaling algorithm for excited states calculations in particle-particle random phase approximation

    CERN Document Server

    Lu, Jianfeng

    2016-01-01

    The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an $O(N^3)$ algorithm, where $N$ is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.

  15. Analysis of double random phase encryption from a key-space perspective

    Science.gov (United States)

    Monaghan, David S.; Situ, Guohai; Ryle, James; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.

    2007-09-01

    The main advantage of the double random phase encryption technique is its physical implementation however to allow us to analyse its behaviour we perform the encryption/decryption numerically. A typically strong encryption scheme will have an extremely large key-space, which will make the probable success of any brute force attack on that algorithm miniscule. Traditionally, designers of optical image encryption systems only demonstrate how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. We analyse this algorithm from a key-space perspective. The key-space of an encryption algorithm can be defined as the set of possible keys that can be used to encode data using that algorithm. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute force attack.

  16. Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation

    CERN Document Server

    Niu, YiFei; Vretenar, Dario; Meng, Jie

    2011-01-01

    We introduce a self-consistent microscopic theoretical framework for modelling the process of electron capture on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus, and $J^{\\pi} = 0^{\\pm}$, $1^{\\pm}$, $2^{\\pm}$ charge-exchange transitions are described by the self-consistent finite-temperature relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on 54,56Fe and 76,78Ge in stellar environment, and results compared with predictions of similar and complementary model calculations.

  17. Range-separated density-functional theory with random phase approximation: detailed formalism and illustrative applications

    CERN Document Server

    Toulouse, Julien; Angyan, Janos G; Savin, Andreas

    2010-01-01

    Using Green-function many-body theory, we present the details of a formally exact adiabatic-connection fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse, Gerber, Jansen, Savin and Angyan, Phys. Rev. Lett. 102, 096404 (2009). Range-separated density-functional theory approaches combining short-range density functional approximations with long-range random phase approximations (RPA) are then obtained as well-identified approximations on the long-range Green-function self-energy. Range-separated RPA-type schemes with or without long-range Hartree-Fock exchange response kernel are assessed on rare-gas and alkaline-earth dimers, and compared to range-separated second-order perturbation theory and range-separated coupled-cluster theory.

  18. Modelisation of London dispersion forces by random phase approximation: methodological developments

    CERN Document Server

    Mussard, B

    2015-01-01

    In this thesis are shown developments in the random phase approximation (RPA) in the context of range-separated theories. We present advances in the formalism of the RPA in general, and particularly in the "dielectric matrix" formulation of RPA, which is explored in details. We show a summary of a work on the RPA equations with localised orbitals, especially developments of the virtual localized orbitals that are the "projected oscillatory orbitals" (POO). A program has been written to calculate functions such as the exchange hole, the response function, etc on real space grid (parallelepipedic or of the "DFT" type) ; some of those visualisations are shown here. In the real space, we offer an adaptation of the effective energy denominator approximation (EED), originally developped in the reciprocal space in solid physics. The analytical gradients of the RPA correlation energies in the context of range separation has been derived. The formalism developped here with a lagrangian allows an all-in-one derivation ...

  19. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 2

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1968-01-01

    A comparison with NASA conducted simulator studies has shown that the approximate digital method for computing rotor blade flapping responses to random inputs, tentatively suggested in Phase I Report, gives with increasing rotor advance ratio the wrong trend. Consequently, three alternative methods of solution have been considered and are described: (1) an approximate method based on the functional relation between input and output double frequency spectra, (2) a numerical method based on the system responses to deterministic inputs and (3) a perturbation approach. Among these the perturbation method requires the least amount of computation and has been developed in two forms - the first form to obtain the response correlation function and the second for the time averaged spectra of flapping oscillations.

  20. Evaluation of pairwise entanglement in translationally invariant systems with the random phase approximation

    CERN Document Server

    Matera, Juan Mauricio; Canosa, Norma; 10.1103/PhysRevA.78.042319

    2011-01-01

    We discuss a general mean field plus random phase approximation (RPA) for describing composite systems at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As test and application, we use the method for evaluating the entanglement between two spins in cyclic spin 1/2 chains with both long and short range anisotropic XY-type couplings in a uniform transverse magnetic field. The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any coupling range, pair separation or chain size, where it predicts an entanglement range which can be at most twice that of interaction. It also correctly predicts the existence of a separability field together with full entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interaction increases.

  1. Concepts for a theoretical and experimental study of lifting rotor random loads and vibrations, Phase 1

    Science.gov (United States)

    Hohenemser, K. H.; Gaonkar, G. H.

    1967-01-01

    A number of lifting rotor conditions with random inputs are discussed. The present state of random process theory, applicable to lifting rotor problems is sketched. Possible theories of random blade flapping and random blade flap-bending are outlined and their limitations discussed. A plan for preliminary experiments to study random flapping motions of a see-saw rotor is developed.

  2. Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency

    CERN Document Server

    Baldry, I K; Robertson, J G

    2004-01-01

    We discuss the polarization properties and first-order diffraction efficiencies of volume phase holographic (VPH) transmission gratings, which can be exploited to improve the throughput of modern spectrographs. The wavelength of peak efficiency can be tuned by adjustment of the incidence angle. We show that the variation of the Kogelnik efficiency versus Bragg angle depends only on one parameter, given by $P_{tune} = (\\Delta n d)/(n \\Lambda)$, where: $\\Delta n$ is semi-amplitude of the refractive index modulation; $n$ is the average index; $d$ is the thickness of the active layer; and $\\Lambda$ is the grating period. The efficiency has a well defined dependence on polarization. In particular, it is possible to obtain theoretical 100% diffraction efficiency with one linear polarization at any angle or to obtain 100% efficiency with unpolarized light at specific angles. In the latter case, high efficiency is the result of aligning the peaks of the s- and p-polarization efficiency-versus-thickness curves. The fi...

  3. Universal properties of bulk viscosity near the QCD phase transition

    CERN Document Server

    Karsch, F; Tuchin, K

    2008-01-01

    We extract the bulk viscosity of hot quark-gluon matter in the presence of light quarks from the recent lattice data on the QCD equation of state. For that purpose we extend the sum rule analysis by including the contribution of light quarks. We also discuss the universal properties of bulk viscosity in the vicinity of a second order phase transition, as it might occur in the chiral limit of QCD at fixed strange quark mass and most likely does occur in two-flavor QCD. We point out that a chiral transition in the O(4) universality class at zero baryon density as well as the transition at the chiral critical point which belongs to the Z(2) universality class both lead to the critical behavior of bulk viscosity. In particular, the latter universality class implies the divergence of the bulk viscosity, which may be used as a signature of the critical point. We discuss the physical picture behind the dramatic increase of bulk viscosity seen in our analysis, and devise possible experimental tests of related phenome...

  4. Phase transition and optoelectronic properties of MgH2

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.

    2016-05-01

    In this article, structural and electronic properties of MgH2 have been studied. The aim behind this study was to find out the ground state crystal structure of MgH2. For the purpose, density functional theory (DFT)-based full-potential linearized augmented plane wave (FP-LAPW) calculations have been performed in three different space groups: P42/mnm (α-MgH2), Pa3 (β-MgH2) and Pbcn (γ-MgH2). It has been found that the ground state structure of MgH2 is α-MgH2. The present study shows that α-MgH2 transforms into γ-MgH2 at a pressure of 0.41 GPa. After further increase in pressure, γ-MgH2 transforms into β-MgH2 at a pressure of 3.67 GPa. The obtained results are in good agreement with previously reported experimental data. In all the studied phases, the behavior of MgH2 is insulating and its optical conductivity is around 6.0 eV. The α-MgH2 and γ-MgH2 are anisotropic materials while β-MgH2 is isotropic in nature.

  5. A new method of studying the statistical properties of speckle phase

    Institute of Scientific and Technical Information of China (English)

    Qiankai Wang

    2009-01-01

    A new theoretical method with generality is proposed to study the statistical properties of the speckle phase. The general expression of the standard deviation of the speckle phase about the first-order statistics is derived according to the relation between the phase and the complex speckle amplitude. The statistical properties of the speckle phase have been studied in the diffraction fields with this new theoretical method.

  6. Auto-correlation Properties of Scattering Light in Ultrasound-modulated Random Media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiqin; XING Da; LIU Ying; MA Shining

    2001-01-01

    In this paper, the auto-correlation properties of scattering light in random media modulated by ultrasound were studied. The expression of temporal auto-correlation function of scattering light amplitude in the ultrasound-modulated media was presented. The results show that the auto-correlation function is modulated as the ultrasound is introduced into the media and the modulation amplitude decays with correlation time. The influences of ultrasound amplitude, Brownian diffusion coefficient, scattering and absorption coefficients on auto-correlation function were discussed. The auto-correlation imaging of an object hidden in random media was also studied by the use of Monte Carlo simulations.

  7. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial

    Science.gov (United States)

    Hoy, Anna M.; Semple, Scott I.; Mungall, Will; Lennen, Ross J.; Moran, Carmel M.; Pellicoro, Antonella; Aucott, Rebecca L.; Severin, Thomas; Saini, Rajnish; Yates, Denise; Dongre, Neelesh; Duffield, Jeremy S.; Webb, David J.; Iredale, John P.; Hayes, Peter C.

    2017-01-01

    Background Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension. Methods and findings To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the

  8. Influence of limited random-phase of objects on the image quality of 3D holographic display

    Science.gov (United States)

    Ma, He; Liu, Juan; Yang, Minqiang; Li, Xin; Xue, Gaolei; Wang, Yongtian

    2017-02-01

    Limited-random-phase time average method is proposed to suppress the speckle noise of three dimensional (3D) holographic display. The initial phase and the range of the random phase are studied, as well as their influence on the optical quality of the reconstructed images, and the appropriate initial phase ranges on object surfaces are obtained. Numerical simulations and optical experiments with 2D and 3D reconstructed images are performed, where the objects with limited phase range can suppress the speckle noise in reconstructed images effectively. It is expected to achieve high-quality reconstructed images in 2D or 3D display in the future because of its effectiveness and simplicity.

  9. Elasticity and hydrodynamic properties of ``doped solvent dilute'' lamellar phases

    Science.gov (United States)

    Nallet, Frédéric; Roux, Didier; Quilliet, Catherine; Fabre, Pascale; Milner, Scott T.

    1994-09-01

    The equilibrium fluctuations and weakly out-of-equilibrium relaxation properties of “doped solvent" dilute lamellar phases are investigated, both theoretically and experimentally, in the low-frequency, long-wavelength limit. The physical system of interest is a three-component smectic A lyotropic liquid crystal where surfactant bilayers infinite in extent are periodically stacked along one direction in space and separated by a colloidal solution. Two experimentally relevant modes are found in the lowest frequency part of the fluctuation spectrum of such multicomponent systems. Both are associated to the relaxation of coupled layer displacement and colloid concentration waves. In the limit of small coupling, one mode is close to the well-known undulation/baroclinic mode of two-component lamellar phases, while the other corresponds to the Brownian diffusive motion of the colloid in an anisotropic medium. Elastic constants of the smectic liquid crystal and diffusion parameters of the colloidal solution may be deduced from a measurement of the anisotropic dispersion relation of these two modes, as illustrated by dynamic light scattering experiments on the ferrosmectic system. Les fluctuations à l'équilibre ainsi que la relaxation des états légèrement en dehors de l'équilibre des phases lamellaires à “solvant dopé” sont étudiées, aussi bien d'un point de vue théorique qu'expérimental, dans la limite de basses fréquences et de grandes longueurs d'onde. Les systèmes décrits sont des cristaux-liquides smectiques A lyotropes formés de trois constituants : un tensioactif en solution dans une suspension colloïdale forme des bicouches de grande extension latérale qui s'empilent de façon périodique le long d'une direction dans l'espace. Avec de tels systèmes anisotropes et à plusieurs constituants deux modes présents dans la partie à basse fréquence du spectre des fluctuations (associés à la relaxation d'ondes, couplées, de concentration collo

  10. Collapse of the random phase approximation: examples and counter-examples from the shell model

    CERN Document Server

    Johnson, Calvin W

    2009-01-01

    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a ``phase transition'' in the literature). The order of the transition is important when one applies the random phase approximation (RPA) to the of the Hartree-Fock wavefunction: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as ``collapse'' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time non-trivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.

  11. Estimating phase with a random generator: Strategies and resources in multiparameter quantum metrology

    Science.gov (United States)

    Yousefjani, Rozhin; Nichols, Rosanna; Salimi, Shahriar; Adesso, Gerardo

    2017-06-01

    Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ , which introduces a physical source of noise. We then investigate strategies for the joint estimation of the two parameters φ and κ given a finite number N of interactions with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction in resources. Quantum enhanced precision is achievable at moderate N , while for sufficiently large N classical strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme interpolating between the conventional sequential and parallel metrological schemes yield the same effective performance. These results may have relevant applications in optimization of sensing technologies.

  12. Nonuniform sampling of hypercomplex multidimensional NMR experiments: Dimensionality, quadrature phase and randomization

    Science.gov (United States)

    Schuyler, Adam D; Maciejewski, Mark W; Stern, Alan S; Hoch, Jeffrey C

    2015-01-01

    Nonuniform sampling (NUS) in multidimensional NMR permits the exploration of higher dimensional experiments and longer evolution times than the Nyquist Theorem practically allows for uniformly sampled experiments. However, the spectra of NUS data include sampling-induced artifacts and may be subject to distortions imposed by sparse data reconstruction techniques, issues not encountered with the discrete Fourier transform (DFT) applied to uniformly sampled data. The characterization of these NUS-induced artifacts allows for more informed sample schedule design and improved spectral quality. The DFT–Convolution Theorem, via the point-spread function (PSF) for a given sampling scheme, provides a useful framework for exploring the nature of NUS sampling artifacts. In this work, we analyze the PSFs for a set of specially constructed NUS schemes to quantify the interplay between randomization and dimensionality for reducing artifacts relative to uniformly undersampled controls. In particular, we find a synergistic relationship between the indirect time dimensions and the “quadrature phase dimension” (i.e. the hypercomplex components collected for quadrature detection). The quadrature phase dimension provides additional degrees of freedom that enable partial-component NUS (collecting a subset of quadrature components) to further reduce sampling-induced aliases relative to traditional full-component NUS (collecting all quadrature components). The efficacy of artifact reduction is exponentially related to the dimensionality of the sample space. Our results quantify the utility of partial-component NUS as an additional means for introducing decoherence into sampling schemes and reducing sampling artifacts in high dimensional experiments. PMID:25899289

  13. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi

    2014-05-01

    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  14. Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Bunketorp-Käll, Lina; Lundgren-Nilsson, Åsa; Samuelsson, Hans; Pekny, Tulen; Blomvé, Karin; Pekna, Marcela; Pekny, Milos; Blomstrand, Christian; Nilsson, Michael

    2017-07-01

    Treatments that improve function in late phase after stroke are urgently needed. We assessed whether multimodal interventions based on rhythm-and-music therapy or horse-riding therapy could lead to increased perceived recovery and functional improvement in a mixed population of individuals in late phase after stroke. Participants were assigned to rhythm-and-music therapy, horse-riding therapy, or control using concealed randomization, stratified with respect to sex and stroke laterality. Therapy was given twice a week for 12 weeks. The primary outcome was change in participants' perception of stroke recovery as assessed by the Stroke Impact Scale with an intention-to-treat analysis. Secondary objective outcome measures were changes in balance, gait, grip strength, and cognition. Blinded assessments were performed at baseline, postintervention, and at 3- and 6-month follow-up. One hundred twenty-three participants were assigned to rhythm-and-music therapy (n=41), horse-riding therapy (n=41), or control (n=41). Post-intervention, the perception of stroke recovery (mean change from baseline on a scale ranging from 1 to 100) was higher among rhythm-and-music therapy (5.2 [95% confidence interval, 0.79-9.61]) and horse-riding therapy participants (9.8 [95% confidence interval, 6.00-13.66]), compared with controls (-0.5 [-3.20 to 2.28]); P=0.001 (1-way ANOVA). The improvements were sustained in both intervention groups 6 months later, and corresponding gains were observed for the secondary outcomes. Multimodal interventions can improve long-term perception of recovery, as well as balance, gait, grip strength, and working memory in a mixed population of individuals in late phase after stroke. URL: http//www.ClinicalTrials.gov. Unique identifier: NCT01372059. © 2017 American Heart Association, Inc.

  15. Phase structure and critical properties of an abelian gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Sjur

    2001-12-01

    The main new results are presented in the form of three papers at the end of this thesis. The main topic is Monte-Carlo studies of the phase structure and critical properties of the phenomenological Ginzburg-Landau model, i.e. an abelian gauge theory. However, the first paper is totally different and deals with microscopic theory for lattice-fermions in a magnetic field. Paper I is about ''Fermion-pairing on a square lattice in extreme magnetic fields''. We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to ''k-space'', or more precisely, to the space of eigenfunctions of Harper's equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C{sub 4{nu}} of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down. Paper II is about the ''Hausdorff dimension of critical fluctuations in abelian gauge theories''. Here we analyze the geometric properties of the line-like critical fluctuations (vortex loops) in the Ginzburg-Landau model in zero magnetic background field. By using a dual description, we obtain scaling relations between exponents of geometric arid thermodynamic nature. In particular we connect the anomalous scaling dimension {eta} of the dual matter field to the Hausdorff or fractal dimension D{sub H} of the critical fluctuations, in the original model

  16. Motif based hierarchical random graphs: structural properties and critical points of an Ising model

    CERN Document Server

    Kotorowicz, M; 10.5488/CMP.14.13801

    2011-01-01

    A class of random graphs is introduced and studied. The graphs are constructed in an algorithmic way from five motifs which were found in [Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U., Science, 2002, 298, 824-827]. The construction scheme resembles that used in [Hinczewski M., A. Nihat Berker, Phys. Rev. E, 2006, 73, 066126], according to which the short-range bonds are non-random, whereas the long-range bonds appear independently with the same probability. A number of structural properties of the graphs have been described, among which there are degree distributions, clustering, amenability, small-world property. For one of the motifs, the critical point of the Ising model defined on the corresponding graph has been studied.

