Phase microscopy of technical and biological samples through random phase modulation with a difuser
Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan
2010-01-01
A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...
Phase microscopy of technical and biological samples through random phase modulation with a difuser
Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan
2010-01-01
A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used...... in an iterative phase retrieval algorithm based on a wave-propagation equation. The technique offers a whole-field and high-resolution wavefront reconstruction of unstained microstructures. Phase maps of photoresist targets and human cheek cells are obtained to demonstrate the effectiveness of our method. (C......) 2010 Optical Society of America...
Enhanced wavefront reconstruction by random phase modulation with a phase diffuser
Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan
2011-01-01
propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...
Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation
2015-01-01
A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM) signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM), the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction wi...
Liao, Meihua; He, Wenqi; Lu, Dajiang; Wu, Jiachen; Peng, Xiang
2017-02-01
The traditional phase-shifting interferometry (PSI)-based cryptosystem is one of the most classical optical cryptosystems. It employs the Mach-Zahnder interferometer to record the intensity distributions to partly overcome the inconvenience while storing the complex-valued ciphertext in some other optical cryptosystems (e.g., double random phase encoding technique). However, it has been proven to be vulnerable to chosen-plaintext attack and known-plaintext attack. In this manuscript, we propose an alternative method to enhance the security strength of the traditional PSI-based cryptosystem. By substituting the fixed random phase mask (RPM) and the phase retarder in the reference arm with four independent and different RPMs (served as secret keys) in four exposures, we can correspondingly capture four intensity-only patterns (regarded as ciphertexts). Theoretical analysis, especially with respect to security characteristics, as well as the numerical simulations are presented to verify the feasibility and reliability of the proposed cryptosystem.
Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation
N. Tai
2015-12-01
Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.
Jin, Curtis; Michielssen, Eric; Rand, Stephen
2014-01-01
Recent theoretical and experimental advances have shed light on the existence of so-called `perfectly transmitting' wavefronts with transmission coefficients close to 1 in strongly backscattering random media. These perfectly transmitting eigen-wavefronts can be synthesized by spatial amplitude and phase modulation. Here, we consider the problem of transmission enhancement using phase-only modulated wavefronts. We develop physically realizable iterative and non-iterative algorithms for increasing the transmission through such random media using backscatter analysis. We theoretically show that, despite the phase-only modulation constraint, the non-iterative algorithms will achieve at least about 25$\\pi$% or about 78.5% transmission assuming there is at least one perfectly transmitting eigen-wavefront and that the singular vectors of the transmission matrix obey a maximum entropy principle so that they are isotropically random. We numerically analyze the limits of phase-only modulated transmission in 2-D with f...
Modulational instability of nematic phase
T Mithun; K Porsezian
2014-02-01
We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in = 2 spinor Bose–Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.
Solid-Phase Random Glycosylation
Agoston, K.; Kröger, Lars; Dekany, Gyula
2009-01-01
Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...
Beyond the random phase approximation
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...
Freytag, Svend O., E-mail: sfreyta1@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Stricker, Hans [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Lu, Mei [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Elshaikh, Mohamed; Aref, Ibrahim; Pradhan, Deepak; Levin, Kenneth; Kim, Jae Ho [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Peabody, James [Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan (United States); Siddiqui, Farzan; Barton, Kenneth; Pegg, Jan; Zhang, Yingshu; Cheng, Jingfang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Oja-Tebbe, Nancy; Bourgeois, Renee [Public Health Sciences, Henry Ford Health System, Detroit, Michigan (United States); Gupta, Nilesh; Lane, Zhaoli [Pathology, Henry Ford Health System, Detroit, Michigan (United States); Rodriguez, Ron [Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); DeWeese, Theodore [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others
2014-06-01
Purpose: To assess the safety and efficacy of combining oncolytic adenovirus-mediated cytotoxic gene therapy (OAMCGT) with intensity modulated radiation therapy (IMRT) in intermediate-risk prostate cancer. Methods and Materials: Forty-four men with intermediate-risk prostate cancer were randomly assigned to receive either OAMCGT plus IMRT (arm 1; n=21) or IMRT only (arm 2; n=23). The primary phase 2 endpoint was acute (≤90 days) toxicity. Secondary endpoints included quality of life (QOL), prostate biopsy (12-core) positivity at 2 years, freedom from biochemical/clinical failure (FFF), freedom from metastases, and survival. Results: Men in arm 1 exhibited a greater incidence of low-grade influenza-like symptoms, transaminitis, neutropenia, and thrombocytopenia than men in arm 2. There were no significant differences in gastrointestinal or genitourinary events or QOL between the 2 arms. Two-year prostate biopsies were obtained from 37 men (84%). Thirty-three percent of men in arm 1 were biopsy-positive versus 58% in arm 2, representing a 42% relative reduction in biopsy positivity in the investigational arm (P=.13). There was a 60% relative reduction in biopsy positivity in the investigational arm in men with <50% positive biopsy cores at baseline (P=.07). To date, 1 patient in each arm exhibited biochemical failure (arm 1, 4.8%; arm 2, 4.3%). No patient developed hormone-refractory or metastatic disease, and none has died from prostate cancer. Conclusions: Combining OAMCGT with IMRT does not exacerbate the most common side effects of prostate radiation therapy and suggests a clinically meaningful reduction in positive biopsy results at 2 years in men with intermediate-risk prostate cancer.
Wang, Fei; Toselli, Italo; Korotkova, Olga
2016-02-10
An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.