  17. Transport Properties in a One-Dimensional Chain with Randomly Side-Coupled Impurities

    Institute of Scientific and Technical Information of China (English)

    胡冬生; 张桂平; 熊诗杰

    2002-01-01

    We investigate the transport properties of a one-dimensional (1D) chain with randomly side-coupled impurities.By using the transfer matrix technique, we present numerical results of the transmission coefficient as a function of the electron energy. It is found that an extended state will be shown in such a random 1D system if the impurities are side-coupled to the chain with not only the nearest-neighbour bonds but also the next-nearest-neighbour bonds. We present an analytical expression for the energy of this extended state, which is determined by the strength of the nearest and next-nearest couplings between the impurities and the chain. The obtained results can be used to explain the transport properties of DNA chains and other quasi-lD organic structures.

  18. Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask.

    Science.gov (United States)

    Wang, Xiaogang; Zhao, Daomu

    2013-09-15

    We propose a simple amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask (RAM). The RAM that is not saved during the encryption provides extremely high security for the two private keys, and no iterative calculations are involved in the nonlinear encryption process. Lack of enough constraints makes the specific attack based on iterative amplitude-phase retrieval algorithms unusable. Numerical simulation results are given for testing the validity and security of the proposed approach.

  19. Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in aRandom Field

    Institute of Scientific and Technical Information of China (English)

    LIANGYa-Qiu; WEIGuo-Zhu; SONGLi-Li; SONGGuo-Li; ZANGShu-Liang

    2004-01-01

    The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.

  20. Inverse probability weighting to estimate causal effect of a singular phase in a multiphase randomized clinical trial for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Annalisa Pezzi

    2016-11-01

    Full Text Available Abstract Background Randomization procedure in randomized controlled trials (RCTs permits an unbiased estimation of causal effects. However, in clinical practice, differential compliance between arms may cause a strong violation of randomization balance and biased treatment effect among those who comply. We evaluated the effect of the consolidation phase on disease-free survival of patients with multiple myeloma in an RCT designed for another purpose, adjusting for potential selection bias due to different compliance to previous treatment phases. Methods We computed two propensity scores (PS to model two different selection processes: the first to undergo autologous stem cell transplantation, the second to begin consolidation therapy. Combined stabilized inverse probability treatment weights were then introduced in the Cox model to estimate the causal effect of consolidation therapy miming an ad hoc RCT protocol. Results We found that the effect of consolidation therapy was restricted to the first 18 months of the phase (HR: 0.40, robust 95 % CI: 0.17-0.96, after which it disappeared. Conclusions PS-based methods could be a complementary approach within an RCT context to evaluate the effect of the last phase of a complex therapeutic strategy, adjusting for potential selection bias caused by different compliance to the previous phases of the therapeutic scheme, in order to simulate an ad hoc randomization procedure. Trial registration ClinicalTrials.gov: NCT01134484 May 28, 2010 (retrospectively registered EudraCT: 2005-003723-39 December 17, 2008 (retrospectively registered

  1. Validation of the k-filtering technique for a signal composed of random phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-08-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed temporal and spatial changes to be resolved, with techniques such as the k-filtering technique. While this technique does not assume Taylor's hypothesis as is necessary with single spacecraft missions, it does require weak stationarity of the time series, and that the fluctuations can be described by a superposition of plane waves with random phase. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  2. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts

    2014-12-01

    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  3. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    CERN Document Server

    Mussard, Bastien; Angyan, Janos; Toulouse, Julien

    2015-01-01

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Sz-abo and Ostlund [A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. {\\'A}ngy{\\'a}n, J. Chem. Phys. 135, 084119 (2011)], this works confirms...

  4. Low-energy effective interactions beyond the constrained random-phase approximation by the functional renormalization group

    Science.gov (United States)

    Kinza, Michael; Honerkamp, Carsten

    2015-07-01

    In the derivation of low-energy effective models for solids targeting the bands near the Fermi level, the constrained random-phase approximation (cRPA) has become an appreciated tool to compute the effective interactions. The Wick-ordered constrained functional renormalization group (cfRG) generalizes the cRPA approach by including all interaction channels in an unbiased way. Here we present applications of the cfRG to two simple multiband systems and compare the resulting effective interactions to the cRPA. First, we consider a multiband model for monolayer graphene, where we integrate out the σ bands to get an effective theory for π bands. It turns out that terms beyond cRPA are strongly suppressed by the different x y -plane reflection symmetry of the bands. In our model the cfRG corrections to cRPA become visible when one disturbs this symmetry difference slightly, however, without qualitative changes. This study shows that the embedding or layering of two-dimensional electronic systems can alter the effective interaction parameters beyond what is expected from screening considerations. The second example is a one-dimensional model for a diatomic system reminiscent of a CuO chain, where we consider an effective theory for Cu 3 d -like orbitals. Here the fRG data shows relevant and qualitative corrections compared to the cRPA results. We argue that the new interaction terms affect the magnetic properties of the low-energy model.

  5. Spin-unrestricted random-phase approximation with range separation: Benchmark on atomization energies and reaction barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Mussard, Bastien, E-mail: bastien.mussard@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, Institut du Calcul et de la Simulation, F-75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Reinhardt, Peter; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris (France); Ángyán, János G. [CRM2, Institut Jean Barriol, Université de Lorraine, F-54506 Vandoeuvre-lés-Nancy (France); CRM2, Institut Jean Barriol, CNRS, F-54506 Vandoevre-lés-Nancy (France)

    2015-04-21

    We consider several spin-unrestricted random-phase approximation (RPA) variants for calculating correlation energies, with and without range separation, and test them on datasets of atomization energies and reaction barrier heights. We show that range separation greatly improves the accuracy of all RPA variants for these properties. Moreover, we show that a RPA variant with exchange, hereafter referred to as RPAx-SO2, first proposed by Szabo and Ostlund [J. Chem. Phys. 67, 4351 (1977)] in a spin-restricted closed-shell formalism, and extended here to a spin-unrestricted formalism, provides on average the most accurate range-separated RPA variant for atomization energies and reaction barrier heights. Since this range-separated RPAx-SO2 method had already been shown to be among the most accurate range-separated RPA variants for weak intermolecular interactions [J. Toulouse et al., J. Chem. Phys. 135, 084119 (2011)], this works confirms range-separated RPAx-SO2 as a promising method for general chemical applications.

  6. Localization transition in random Lévy matrices: multifractality of eigenvectors in the localized phase and at criticality

    Science.gov (United States)

    Monthus, Cécile

    2016-09-01

    For random Lévy matrices of size N× N , where matrix elements are drawn with some heavy-tailed distribution P≤ft({{H}ij}\\right)\\propto {{N} -1}|{{H}ij}{{|}-1-μ} with 0text{max}}∼ {{N}\\frac{1μ}} . Here we study the localization properties of the corresponding eigenvectors via some strong disorder perturbative expansion that remains consistent within the localized phase and that yields their inverse participation ratios (IPR) Y q as a function of the continuous parameter 0. In the region 0  q c but diverge in the region 0  text{c}}=1 corresponding to Cauchy matrices: the IPR Y q of the corresponding critical eigenstates follow the strong-multifractality spectrum characterized by the generalized fractal dimensions {{D}\\text{criti}}(q)=\\frac{1-2q}{1-q}θ ≤ft(0≤slant q≤slant \\frac{1}{2}\\right) , which has been found previously in various other Localization problems in spaces of effective infinite dimensionality.

  7. Recombinant Bile Salt-Stimulated Lipase in Preterm Infant Feeding: A Randomized Phase 3 Study.

    Directory of Open Access Journals (Sweden)

    Charlotte Casper

    Full Text Available Feeding strategies are critical for healthy growth in preterm infants. Bile salt-stimulated lipase (BSSL, present in human milk, is important for fat digestion and absorption but is inactivated during pasteurization and absent in formula. This study evaluated if recombinant human BSSL (rhBSSL improves growth in preterm infants when added to formula or pasteurized breast milk.LAIF (Lipase Added to Infant Feeding was a randomized, double-blind, placebo-controlled phase 3 study in infants born before 32 weeks of gestation. The primary efficacy variable was growth velocity (g/kg/day during 4 weeks intervention. Follow-up visits were at 3 and 12 months. The study was performed at 54 centers in 10 European countries.In total 415 patients were randomized (rhBSSL n = 207, placebo n = 208, 410 patients were analyzed (rhBSSL n = 206, placebo n = 204 and 365 patients were followed until 12 months. Overall, there was no significantly improved growth velocity during rhBSSL treatment compared to placebo (16.77 vs. 16.56 g/kg/day, estimated difference 0.21 g/kg/day, 95% CI [-0.40; 0.83], nor were secondary endpoints met. However, in a predefined subgroup, small for gestational age infants, there was a significant effect on growth in favor of rhBSSL during treatment. The incidence of adverse events was higher in the rhBSSL group during treatment.Although this study did not meet its primary endpoint, except in a subgroup of infants small for gestational age, and there was an imbalance in short-term safety, these data provide insights in nutrition, growth and development in preterm infants.ClinicalTrials.gov NCT01413581.

  8. Structural phase transition and elastic properties of thorium pnictides at high pressure

    Indian Academy of Sciences (India)

    Kuldeep Kholiya; B R K Gupta

    2007-04-01

    In the present paper we have pointed out the weaknesses of the approach by Aynyas et al [1] to study the structural phase transition and elastic properties of thorium pnictides. The calculated values of phase transition pressure and other elastic properties using the realistic and actual approach are also given and compared with the experimental and previous theoretical work.

  9. A Scanning Hologram Recorded by Phase Conjugate Property of Nonlinear Crystals

    DEFF Research Database (Denmark)

    Zi-Liang, Ping; Dalsgaard, Erik

    1996-01-01

    A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given.......A methode of recording a scanning hologram with phase conjugate property of nonlinear crystal is provided. The principle of recording, setup and experiments are given....

  10. Thermodynamic properties and phase stability of nanocrystalline metals

    Institute of Scientific and Technical Information of China (English)

    SONG Xiaoyan; LI Lingmei; ZHANG Jiuxing

    2006-01-01

    The fundamental thermodynamic functions of enthalpy, entropy, and Gibbs free energy, as functions of the excess free volume at interfaces, temperature, and grain size, have been derived for single-phase metal nanocrystals. The model was applied to predict the thermal features of nano-grain boundaries and the characteristics of phase transformation in nanocrystalline metals, such as the transformation temperature and the critical grain size for phase transformation at a given temperature. The model predictions have been verified by experimental studies on the β-Co (→) α-Co phase transformation in nanocrystalline Co prepared by ball milling.

  11. Investigation of the Phase Equilibria and Interfacial Properties for Non-polar Fluids

    Institute of Scientific and Technical Information of China (English)

    付东; 赵毅

    2005-01-01

    A self-consistent density-functional theory (DFT) was applied to investigate the phase behavior and interfacial properties of non-polar fluids. For the bulk phases, the theory was reduced to the statistical associating fluid theory(SAFF) that provides accurate descriptions of vapor-liquid phase diagrams below the critical region. The phase diagrams in the critical region were corrected by the renormalization group theory (RGT). The density profile in the surface was obtained by minimizing the grand potential. With the same set of molecular parameters, both the phase equilibria and the interfacial properties of non-polar fluids were investigated satisfactorily.

  12. Safety and Activity of UR-1505 in Atopic Dermatitis: A Randomized, Double-blind Phase II Exploratory Trial.

    Science.gov (United States)

    Vives, Roser; Pontes, Caridad; Sarasa, Maria; Millier, Aurelie

    2015-09-01

    UR-1505 is a new small molecule with immune modulator properties intended for the topical treatment of inflammatory skin diseases that has shown anti-inflammatory effects in models of skin inflammation. We compared the activity of UR-1505 ointment against its vehicle in the treatment of atopic dermatitis. Secondary objectives included exploring dose response, safety, and local tolerability of UR-1505. Patients with AD lesions on 2 symmetrical topographic areas (arms, leg, or trunk) were included in this unicenter randomized, double-blind, within-patient, controlled Phase II exploratory trial and received simultaneously 2 different treatments (0.5%, 1%, or 2% UR-1505 and vehicle or 0.1% tacrolimus ointment) once daily during 28 days. The primary efficacy end point was the change from baseline in the Investigator Global Assessment score at Day 28. Secondary end points were percentage of area clearance, local Eczema Area Severity Index (local EASI), and local tolerability. A linear mixed model was used, fitting treatment, body side, and group (treatment at the contralateral side) as fixed factors and the patient as a random effect. Twenty-eight patients were randomized and 25 patients were included in the per protocol analysis, with 50 evaluable lesions (n = 13 for vehicle, n = 8 for UR-1505 0.5%, n = 9 for 1% UR-1505, n=8 for 2% UR-1505, and n=12 for tacrolimus). The mean Investigator Global Assessment score change from baseline at Day 28 was -1.7 for vehicle, -1.0, -1.2, and -1.5 for 0.5%, 1%, and 2% UR-1505, respectively, and -2.6% for tacrolimus (P = 0.002). No serious nor causal adverse reactions were reported in this study, but patients reported numerous local symptoms after product applications, especially itching, tingling, tightness, and heat/burning sensations at frequencies that were similar for vehicle, 1% UR-1505, and 2% UR-1505; more frequent with 0.5% UR-1505; and lowest for tacrolimus. This study found that UR-1505 may not be a suitable option for the

  13. High pressure phase determination and electronic properties of lithiumamidoborane

    Science.gov (United States)

    Ramzan, M.; Hussain, T.; Ahuja, R.

    2012-09-01

    In this study we report on the high pressure phase of the promising hydrogen storage material lithiumamidoborane (LiNH2BH3), on the basis of density functional theory calculations with generalized gradient approximation. We take the five possible candidate structures, Pbca, Pbcn, Pcca, Pnma, and Pnnm for the high pressure study of LiNH2BH3. The corresponding structures are relaxed with respect to fractional atomic coordinates and cell parameters, with the use of fully self-consistent ab initio electronic structure calculations to get the equilibrium parameters and total energies. Then we compare the energies of these phases and find that Pbcn is the most favorable phase at ≈100 GPa. Then we calculate the structural parameters of this phase. Finally, we calculate the density of states, Bader charge analysis, and corresponding electron density of this phase.

  14. Phase diagram, correlation gap, and critical properties of the Coulomb glass

    OpenAIRE

    2008-01-01

    We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T=0. A charge-ordered phase (COP) exists at low disorder. The transition to this phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-p...

  15. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    CERN Document Server

    Hung, N Quang; Hao, T V Nhan; Phuc, L Tan

    2016-01-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in $^{48, 52, 58}$Ca and $^{90, 96, 110}$Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, cau...

  16. Time-reversal acoustic focusing system as a virtual random phased array.

    Science.gov (United States)

    Sarvazyan, Armen; Fillinger, Laurent; Gavrilov, Leonid

    2010-04-01

    This paper compares the performance of two different systems for dynamic focusing of ultrasonic waves: conventional 2-D phased arrays (PA) and a focusing system based on the principles of time-reversed acoustics (TRA). Focused ultrasound fields obtained in the experiments with the TRA focusing system (TRA FS), which employs a liquid-filled reverberator with 4 piezotransducers attached to its wall, are compared with the focused fields obtained by mathematical simulation of PAs comprised from several tens to several hundreds of elements distributed randomly on the array surface. The experimental and simulated focusing systems had the same aperture and operated at a frequency centered about 600 kHz. Experimental results demonstrated that the TRA FS with a small number of channels can produce complex focused patterns and can steer them with efficiency comparable to that of a PA with hundreds of elements. It is shown that the TRA FS can be realized using an extremely simple means, such as a reverberator made of a water-filled plastic bottle with just a few piezotransducers attached to its walls.

  17. Beyond-mean-field corrections within the second random-phase approximation

    Science.gov (United States)

    Grasso, M.; Gambacurta, D.; Engel, J.

    2016-06-01

    A subtraction procedure, introduced to overcome double-counting problems in beyond-mean-field theories, is used in the second random-phase approximation (SRPA). Doublecounting problems arise in the energy-density functional framework in all cases where effective interactions tailored at leading order are used for higher-order calculations, such as those done in the SRPA model. It was recently shown that this subtraction procedure also guarantees that the stability condition related to the Thouless theorem is verified in extended RPA models. We discuss applications of the subtraction procedure, introduced within the SRPA model, to the nucleus 16O. The application of the subtraction procedure leads to: (i) stable results that are weakly cutoff dependent; (ii) a considerable upwards correction of the SRPA spectra (which were systematically shifted downwards by several MeV with respect to RPA spectra, in all previous calculations). With this important implementation of the model, many applications may be foreseen to analyze the genuine impact of 2 particle-2 hole configurations (without any cutoff dependences and anomalous shifts) on the excitation spectra of medium-mass and heavy nuclei.

  18. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    Science.gov (United States)

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.

  19. Correlation energies beyond the random-phase approximation: ISTLS applied to spherical atoms and ions

    CERN Document Server

    Gould, Tim

    2012-01-01

    The inhomogeneous Singwi, Tosi, Land and Sjolander (ISTLS) correlation energy functional of Dobson, Wang and Gould [PRB {\\bf 66} 081108(R) (2008)] has proved to be excellent at predicting correlation energies in semi-homogeneous systems, showing promise as a robust `next step' fifth-rung functional by using dynamic correlation to go beyond the limitations of the direct random-phase approximation (dRPA), but with similar numerical scaling with system size. In this work we test the functional on fourteen spherically symmetric, neutral and charged atomic systems and find it gives excellent results (within 2mHa/$e^-$ except Be) for the absolute correlation energies of the neutral atoms tested, and good results for the ions (within 4mHa/$e^-$). In all cases it performs better than the dRPA. When combined with the previous successes, these new results point to the ISTLS functional being a prime contender for high-accuracy, benchmark DFT correlation energy calculations.

  20. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  1. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    Science.gov (United States)

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results.

  2. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  3. Combining double random phase encoding for color image watermarking in quaternion gyrator domain

    Science.gov (United States)

    Shao, Zhuhong; Duan, Yuping; Coatrieux, Gouenou; Wu, Jiasong; Meng, Jinyu; Shu, Huazhong

    2015-05-01

    Quaternion representation of color image has attracted great attention due to its capability to treat holistically the three color channels. In a more general way, it has successfully been used in multi-channel signal processing applications over the past few decades. In this study, a joint encryption/watermarking system with more security based on double random phase encoding (DRPE) in quaternion gyrator transform domain is addressed. In the proposed scheme, an RGB-scale watermark image together with a grayscale watermark image or not is encoded into a quaternion matrix and encrypted through the DRPE, the encrypted data is then fused into the middle coefficients of the quaternion gyrator-transformed host image. In the process of extracting watermarks, it is impossible to retrieve them without authorized keys. Compared with the three channels independently processing approach implemented in fractional Fourier domain, the proposed algorithm achieves lower complexity by reason of avoiding repetitive operations. Experimental results have demonstrated the feasibility of the proposed algorithm and its superior performance in terms of noise robustness.

  4. Particle-particle and quasiparticle random phase approximations: connections to coupled cluster theory.

    Science.gov (United States)

    Scuseria, Gustavo E; Henderson, Thomas M; Bulik, Ireneusz W

    2013-09-14

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.

  5. Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    CERN Document Server

    Scuseria, Gustavo E; Bulik, Ireneusz W

    2013-01-01

    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a correct bosonization in the sense that the wavefunction and Hilbert space are exactly fermionic. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA an d qp-RPA equations are textbook material...

  6. First principle calculations of long range correlation effects within the random phase approximation

    Science.gov (United States)

    Lu, Deyu; Li, Yan; Wilson, Hugh; Galli, Giulia

    2009-03-01

    The local and semi-local approximations to Density Functional Theory fail to describe correctly certain types of weak interactions (e.g. van der Waals forces) due an incorrect account of long range correlation effects. Such effects may be described by computing correlation energies within the random phase approximation (RPA), using the fluctuation-dissipation theorem and the adiabatic connection. We present an approach to compute RPA correlation energies based on an eigenmode expansion of the dielectric matrix [1,2]. By solving the frequency dependent Sternheimer equation within linear response theory [3], we eliminate the need to compute single particle unoccupied states, which makes our approach more efficient than methods using the direct-summation technique. Furthermore, the use of a dielectric eigenmode representation allows for a physical interpretation of several, different contributions to correlation energies. Results for graphite and the benzene crystal will be discussed. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B, 78:113303, (2008). [2] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett., 100:147601(2008). [3] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73:515, (2001).

  7. Deformation-induced splitting of isoscalar E0 giant resonance: Skyrme random-phase-approximation analysis

    CERN Document Server

    Kvasil, J; Repko, A; Kleinig, W; Reinhard, P -G

    2016-01-01

    The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation (QRPA) method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, due to the deformation-induced E0-E2 coupling, the isoscalar E0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E0-E2 coupling. This in turn results in more pumping of E0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation...

  8. Topological properties of the SU(3) random vortex world-surface model

    CERN Document Server

    Engelhardt, M

    2008-01-01

    The random vortex world-surface model is an infrared effective model of Yang-Mills dynamics based on center vortex degrees of freedom. These degrees of freedom carry topological charge through writhe and self-intersection of their world-surfaces. A practical implementation of the model realizes the vortex world-surfaces by composing them of elementary squares on a hypercubic lattice. The topological charge for specifically such configurations is constructed in the case of SU(3) color. This necessitates a proper treatment of vortex color structure at vortex branchings, a feature which is absent in the SU(2) color case investigated previously. On the basis of the construction, the topological susceptibility is evaluated in the random vortex world-surface ensemble, both in the confined low-temperature as well as in the deconfined high-temperature phase.

  9. Experimental study of a high speed quantum random number generation scheme based on measuring phase noise of a single mode laser

    CERN Document Server

    Qi, Bing; Lo, Hoi-Kwong; Qian, Li

    2009-01-01

    In this paper, we present a high speed random number generation scheme based on measuring the quantum phase noise of a single mode diode laser operating at a low intensity level near the lasing threshold. A delayed self-heterodyning system has been developed to measure the random phase fluctuation. We experimentally investigate this random number generation scheme under two different operating conditions: with or without active phase stabilization of the fiber interferometer in the self-heterodyning system. The achieved random number generation rates are 500Mbit/s and 50Mbit/s, respectively. The generated random numbers have passed all the DIEHARD tests.

  10. Determining Individual Phase Properties in a Multi-phase Q&P Steel using Multi-scale Indentation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang; Choi, Kyoo Sil; Hu, Xiaohua; Sun, Xin

    2016-01-15

    A new inverse method was developed to predict the stress-strain behaviors of constituent phases in a multi-phase steel using the load-depth curves measured in nanoindentation tests combined with microhardness measurements. A power law hardening response was assumed for each phase, and an empirical relationship between hardness and yield strength was assumed. Adjustment was made to eliminate the indentation size effect and indenter bluntness effect. With the newly developed inverse method and statistical analysis of the hardness histogram for each phase, the average stress-strain curves of individual phases in a quench and partitioning (Q&P) steel, including austenite, tempered martensite and untempered martensite, were calculated and the results were compared with the phase properties obtained by in-situ high energy X-ray diffraction (HEXRD) test. It is demonstrated that multi-scale instrumented indentation tests together with the new inverse method are capable of determining the individual phase flow properties in multi-phase alloys.

  11. Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    Directory of Open Access Journals (Sweden)

    D. Casella

    2008-11-01

    Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.

    In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.

  12. Ranking of Simultaneous Equation Techniques to Small Sample Properties and Correlated Random Deviates

    Directory of Open Access Journals (Sweden)

    A. A. Adepoju

    2009-01-01

    Full Text Available Problem statement: All simultaneous equation estimation methods have some desirable asymptotic properties and these properties become effective in large samples. This study is relevant since samples available to researchers are mostly small in practice and are often plagued with the problem of mutual correlation between pairs of random deviates which is a violation of the assumption of mutual independence between pairs of such random deviates. The objective of this research was to study the small sample properties of these estimators when the errors are correlated to determine if the properties will still hold when available samples are relatively small and the errors were correlated. Approach: Most of the evidence on the small sample properties of the simultaneous equation estimators was studied from sampling (or Monte Carlo experiments. It is important to rank estimators on the merit they have when applied to small samples. This study examined the performances of five simultaneous estimation techniques using some of the basic characteristics of the sampling distributions rather than their full description. The characteristics considered here are the mean, the total absolute bias and the root mean square error. Results: The result revealed that the ranking of the five estimators in respect of the Average Total Absolute Bias (ATAB is invariant to the choice of the upper (P1 or lower (P2 triangular matrix. The result of the FIML using RMSE of estimates was outstandingly best in the open-ended intervals and outstandingly poor in the closed interval (-0.051 and P2 we re-combined. Conclusion: (i The ranking of the various simultaneous estimation methods considered based on their small sample properties differs according to the correlation status of the error term, the identifiability status of the equation and the assumed triangular matrix. (ii The nature of the relationship under study also determined which of the criteria for judging the

  13. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key

    Science.gov (United States)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.

    2005-09-01

    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  14. First-principles studies of phase stability and the structural and dynamical properties of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Chou, M.Y.

    1992-04-01

    This report discusses the following topics: calculation of the Structural Properties of Yttrium; dynamical and pairing properties of {alpha}-YH{chi}; electronic and structural properties of YH{sub 2} and YH{sub 3}; phase diagram of hydrogen on Ru(000); peierls distortion in hexagonal YH{sub 3}; and study of hydrogen in niobium and palladium.

  15. Chaos control of a class of parametrically excited Duffing's system using a random phase

    Energy Technology Data Exchange (ETDEWEB)

    Li Longsuo, E-mail: lilongsuo@126.com [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Yu Hedan [Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150001 (China)

    2011-07-15

    Highlights: > The chaotic dynamical behavior first has been controlled by random phase. > It can be proved that chaos has been suppressed from the Lyapunov exponents. > It is verified that chaos has been suppressed from Poincare map. - Abstract: As the analysis of the chaotic dynamical behavior of a parametric Duffing's system, we show that chaos can be suppressed by addition the Gauss white noise phase and determined by the sign of the top Lyapunov exponent, which is based on the Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. Also Poincare map analysis is carried out to confirm the obtained results. So random phase can be realized as one of the methods of chaos control.

  16. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    Science.gov (United States)

    Torres-Herrera, Eduardo; Karp, Jonathan; Távora, Marco; Santos, Lea

    2016-10-01

    We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.

  17. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    Directory of Open Access Journals (Sweden)

    Eduardo Jonathan Torres-Herrera

    2016-10-01

    Full Text Available We study the static and dynamical properties of isolated many-body quantum systems and compare them with the results for full random matrices. In doing so, we link concepts from quantum information theory with those from quantum chaos. In particular, we relate the von Neumann entanglement entropy with the Shannon information entropy and discuss their relevance for the analysis of the degree of complexity of the eigenstates, the behavior of the system at different time scales and the conditions for thermalization. A main advantage of full random matrices is that they enable the derivation of analytical expressions that agree extremely well with the numerics and provide bounds for realistic many-body quantum systems.

  18. Phase structure and electrical properties of PSN-PMN-PZ-PT quaternary piezoelectric ceramics near the morphotropic phase boundary

    Science.gov (United States)

    Chen, Haiyan; Fan, Chunhua

    2010-04-01

    0.06Pb(Sb 1/2Nb 1/2)O 3-0.06Pb(Mn 1/3Nb 2/3)O 3-0.88Pb(Zr xTi 1-x)O 3 (PSN-PMN-PZ-PT) quaternary piezoelectric ceramics with varying Zr/Ti ratios located near the morphotropic phase boundary (MPB) were prepared by powder solid-state reaction. The phase structure, dielectric and piezoelectric properties and temperature stability of the systems were investigated. In the present system the MPB, in which the tetragonal and rhombohedral phases coexist, is in a composition range of 0.49ultrasonic motors.

  19. Randomized Phase II Trial of Lyophilized Strawberries in Patients with Dysplastic Precancerous Lesions of the Esophagus

    Science.gov (United States)

    Chen, Tong; Yan, Fei; Qian, Jiaming; Guo, Mingzhou; Zhang, Hongbing; Tang, Xiaofei; Chen, Fang; Stoner, Gary D.; Wang, Xiaomin

    2016-01-01

    Dysplasia is a histologic precursor of esophageal squamous cell carcinoma (SCC). We previously showed that dietary freeze-dried, or lyophilized, strawberry powder inhibits N-nitrosomethylbenzylamine-induced SCC in the rat esophagus. On the basis of this observation, we conducted a randomized (noncomparative) phase II trial in China to investigate the effects of two doses of freeze-dried strawberries in patients with esophageal dysplastic lesions in a high-risk area for esophageal cancer. We randomly assigned 75 patients identified by endoscopy to have dysplastic esophageal premalignant lesions to receive freeze-dried strawberry powder at either 30 g/d (37 patients) or 60 g/d (38 patients) for six months; the powder was mixed with water and drunk. After six months, we assessed the changes in histologic grade of these lesions (primary endpoint) in a blinded fashion. The dose of 30 g/d, did not significantly affect histology or any other measured parameter. The dose of 60 g/d, however, reduced the histologic grade of dysplastic premalignant lesions in 29 (80.6%) of the 36 patients at this dose who were evaluated for histology (P < 0.0001). The strawberry powder was well tolerated, with no toxic effects or serious adverse events. Strawberries (60 g/d) also reduced protein expression levels of inducible nitric oxide synthase (iNOS) by 79.5% (P < 0.001), cyclooxygenase-2 (COX-2) by 62.9% (P < 0.001), phospho-nuclear factor kappa B (NFκB)-p65 (pNFκB-p65) by 62.6% (P < 0.001), and phospho-S6 (pS6) by 73.2% (P < 0.001). Freeze-dried strawberries (60 g/d) also significantly inhibited the Ki-67 labeling index by 37.9% (P = 0.023). Our present results indicate the potential of freeze-dried strawberry powder for preventing human esophageal cancer, supporting further clinical testing of this natural agent in this setting. PMID:22135048

  20. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention.

    Science.gov (United States)

    Chen, Andrew C; Martin, Andrew J; Choy, Bonita; Fernández-Peñas, Pablo; Dalziell, Robyn A; McKenzie, Catriona A; Scolyer, Richard A; Dhillon, Haryana M; Vardy, Janette L; Kricker, Anne; St George, Gayathri; Chinniah, Niranthari; Halliday, Gary M; Damian, Diona L

    2015-10-22

    Nonmelanoma skin cancers, such as basal-cell carcinoma and squamous-cell carcinoma, are common cancers that are caused principally by ultraviolet (UV) radiation. Nicotinamide (vitamin B3) has been shown to have protective effects against damage caused by UV radiation and to reduce the rate of new premalignant actinic keratoses. In this phase 3, double-blind, randomized, controlled trial, we randomly assigned, in a 1:1 ratio, 386 participants who had had at least two nonmelanoma skin cancers in the previous 5 years to receive 500 mg of nicotinamide twice daily or placebo for 12 months. Participants were evaluated by dermatologists at 3-month intervals for 18 months. The primary end point was the number of new nonmelanoma skin cancers (i.e., basal-cell carcinomas plus squamous-cell carcinomas) during the 12-month intervention period. Secondary end points included the number of new squamous-cell carcinomas and basal-cell carcinomas and the number of actinic keratoses during the 12-month intervention period, the number of nonmelanoma skin cancers in the 6-month postintervention period, and the safety of nicotinamide. At 12 months, the rate of new nonmelanoma skin cancers was lower by 23% (95% confidence interval [CI], 4 to 38) in the nicotinamide group than in the placebo group (P=0.02). Similar differences were found between the nicotinamide group and the placebo group with respect to new basal-cell carcinomas (20% [95% CI, -6 to 39] lower rate with nicotinamide, P=0.12) and new squamous-cell carcinomas (30% [95% CI, 0 to 51] lower rate, P=0.05). The number of actinic keratoses was 11% lower in the nicotinamide group than in the placebo group at 3 months (P=0.01), 14% lower at 6 months (Pnicotinamide was discontinued. Oral nicotinamide was safe and effective in reducing the rates of new nonmelanoma skin cancers and actinic keratoses in high-risk patients. (Funded by the National Health and Medical Research Council; ONTRAC Australian New Zealand Clinical Trials

  1. Methadone induction in primary care (ANRS-Methaville: a phase III randomized intervention trial

    Directory of Open Access Journals (Sweden)

    Roux Perrine

    2012-06-01

    Full Text Available Abstract Background In France, the rapid scale-up of buprenorphine, an opioid maintenance treatment (OMT, in primary care for drug users has led to an impressive reduction in HIV prevalence among injecting drug users (IDU but has had no major effect on Hepatitis C incidence. To date, patients willing to start methadone can only do so in a methadone clinic (a medical centre for drug and alcohol dependence (CSAPA or a hospital setting and are referred to primary care physicians after dose stabilization. This study aims to assess the effectiveness of methadone in patients who initiated treatment in primary care compared with those who initiated it in a CSAPA, by measuring abstinence from street opioid use after one year of treatment. Methods/Design The ANRS-Methaville study is a randomized multicenter non-inferiority control trial comparing methadone induction (lasting approximately 2 weeks in primary care and in CSAPA. The model of care chosen for methadone induction in primary care was based on study-specific pre-training of all physicians, exclusion criteria and daily supervision of methadone during the initiation phase. Between January 2009 and January 2011, 10 sites each having one CSAPA and several primary care physicians, were identified to recruit patients to be randomized into two groups, one starting methadone in primary care (n = 147, the other in CSAPA (n = 48. The primary outcome of the study is the proportion of participants abstinent from street opioids after 1 year of treatment i.e. non-inferiority of primary care model in terms of the proportion of patients not using street opioids compared with the proportion observed in those starting methadone in a CSAPA. Discussion The ANRS-Methaville study is the first in France to use an interventional trial to improve access to OMT for drug users. Once the non-inferiority results become available, the Ministry of Health and agency for the safety of health products may change the the

  2. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B M; Kempen, Bas; Leenaars, Johan G B; Walsh, Markus G; Shepherd, Keith D; Sila, Andrew; MacMillan, Robert A; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological

  3. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-10-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression.

  4. Structure-property relations in bismuth-based Aurivillius phases

    CERN Document Server

    Sandoval, D Y S

    2001-01-01

    ferroelectric phase transition in Aurivillius phases. Orientational and translational domains arising from a change in crystal class and a doubling of the unit cell were detected. At the (PE) tetragonal - (PE) orthorhombic phase transition 90 deg ferroelastic domains are formed. Finally, at the (PE) orthorhombic to the (FE) orthorhombic phase transition centro-symmetry is lost, the ferroelastic orientation domain boundaries (ODBs) become ferroelectric and anti phase boundaries (APBs) are coupled with inversion domain boundaries (IDBs). The aim of this work was to relate the onset temperature and amplitude (qualitatively) of rotations of the octahedra to the onset of ferroelectricity in a range of Aurivillius compounds. Several stoichiometries were tested, including MBi sub 2 Nb sub 2 O sub 9 , MBi sub 4 Ti sub 4 O sub 1 sub 5 , M sub 2 Bi sub 4 Ti sub 5 O sub 1 sub 8 and MBi sub 8 Ti sub 7 O sub 2 sub 7 with the substitution of divalent (Ca sup 2 sup + , Sr sup 2 sup + , Pb sup 2 sup + and Ba sup 2 sup +) and...