Cavity Voltage Phase Modulation MD
Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department
2016-01-01
The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.
Random Phases and Energy Dispersion
刘全慧; 刘天贵; 班卫全
2003-01-01
Using 2N + 1 successive stationary states centred at nth, we construct a rectangular wavepacket in which the stationary states are superimposed with the equal weight √2N + 1. With the requirement of the wavepacket to be a quasi-classical state, the number N is determined by minimizing the uncertainty △x△p. Since the stationary state can only be determined to within an arbitrary multiplicative complex phase factor of unit magnitude, a number of N is obtained as a set of the phases are given. For a harmonic oscillator, when all of the phase factors are essentially the same, we have N ≈ [61/3n2/3] with [x] signifying the integral part of positive number x. When every phase in the phase factors is given by a random number generated in a closed interval [0, 2π] and when n ≥ 10, the probability of appearance of N is roughly 1/2N when N = 1 to 7, and does not exceed 0.01 whenN ≥ 8.
Micro-Texture Synthesis by Phase Randomization
Bruno Galerne
2011-09-01
Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.
Vainshtein Jeffrey
2012-06-01
Full Text Available Abstract Background Low-risk prostate cancer (PCa patients have excellent outcomes, with treatment modality often selected by perceived effects on quality of life. Acute urinary symptoms are common during external beam radiotherapy (EBRT, while chronic symptoms have been linked to urethral dose. Since most low-risk PCa occurs in the peripheral zone (PZ, we hypothesized that EBRT using urethral sparing intensity modulated radiation therapy (US-IMRT could improve urinary health-related quality of life (HRQOL while maintaining high rates of PCa control. Methods Patients with National Comprehensive Cancer Network (NCCN defined low-risk PCa with no visible lesion within 5 mm of the prostatic urethra on MRI were randomized to US-IMRT or standard (S- IMRT. Prescription dose was 75.6 Gy in 41 fractions to the PZ + 3–5 mm for US-IMRT and to the prostate + 3 mm for S-IMRT. For US-IMRT, mean proximal and distal urethral doses were limited to 65 Gy and 74 Gy, respectively. HRQOL was assessed using the Expanded Prostate Cancer Index (EPIC Quality of Life questionnaire. The primary endpoint was change in urinary HRQOL at 3 months. Results From June 2004 to November 2006, 16 patients were randomized, after which a futility analysis concluded that continued accrual was unlikely to demonstrate a difference in the primary endpoint. Mean change in EPIC urinary HRQOL at 3 months was −0.5 ± 11.2 in the US-IMRT arm and +3.9 ± 15.3 in the S-IMRT arm (p = 0.52. Median PSA nadir was higher in the US-IMRT arm (1.46 vs. 0.78, p = 0.05. At 4.7 years median follow-up, three US-IMRT and no S-IMRT patients experienced PSA failure (p = 0.06; HR 8.8, 95% CI 0.9–86. Two out of 3 patients with PSA failure had biopsy-proven local failure, both located contralateral to the original site of disease. Conclusions Compared with S-IMRT, US-IMRT failed to improve urinary HRQOL and resulted in higher PSA nadir and inferior biochemical
A directly phase-modulated light source
Yuan, Z L; Lucamarini, M; Roberts, G L; Dynes, J F; Shields, A J
2016-01-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost effective method. However, the simultaneous changes in intensity, frequency and phase are a drawback which has prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity enhanced electro-optic effect enables the first example of sub-volt halfwave phase modulation at high signal rates. The source is compact, stable and versatile, and we show its potenti...
Random sub-Nyquist polarimetric modulator.
Asensio Ramos, A
2016-02-20
We show that it is possible to measure polarization with a polarimeter that gets rid of the seeing while still measuring at a frequency well below that of the seeing. We study a standard polarimeter made of two retarders and a beam splitter. The retarders are modulated at ∼500 Hz, a frequency comparable to that of the variations of the refraction index in the earth's atmosphere, which is usually termed as seeing in astronomical observations. However, we assume that the camera is slow so that our measurements are time integrations of these modulated signals. In order to recover the time variation of the seeing and obtain the Stokes parameters we use the theory of compressed sensing to solve the demodulation by imposing a sparsity constraint on the Fourier coefficients of the seeing. We demonstrate the feasibility of this sub-Nyquist polarimeter using numerical simulations, both in the case without noise and with noise. We show that a sensible modulation scheme is obtained by randomly changing the fast axis of the modulators or their retardances in specific ways. We finally demonstrate that the value of the Stokes parameters can be recovered with great precision at almost maximum efficiency although it slightly degrades when the signal-to-noise ratio of the observations increases, a consequence of the multiplexing under the presence of photon noise.