  5. Prediction of interdiffusion microstructure for high temperature coatings and domain structures/piezoelectric property at ferroelectric morphotropic phase boundary

    Science.gov (United States)

    Ke, Xiaoqin

    Phase field method is a powerful tool to simulate microstructure evolution and is widely used in nearly all fields of materials science. In this work, we apply the phase field approach coupled with thermodynamic models to simulate microstructural evolution and study the composition-microstructure-property relationship for high temperature coatings and ferroelectric materials at morphotropic phase boundary (MPB). The study on high temperature coatings in this work focuses on the fundamentals of interdiffusion microstructure maps as well as a special interdiffusion microstructure containing the so called type n boundaries. An inderdiffusion microstructure map (IMM) is a two dimensional diagram showing how interdiffusion microstructure varies when one end alloy composition (the base material) is fixed while the other (the coating material) is varied across a region of the phase diagram for dual alloys. It can thus predict the relationship between interdiffusion microstructure and initial alloy compositions and have importance to coating design. The fundamentals for constructing IMMs for dual-alloy systems are established based on the current phase field simulations as well as previous works, which includes the topology of IMM as well as three mechanisms of microstructure type change on an IMM. These fundamentals should be followed when constructing IMMs for a real alloy system. With regards to type n boundaries, which are defined as interface boundaries at which n phases changing on crossing them, the characterestics of type n boundaries and the condition for the formation of type n boundaries are explored in the current work. For n≥3, type n boundaries are expected to be infrequent because the diffusion paths of them have to pass through a special feature which is defined as a feature that cannot be intersected by a random line. However, our simulations found that under the right conditions, such boundaries can occur and even if the initial alloy composition varies

  6. Benchmark tests and spin adaptation for the particle-particle random phase approximation.

    Science.gov (United States)

    Yang, Yang; van Aggelen, Helen; Steinmann, Stephan N; Peng, Degao; Yang, Weitao

    2013-11-07

    The particle-particle random phase approximation (pp-RPA) provides an approximation to the correlation energy in density functional theory via the adiabatic connection [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)]. It has virtually no delocalization error nor static correlation error for single-bond systems. However, with its formal O(N(6)) scaling, the pp-RPA is computationally expensive. In this paper, we implement a spin-separated and spin-adapted pp-RPA algorithm, which reduces the computational cost by a substantial factor. We then perform benchmark tests on the G2/97 enthalpies of formation database, DBH24 reaction barrier database, and four test sets for non-bonded interactions (HB6/04, CT7/04, DI6/04, and WI9/04). For the G2/97 database, the pp-RPA gives a significantly smaller mean absolute error (8.3 kcal/mol) than the direct particle-hole RPA (ph-RPA) (22.7 kcal/mol). Furthermore, the error in the pp-RPA is nearly constant with the number of atoms in a molecule, while the error in the ph-RPA increases. For chemical reactions involving typical organic closed-shell molecules, pp- and ph-RPA both give accurate reaction energies. Similarly, both RPAs perform well for reaction barriers and nonbonded interactions. These results suggest that the pp-RPA gives reliable energies in chemical applications. The adiabatic connection formalism based on pairing matrix fluctuation is therefore expected to lead to widely applicable and accurate density functionals.

  7. Effective restoration of dipole sum rules within the renormalized random-phase approximation

    Science.gov (United States)

    Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan

    2016-12-01

    The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.

  8. A randomized, phase 2 clinical trial of lithium carbonate in Machado-Joseph disease.

    Science.gov (United States)

    Saute, Jonas Alex Morales; de Castilhos, Raphael Machado; Monte, Thais Lampert; Schumacher-Schuh, Artur Francisco; Donis, Karina Carvalho; D'Ávila, Rui; Souza, Gabriele Nunes; Russo, Aline Dutra; Furtado, Gabriel Vasata; Gheno, Tailise Conte; de Souza, Diogo Onofre Gomes; Portela, Luis Valmor Cruz; Saraiva-Pereira, Maria-Luiza; Camey, Suzi Alvez; Torman, Vanessa Bielefeld Leotti; de Mello Rieder, Carlos Roberto; Jardim, Laura Bannach

    2014-04-01

    Because lithium exerts neuroprotective effects in preclinical models of polyglutamine disorders, our objective was to assess the safety and efficacy of lithium carbonate (0.5-0.8 milliequivalents per liter) in patients with Machado-Joseph disease (spinocerebellar ataxia type 3 [MJD/SCA3]). For this phase 2, single-center, double-blind, parallel, placebo-controlled trial (ClinicalTrials.gov identifier NCT01096082), 62 patients who had MJD/SCA3 with a disease duration ≤10 years and an independent gait were randomly assigned (1:1) to receive either lithium or placebo. After 24 weeks, 169 adverse events were reported, including 50.3% in the lithium group (P = 1.00; primary safety outcome). Sixty patients (31 in the placebo group and 29 in the lithium group) were analyzed for efficacy (intention-to-treat analysis). Mean progression between groups did not differ according to scores on the Neurological Examination Score for the Assessment of Spinocerebellar Ataxia (NESSCA) after 48 weeks (-0.35; 95% confidence interval, -1.7 to 1.0; primary efficacy outcome). The lithium group exhibited minor progression on the PATA speech-rate (P = 0.002), the nondominant Click Test (P = 0.023), the Spinocerebellar Ataxia Functional Index (P = 0.003), and the Composite Cerebellar Functional Score (P = 0.029). Lithium was safe and well tolerated, but it had no effect on progression when measured using the NESSCA in patients with MJD/SCA3. This slowdown in secondary outcomes deserves further clarification. © 2014 International Parkinson and Movement Disorder Society.

  9. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.

    Science.gov (United States)

    van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H2, and eliminates delocalization errors in H2(+) and other single-bond systems. It gives surprisingly good non-bonded interaction energies--competitive with the ph-RPA--with the correct R(-6) asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  10. Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia.

    Science.gov (United States)

    Byrd, John C; Flynn, Joseph M; Kipps, Thomas J; Boxer, Michael; Kolibaba, Kathryn S; Carlile, David J; Fingerle-Rowson, Guenter; Tyson, Nicola; Hirata, Jamie; Sharman, Jeff P

    2016-01-07

    Obinutuzumab is a glycoengineered, type 2 anti-CD20 humanized antibody with single-agent activity in relapsed chronic lymphocytic leukemia (CLL). With other CD20 antibodies, a dose-response relationship has been shown. We therefore performed a randomized phase 2 study in symptomatic, untreated CLL patients to evaluate if an obinutuzumab dose response exists. Obinutuzumab was given at a dose of 1000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 8 and day 15 of cycle 1; 1000 mg day 1 of cycles 2-8) or 2000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 3, 2000 mg day 8 and day 15 of cycle 1; 2000 mg day 1 of cycles 2-8). The primary end point was overall response rate (ORR). Eighty patients were enrolled with similar demographics: median age 67 years, 41% high-risk Rai disease, and 10% del(17p)(13.1). ORR (67% vs 49%, P = .08) and complete response (CR) or CR with incomplete cytopenia response (20% vs 5%) favored 2000 mg obinutuzumab. Overall, therapy was well tolerated, and infusion events were manageable. This study demonstrates significant efficacy of obinutuzumab monotherapy, for 1000 mg as well as for 2000 mg, in untreated CLL patients with acceptable toxicity. Although exploratory, a dose-response relationship may exist, but its relevance to improving progression-free survival is uncertain and will require further follow-up. This trial was registered at www.clinicaltrials.gov as #NCT01414205.

  11. Phase III randomized trial of toremifene versus tamoxifen for Japanese postmenopausal patients with early breast cancer.

    Science.gov (United States)

    Kimura, Morihiko; Tominaga, Takeshi; Kimijima, Izo; Takatsuka, Yuichi; Takashima, Shigemitsu; Nomura, Yasuo; Kasumi, Fujio; Yamaguchi, Akihiro; Masuda, Norikazu; Noguchi, Shinzaburo; Eshima, Nobuoki

    2014-05-01

    Toremifene, a selective estrogen receptor modulator, is used as adjuvant therapy for postmenopausal patients with breast cancer in Japan. For Japanese patients, however, only limited data are available on the efficacy and safety profile of toremifene. To establish the long term efficacy and safety of toremifene for Japanese patients, we conducted a prospective, multicenter, randomized phase III trial comparing toremifene and tamoxifen. The subjects were postmenopausal Japanese patients who had undergone surgery for node-negative breast cancer. Toremifene or tamoxifen was administered for 2 years. The primary endpoint was demonstration of the non-inferiority of toremifene compared with tamoxifen in respect of 5-year survival. Secondary endpoints were cumulative overall survival, cumulative disease-free survival, effects on lipid profiles, and adverse events. A total of 253 patients were enrolled. The baseline characteristics of the two treatment groups were well-balanced. Median follow-up was 66.5 months. Five-year survival was similar for toremifene and tamoxifen (97.0 vs. 96.9 %; 90 % confidence interval -3.9 to 4.1), indicating that toremifene is not inferior to tamoxifen for postmenopausal Japanese patients with early breast cancer. Cumulative overall survival and cumulative disease-free survival were also very similar for toremifene and tamoxifen (97.5 vs. 97.3 %, log-rank test P = 0.9458; 88.4 vs. 90.6 %, log-rank test P = 0.3359, respectively). Adverse events in both groups were similar and mostly mild or moderate. Thus, both are equally effective and well tolerated. Our results suggest that the efficacy and safety of toremifene and tamoxifen are equivalent for postmenopausal Japanese patients with early breast cancer.

  12. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...

  13. Phase Transition and Optical Properties of Solid Oxygen under High Pressure: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Hui; TIAN Fu-Bo; MA Yan-Ming; HE Zhi; CUI Tian; LIU Bing-Bing; ZOU Guang-Tian

    2008-01-01

    Crystal structures and optical properties of the δ-O,2 phase and the ε-O,8 phase have been investigated by using the ab initio pseudopotential plane-wave method. It is found that the phase transition is of the first order with a discontinuous volumetric change from the antiferromagnetic δ-O,2 phase to the nonmagnetic ε-O8 phase, consistent with the experimental findings. The energy band calculations show that the direct band gap changes into an indirect band gap after the phase transition. The apparent change in the optical properties can be used for identifying the phase transition from δ-O2 to ε-O,8.

  14. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Interfacial properties and phase behaviour of an ionic microemulsion system

    NARCIS (Netherlands)

    Kegel, W.K.

    1993-01-01

    This thesis reports a study of a microemulsion model system composed of the ionic surfactant SDS (Sodium Dodecyl Sulfate), the cosurfactant pentanol and/or hexanol, water, salt and cyclohexane. Depending on the concentrations of the constituent parts, this system may form microemulsion phases and

  16. Cosmological phase transitions and their properties in the NMSSM

    Science.gov (United States)

    Kozaczuk, Jonathan; Profumo, Stefano; Haskins, Laurel Stephenson; Wainwright, Carroll L.

    2015-01-01

    We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or SU(2) directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and Δ β (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We estimate the wall velocity microphysically, taking into account the various sources of friction acting on the expanding bubble wall. Ultra-relativistic solutions to the bubble wall equations of motion typically exist when the electroweak phase transition features substantial supercooling. For somewhat weaker transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic, suggesting that successful electroweak baryogenesis may indeed occur in regions of the NMSSM compatible with the Higgs discovery.

  17. Development of an aluminized multi-phase steel with dual phase properties for high temperature corrosion resistance applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, J.; Cooman, B.C. de [Lab. for Iron and Steelmaking, Dept. of Metallurgy and Materials Science, Ghent Univ., Zwijnaarde (Belgium); Maki, J. [Yawata R and D Lab., Nippon Steel Corp. (Japan); Fiorucci, M. [Galvalange Sarl, Dudelange (Luxembourg); Claessens, S. [OCAS NV, Zelzate (Belgium)

    2003-04-01

    A high strength, high Mn, Cr-Mo containing multi-phase steel grade was aluminized with a 90 wt% Al-10 wt% Si alloy coating, using a laboratory hot-dip simulator. The adhesion of the coating to the steel strip was evaluated and the microstructure of the as deposited material was assessed. The coated sheet steel was tested at high temperatures by monitoring the weight gain of the samples and their mechanical properties as a function of time. It was found that the thermal properties of the aluminized sheet were excellent. The analysis of the coating/substrate interface revealed the dissolution of brittle intermetallic phases, explaining the excellent high temperature resistance performance of the Al-Si coating up to temperatures as high as 900 C. In addition, the use of a continuous annealing cycle common in current aluminizing lines, resulted in a dual phase microstructure. (orig.)

  18. Composition and property measurements for PHA Phase 4 glasses

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    2000-01-25

    The results presented in this report are for nine Precipitate Hydrolysis Aqueous (PHA) Phase 4 glasses. Three of the glasses contained HM sludge at 22, 26, and 30 wt% respectively, 10 wt% PHA and 1.25 wt% monosodium titanate (MST), all on an oxide basis. The remaining six glasses were selected from the Phase 1 and Phase 2 studies (Purex sludge) but with an increased amount of MST. The high-end target for MST of 2.5 wt% oxide was missed in Phases 1 and 2 due to {approximately}30 wt% water content of the MST. A goal of this Phase 4 study was to determine whether this increase in titanium concentration from the MST had any impact on glass quality or processibility. Two of the glasses, pha14c and pha15c, were rebatched and melted due to apparent batching errors with pha14 and pha15. The models currently in the Defense Waste Processing Facility's (DWPF) Product Composition Control System (PCCS) were used to predict durability, homogeneity, liquidus, and viscosity for these nine glasses. All of the HM glasses and half of the Purex glasses were predicted to be phase separated, and consequently prediction of glass durability is precluded with the cument models for those glasses that failed the homogeneity constraint. If one may ignore the homogeneity constraint, the measured durabilities were within the 95% prediction limits of the model. Further efforts will be required to resolve this issue on phase separation (inhomogeneity). The liquidus model predicted unacceptable liquidus temperatures for four of the nine glasses. The approximate, bounding liquidus temperatures measured for all had upper limits of 1,000 C or less. Given the fact that liquidus temperatures were only approximated, the 30 wt% loading of Purex may be near or at the edge of acceptability for liquidus. The measured viscosities were close to the predictions of the model. For the Purex glasses, pha12c and pha15c, the measured viscosities of 28 and 23 poise, respectively, indicate that DWPF processing

  19. Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    Science.gov (United States)

    Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Magalhães, S. G.; Nobre, F. D.

    2016-06-01

    The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and χ3, the latter also presents a divergence at Tf, which comes as a direct consequence of λAT=0 at Tf. However, our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T* which does not coincide with the spin-glass transition temperature Tf (i.e., T*>Tf for a given applied random field). Thus, the maximum value of χ3 at T* reflects the effects of the random fields in the paramagnetic phase instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with the case without random fields. These results are discussed in view of recent observations in the LiHoxY1 -xF4 compound.

  20. Phase coexistence properties of liquid mercury: a simulation study

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Bretonnet; Jean-Marc Bomont

    2006-01-01

    The thermophysical properties of expanded liquid mercury have been investigated along the liquid-vapor coexis tence curve by using Monte Carlo and Molecular Dynamic simulations. For the purpose, an empirical state dependent interatomic potential for the region of dense metallic liquid is used, while the state dependence is not necessary near the critical point. In order to test the validity of this potential, we determine the surface layering and the sound velocity, two properties very sensitive to the choice of the potential. Our results are in quite good agreement with other theoretical results and to the experimental data available in the literature.

  1. Some Properties for the Largest Component of Random Geometric Graphs with Applications in Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Ge Chen; Tian-de Guo; Chang-long Yao

    2009-01-01

    In this paper we consider the standard Poisson Boolean model of random geometric graphs G(Hλ,s; 1) in Rd and study the properties of the order of the largest component L1(G(Hλ,s; 1)) .We prove that E[L1(G(Hλ,s; 1))]is smooth with respect to λ,and is derivable with respect to s.Also,we give the expression of these derivatives.These studies provide some new methods for the theory of the largest component of finite random geometric graphs (not asymptotic graphs as s→∞) in the high dimensional space (d≥2).Moreover,we investigate the convergence rate of E[L1(G(Hλ,s; 1))].These results have significance for theory develop-ment of random geometric graphs and its practical application.Using our theories,we construct and solve a new optimal energy-efficient topology control model of wireless sensor networks,which has the significance of theoretical foundation and guidance for the design of network layout.

  2. Spectral properties of the Wilson-Dirac operator and random matrix theory

    Science.gov (United States)

    Kieburg, Mario; Verbaarschot, Jacobus J. M.; Zafeiropoulos, Savvas

    2013-11-01

    Random matrix theory has been successfully applied to lattice quantum chromodynamics. In particular, a great deal of progress has been made on the understanding, numerically as well as analytically, of the spectral properties of the Wilson-Dirac operator. In this paper, we study the infrared spectrum of the Wilson-Dirac operator via random matrix theory including the three leading order a2 correction terms that appear in the corresponding chiral Lagrangian. A derivation of the joint probability density of the eigenvalues is presented. This result is used to calculate the density of the complex eigenvalues, the density of the real eigenvalues, and the distribution of the chiralities over the real eigenvalues. A detailed discussion of these quantities shows how each low-energy constant affects the spectrum. Especially we consider the limit of small and large (which is almost the mean field limit) lattice spacing. Comparisons with Monte Carlo simulations of the random matrix theory show a perfect agreement with the analytical predictions. Furthermore we present some quantities which can be easily used for comparison of lattice data and the analytical results.