Chopra, Arvind; Chandrashekara, S; Iyer, Rajgopalan; Rajasekhar, Liza; Shetty, Naresh; Veeravalli, Sarathchandra Mouli; Ghosh, Alakendu; Merchant, Mrugank; Oak, Jyotsna; Londhey, Vikram; Barve, Abhijit; Ramakrishnan, M S; Montero, Enrique
2016-04-01
The objective of this study was to assess the safety and efficacy of itolizumab with methotrexate in active rheumatoid arthritis (RA) patients who had inadequate response to methotrexate. In this open-label, phase 2 study, 70 patients fulfilling American College of Rheumatology (ACR) criteria and negative for latent tuberculosis were randomized to four arms: 0.2, 0.4, or 0.8 mg/kg itolizumab weekly combined with oral methotrexate, and methotrexate alone (2:2:2:1). Patients were treated for 12 weeks, followed by 12 weeks of methotrexate alone during follow-up. Twelve weeks of itolizumab therapy was well tolerated. Forty-four patients reported adverse events (AEs); except for six severe AEs, all others were mild or moderate. Infusion-related reactions mainly occurred after the first infusion, and none were reported after the 11th infusion. No serum anti-itolizumab antibodies were detected. In the full analysis set, all itolizumab doses showed evidence of efficacy. At 12 weeks, 50 % of the patients achieved ACR20, and 58.3 % moderate or good 28-joint count Disease Activity Score (DAS-28) response; at week 24, these responses were seen in 22 and 31 patients. Significant improvements were seen in Short Form-36 Health Survey and Health Assessment Questionnaire Disability Index scores. Overall, itolizumab in combination with methotrexate was well tolerated and efficacious in RA for 12 weeks, with efficacy persisting for the entire 24-week evaluation period. (Clinical Trial Registry of India, http://ctri.nic.in/Clinicaltrials/login.php , CTRI/2008/091/000295).
de Zanette, Simone Azevedo; Vercelino, Rafael; Laste, Gabriela; Rozisky, Joanna Ripoll; Schwertner, André; Machado, Caroline Buzzatti; Xavier, Fernando; de Souza, Izabel Cristina Custódio; Deitos, Alicia; Torres, Iraci L S; Caumo, Wolnei
2014-01-01
.... Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS...
Robust quantum data locking from phase modulation
Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth
2014-08-01
Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.
Random sub-Nyquist polarimetric modulator
Ramos, A Asensio
2016-01-01
We show that it is possible to measure polarization with a polarimeter that gets rid of the seeing while still measuring at a frequency well below that of the seeing. We study a standard polarimeter made of two retarders and a beamsplitter. The retarders are modulated at $\\sim 500$ Hz, a frequency comparable to that of the variations of the refraction index in the Earth atmosphere, what is usually termed as seeing in astronomical observations. However, we assume that the camera is slow, so that our measurements are time integrations of these modulated signals. In order to recover the time variation of the seeing and obtain the Stokes parameters, we use the theory of compressed sensing to solve the demodulation by impose a sparsity constraint on the Fourier coefficients of the seeing. We demonstrate the feasibility of this sub-Nyquist polarimeter using numerical simulations, both in the case without noise and with noise. We show that a sensible modulation scheme is obtained by randomly changing the fast axis o...
Focusing Light through Random Photonic Media by Binary Amplitude Modulation
Akbulut, Duygu; van Putten, Elbert G; Vos, Willem L; Mosk, Allard P
2011-01-01
We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number of segments. We identify the segments that give rise to fields that are out of phase with the total field at the intended focus and assign these a zero amplitude, whereas the remaining segments maintain their original amplitude. Using 812 independently controlled segments of light, we find the intensity at the target to be 75 +/- 6 times enhanced over the average intensity behind the sample. We experimentally demonstrate focusing of light through random photonic media using both an amplitude only mode liquid crystal spatial light modulator and a MEMS-based spatial light modulator. Our use of Micro Electro-Mechanical System (MEMS)-based digital micromirror devices for the control of the incident light field opens an avenue to high speed implementations of wavefront ...
Randomly phase-locked microlaser arrays and fuzzy eigenmodes with stochastic phasing.
Riyopoulos, S
2006-10-30
Deviations in the cold cavity parameters, random or systematic, produce incoherently phased-locked laser arrays with unevenly distributed phase difference and intensity. The collective radiation fields constitute "fuzzy" eigenmodes; the phasing among cavities is constant in time but changes randomly from site-to-site. The existence and structure of such eigenmodes is demonstrated numerically and analyzed theoretically using the rate equations for coupled semiconductor laser cavities. Active coupling, whereby one cavity's radiation field modulates the complex gain of nearby cavities (cross-cavity hole burning), is essential for the frequency pulling allowing synchronization of the laser operating frequencies.
Phase-Modulated Optical Communication Systems
Ho, Keang-Po
2005-01-01
Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...
Random-phase metasurfaces at optical wavelengths
Pors, Anders; Ding, Fei; Chen, Yiting
2016-01-01
, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications......Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify...... the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting...
Stable Optical Phase Modulation with Micromirrors
Knoernschild, Caleb; Maunz, Peter; Crain, Stephen; Kim, Jungsang
2011-01-01
We measure the motional fluctuations of a micromechanical mirror using a Michelson interferometer, and demonstrate its interferometric stability. The position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the micromirror to realize an ideal optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the modulator can be tuned by applying a voltage between the mirror and an underlying electrode. Full modulation depth of +/-\\pi is achieved when the mirror resonantly excited with a sinusoidal voltage at an amplitude of 11V.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Phase-Modulation Laser Interference Microscopy
Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.
2008-01-01
We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...
Phase retrieval by coherent modulation imaging
Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K.
2016-11-01
Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.
Phase retrieval by coherent modulation imaging
Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K.