  3. CFD Simulation of Pipeline Transport Properties of Mine Tailings Three-Phase Foam Slurry Backfill

    National Research Council Canada - National Science Library

    Xin Chen; Jian Zhou; Qiusong Chen; Xiuzhi Shi; Yonggang Gou

    2017-01-01

    ...). Based on rheological property tests and CFD simulations, the foam phase, pressure, and velocity in the pipeline system are investigated using the CFD mixture method for different bubble volume...

  4. Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack.

    Science.gov (United States)

    Tashima, Hideaki; Takeda, Masafumi; Suzuki, Hiroyuki; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2010-06-21

    We have shown that the application of double random phase encoding (DRPE) to biometrics enables the use of biometrics as cipher keys for binary data encryption. However, DRPE is reported to be vulnerable to known-plaintext attacks (KPAs) using a phase recovery algorithm. In this study, we investigated the vulnerability of DRPE using fingerprints as cipher keys to the KPAs. By means of computational experiments, we estimated the encryption key and restored the fingerprint image using the estimated key. Further, we propose a method for avoiding the KPA on the DRPE that employs the phase retrieval algorithm. The proposed method makes the amplitude component of the encrypted image constant in order to prevent the amplitude component of the encrypted image from being used as a clue for phase retrieval. Computational experiments showed that the proposed method not only avoids revealing the cipher key and the fingerprint but also serves as a sufficiently accurate verification system.

  5. Magnetic properties of the Ce-Rh binary phases

    Energy Technology Data Exchange (ETDEWEB)

    Kappler, J.P.; Lehmann, P.; Schmerber, G. (Strasbourg-1 Univ., 67 (FR). Groupe d' Etude des Materiaux Metalliques); Nieva, G.; Sereni, J.G. (Comision Nacional de Energia Atomica, San Carlos de Bariloche (AR). Centro Atomico Bariloche)

    1988-12-01

    Crystallographic, magnetic and resistivity studies on the Ce-Rh binary phases clearly define two Ce ground state regions: (i) CeRh{sub 3}, CeRh{sub 2} and CeRh as intermediate valence compounds and (ii) Ce{sub 5}Rh{sub 4}, Ce{sub 3}Rh{sub 2} Ce{sub 5}Rh{sub 3} and Ce{sub 7}Rh{sub 3} with magnetic transitions at low temperature.

  6. Cosmological Phase Transitions and their Properties in the NMSSM

    CERN Document Server

    Kozaczuk, Jonathan; Haskins, Laurel Stephenson; Wainwright, Carroll L

    2014-01-01

    We study cosmological phase transitions in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective field theory approach to calculate the finite temperature effective potential, focusing on regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark matter candidate, 1-2 TeV stops, and with the remaining particle spectrum compatible with current LHC searches and results. The phase transition structure in viable regions of parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step first-order phase transitions in the singlet and/or $SU(2)$ directions. We compute several parameters pertaining to the bubble wall profile, including the bubble wall width and $\\Delta\\beta$ (the variation of the ratio in Higgs vacuum expectation values across the wall). These quantities can vary significantly across small regions of parameter space and can be promising for successful electroweak baryogenesis. We e...

  7. Relating polarization phase difference of SAR signals to scene properties

    Science.gov (United States)

    Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel

    1987-01-01

    This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.

  8. Phase diagrams and magnetic properties of tri-layer superlattices: Mean field study

    Science.gov (United States)

    Naji, S.; Belhaj, A.; Labrim, H.; Bahmad, L.; Benyoussef, A.; El Kenz, A.

    2014-04-01

    Motivated by spintronic device applications, we engineer a superlattice model based on periodic tri-layers consisting of spins σ={1}/{2}, S=1 and q={3}/{2} residing on the sites of a square lattice, interacting with an external magnetic field. We study its phase diagrams and magnetic properties. We determine the corresponding ground state phase diagrams. Then, we show that this Ising lattice model exhibits a ferromagnetic phase F1, two ferrimagnetic phases F2, F3 and an antiferromagnetic phase F4. It is found that the magnetic behaviors depend on the moduli space controlled by the exchange interaction couplings. More precisely, the hysteresis loops have been established.

  9. Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States

    Institute of Scientific and Technical Information of China (English)

    HOU Shen-Yong; YANG Kuo

    2011-01-01

    @@ A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated.Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.%A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated. Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.

  10. Scaling Properties and Asymptotic Spectra of Finite Models of Phase Transitions as They Approach Macroscopic Limits

    Science.gov (United States)

    Rowe, D. J.; Turner, P. S.; Rosensteel, G.

    2004-11-01

    The asymptotic spectra and scaling properties of a mixed-symmetry Hamiltonian, which exhibits a second-order phase transition in its macroscopic limit, are examined for a system of N interacting bosons. A second interacting boson-model Hamiltonian, which exhibits a first-order phase transition, is also considered. The latter shows many parallel characteristics and some notable differences, leaving it open to question as to the nature of its asymptotic critical-point properties.

  11. Efficacy of extended-release tramadol for treatment of prescription opioid withdrawal: A two-phase randomized controlled trial*

    Science.gov (United States)

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Siegel, Anthony; Campbell, Charles; Walsh, Sharon L.

    2013-01-01

    Background Tramadol is an atypical analgesic with monoamine and modest mu opioid agonist activity. The purpose of this study was to evaluate: 1) the efficacy of extended-release (ER) tramadol in treating prescription opioid withdrawal and 2) whether cessation of ER tramadol produces opioid withdrawal. Methods Prescription opioid users with current opioid dependence and observed withdrawal participated in this inpatient, two-phase double blind, randomized placebo-controlled trial. In Phase 1 (days 1-7), participants were randomly assigned to matched oral placebo or ER tramadol (200 or 600 mg daily). In Phase 2 (days 8-13), all participants underwent double blind crossover to placebo. Breakthrough withdrawal medications were available for all subjects. Enrollment continued until 12 completers/group was achieved. Results Use of breakthrough withdrawal medication differed significantly (ptramadol 200 mg produced significantly lower peak ratings than placebo on ratings of insomnia, lacrimation, muscular tension, and sneezing. Only tramadol 600 mg produced miosis in Phase 1. In Phase 2, tramadol 600 mg produced higher peak ratings of rhinorrhea, irritable, depressed, heavy/sluggish, and hot/cold flashes than placebo. There were no serious adverse events and no signal of abuse liability for tramadol. Conclusions ER tramadol 200 mg modestly attenuated opioid withdrawal. Mild opioid withdrawal occurred after cessation of treatment with 600 mg tramadol. These data support the continued investigation of tramadol as a treatment for opioid withdrawal. PMID:23755929

  12. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial.

    Science.gov (United States)

    Nachum, Zohar; Garmi, Gali; Kadan, Yfat; Zafran, Noah; Shalev, Eliezer; Salim, Raed

    2010-11-07

    A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1), oxytocin (group 2) or both (group 3). A group of women who progressed spontaneously without intervention composed the control group (group 4). The primary outcome was the duration of time from initiation of augmentation until delivery. A total of 213 women were consented and randomized to group 1 (70 women), group 2 (72 women) and group 3 (71 women). Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08) and 180 minutes compared to group 2 and 4 (p = 0.001). Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03), group 2 (p = 0.001) and group 4 (p = 0.001). Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  13. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  14. Electrical properties of ZnO varistors prepared by direct mixing of constituent phases

    Directory of Open Access Journals (Sweden)

    Žunić M.

    2006-01-01

    Full Text Available Varistor samples containing different amounts of constituent phases were prepared by direct mixing of constituent phases. Detailed electrical characterization was performed to explain the influence of minor phases (spinel and intergranular phases on overall properties. Characterization included investigation of the non-linear coefficients (α, breakdown electric field (EB, leakage currents (JL, grain boundary barrier hight (ΦB and constant β from current-voltage characteristics, as well as calculation of activation energies for conduction (EA from ac impedance spectroscopy in the temperature interval 30-410°C. Varistors sintered at 1100 °C for 1 h showed pronounced differences in electrical properties depending on relative molar ratios of the phases. Results were discussed in the sense of possible reduction of the content of minor phases in ZnO varistors.

  15. Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.D., E-mail: 15901022010@139.com [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu, J. [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Cao, W.Q., E-mail: cwq005211@163.com [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China); Dong, H. [Special Steel Institute, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2014-11-17

    A series of steels with the micro-laminated dual phase microstructure were produced by hot rolling and air cooling processes in this study. Different volume fractions and morphology of the ferrite and martensite phases were obtained by adding different carbon contents in the steels containing 3 wt% aluminum. The microstructure of the dual phase steels was examined by optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). It was shown that the microstructure was composed of large ferrite and martensite lamellae. Small martensite laths and a miniscule amount of residual austenite were also found in the martensite phase. The tensile, impact and hardness tests revealed that the dual phase steels had an excellent combination of mechanical properties. The mechanical properties had a great relationship with the martensite volume fraction and the micro-laminated microstructure. The fractography of impact specimens was examined to explore the toughening mechanism of the micro-laminated dual phase steels.

  16. A randomized controlled phase Ib trial of the malaria vaccine candidate GMZ2 in African children.

    Directory of Open Access Journals (Sweden)

    Sabine Bélard

    Full Text Available BACKGROUND: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3 and glutamate rich protein (GLURP that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials. METHODOLOGY/PRINCIPAL FINDINGS: Thirty children one to five years of age were randomized to receive three doses of either 30 µg or 100 µg of GMZ2, or rabies vaccine. GMZ2, adjuvanted in aluminum hydroxide, was administered on Days 0, 28 and 56. All participants received a full course of their respective vaccination and were followed up for one year. Both 30 µg and 100 µg GMZ2 vaccine doses were well tolerated and induced antibodies and memory B-cells against GMZ2 as well as its antigenic constituents MSP3 and GLURP. After three doses of vaccine, the geometric mean concentration of antibodies to GMZ2 was 19-fold (95%CI: 11,34 higher in the 30 µg GMZ2 group than in the rabies vaccine controls, and 16-fold (7,36 higher in the 100 µg GMZ2 group than the rabies group. Geometric mean concentration of antibodies to MSP3 was 2.7-fold (1.6,4.6 higher in the 30 µg group than in the rabies group and 3.8-fold (1.5,9.6 higher in the 100 µg group. Memory B-cells against GMZ2 developed in both GMZ2 vaccinated groups. CONCLUSIONS/SIGNIFICANCE: Both 30 µg as well as 100 µg intramuscular GMZ2 are immunogenic, well tolerated, and safe in young, malaria-exposed Gabonese children. This result confirms previous findings in naïve and malaria-exposed adults and supports further clinical development of GMZ2. TRIAL REGISTRATION: ClinicalTrials.gov NCT00703066.

  17. Physical properties of kraft black liquor. Final report. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  18. Quark Transport Properties in the Region of Coexistence of Both Hadronic and QGP Phases

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang-Jun; LI Hong; WANG Gang; ZHANG Wei-Ning; HUO Lei

    2001-01-01

    The physical picture of coexistence of both hadronic and QGP phases is given by Friedberg and T.D. Lee's nontopology soliton model. The transport properties of quark in color space and spin space in a system of two-phase coexistence are investigated from both quantum and classical theories.

  19. Study of rheological properties in modified random propylene-ethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sivelton G.; Otaguro, Harumi; Lima, Luis F.C.P.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], E-mail: sgsantos@ipen.br; Artel, Beatriz W.H. [Empresa Brasileira de Radiacao Ltda (EMBRARAD), Cotia, SP (Brazil)

    2007-07-01

    The random copolymer of propylene and ethylene (RP) presents exceptional transparency and brightness; possess low transference of odor and flavor showing better relation of rigidity/impact than homopolymer of polypropylene (PP). Due to the existence of units of ethylene this copolymer has distinct characteristics than PP of the same melt flow rate, improving its processability and allowing the use in processes such as: injection and blow molding and thermoforming of the plates. In the case of the thermoforming, the melt conventional polypropylene has the tendency to collapse during the process. It is well known, that the incorporation of a second monomer diminishes drastically the melting point of the sample up to 5 deg C changing its rheological characteristic and processing conditions. Therefore, the aim of the present work is to modify the random copolymer of propylene-ethylene with melt flow of 10 g/10 min and check its properties. In this process gamma irradiation technique was used to induce chemical changes in RP in the presence of Tri-allyl-cyanurate (TAC), with concentration ranging from 0 to 5.0 mmol/100 g of the pure resin. All samples had been characterized adequately with respect to rheological properties as: viscosity at low shear rate, storage and loss modulus, as well as, the evaluation of molecular mass distribution from zero shear viscosity value ({eta}0). The improvements in the rheological properties and processability had been evaluated in term of its performance during the thermoforming vacuum process. The modified samples showed a good performance during the thermoforming process. This behavior was observed exactly when the monomer concentration increase, except in the case of 5.0 mmol, where the sample tores during thermoforming, probably due to the high degree of ramification and branching in polymer chain. (author)

  20. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  1. Field-Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Science.gov (United States)

    Hida, Kazuo

    2006-07-01

    The multiple reentrant quantum phase transitions in the S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with interchain mean field approximation. It is assumed that odd numbered bonds are antiferromagnetic with strength J and even numbered bonds can take the values JS and JW (JS > J > JW > 0) randomly with the probabilities p and 1- p, respectively. The pure version ( p=0 and 1) of this model has a spin gap but exhibits a field-induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0 < p < 1, antiferromagnetism is induced by randomness at the small field region where the ground state is disordered due to the spin gap in the pure version. At the same time, this model exhibits randomness-induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between transverse antiferromagnetic phases and disordered plateau phases with the increase of magnetic field for a moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and jumps between them. It is also found that antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low-lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.

  2. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    OpenAIRE

    2015-01-01

    A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM) signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM), the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction wi...

  3. Modeling the Thermodynamic and Transport Properties of Decahydronaphthalene/Propane Mixtures: Phase Equilibria, Density, and Viscosity

    Science.gov (United States)

    2011-01-01

    Modeling the Thermodynamic and Transport Properties of Decahydronaphthalene/Propane Mixtures: Phase Equilibria , Density, and Viscosity Nathaniel...Decahydronaphthalene/Propane Mixtures: Phase Equilibria , Density, And Viscosity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: phase equilibria ; modified Sanchez-Lacombe equation of state

  4. Universal scaling properties of extremal cohesive holographic phases

    CERN Document Server

    Goutéraux, B

    2014-01-01

    In this work, we focus on zero-temperature, strongly-coupled, translation-invariant holographic phases at finite density. We show that they can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. We conjecture a universal scaling for the optical conductivity at zero temperature and low frequencies, which reduces to the correct result for both classes of solutions. We also study the scaling behaviour of the electric flux through bulk minimal surfaces, which have been suggested to provide an order parameter for fractionalisation.

  5. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    Science.gov (United States)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  6. Phase I randomized safety study of twice daily dosing of acidform vaginal gel: candidate antimicrobial contraceptive.

    Directory of Open Access Journals (Sweden)

    Marla J Keller

    Full Text Available BACKGROUND: Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota. METHODS: Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays. RESULTS: The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002. While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra, an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08. CONCLUSIONS: Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than

  7. Phase I Randomized Safety Study of Twice Daily Dosing of Acidform Vaginal Gel: Candidate Antimicrobial Contraceptive

    Science.gov (United States)

    Keller, Marla J.; Carpenter, Colleen A.; Lo, Yungtai; Einstein, Mark H.; Liu, Congzhou; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota. Methods Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety was assessed by symptoms and pelvic examination. The impact of gel on mucosal immunity was assessed by quantifying cytokines, chemokines, antimicrobial proteins and antimicrobial activity of genital secretions collected by cervicovaginal lavage (CVL) at screening, 2 hours after gel application, and on days 7, 14 and 21. Vaginal microbiota was characterized at enrollment and day 14 using species-specific quantitative PCR assays. Results The median vaginal and cervical pH was significantly lower 2 hours after application of Acidform and was associated with an increase in the bactericidal activity of CVL against E. coli. However, 65% of women who received Acidform had at least one local adverse event compared with 11% who received placebo (p = 0.002). While there was no increase in inflammatory cytokines or chemokines, CVL concentrations of lactoferrin and interleukin-1 receptor antagonist (IL-1ra), an anti-inflammatory protein, were significantly lower following Acidform compared to HEC placebo gel application. There were no significant changes in Lactobacillus crispatus or Lactobacillus jensenii in either group but there was a decrease in Gardnerella vaginalis in the Acidform group (p = 0.08). Conclusions Acidform gel may augment mucosal defense as evidenced by an increase in bactericidal activity of genital secretions against E. coli and a decrease in Gardnerella vaginalis colonization. However, Acidform was associated with more irritation than placebo and lower levels

  8. Properties of phase separation method synthesized superhydrophobic polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Aruna, S.T., E-mail: aruna_reddy@nal.res.in [Surface Engineering Division, Council of Scientific and Industrial Research - National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560 017 (India); Binsy, P.; Richard, Edna; Basu, Bharathibai J. [Surface Engineering Division, Council of Scientific and Industrial Research - National Aerospace Laboratories, Post Bag No. 1779, Bangalore 560 017 (India)

    2012-01-15

    Polystyrene (PS) based superhydrophobic films were prepared by non-solvent induced phase separation method using tetrahydrofuran (THF) as the solvent and different alcohols as non-solvents. Flory Huggins interaction parameter values of different alcohols and acetone with PS were calculated to qualify them as non-solvents for phase separation. The films were characterized using contact angle analyser, field emission scanning electron microscope, surface roughness profilometer, IR spectrometer and Raman spectrometer. The coatings exhibited a maximum water contact angle (WCA) of 159 Degree-Sign and a sliding angle (SA) < 2 Degree-Sign . With increase in the vol% of non-solvent, WCA increased and SA decreased. The microstructures of the films varied with the vol% of non-solvent and the amount of PS. The work of adhesion of PS films decreased with increasing WCA. The Raman spectral studies showed isotactic to atactic transformation of PS with the addition of non-solvents and these results corroborated well with the IR spectral studies.