2016-01-01
Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers. PMID:27857061
Ying Guan; Shuai Liu; HanYu Wang; Ying Guo; WeiWei Xiao; ChunYan Chen; Chong Zhao; TaiXiang Lu; Fei Han
2016-01-01
Background: Salvage treatment for locally recurrent nasopharyngeal carcinoma (NPC) is complicated and relatively limited. Radiotherapy, combined with effective concomitant chemotherapy, may improve clinical treatment out‑comes. We conducted a phase II randomized controlled trial to evaluate the efcacy of intensity‑modulated radio‑therapy with concomitant weekly cisplatin on locally recurrent NPC. Methods: Between April 2002 and January 2008, 69 patients diagnosed with non‑metastatic locally recurrent NPC were randomly assigned to either concomitant chemoradiotherapy group (n = 34) or radiotherapy alone group(n= 35). All patients received intensity‑modulated radiotherapy. The radiotherapy dose for both groups was 60 Gy in 27 fractions for 37 days (range 23–53 days). The concomitant chemotherapy schedule was cisplatin 30 mg/m2 by intravenous infusion weekly during radiotherapy. Results: The median follow‑up period of all patients was 35 months (range 2–112 months). Between concomitant chemoradiotherapy and radiotherapy groups, there was only significant difference in the 3‑year and 5‑year overall survival (OS) rates (68.7% vs. 42.2%, P = 0.016 and 41.8% vs. 27.5%, P = 0.049, respectively). Subgroup analysis showedthat concomitant chemoradiotherapy significantly improved the 5‑year OS rate especially for patients in stage rT3–4 (33.0% vs. 13.2%, P = 0.009), stages III–IV (34.3% vs. 13.2%, P = 0.006), recurrence interval >30 months (49.0% vs. 20.6%,P= 0.017), and tumor volume >26 cm3 (37.6% vs. 0%, P = 0.006). Conclusion: Compared with radiotherapy alone, concomitant chemoradiotherapy can improve OS of the patients with locally recurrent NPC, especially those with advanced T category (rT3–4) and stage (III–IV) diseases, recurrence intervals >30 months, and tumor volume >26 cm3.
Directly Phase-Modulated Light Source
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
Faddeev Random Phase Approximation for Molecules
Degroote, Matthias; Barbieri, Carlo
2010-01-01
The Faddeev Random Phase Approximation is a Green's function technique that makes use of Faddeev-equations to couple the motion of a single electron to the two-particle--one-hole and two-hole--one-particle excitations. This method goes beyond the frequently used third-order Algebraic Diagrammatic Construction method: all diagrams involving the exchange of phonons in the particle-hole and particle-particle channel are retained, but the phonons are described at the level of the Random Phase Approximation. This paper presents the first results for diatomic molecules at equilibrium geometry. The behavior of the method in the dissociation limit is also investigated.
Random-phase metasurfaces at optical wavelengths
Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.
2016-06-01
Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.
Tie Xin GUO; Lin Hu ZHU
2003-01-01
In this paper, a characterization of continuous module homomorphisms on random semi-normed modules is first given; then the characterization is further used to show that the Hahn-Banachtype of extension theorem is still true for continuous module homomorphisms on random semi-normedmodules.
Faddeev Random Phase Approximation applied to molecules
Degroote, Matthias
2012-01-01
This Ph.D. thesis derives the equations of the Faddeev Random Phase Approximation (FRPA) and applies the method to a set of small atoms and molecules. The occurence of RPA instabilities in the dissociation limit is addressed in molecules and by the study of the Hubbard molecule as a test system with reduced dimensionality.
Channel Capacity of DWDM Networks with Cross-phase Modulation Effect
无
2006-01-01
In dense wavelength division multiplexing(DWDM) optical transmission systems, cross phase modulation(XPM) due to Kerr effect causes phase shift and intensity modulation in each channel, which will lead the channel capacity to be a random variable. An expression of the channel capacity dealing with XPM effect is presented, and the correctness and accuracy of this method are demonstrated by numerical simulation.
Tang, Chunyuan; Wu, Fang; Wang, Rensheng; Lu, Heming; Li, Guisheng; Liu, Meilian; Zhu, Haisheng; Zhu, Jinxian; Zhang, Yong; Hu, Kai
2016-01-01
Nasopharyngeal carcinoma (NPC) is highly incident in southern China. Metastasis is the major cause of death in NPC patients. Concurrent chemoradiotherapy (CCRT) has been accepted as standard in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma (NPC). However, induction chemotherapy (IC) also has benefits in this disease, especially in the patients with certain high-risk factors such as bulky and/or extensive nodal disease. It has been presented that adding IC to CCRT might be a reasonable approach and need more work to confirm. The optimal chemotherapeutic regimen combined with radiotherapy has not been determined so far. It is important to explore high effective and low toxic chemotherapy for the patients. In the multicenter prospective study, 223 patients with locoregionally advanced untreated NPC were randomized into experimental group and control group. The patients received two cycles of induction chemotherapy (IC) with docetaxel (DOC) plus nedaplatin (NDP) in experimental group every 3 weeks, followed by IMRT concurrent with weekly NDP for six cycles, and NDP was replaced by cisplatin (CDDP) in control group. More patients in experimental group could receive full courses of IC and concurrent chemoradiotherapy (CCRT) (P=0.013). There was no significant difference between the two groups in the percentage of reduction of GTVnx and GTVnd after IC (P=0.207 and P=0.107) and CR rate three months after completion of chemoradiotherapy (P=0.565 and P=0.738). With a mean follow-up of 35.1 months, no statistically significant difference in the 3-year OS, LRFS, RRFS, DMFS, and PFS was found. During IC, more patients suffered vomiting in control group (P=0.001). During CCRT, grade 3/4 neutropenia/thrombocytopenia were more common in experimental group (P=0.028 and P=0.035); whereas, severe anemia and vomiting were more common in control group (P=0.0001 and P=0.023). In conclusions, patients with locoregionally advanced NPC showed good
Phase multistability of self-modulated oscillations
Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.
2002-01-01
The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... for vanishing and finite coupling strengths, respectively. Various phase-locked patterns are observed. In the presence of a frequency mismatch, the two-parameter bifurcation analysis reveals a set of synchronization regions inserted one into the other. Numerical examples using a generator with inertial...
Muhammad Farrukh Yaqub
2012-01-01
Full Text Available This paper presents a new method for single phase variable voltage inverter based on Random Pulse Width Modulation. In Random Pulse Width Modulation based inverter, the frequency spectrum of the output current and voltage waveforms becomes continuous because of the randomization of the switching function of the devices controlling the output voltages. This paper establishes a theory that if the distributions of the random numbers generated by the random source are kept within certain limit with respect to the peak value of reference sinusoidal waveform, the frequency spectrum can be controlled. On the basis of the results, a novel drive using variable tap changing transformer (optional and adaptive random number generator, to control the ratio between the numbers generated by the random source and the reference waveform has been suggested that will guarantee a better power quality profile for a broad range of output voltages.
Phase modulation pseudocolor encoding ghost imaging
段德洋; 张路; 杜少将; 夏云杰
2015-01-01
We present a ghost imaging scheme that can obtain a good pseudocolor image of black-and-white objects. The essential idea is to use the multi-wavelength thermal light source and the phase modulation pseudocolor encoding technique, which overcomes the disadvantages of other methods involved the spatial filtering. Therefore, the pseudocolor ghost image achieved by this imaging scheme is better than that obtained by other methods in brightness, color, and signal-to-noise ratio.
Simultaneous amplitude and phase modulation by a discrete phase-only filter.
Goto, Hiroomi; Konishi, Tsuyoshi; Itoh, Kazuyoshi
2009-03-01
We propose a simultaneous amplitude and phase modulation method by a discrete phase-only filter. The proposed amplitude-phase filter can be realized by a discrete phase modulation of the diffractive optical element as well as a continuous phase modulation of the liquid crystal spatial light modulator. The fabricated amplitude-phase filter that has the six phase modulation levels shows a transfer efficiency of 75% regardless of the polarization state of the incident light. By using the proposed amplitude-phase filter, we demonstrate a temporal waveform conversion from sech(2) to super-Gaussian, which requires both amplitude and phase modulations.
Static correlation beyond the random phase approximation
Olsen, Thomas; Thygesen, Kristian Sommer
2014-01-01
We investigate various approximations to the correlation energy of a H2 molecule in the dissociation limit, where the ground state is poorly described by a single Slater determinant. The correlation energies are derived from the density response function and it is shown that response functions...... derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...
Xi, Sixing; Wang, Xiaolei; Song, Lipei; Zhu, Zhuqing; Zhu, Bowen; Huang, Shuai; Yu, Nana; Wang, Huaying
2017-04-03
Optical image encryption, especially double-random-phase-based, is of great interest in information security. In this work, we experimentally demonstrate the security and feasibility of optical image encryption with asymmetric double random phase and computer-generated hologram (CGH) by using spatial light modulator. First of all, the encrypted image modulated by asymmetric double random phase is numerically encoded into real-value CGH. Then, the encoded real-value CGH is loaded on the spatial light modulator and optically decrypted in self-designed experimental system. Experimental decryption results are in agreement with numerical calculations under the prober/mistaken phase keys condition. This optical decryption technology opens a window of optical encryption practical application and shows great potential for digital multimedia product copyright protection and holographic false trademark.
Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation
Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.
2017-03-01
Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase.
Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation
Oton, E.; Netter, E.; Nakano, T.; D.-Katayama, Y.; Inoue, F.
2017-01-01
Liquid crystal “Blue Phases” (BP) have evolved, in the last years, from a scientific curiosity to emerging materials for new photonic and display applications. They possess attractive features over standard nematic liquid crystals, like submillisecond switching times and polarization- independent optical response. However, BPs still present a number of technical issues that prevent their use in practical applications: their phases are only found in limited temperature ranges, thus requiring stabilization of the layers; stabilized BP layers are inhomogeneous and not uniformly oriented, which worsen the optical performance of the devices. It would be essential for practical uses to obtain perfectly aligned and oriented monodomain BP layers, where the alignment and orientation of the cubic lattice are organized in a single 3D structure. In this work we have obtained virtually perfect monodomain BP layers and used them in devices for polarization independent phase modulation. We demonstrate that, under applied voltage, well aligned and oriented layers generate smoother and higher values of the phase shift than inhomogeneous layers, while preserving polarization independency. All BP devices were successfully stabilized in BPI phase, maintaining the layer monodomain homogeneity at room temperature, covering the entire area of the devices with a unique BP phase. PMID:28281691
Goldstone modes in the random phase approximation
Neergård, Kai
2016-01-01
I show that the kernel of the random phase approximation (RPA) matrix based on a stable Hartree, Hartree-Fock, Hartree-Bogolyubov or Hartree-Fock-Bogolyubov mean field solution is decomposed into a subspace with a basis whose vectors are associated, in the equivalent formalism of a classical Hamiltonian linear in canonic coordinates, with conjugate momenta of cyclic coordinates (Goldstone modes) and a subspace with a basis whose vectors are associated with pairs of conjugate canonic coordinates that do not enter the Hamiltonian at all. In a subspace complementary to the one spanned by all these coordinates including the conjugate coordinates of the Goldstone momenta, the RPA matrix behaves as in the case of a zerodimensional kernel. This result was derived very recently by Nakada as a corollary to a general analysis of RPA matrices based on both stable and unstable mean field solutions. The present proof does not rest on Nakada's general results.