  9. ELEMENTARY APPROACH TO SELF-ASSEMBLY AND ELASTIC PROPERTIES OF RANDOM COPOLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    S. M. CHITANVIS

    2000-10-01

    The authors have mapped the physics of a system of random copolymers onto a time-dependent density functional-type field theory using techniques of functional integration. Time in the theory is merely a label for the location of a given monomer along the extent of a flexible chain. We derive heuristically within this approach a non-local constraint which prevents segments on chains in the system from straying too far from each other, and leads to self-assembly. The structure factor is then computed in a straightforward fashion. The long wave-length limit of the structure factor is used to obtain the elastic modulus of the network. It is shown that there is a surprising competition between the degree of micro-phase separation and the elastic moduli of the system.

  10. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; Chanjuan Han; Xiong Bill Yu

    2015-01-01

    Frozen soils cover about 40%of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR) sensor and thermal pulse technology (TPT) to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing) was measured with the TDR module; and the corre-sponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezingethawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  11. A non-destructive method to measure the thermal properties of frozen soils during phase transition

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2015-04-01

    Full Text Available Frozen soils cover about 40% of the land surface on the earth and are responsible for the global energy balances affecting the climate. Measurement of the thermal properties of frozen soils during phase transition is important for analyzing the thermal transport process. Due to the involvement of phase transition, the thermal properties of frozen soils are rather complex. This paper introduces the uses of a multifunctional instrument that integrates time domain reflectometry (TDR sensor and thermal pulse technology (TPT to measure the thermal properties of soil during phase transition. With this method, the extent of phase transition (freezing/thawing was measured with the TDR module; and the corresponding thermal properties were measured with the TPT module. Therefore, the variation of thermal properties with the extent of freezing/thawing can be obtained. Wet soils were used to demonstrate the performance of this measurement method. The performance of individual modules was first validated with designed experiments. The new sensor was then used to monitor the properties of soils during freezing–thawing process, from which the freezing/thawing degree and thermal properties were simultaneously measured. The results are consistent with documented trends of thermal properties variations.

  12. Creep properties of aged duplex stainless steels containing [sigma] phase

    Energy Technology Data Exchange (ETDEWEB)

    Shek, C.H.; Wong, K.W.; Lai, J.K.L. (City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science); Li, D.J. (Department of Materials Engineering, Dalian University of Technology, Dalian 116 024 (China))

    1999-06-30

    The creep properties of a cast of duplex stainless steel were characterized at temperatures 550-800 C under different loading conditions. For fully aged specimens containing [sigma], the stress exponent for creep was close to 3 and the activation energy was 281[+-]9 kJ mol[sup -1]. The results suggested that the creep mechanism in the samples in this investigation was controlled by dislocation movement. Extensive [sigma]/[gamma][sub 2] interfaces introduced during ageing improved the creep resistance of the material and related to a reduction of the creep rate in Stage II creep and an increase in the creep rupture strength of the material. Microstructural studies revealed the dependence of the creep properties on the morphology of the microstructure. Among the aged specimens containing [sigma], the creep strength and ductility were higher for specimens having larger [gamma] grain thickness measured on the longitudinal plane. This characteristic was related to the crack propagation and interconnection of voids within [gamma] matrix during tertiary creep. With appropriate solution treatment, the creep strength of [sigma]-containing steels can be improved to a value exceeding that of type 316 steels. (orig.) 14 refs.

  13. Minimum Phase Property of Chebyshev-Sharpened Cosine Filters

    Directory of Open Access Journals (Sweden)

    Miriam Guadalupe Cruz Jiménez

    2015-01-01

    Full Text Available We prove that the Chebyshev sharpening technique, recently introduced in literature, provides filters with a Minimum Phase (MP characteristic when it is applied to cosine filters. Additionally, we demonstrate that cascaded expanded Chebyshev-Sharpened Cosine Filters (CSCFs are also MP filters, and we show that they achieve a lower group delay for similar magnitude characteristics in comparison with traditional cascaded expanded cosine filters. The importance of the characteristics of cascaded expanded CSCFs is also elaborated. The developed examples show improvements in the group delay ranged from 23% to 47% at the cost of a slight increase of usage of hardware resources. For an application of a low-delay decimation filter, the proposed scheme exhibits a 24% lower group delay, with 35% less computational complexity (estimated in Additions per Output Sample and slightly less usage of hardware elements.

  14. PHASE STRUCTURE AND PROPERTIES OF EPOXY RESIN MODIFIED BY POLYSILOXANE BEARING PENDANT AMINO GROUPS

    Institute of Scientific and Technical Information of China (English)

    Bing Zhang; Xiang-luan Liu; Ying Huang

    2000-01-01

    Polysiloxane-modified epoxy resins were prepared through the reaction of epoxy resin with polydimethylsiloxanes bearing pendant N-(β-aminoethyl)-γ-aminopropyl groups. The morphology and properties of the cured epoxy resins modified by the polysiloxanes were investigated. It was found that the phase structure and properties of the cured epoxy resins depend mainly on the amino group content in the polydimethylsiloxane and the level of the modifier. The change of phase structure in the cured epoxy resin systems was responsible for the dramatic change in their mechanical and surface properties.

  15. Phase-I and randomized phase-II trial of panobinostat in combination with ICE (ifosfamide, carboplatin, etoposide) in relapsed or refractory classical Hodgkin lymphoma.

    Science.gov (United States)

    Hu, Bei; Younes, Anas; Westin, Jason R; Turturro, Francesco; Claret, Linda; Feng, Lei; Fowler, Nathan; Neelapu, Sattva; Romaguera, Jorge; Hagemeister, Fredrick B; Rodriguez, Maria Alma; Samaniego, Felipe; Fayad, Luis E; Copeland, Amanda R; Nastoupil, Loretta J; Nieto, Yago; Fanale, Michelle A; Oki, Yasuhiro

    2017-08-09

    This phase-I/phase-II study evaluated panobinostat in combination with ifosfamide, carboplatin, etoposide (P-ICE) in relapsed/refractory classical Hodgkin lymphoma. During phase I, panobinostat was given daily on Monday/Wednesday/Friday starting one week prior to Cycle 1 (C1) of ICE and during two weeks of C1-2 of ICE (Schedule A). No DLT was observed at 30 mg. However, frequent (84%) grade-4 thrombocytopenia during second week prompted us to omit the second week of panobinostat 30 mg (Schedule B) for phase II, where this regimen was compared to ICE. In the randomized phase-II study, CR was seen in 9/11 (82%) and 8/12 (67%) for P-ICE and ICE, respectively (p = .64). Grade-4 neutropenia (55% vs. 8%) and thrombocytopenia (100% vs. 33%) were more common in P-ICE. In summary, combination therapy using panobinostat produced high CR rate at the cost of greater bone marrow toxicity. Investigation of panobinostat with less myelosuppressive agents is of interest.

  16. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  17. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    Energy Technology Data Exchange (ETDEWEB)

    Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.

    1998-12-07

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  18. Randomly distributed spin induced suppression of superconducting properties in Gd-123

    Science.gov (United States)

    Biswas, B.; Haldar, S.; Mukherjee, I.; Kumar Ghosh, Ajay

    2017-02-01

    Suppression of superconducting property in presence of inhomogeneous spin distribution in GdBa2Cu3-xCoxO6.9 has been studied. A superconducting sample without Co exhibits superconducting transition at 56.1 K. The current-voltage (I-V) characteristics exhibit nonlinear to linear transformation above a certain temperature. Two other samples (i) with Co and (ii) without Cu are found to be nonsuperconducting with very high resistive in nature at lower temperature. Localization length decreases with the increase in Co substitution. Suppression of the superconducting transition has been attributed to the change in the magnetic fluctuations induced by the randomness in spin substitution. An exponent has been extracted to understand the current-voltage behaviour. Kosterlitz-Thouless (KT) transition may be affected strongly by the shifting of magnetic fluctuations.

  19. Analytical fuel property effects, small combustors, phase 1

    Science.gov (United States)

    Cohen, J. D.

    1983-01-01

    The effects of nonstandard aviation fuels on a typical small gas turbine combustor was analyzed. The T700/CT7 engine family was chosen as being representative of the class of aircraft power plants desired. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. Higher than normal smoke output and flame radiation intensity for the current T700 combustor which serves as a baseline were anticipated. It is, therefore, predicted that out of specification smoke visibility and higher than normal shell temperatures will exist when using NASA ERBS fuels with a consequence of severe reduction in cyclic life. Three new designs are proposed to compensate for the deficiencies expected with the existing design. They have emerged as the best of the eight originally proposed redesigns or combinations thereof. After the five choices that were originally made by NASA on the basis of competing performance factors, General Electric narrowed the field to the three proposed.

  20. Continuous gas-phase synthesis of nanowires with tunable properties.

    Science.gov (United States)

    Heurlin, Magnus; Magnusson, Martin H; Lindgren, David; Ek, Martin; Wallenberg, L Reine; Deppert, Knut; Samuelson, Lars

    2012-12-06

    Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III-V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape--and, thus, controlled optical and electronic properties--through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III-V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.

  1. Effect of random vacancies on the electronic properties of graphene and T graphene: a theoretical approach

    Science.gov (United States)

    Sadhukhan, B.; Nayak, A.; Mookerjee, A.

    2017-07-01

    In this communication we present together four distinct techniques for the study of electronic structure of solids: the tight-binding linear muffin-tin orbitals, the real space and augmented space recursions and the modified exchange-correlation. Using this we investigate the effect of random vacancies on the electronic properties of the carbon hexagonal allotrope, graphene, and the non-hexagonal allotrope, planar T graphene. We have inserted random vacancies at different concentrations, to simulate disorder in pristine graphene and planar T graphene sheets. The resulting disorder, both on-site (diagonal disorder) as well as in the hopping integrals (off-diagonal disorder), introduces sharp peaks in the vicinity of the Dirac point built up from localized states for both hexagonal and non-hexagonal structures. These peaks become resonances with increasing vacancy concentration. We find that in presence of vacancies, graphene-like linear dispersion appears in planar T graphene and the cross points form a loop in the first Brillouin zone similar to buckled T graphene that originates from π and π * bands without regular hexagonal symmetry. We also calculate the single-particle relaxation time, τ (ěc {q}) of ěc {q} labeled quantum electronic states which originates from scattering due to presence of vacancies, causing quantum level broadening.

  2. Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, J.A.; Benicewicz, B.C. [Department of Chemistry and Biochemistry and USC Nanocenter, University of South Carolina, 631 Sumter St., Columbia, SC 29208 (United States)

    2011-04-15

    A series of polybenzimidazoles (PBIs) incorporating main chain sulphonic acid groups were synthesised as random copolymers with p-PBI in varying ratios using polyphosphoric acid (PPA) as both the polymerisation solvent and polycondensation reagent. The PPA process was used to produce high molecular weight phosphoric acid (PA) doped PBI gel membranes in a one-step procedure. These membranes exhibit excellent mechanical properties (0.528-2.51 MPa tensile stress and 130-300% tensile strain) even at high acid doping levels [20-40 mol PA/PRU (polymer repeat unit)] and high conductivities (0.148-0.291 S cm{sup -1}) at elevated temperatures (>100 C) with no external humidification, depending on copolymer composition. Fuel cell testing was conducted with hydrogen fuel and air or oxygen oxidants for all membrane compositions at temperatures greater than 100 C without external feed gas humidification. Initial studies showed a maximum fuel performance of 0.675 V for the 25 mol% s-PBI/75 mol% p-PBI random copolymer at 180 C and 0.2 A cm{sup -2} with hydrogen and air, and 0.747 V for the same copolymer at 180 C and 0.2 A cm{sup -2} with hydrogen and oxygen. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. First-principles study of structural and electronic properties of different phases of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, H. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of)]. E-mail: harabi@birjand.ac.ir; Pourghazi, A. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of); Ahmadian, F. [Faculty of Science, Department of Physics, University of Birjand, Birjand (Iran, Islamic Republic of); Nourbakhsh, Z. [Faculty of Science, Department of Physics, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2006-03-01

    We present a theoretical investigation of structural and electronic properties of the four known structural phases of GaAs (zinc-blende, sc16, cinnabar and Cmcm). We used the full potential linearized augmented plane wave method, within local density approximation, and also within generalized gradient approximation for the exchange correlation potential. The lattice constants, bulk modulus and its pressure derivative are calculated for each of the four phases. The data obtained for the transition pressures between different phases are presented. Band structures and densities of states of the four phases are also given. The results are compared with previous calculations and with experimental results.

  4. First-Principles Investigations of the Phase Transition and Optical Properties of Solid Oxygen

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Hui; DUAN De-Fang; WANG Lian-Cheng; ZHU Chun-Ye; CUI Tian

    2010-01-01

    @@ Using density-functional-theory calculations,a monoclinic metallic post-ζ phase(space group C2/c)is predicted at 215 GPa.The calculated phonon dispersion curves suggest that this structure is stable at least up to 310 GPa.Oxygen rema/ns a molecular crystal and there is no dissociation in the related pressure range.Moreover,it is found that the phase transition from ζ to post-ζ phase is attributed to phonon softening.The significant change in the optical properties can be used to identify the phase transition.

  5. Hydrogenation properties of KSi and NaSi Zintl phases.

    Science.gov (United States)

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  6. Effect of random phase mask on input plane in photorefractive authentic memory with two-wave encryption method

    Science.gov (United States)

    Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi

    2004-06-01

    We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.

  7. A New Method to Improve the Electrical Properties of KNN-based Ceramics: Tailoring Phase Fraction

    KAUST Repository

    Lv, Xiang

    2017-08-18

    Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.

  8. Phase dependent structural and electronic properties of lanthanum orthophosphate (LaPO4)

    Science.gov (United States)

    Neupane, M. R.; Garrett, G. A.; Rudin, S.; Andzelm, J. W.

    2016-05-01

    We study the phase-dependent structural and electronic properties of bulk LaPO4, using density functional theory (DFT). The applicability of conventional semi-local and hybrid functionals in predicting structural and electronic properties of monoclinic and hexagonal LaPO4 is evaluated by comparing results to available experimental data. The monoclinic LaPO4 was found to be more stable than the hexagonal phase in ambient conditions with a small energy difference, suggesting a possibility of a phase transition. Both the phases in the bulk form are found to be diamagnetic with indirect energy gaps. These results are consistent with available experimental results. In the monoclinic phase, the hybrid functionals predict indirect band gap at about 8 eV. Furthermore, the calculated indirect-direct transition energy offset (ΔE) in the hexagonal phase was three times lower than the monoclinic phase. Our calculations based on hybrid functionals also reveal that the states near the conduction band edge in the hexagonal LaPO4 are strongly hybridized between La and PO4 states. By analyzing the band dispersion around the band edges, we show that the hexagonal phase has lighter electron effective mass, as compared to the monoclinic phase. With a larger energy gap, smaller ΔE, and smaller electron effective mass, the hexagonal LaPO4 might be a promising candidate material as an n-type transparent oxide.

  9. Pressure-induced phase transition and structural properties of CrO2

    Science.gov (United States)

    Wu, H. Y.; Chen, Y. H.; Deng, C. R.; Su, X. F.

    2012-08-01

    The structural properties and pressure-induced phase transitions of CrO2 have been investigated using the pseudopotential plane-wave method based on the density functional theory (DFT). The rutile-type (P42/mnm), CaCl2-type (Pnnm), pyrite-type (Pā3), and CaF2-type (Fm-3m) phases of CrO2 have been considered. The structural properties such as lattice parameters, bulk moduli and its pressure derivative are consistent with the available experimental data. The second-order phase-transition pressure of CrO2 from the rutile phase to CaCl2 phase is 10.9 GPa, which is in good agreement with the experimental result. The sequence of these phases is rutile-type → CaCl2-type → pyrite-type → CaF2-type with the phase-transition pressures 10.9, 23.9, and 144.5 GPa, respectively. The equation of state of different phases has also been presented. It is more difficult to compress with the increase of pressure for different phases of CrO2.

  10. Phase Behavior of the Ternary Solution Involving Rodlike and Random Coil Polymers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present paper covers the phase behavior of poly(p-benzamide)(PBA)/Nylon 6/H2SO4 and poly(p-phenylene terephthalamide) (PPTA)/Nylon 6/H2SO4 systems. The transition temperatures detected by the Depolarized Light Intensity measurements were used to construct the phase diagram in which the influence of temperature was shown. The enhanced depolarized light intensity observed in the ternary system suggests that the coil polymer chains may tend to be extended and contribute to the overall anisotropy of the liquid crystal phase.

  11. Properties of hadronic matter near the phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Noronha-Hostler, Jacquelyn

    2010-12-08

    According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states

  12. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.

    1991-01-01

    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and triple...

  13. Alpha-helix <-> random coil phase transition: analysis of ab initio theory predictions

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we present results of calculations obtained with the use of the theoretical method described in our preceding paper [Eur. Phys. J. D, DOI 10.1140/epjd/e2007-00328-9] and perform detail analysis of -helix random coil transition in alanine polypeptides of different length. We...

  14. Vernakalant hydrochloride for rapid conversion of atrial fibrillation - A phase 3, randomized, placebo-controlled trial

    DEFF Research Database (Denmark)

    Roy, D.; Pratt, C.M.; Torp-Pedersen, C.;

    2008-01-01

    Background - The present study assessed the efficacy and safety of vernakalant hydrochloride ( RSD1235), a novel compound, for the conversion of atrial fibrillation ( AF). Methods and Results - Patients were randomized in a 2: 1 ratio to receive vernakalant or placebo and were stratified by AF du...