Plastering. Pre-Apprenticeship Phase 2 Training. Student Training Modules.
Hamblen, Ron
These 20 Student Training Modules on plastering comprise one of nine sets of self-paced learning modules developed for Pre-Apprenticeship Phase 2 Training. (A companion instructor's guide is available separately as CE 031 569.) The modules are designed to impart trade knowledge and skills to the student. Each module contains some or all of the…
Phase-modulation transmission system for quantum cryptography.
Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T
1999-01-15
We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.
A novel random phase-shifting digital holographic microscopy method
无
2009-01-01
This paper proposes a new method that reconstructs the information of specimen by using random phase shift step in digital holographic microscopy (DHM). The principles of the method are described and discussed in detail. In practical experiment, because the phase shifter is neither perfectly linear nor calibrated, digital holograms with inaccurate phase shift step are recorded by the charge-coupled device (CCD). The phase could be accurately reconstructed from the recorded digital holograms by using the random phase-shifting algorithm, which makes up for reconstructed phase error caused by ordinary phase-shifting algorithm. The phase aberration compensation is also discussed. In order to verify the flexibility of the proposed method, numerical simulation of random phase-shifting DHM was carried out. The simulation results illustrated that the presented method is effective when the phase shift step is unknown or random in DHM.
Chen Guoqiang
2016-01-01
Full Text Available Aiming at analysis complexity, a simulation model is built and presented to analyze and demonstrate the characteristics of the direct current (DC link current of the three-phase two-level inverter with the random space vector pulse width modulation (SVPWM strategy. The developing procedure and key subsystems of the simulation model are given in detail. Several experiments are done using the simulation model. The results verify the efficiency and convenience of the simulation model and show that the random SVPWM scheme, especially the random switching frequency scheme, can efficiently suppress the harmonic peaks of the DC link current.
Qualitative Analysis of Self Phase Modulation (SPM
Ruby Verma
2013-03-01
Full Text Available Optical fiber changed the way of communication. In comparison with wireless communication, optical fiber communication is very fast and reliable. It is more secure but costly. Optical fiber uses the principle of total internal reflection for transmission. Optical fiber has core and cladding with different refractive index and major portion of the signal goes through the core. But due macro and micro bending, chromatic dispersion is observed.In this paper, we have analyzed self phase modulation in an optical fiber system and discussed how it causes dispersion in input signal. These effects are simulated using OPTISYSTEM tool at a bit rate of 10Gbps and analysed using eye pattern method with respect to bit error rate and Q factor. Simulation results from the OPTISYSTEM tool are also compared with the numerical analysis of nonlinear Schrodinger equation, which is simulated in MATLAB
Spread Spectrum Modulation by Using Asymmetric-Carrier Random PWM
Mathe, Laszlo; Lungeanu, Florin; Sera, Dezso;
2012-01-01
This paper presents a new fixed carrier frequency random PWM method, where a new type of carrier wave is proposed for modulation. Based on simulations and experimental measurements, it is shown that the spread effect of the discrete components from the motor current spectra and acoustic spectra i...
Vector Modulator for Phase Shifting in Passive Beamforming Wireless Systems
P.Sampath,
2010-05-01
Full Text Available This paper proposes vector modulator for changing the phase of a signal in passive beamforming system. Vector modulator is used to perform a phase shift function with added benefit of amplitude control. It is used to improve the directivity of RF waves in Wireless systems. Vector modulator is implemented for a center frequency of 902.5 MHz. The simulation is performed for individual blocks of the vector modulator and for vector modulator with JFET and MOSFET as controlling device in the variable attenuator of the vector modulator.
Modulation efficiency of double-phase hologram complex light modulation macro-pixels.
Choi, Sujin; Roh, Jinyoung; Song, Hoong; Sung, Geeyoung; An, Jungkwuen; Seo, Wontaek; Won, Kanghee; Ungnapatanin, Jesada; Jung, Myounghoon; Yoon, Yongzoon; Lee, Hong-Seok; Oh, Chang-Hyun; Hahn, Joonku; Kim, Hwi
2014-09-01
The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.
Kato, Kentaro; Hirota, Osamu
2011-08-01
The quantum noise based direct encryption protocol Y-OO is expected to provide physical complexity based security, which is thought to be comparable to information theoretic security in mathematical cryptography, for the. physical layer of fiber-optic communication systems. So far, several randomization techniques for the quantum stream cipher by Y-OO protocol have been proposed, but most of them were developed under the assumption that phase shift keying is used as the modulation format. On the other hand, the recent progress in the experimental study on the intensity modulation based quantum stream cipher by Y-OO protocol raises expectations for its realization. The purpose of this paper is to present design and implementation methods of a composite model of the intensity modulation based quantum stream cipher with some randomization techniques. As a result this paper gives a viewpoint of how the Y-OO cryptosystem is miniaturized.
Tomonori; Yazaki; Ryo; Inohara; Kosuke; Nishimura; Munefumi; Tsurusawa; Masashi; Usami
2003-01-01
The cross gain modulation, the cross phase modulation and their recovery time in the SOAs with the various lengths were experimentally investigated. It was found that these values strongly depended on the device length.
Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe
2008-01-01
The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....
Wavelength conversion based on cross-phase modulation in a semiconductor Mach-Zehnder modulator
Liu, Fenghai; Zheng, Xueyan; Oxenløwe, Leif Katsuo
2001-01-01
Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty......Wavelength conversion based on cross-phase modulation in a reversely biased semiconductor Mach-Zehnder modulator is proposed and successfully demonstrated in a commercial device. The converted signals exhibit extinction ratio >13 dB and penalty...
Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy
Parsai, Homayon [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Cho, Paul S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Phillips, Mark H [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Giansiracusa, Robert S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Axen, David [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)
2003-05-07
This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of {sigma} = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least {sigma} = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of {+-}0.5 mm were shown to result in significant dosimetric deviations.
Phase-only spatial light modulation by the reverse phase contrast method
Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.
2002-01-01
A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse...... Phase Contrast (RPC) method. The analytical method for achieving this is outlined and experimental results are shown for the generation of a binary phase-only distribution using an amplitude spatial light modulator and a phase-only spatial filter....
Fiber Ring Laser In-cavity Phase Modulation
YU Benli; QIAN Jingren; LUO Jiatong; YANG Yinghai
2001-01-01
In this paper, experimental results of the in-cavity phase modulation induced by dithering PZT is reported. The dithering PZT can produce strong phase modulation, reshaping the laser output spectrum, but does not affect the laser linewidth, which is measured by homodyne method.
WDM Phase-Modulated Millimeter-Wave Fiber Systems
Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood
2012-01-01
This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....
Phase-modulating lasers toward on-chip integration.
Kurosaka, Yoshitaka; Hirose, Kazuyoshi; Sugiyama, Takahiro; Takiguchi, Yu; Nomoto, Yoshiro
2016-07-26
Controlling laser-beam patterns is indispensable in modern technology, where lasers are typically combined with phase-modulating elements such as diffractive optical elements or spatial light modulators. However, the combination of separate elements is not only a challenge for on-chip miniaturisation but also hinders their integration permitting the switchable control of individual modules. Here, we demonstrate the operation of phase-modulating lasers that emit arbitrarily configurable beam patterns without requiring any optical elements or scanning devices. We introduce a phase-modulating resonator in a semiconductor laser, which allows the concurrent realisation of lasing and phase modulation. The fabricated devices are on-chip-sized, making them suitable for integration. We believe this work will provide a breakthrough in various laser applications such as switchable illumination patterns for bio-medical applications, structured illuminations, and even real three-dimensional or highly realistic displays, which cannot be realised with simple combinations of conventional devices or elements.
Papanicolaou, D A; Ather, S N; Zhu, H; Zhou, Y; Lutkiewicz, J; Scott, B B; Chandler, J
2013-01-01
Sarcopenia, the age-related loss of muscle mass [defined as appendicular LBM/Height2 (aLBM/ht2) below peak value by>1SD], strength and function, is a major contributing factor to frailty in the elderly. MK-0773 is a selective androgen receptor modulator designed to improve muscle function while minimizing effects on other tissues. The primary objective of this study was to demonstrate an improvement in muscle strength and lean body mass (LBM) in sarcopenic frail elderly women treated with MK-0773 relative to placebo. This was a randomized, double-blind, parallel-arm, placebo-controlled, multicenter, 6-month study. Participants were randomized in a 1:1 ratio to receive either MK-0773 50mg b.i.d. or placebo; all participants received Vitamin D and protein supplementation. General community. 170 Women aged ≥65 with sarcopenia and moderate physical dysfunction. Dual energy X-ray absorptiometry, muscle strength and power, physical performance measures. Participants receiving MK-0773 showed a statistically significant increase in LBM from baseline at Month 6 vs. placebo (p<0.001). Participants receiving both MK-0773 and placebo showed a statistically significant increase in strength from baseline to Month 6, but the mean difference between the two groups was not significant (p=0.269). Both groups showed significant improvement from baseline at Month 6 in physical performance measures, but there were no statistically significant differences between participants receiving MK-0773 and placebo. A greater number of participants experienced elevated transaminases in the MK-0773 group vs. placebo, which resolved after discontinuation of study therapy. MK-0773 was generally well-tolerated with no evidence of androgenization. The MK-0773-induced increase in LBM did not translate to improvement in strength or function vs. placebo. The improvement of strength and physical function in the placebo group could be at least partly attributed to protein and vitamin D supplementation.
Random shortcuts induce phase synchronization in complex Chua systems
Wei Du-Qu; Luo Xiao-Shu; Qin Ying-Hua
2009-01-01
This paper studies how phase synchronization in complex networks depends on random shortcuts, using the piecewise-continuous chaotic Chua system as the nodes of the networks. It is found that for a given coupling strength,when the number of random shortcuts is greater than a threshold the phase synchronization is induced. Phase synchronization becomes evident and reaches its maximum as the number of random shortcuts is further increased. These phenomena imply that random shortcuts can induce and enhance the phase synchronization in complex Chua systems.Furthermore, the paper also investigates the effects of the coupling strength and it is found that stronger coupling makes it easier to obtain the complete phase synchronization.
Review of Random Phase Encoding in Volume Holographic Storage
Wei-Chia Su
2012-09-01
Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.
Quantitative EEG Signatures through Amplitude and Phase Modulation Patterns.