  15. Phase Transition and Thermodynamic Properties of Magnesium Fluoride by First Principles

    Science.gov (United States)

    Zhang, Tian; Cheng, Yan; Lv, Zhen-Long; Ji, Guang-Fu; Gong, Min

    2014-12-01

    The structural stabilities, phase transitions and thermodynamic properties of MgF2 under high pressure and temperature are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the local density approximation. The calculated lattice parameters of MgF2 in all four phases under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical results. Our results demonstrate that MgF2 undergoes a series of structural phase transitions from rutile (P42/mnm)→CaCl2-type (Pnnm)→modified fluorite (Pa-3)→cotunnite (Pnam) under high pressure and the obtained transition pressures are in fairly good agreement with the experimental results. The temperature-dependent volume and thermodynamic properties of MgF2 in the rutile phase at 0 GPa are presented and the thermodynamic properties of MgF2 in the rutile, CaCl2-type, modified fluorite and cotunnite phases at 300 K are also predicted using the quasi-harmonic approximation model (QHA) and the quasi-harmonic Debye model (QHD), respectively. Moreover, the partial density of states and the electronic density of the four phases under the phase transition are also investigated.

  16. The Structural and Physical Properties of the Vacancy Ordered LiBC Phases

    Science.gov (United States)

    Kalkan, Bora; Gungor, Ebru; Ozdas, Engin

    2007-03-01

    The prediction of superconductivity on the hole doped LixBC system [1] has triggered to particular interest on the synthesis of non-stoichiometric LiBC compounds. However, isolation of a non-stoichiometric phase of the LiBC have not been succeed as a single phase, yet. All of the experimental studies exhibited non-superconductivity in the disordered LixBC phases. Contrary to the disordered LixBC phases synthesized in the literature [2], non-stoichiometric Li vacancy ordered phases were obtained in this work. Additionally, the structural analysis with Rietveld refinement in a series of samples identified the stages of the intercalation of Li between the BC layers. The effect of stoichiometry on the physical properties of ordered LixBC phase was investigated at low temperatures. [1] Rosner H.et al., PRL 88, 12, 2002. [2] Fogg A.M.et al.JACS,128, 10043, 2006.

  17. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Shalev Eliezer

    2010-11-01

    Full Text Available Abstract Background A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Methods Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1, oxytocin (group 2 or both (group 3. A group of women who progressed spontaneously without intervention composed the control group (group 4. The primary outcome was the duration of time from initiation of augmentation until delivery. Results A total of 213 women were consented and randomized to group 1 (70 women, group 2 (72 women and group 3 (71 women. Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08 and 180 minutes compared to group 2 and 4 (p = 0.001. Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03, group 2 (p = 0.001 and group 4 (p = 0.001. Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Conclusion Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  18. Dynamic Monte Carlo simulation on behavior of phase transition of a random magnetic system in finite observation time

    Energy Technology Data Exchange (ETDEWEB)

    Kitazaki, Tamotsu; Kato, Tomohiko, E-mail: katou@fit.ac.jp

    2014-03-15

    Random magnets generally exhibit gradual phase transitions more or less. The origin of the phenomena has been controversial for a long time: intrinsic phenomena of disordered magnets or non-equilibrium effect due to finite observation time. We now support the latter, but there have not been clear evidences experimentally and theoretically. We show that the behavior of phase transition of a simple random magnetic system differs in the observation time by using a dynamic Monte Carlo simulation. The target of the simulation is experiments of the line width of NMR spin-echo spectra, a type of the order parameter, on Mn{sub x}Cd{sub 1−x} (HCOO){sub 2}·2(NH{sub 2})2CO. The calculated results indicate that, as the averaging time becomes shorter, the phase transition becomes more gradual. This tendency is most pronounced around the percolation concentration. The calculated results coincide well with the characteristic features of the experimental results. This coincidence supports that the smearing behavior of the order parameter is a non-equilibrium effect, though Ising model employed in the simulation is different with Heisenberg system of the target substance.

  19. Phase Structure of the Random-Plaquette Z_2 Gauge Model: Accuracy Threshold for a Toric Quantum Memory

    CERN Document Server

    Ohno, T; Ichinose, I; Matsui, T; Ohno, Takuya; Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo

    2004-01-01

    We study the phase structure of the random-plaquette Z_2 lattice gauge model in three dimensions. In this model, the "gauge coupling" for each plaquette is a quenched random variable that takes the value \\beta with the probability 1-p and -\\beta with the probability p. This model is relevant for the recently proposed quantum memory of toric code. The parameter p is the concentration of the plaquettes with "wrong-sign" couplings -\\beta, and interpreted as the error probability per qubit in quantum code. In the gauge system with p=0, i.e., with the uniform gauge couplings \\beta, it is known that there exists a second-order phase transition at a certain critical "temperature", T(\\equiv \\beta^{-1}) = T_c =1.31, which separates an ordered(Higgs) phase at TT_c. As p increases, the critical temperature T_c(p) decreases. In the p-T plane, the curve T_c(p) intersects with the Nishimori line T_{N}(p) at the certain point (p_c, T_{N}(p_c)). The value p_c is just the accuracy threshold for a fault-tolerant quantum memory...

  20. Damage detection using transient trajectories in phase-space with extended random decrement technique under non-stationary excitations

    Science.gov (United States)

    Liu, Gang; Mao, Zhu; Todd, Michael

    2016-11-01

    This paper proposes a damage detection method based on the geometrical variation of transient trajectories in phase-space, and the proposed methodology is compatible with non-stationary excitations (e.g., earthquake-induced ground motion). The work presented assumes zero-mean non-stationary excitation, and extends the random decrement technique to convert non-stationary response signals of the structure into free-vibration data. Transient trajectories of the structure are reconstructed via the embedding theorem from the converted free-vibration data, and trajectories are mapped successively into phase-space to enhance statistical analysis. Based upon the characterized system dynamics in terms of phase-space, the time prediction error is adopted as the damage index. To identify the presence and severity of damage in a statistically rigorous way, receiver operating characteristic curves and the Bhattacharyya distance are employed. The results from both numerical simulations and experiments validate the proposed framework, when the test structures are subject to non-stationary excitations. The extension achieved in this paper enables the phase-space damage detection approach to be compatible with non-stationary scenarios, such as traffic, wind, and earthquake loadings. Moreover, the results indicate that this phase-state-based method is able to identify damage-induced nonlinearity in response, which is an intrinsic characteristic associated with most structural damage types.

  1. Double-image encryption without information disclosure using phase-truncation Fourier transforms and a random amplitude mask.

    Science.gov (United States)

    Wang, Xiaogang; Zhao, Daomu; Chen, Yixiang

    2014-08-10

    We present a study about information disclosure in phase-truncation-based cryptosystems. The main information of the original image to be encoded can be obtained by using a decryption key in the worst case. The problem cannot be thoroughly solved by imaginary part truncating, keeping the encryption keys as private keys, or applying different phase keys for different plaintexts during each encryption process as well as the phase modulation in the frequency domain. In order to eliminate the risk of unintended information disclosure, we further propose a nonlinear spatial and spectral encoding technique using a random amplitude mask (RAM). The encryption process involving two security layers can be fully controlled by a RAM. The spatial encoding of the plaintext images and the simultaneous encryption of the plaintext images and the encryption key greatly enhance the security of system, avoiding several attacks that have cracked the phase-truncation-based cryptosystems. Besides, the hybrid encryption system retains the advantage of a trap door one-way function of phase truncation. Numerical results have demonstrated the feasibility and effectiveness of the proposed encryption algorithm.

  2. Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with {1 ≤ q ≤ 4}

    Science.gov (United States)

    Duminil-Copin, Hugo; Sidoravicius, Vladas; Tassion, Vincent

    2017-01-01

    This article studies the planar Potts model and its random-cluster representation. We show that the phase transition of the nearest-neighbor ferromagnetic q-state Potts model on Z^2 is continuous for {q in {2,3,4}}, in the sense that there exists a unique Gibbs state, or equivalently that there is no ordering for the critical Gibbs states with monochromatic boundary conditions. The proof uses the random-cluster model with cluster-weight {q ≥ 1} (note that q is not necessarily an integer) and is based on two ingredients: The fact that the two-point function for the free state decays sub-exponentially fast for cluster-weights {1≤ q≤ 4}, which is derived studying parafermionic observables on a discrete Riemann surface.

  3. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  4. The 'emergent scaling' phenomenon and the dielectric properties of random resistor-capacitor networks

    Energy Technology Data Exchange (ETDEWEB)

    Bouamrane, R [LEPM, Departement de Physique, USTO-MB, BP 1505 El M' Naouer, Oran 31000 (Algeria); Almond, D P [Department of Engineering and Applied Science, University of Bath, Bath BA2 7AY (United Kingdom)

    2003-06-25

    An efficient algorithm, based on the Frank-Lobb reduction scheme, for calculating the equivalent dielectric properties of very large random resistor-capacitor (R-C) networks has been developed. It has been used to investigate the network size and composition dependence of dielectric properties and their statistical variability. The dielectric properties of 256 samples of random networks containing: 512, 2048, 8192 and 32 768 components distributed randomly in the ratios 60% R-40% C, 50% R-50% C and 40% R-60% C have been computed. It has been found that these properties exhibit the anomalous power law dependences on frequency known as the 'universal dielectric response' (UDR). Attention is drawn to the contrast between frequency ranges across which percolation determines dielectric response, where considerable variability is found amongst the samples, and those across which power laws define response where very little variability is found between samples. It is concluded that the power law UDRs are emergent properties of large random R-C networks.

  5. Phase transition and thermodynamic properties of BiFeO3 from first-principles calculations

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Huang Duo-Hui; Cao Qi-Long; Wang Fan-Hou

    2013-01-01

    The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grüineisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.

  6. Processing And Properties Of MAX Phases – Based Materials Using SHS Technique

    Directory of Open Access Journals (Sweden)

    Chlubny L.

    2015-06-01

    Full Text Available Authors present results of works on the interesting new group of advanced ceramics called MAX phases – Ti-based ternary carbides and nitrides. They have an original layered structure involved highly anisotropic properties laying between ceramics and metals, with high elastic modulus, low hardness, very high fracture toughness and high electrical and heat conductivity. Using Self-Propagating High-Temperature Synthesis (SHS in the combustion regime it is possible to prepare MAX phases-rich powders that can be used as the precursors for preparation of dense MAX polycrystals by presureless sintering or hot-pressing. Different novel Ti-based phases with layered structures, namely: Ti3AlC2 and Ti2AlC have been synthesized in a combustion regime. The possibility of controlling of combustion phenomena for obtaining near single-phase products is discussed in details as well as some of properties of the materials tested as structure and functional ceramics.

  7. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation

    Science.gov (United States)

    Chen, L.; Fan, J. L.; Gong, H. R.

    2017-03-01

    Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.

  8. A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer.

    Science.gov (United States)

    Nanda, Rita; Stringer-Reasor, Erica M; Saha, Poornima; Kocherginsky, Masha; Gibson, Jean; Libao, Bernadette; Hoffman, Philip C; Obeid, Elias; Merkel, Douglas E; Khramtsova, Galina; Skor, Maxwell; Krausz, Thomas; Cohen, Ronald N; Ratain, Mark J; Fleming, Gini F; Conzen, Suzanne D

    2016-01-01

    Glucocorticoid receptor (GR) overexpression is associated with poor prognosis ER-negative breast cancer. GR antagonism with mifepristone increases chemotherapy-induced breast cancer cell death, therefore we conducted a phase I clinical trial of mifepristone and nab-paclitaxel in advanced breast cancer. A novel randomized phase I design was used to assess the effect of mifepristone on nab-paclitaxel pharmacokinetics and toxicity. Patients were randomized to placebo or mifepristone for the first cycle; mifepristone was given to all for subsequent cycles. Nine patients were enrolled. All were found to have a twofold or greater increase in serum cortisol after mifepristone administration, reflecting effective GR inhibition. Neutropenia occurred at both nab-paclitaxel dose levels studied (100 and 80 mg/m(2)), and was easily managed with dose reduction and/or growth factor administration. Pharmacokinetic data suggest an interaction between nab-paclitaxel and mifepristone in some patients. Two patients had complete responses (CR), three partial responses (PR), one stable disease (SD), and three progressive disease (PD). Immunohistochemical staining for GR found six of nine tumors were GR-positive. All six GR-positive tumors were triple-negative at the time of recurrence. Of these six patients, two had CRs, two PRs, one SD, and one PD. GR appears to be a promising target in TNBC, and GR inhibition plus chemotherapy produces manageable toxicity. While neutropenia was observed in some, a nab-paclitaxel dose of 100 mg/m(2) plus mifepristone 300 mg was found to be tolerable, and a randomized phase II trial of nab-paclitaxel with/without mifepristone is planned in GR-positive advanced TNBC.

  9. Phase Diagram, Correlation Gap, and Critical Properties of the Coulomb Glass

    Science.gov (United States)

    Goethe, Martin; Palassini, Matteo

    2009-07-01

    We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T=0. A charge-ordered phase exists at low disorder. The transition to this phase is consistent with the random field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-particle density of states near the Coulomb gap satisfies the scaling relation g(γ,T)=Tδf(|γ|/T) with δ=2.01±0.05 in agreement with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective exponent occurs due to the proximity of the charge-ordered phase.

  10. Influence of Nambu-Goldstone mode on energy-weighted sum of excitation strengths in random-phase approximation

    CERN Document Server

    Nakada, H

    2016-01-01

    Influence of the Nambu-Goldstone (NG) mode on the energy-weighted sum (EWS) of the excitation strengths is analyzed, within the random-phase approximation (RPA). When a certain symmetry is broken at the mean-field level, a NG mode emerges in the RPA, which can be represented by canonical variables forming a two-dimensional Jordan block. A general formula is derived which separates out the NG-mode contribution to the EWS, via the projection on the subspace directed by the NG mode. As examples, the formula is applied to the $E1$ excitation and the rotational excitations in nuclei.

  11. Role of vertex corrections in the matrix formulation of the random phase approximation for the multiorbital Hubbard model

    Science.gov (United States)

    Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.; Maier, Thomas A.; Valentí, Roser; Scalapino, Douglas J.

    2016-12-01

    In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Here we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.

  12. Research on the methods of optical image hiding based on double random phase encoding and digital holography

    Science.gov (United States)

    Xu, Hongsheng; Sang, Nong

    2011-12-01

    Optical information hiding system has many features such as high processing speed, high parallel, high encryption dimension and high speed of optical transformation and related operations, more advantages than digital method in some way. But it has not adequate security, and enough combination with techniques of digital image processing. So on basis of analyzing existing image hiding and analyzing techniques, we give out the idea. We should adopt idea of virtual optics on the way of all-digital simulation to do research of optical image hiding and analyzing methods based on optical image processing technique especially technique of double random phase encoding and digital holography.

  13. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial

    OpenAIRE

    Helmy, Adel; Guilfoyle, Mathew R.; Carpenter, Keri LH; Pickard, John D.; Menon, David K.; Hutchinson, Peter J.

    2014-01-01

    Traumatic brain injury (TBI) is the commonest cause of death and disability in those aged under 40 years. Interleukin-1 receptor antagonist (IL1ra) is an endogenous competitive antagonist at the interleukin-1 type-1 receptor (IL-1R). Antagonism at the IL-1R confers neuroprotection in several rodent models of neuronal injury (i.e., trauma, stroke and excitotoxicity). We describe a single center, phase II, open label, randomized-control study of recombinant human IL1ra (rhIL1ra, anakinra) in se...

  14. The synthesis and properties of the phases obtained by solid-solid reactions

    Directory of Open Access Journals (Sweden)

    Blonska-Tabero A.

    2008-01-01

    Full Text Available The presented work encompasses the subject of the studies and the results obtained over the last years by the research workers of the Department of Inorganic Chemistry. They include mainly the studies on the reactivity of metal oxides, searching for new phases in binary and ternary systems of metal oxides as well as describing phase relations establishing in such systems. They also encompass works on the extensive characteristics of physico-chemical properties of the newly obtained compounds.

  15. Frequency dependence of CA3 spike phase response arising from h-current properties

    Directory of Open Access Journals (Sweden)

    Melodie eBorel

    2013-12-01

    Full Text Available The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarisation-activated mixed cation current (Ih, which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their intrinsic membrane properties. We found that both CA3 and CA1 pyramidal neurons show a voltage sag in response to negative current steps but that this voltage sag is significantly smaller in CA3 cells. Moreover, CA3 pyramidal neurons have less prominent resonance properties compared to CA1 pyramidal neurons. This is consistent with differential expression of Ih by the two cell types. Despite their distinct intrinsic membrane properties, both CA3 and CA1 pyramidal neurons displayed bidirectional spike phase control by excitatory conductance inputs during theta oscillations. In particular, excitatory inputs delivered at the descending phase of a dynamic clamp-induced membrane potential oscillation delayed the subsequent spike by nearly 50 mrad. The effect was shown to be mediated by Ih and was counteracted by increasing inhibitory conductance driving the membrane potential oscillation. Using our experimental data to feed a computational model, we showed that differences in Ih between CA3 and CA1 pyramidal neurons could predict frequency-dependent differences in phase response properties between these cell types. We confirmed experimentally such frequency-dependent spike phase control in CA3 neurons. Therefore, a decrease in theta frequency, which is observed in intact animals during novelty, might switch the CA3 spike phase response from unidirectional to bidirectional and thereby promote encoding of the new context.

  16. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions

    Science.gov (United States)

    Parrondo, Juan M. R.

    2001-09-01

    The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic Maxwell demon from an Ising model, demonstrating that a demon can operate with information about the macrostate of the system. We finally discuss some aspects of the definition of entropy and how thermodynamics should be modified to account for the variations of entropy in second-order phase transitions.

  17. (Nano-)mechanical properties of intermetallic phases in the Fe-Mo system at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeders, Sebastian; Korte-Kerzel, Sandra [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University (Germany)

    2015-07-01

    Topologically close packed (TCP) intermetallic phases which precipitate in nickel-base superalloys are suspected to cause a deterioration of the mechanical properties of the γ - γ* matrix. Although the existing intermetallics, namely Laves-, R-, sigma- and mue-phases are well understood in terms of their structure, their mechanical properties have still not been investigated in detail due to their size and pronounced brittleness. In order to investigate the plastic deformation behavior of these phases, but exclude the effect of complex phase composition in the first instance, the Fe-Mo system was chosen as a model system, where all phases are available as binary alloys. Using nanomechanical testing methods like nanoindentation and micropillar-compression, the experimental challenges of high brittleness and anisotropy encountered in conventional testing can be disregarded and plastic deformation can be achieved due to the confining pressure in nanoindentation and the reduction in specimen size in microcompression. This work aims to examine the mechanical properties such as elastic modulus, yield and flow stress of intermetallic Fe-Mo phases over a range of temperatures. To this end, tests were performed in vacuum. Based on this type of study it is envisaged to form a better understanding of the way hard TCP precipitates influence the performance of superalloys.

  18. Stationary point analysis of the one-dimensional lattice Landau gauge fixing functional, aka random phase XY Hamiltonian

    Science.gov (United States)

    Mehta, Dhagash; Kastner, Michael

    2011-06-01

    We study the stationary points of what is known as the lattice Landau gauge fixing functional in one-dimensional compact U(1) lattice gauge theory, or as the Hamiltonian of the one-dimensional random phase XY model in statistical physics. An analytic solution of all stationary points is derived for lattices with an odd number of lattice sites and periodic boundary conditions. In the context of lattice gauge theory, these stationary points and their indices are used to compute the gauge fixing partition function, making reference in particular to the Neuberger problem. Interpreted as stationary points of the one-dimensional XY Hamiltonian, the solutions and their Hessian determinants allow us to evaluate a criterion which makes predictions on the existence of phase transitions and the corresponding critical energies in the thermodynamic limit.

  19. Fragmentation properties of two-dimensional Proximity Graphs considering random failures and targeted attacks

    CERN Document Server

    Norrenbrock, Christoph; Hartmann, Alexander K

    2015-01-01

    The pivotal quality of proximity graphs is connectivity, i.e. all nodes in the graph are connected to one another either directly or via intermediate nodes. These types of graphs are robust, i.e., they are able to function well even if they are subject to limited removal of elementary building blocks, as it may occur for random failures or targeted attacks. Here, we study how the structure of these graphs is affected when nodes get removed successively until an extensive fraction is removed such that the graphs fragment. We study different types of proximity graphs for various node removal strategies. We use different types of observables to monitor the fragmentation process, simple ones like number and sizes of connected components, and more complex ones like the hop diameter and the backup capacity, which is needed to make a network N-1 resilient. The actual fragmentation turns out to be described by a second order phase transition. Using finite-size scaling analyses we numerically assess the threshold frac...

  20. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    OpenAIRE

    Shi, Jianwei; Xiaoxu TENG; Wang, Linling; Long, Rong

    2015-01-01

    Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA) as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes...

  1. Property Phase Diagrams” for Compound Semiconductors through Data Mining

    OpenAIRE

    2013-01-01

    This paper highlights the capability of materials informatics to recreate “property phase diagrams” from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaxIn1−xAsySb1−...

  2. Nanoscale ab-initio calculations of optical and electronic properties of LaCrO{sub 3} in cubic and rhombohedral phases

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, N. [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of); Hosseini, S.M., E-mail: sma_hosseini@yahoo.co [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of); Kompany, A. [Department of Physics (Materials and Electroceramics Laboratory), Ferdowsi University of Mashhad (Iran, Islamic Republic of)

    2009-11-15

    We report nanoscale ab-initio calculations of the linear optical and electronic properties of LaCrO{sub 3} in nonmagnetic cubic and rhombohedral phases using the full potential linear augmented plane wave (FP-LAPW) method. In this work the generalized gradient approximation is used for exchange-correlation potential. The dielectric tensor is derived within random-phase approximation. We present results for the band structure, density of states, imaginary and real parts of dielectric tensor, electron energy loss spectroscopy, sum rules, reflectivity, refractive index and extinction coefficient. The regions of transparent, absorption and reflection are discussed. We are not aware of any published experimental or theoretical data for these phases, so our calculations can be used to cover this lack of data for these phases.

  3. Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation

    Science.gov (United States)

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.

    2004-08-01

    We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.

  4. The light filtering and guiding properties of high finesse phase resonant compound gratings.

    Science.gov (United States)

    Bendoym, Igor; Golovin, Andrii B; Crouse, David T

    2012-09-24

    Phase resonances in compound gratings are studied in the frequency and time domains, with the gratings having two dissimilar grooves within the unit cell that each support waveguide cavity modes that couple. Described in this work are the dependence of the phase resonances' Q on the degree of difference between the grooves in the unit cell, their optical properties, a closed-form expression describing their dispersion, their excitation, and the extraction of energy from the phase resonances into free space and into a waveguide. Application to optical filters and corrugated surface antennas are discussed.

  5. Final report: Properties of mixtures near a phase transition. February 1, 1992 - January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    H.J.M. Hanley; D.G. Friend

    1999-11-01

    This project emphasized the study of systems near phase transitions, and included scattering experiments, computer simulation, and theory of phase transitions. The scattering involved the use of neutrons as well as optical techniques, involved both equilibrium and sheared samples, and included conventional fluids as well as gels, micelles, colloids, and dispersions. Computer simulations and theoretical studies were completed to complement and interpret the microscopic information learned from scattering, and many successes were achieved in furthering our understanding of complex mixtures near the critical locus. The research has led to a number of technical publications and a refinement of our knowledge of phase transition phenomena which has led to improvements in available property databases.

  6. Extracting optical scattering properties on the basis of phase contrast images for diagnosing stomach cancer

    Science.gov (United States)

    Li, Zhifang; Li, Hui; Zhang, Hui; Lin, Xiaona; Chen, Wei R.

    2013-04-01

    We combine morphological granulometry with Mie theory in order to analyze phase contrast images of biomedical tissue for cancer diagnosis. This method correlates microscopic phase distributions of the tissue image and macroscopic optical scattering properties of the tissue. Our results show that the particle size density distribution can be used to quantitatively identify morphological changes of cancerous stomach tissues. Our method can distinguish normal tissue from cancerous tissues, using the significant differences in scattering coefficient, reduced scattering coefficient and phase function. Therefore, this method can provide not only quantitative information for the diagnosis of cancer, but also accurate optical scattering parameters for photothermal therapy for cancer.

  7. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size.

    Science.gov (United States)

    Gaikwad, Shashank G; Pandit, Aniruddha B

    2008-04-01

    Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.

  8. Density functional theory study of mixed-phase TiO₂: heterostructures and electronic properties.

    Science.gov (United States)

    Li, Wei-Kun; Hu, Peijun; Lu, Guanzhong; Gong, Xue-Qing

    2014-04-01

    In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO₂ composites built by joining two single-phase TiO₂ slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO₂ slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO₂ slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.

  9. Alpha-helix <-> random coil phase transition: analysis of ab initio theory predictions

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2008-01-01

    In the present paper we present results of calculations obtained with the use of the theoretical method described in our preceding paper [Eur. Phys. J. D, DOI 10.1140/epjd/e2007-00328-9] and perform detail analysis of -helix random coil transition in alanine polypeptides of different length. We...... have obtained same thermodynamical characteristics from the use of molecular dynamics simulations and compared them with the results of the new statistical mechanics approach. The comparison proves the validity of the statistical mechanic approach and establishes its accuracy....

  10. Thermodynamics of Phase Transitions and Bipolar Filamentary Switching in Resistive Random-Access Memory

    Science.gov (United States)

    Karpov, V. G.; Niraula, D.; Karpov, I. V.; Kotlyar, R.

    2017-08-01

    We present a phenomenological theory of bipolar filamentary resistive random-access memory describing the commonly observed features of their current-voltage characteristics. Our approach follows the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold switches and largely independent of their microscopic details. It explains, without adjustable parameters, such features as the domains of filament formation and switching, voltage-independent current in set and current-independent voltage in reset regimes, the relation between the set and reset voltages, filament resistance independent of its length, etc. Furthermore, it expresses the observed features through the material and circuitry parameters, thus paving the way to device improvements.

  11. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases

    Science.gov (United States)

    Monthus, Cécile

    2017-07-01

    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  12. Infinite randomness fixed point of the superconductor-metal quantum phase transition.

    Science.gov (United States)

    Del Maestro, Adrian; Rosenow, Bernd; Müller, Markus; Sachdev, Subir

    2008-07-18

    We examine the influence of quenched disorder on the superconductor-metal transition, as described by a theory of overdamped Cooper pairs which repel each other. The self-consistent pairing eigenmodes of a quasi-one-dimensional wire are determined numerically. Our results support the recent proposal by Hoyos et al. [Phys. Rev. Lett. 99, 230601 (2007)10.1103/PhysRevLett.99.230601] that the transition is characterized by the same strong-disorder fixed point describing the onset of ferromagnetism in the random quantum Ising chain in a transverse field.

  13. Preparation and photoelectric property of TiO{sub 2} nanoparticles with controllable phase junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongmei [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000, Tibet (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-National Institute for Materials Science (TU-NIMS) Joint Research Center, Tianjin University, Tianjin 300072 (China)

    2014-12-01

    Graphical abstract: - Highlights: • A series of bicrystalline TiO{sub 2} nanoparticles with different ratio of controllable phase junctions between anatase and rutile were synthesized successfully using ionic liquid-assisted method by hydrolysis of TiCl{sub 4}. • The spatial separation capacity of photogenerated charge carriers and photocatalytic activities of the samples with different ratio of controllable phase junctions were evaluated systemically. • The best photocatalytic activity for MO degradation can reach above 99% at the sample with 27.4% rutile which also has the best photoelectric property compared with other samples. - Abstract: To explore the effect of phase composition on the photoelectric property of anatase–rutile mixed crystal nanoparticles, a series of TiO{sub 2} nanoparticles with phase junctions controlling were synthetized by hydrolysis of TiCl{sub 4} in hydrochloric acid, an ionic liquid-assisted method was used during this process. Crystalline size and the ratio of anatase to rutile of as-prepared samples were calculated by the XRD. The surface area was measured by nitrogen sorption measurements using the BET method. The micro-structure of phase junctions was characterized by TEM. Optical transmittance properties of TiO{sub 2} with controllable phase junctions were examined via ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). The particles were manufactured into films using the doctor-blade technique on FTO glasses. To test photocurrent density, and spatial separation capacity of electron–holes pairs, photo-electro method was employed. The photocatalytic activities of the resulting samples were examined in the degradation of methyl orange (MO) under artificial solar light irradiation. Mechanisms of separation and transfer of photogenerated charge and the effect of phase composition on photoelectric property of anatase–rutile nanoparticles were discussed.

  14. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education

    2016-11-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.

  15. A Phase IIIb, randomized, double-blind, placebo-controlled, multicenter study evaluating the safety and efficacy of dexmedetomidine for sedation during awake fiberoptic intubation.

    Science.gov (United States)

    Bergese, Sergio D; Candiotti, Keith A; Bokesch, Paula M; Zura, Andrew; Wisemandle, Wayne; Bekker, Alex Y

    2010-01-01

    GABA-mediated sedatives have respiratory depressant properties that may be detrimental in patients with difficult airways. In this randomized, double-blind, multicenter, Phase IIIb Food and Drug Administration study, safety and efficacy of dexmedetomidine compared with placebo were evaluated as the primary sedative for awake fiberoptic intubation (AFOI). Patients were randomized to receive dexmedetomidine or saline. Patients were sedated with dexmedetomidine or rescue midazolam to achieve targeted sedation (Ramsay Sedation Scale ≥ 2) before topicalization and throughout AFOI. Primary efficacy endpoint was percentage of patients requiring rescue midazolam; secondary efficacy endpoints were total dose of rescue midazolam, percentage requiring additional rescue nonmidazolam medications, anesthesiologist's assessment of ease of subject care, and patient recall and satisfaction 24 hours postoperatively. Less rescue midazolam was required to maintain Ramsay Sedation Scale ≥2 (47.3% vs. 86.0%, P sedated with midazolam. Patients and anesthesiologists showed favorable satisfaction responses in both groups. Adverse events and patient recall were similar in both groups. Dexmedetomidine is effective as the primary sedative in patients undergoing AFOI. Some patients may require small supplemental doses of midazolam, in addition to dexmedetomidine, to achieve sufficient sedation for AFOI. Dexmedetomidine provides another AFOI option for sedation of patients with difficult airways.

  16. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    Science.gov (United States)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  17. Are the Variability Properties of the Kepler AGN Light Curves Consistent with a Damped Random Walk?

    CERN Document Server

    Kasliwal, Vishal P; Richards, Gordon T

    2015-01-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the \\textit{damped random walk} (DRW) model. Our sample consists of 20 multi-quarter \\textit{Kepler} AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. \\textit{Kepler} observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid ($11.6-28.6$ min) and highly uniform rest-frame sampling combined with a photometric precision of $1$ part in $10^{5}$ over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into 5 broad categories. We measure the first order structure function of these light curves and model the observed light curve with a general broken power-law PSD characterized by a short-timescale power-law index $\\gamma$ and turnover timescale $\\tau$. We find that less than half the objects are consistent with a DRW and ...

  18. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.

    Science.gov (United States)

    Adão; Saramago; Fernandes

    1999-09-01

    The surface free energy per unit area of a solid, gamma(S), is a fundamental property of materials and determines their surface and interfacial behavior in processes like wetting and adhesion. In this study the gamma(S) of a series of styrene-acrylonitrile random copolymers is evaluated. Three different approaches are used to determine the components in which the surface free energy can be decomposed. Using the geometric and the harmonic mean approach, the dispersive, gamma(d), and polar, gamma(p), components of the solid surface free energy were determined and compared to the Lifshitz-van der Waals, gamma(LW), and acid-base, gamma(AB), components using the approach developed by C. J. van Oss et al. (1987, Adv. Colloid Interface Sci. 28, 35). The acid-base approach was also used to evaluate the work of adhesion of the test liquids: water, glycerol, and thiodiglycol. It was found that the contact angles of these liquids follow closely the predictions of Cassie equation. The evaluation of the surface free energy components on one hand and the relative magnitude of the work of adhesion components on the other hand, suggest that below 50% of acrylonitrile the polystyrene repeating units are preferentially at the surface. Above 50% of acrylonitrile the segregation of the low-energy homopolymer at the surface decreases. Copyright 1999 Academic Press.

  19. Embolization with larger-caliber coils can increase packing density: Evidence from the pilot phase of a randomized trial.

    Science.gov (United States)

    Cloutier, Francis; Khoury, Naim; Ghostine, Jimmy; Farzin, Behzad; Kotowski, Marc; Weill, Alain; Roy, Daniel; Raymond, Jean

    2017-02-01

    Background and purpose Endovascular coil embolization of cerebral aneurysms is associated with suboptimal angiographic results in up to 20-30% of patients. Coil packing density has been used as an index of the success of the initial procedure. The trial sought to study the effects of using 15-caliber coils, as compared with 10-caliber coils, on packing density. Methods Does Embolization with Larger coils lead to better Treatment of Aneurysms (DELTA) is an investigator-initiated multicenter prospective, randomized, controlled clinical trial. Patients are randomized 1:1 to embolization with either 10-caliber coils exclusively (control group) or the highest safely achievable proportion of 15-caliber coils and 10-caliber coils if necessary (intervention group) in 4-12-mm aneurysms. The endpoint of the pilot phase of the trial was the capacity to increase packing density of the initial procedure, calculated using a mathematical transformation of the dimensions entered into the case report forms. Secondary outcomes included the total number of coils used per aneurysm, total fluoroscopy time, initial angiographic outcomes and any adverse or undesirable event. Results Seventy patients were recruited between June 2014 and November 2015. Compared with 10-caliber coils, the 15-caliber coil group had a higher median packing density (44% vs 24%, p = 0.017). Results of other outcome measures were similar for the two groups. Conclusion Coiling of small and medium aneurysms randomized to 15-caliber coils achieved higher packing densities compared with coiling using 10-caliber coils.

  20. [Alemtuzumab for relapsing-remitting multiple sclerosis. Results of two randomized controlled phase III studies].

    Science.gov (United States)

    Klotz, L; Meuth, S G; Kieseier, B; Wiendl, H

    2013-08-01

    In November 2012 the results of 2 clinical phase III trials were published which addressed the effects of alemtuzumab in patients with relapsing-remitting multiple sclerosis (MS). In the CARE-MS-I study patients with early untreated MS (EDSS ≤ 3.0, disease duration alemtuzumab in patients with persisting disease activity under standard disease-modifying treatment (EDSS ≤ 5.0, disease duration alemtuzumab compared to interferon in terms of reduction of relapse rate as well as the number of new or enlarging T2 lesions and gadolinium-enhancing lesions. Moreover, the CARE-MS-II study showed a significant delay in disease progression by alemtuzumab. The portfolio and the frequency of relevant side effects, such as infusion-related reactions, development of secondary autoimmunity or infections were within the expected range. Taken together these studies confirm the high anti-inflammatory efficacy of alemtuzumab and hence provide the first evidence of superiority of a monotherapy in direct comparison to standard disease-modifying treatment in two phase III trials in relapsing-remitting MS. These data in the context of the mode of action of alemtuzumab provide evidence for the relevance of immune cells, especially T cells, in the pathophysiology of MS. Experience with long-term effects of alemtuzumab, e.g. from the phase II extension trial as well as the side effect profile argue in favor of a sustained reprogramming of the immune system as a consequence of immune cell depletion by alemtuzumab.