Myers, Mark H; Padmanabha, Akaash
2017-01-01
Cortical spatiotemporal signal patterns based on object recognition can be discerned from visual stimulation. These are in the form of amplitude modulation (AM) and phase modulation (PM) patterns, which contain perceptual information gathered from sensory input. A high-density Electroencephalograph (EEG) device consisting of 48 electrodes with a spacing of 5 mm was utilized to measure frontal lobe activity in order to capture event-related potentials from visual stimuli. Four randomized stimuli representing different levels of salient responsiveness were measured to determine if mild stimuli can be discerned from more extreme stimuli. AM/PM response patterns were detected between mild and more salient stimuli across participants. AM patterns presented distinct signatures for each stimulus. AM patterns had the highest number of incidents detected in the middle of the frontal lobe. Through this work, we can expand our encyclopedia of neural signatures to object recognition, and provide a broader understanding of quantitative neural responses to external stimuli. The results provide a quantitative approach utilizing spatiotemporal patterns to analyze where distinct AM patterns can be linked to object perception.
Coherent Population Trapping Induced by Phase Modulated and Fluctuating Fields
WANG Jian; HU Xiang-Ming
2007-01-01
We examine the effects of cross correlated phase fluctuations on the coherent population trapping (CPT) induced by a pair of phase-modulated fields with equal modulation frequencies in a three-level A system. The maximal coherence of -0.5, which appears when CPT occurs for equal modulation indices, is preserved in the presence of the critically cross-correlated fluctuations. Unexpectedly, the non-maximal coherence, which is established when CPT is obtained for different modulation indices, is significantly enhanced due to the critically cross-correlated fluctuations.
Highly birefringent crystal for Raman transitions with phase modulators
Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo
2016-05-01
We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.
InGaAsP/InP DH Ridge Waveguide Phase Modulator with High Modulation Efficiency
Young; Tae; Byun; Hwa; Sun; Park; Sung; Jin; Kim; Deok; Ha; Woo; Jong; Chang; Yi; Yoshiaki; Nakano
2003-01-01
The P-p-n-N InGaAsP/InP ridge waveguide phase modulator has been fabricated and investigated at a wavelength of 1550nm. The phase modulation efficiency measured by the Fabry-Perot resonance method is as high as 34°/V·mm for TE mode. The QEO effect becomes dominant from - 4V to - 8V.
InGaAsP/InP DH Ridge Waveguide Phase Modulator with High Modulation Efficiency
Young Tae Byun; Hwa Sun Park; Sung Jin Kim; Deok Ha Woo; Jong Chang Yi; Yoshiaki Nakano
2003-01-01
The P-p-n-N InGaAsP/InP ridge waveguide phase modulator has been fabricated and investigated at a wavelength of 1550nm. The phase modulation efficiency measured by the Fabry-Perot resonance method is as high as 34°/V.mm for TE mode. The QEO effect becomes dominant from -4V to -8V.
Open-Loop Wide-Bandwidth Phase Modulation Techniques
Nitin Nidhi
2011-01-01
Full Text Available The ever-increasing growth in the bandwidth of wireless communication channels requires the transmitter to be wide-bandwidth and power-efficient. Polar and outphasing transmitter topologies are two promising candidates for such applications, in future. Both these architectures require a wide-bandwidth phase modulator. Open-loop phase modulation presents a viable solution for achieving wide-bandwidth operation. An overview of prior art and recent approaches for phase modulation is presented in this paper. Phase quantization noise cancellation was recently introduced to lower the out-of-band noise in a digital phase modulator. A detailed analysis on the impact of timing and quantization of the cancellation signal is presented. Noise generated by the transmitter in the receive band frequency poses another challenge for wide-bandwidth transmitter design. Addition of a noise transfer function notch, in a digital phase modulator, to reduce the noise in the receive band during phase modulation is described in this paper.
Decryption of a random-phase multiplexing recording system
Chang, Chi-Ching; Liu, Jung-Ping; Lee, Hsiao-Yi; Lin, Ching-Yang; Chang, Tsung-Chien; Yau, Hon-Fai
2006-03-01
In practice, decrypting a random-phase encrypted volume holographic data storage system is impossible unless the original random-phase plate for the encryption is available. However, this study demonstrates that under certain conditions, ways are available that can decrypt an encrypted photorefractive LiNbO3 crystal holographic storage system. In addition to presenting experimental results that show the efficacy of this decryption approach, problems and difficulties in the experiments are discussed.
Uncovering introductory astronomy students' conceptual modules of lunar phases
Lindell, Rebecca; Traxler, Adrienne
2017-01-01
Brewe, Bruun and Bearden developed Module Analysis of Multiple Choice Responses (MAMCR) methodology for using network analysis to uncover the underlying conceptual modules of student performance on multiple-choice assessments. The Lunar Phases Concept Inventory (LPCI) assesses students understanding of lunar phases across 8 separate dimensions of understanding based on the results of a detailed qualitative phenomenology of college students' understanding of lunar phases. Unlike many concept inventories, the LPCI has multiple items for each dimension of understanding and each response corresponds to either the scientifically correct answer or to an alternative idea uncovered from the qualitative investigation. In this study, we have combined MAMCR with the database of nearly 2000 LPCI pre-test results. We will report on the preliminary different conceptual modules of lunar phases and the relationship of these modules to previous qualitative research.
All-optical phase modulation for integrated interferometric biosensors.
Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M
2012-03-26
We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.
Terahertz cross-phase modulation of an optical mode
Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim
2013-01-01
We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....
Tunable dispersion compensation using phase modulation in receiver part
Siahlo, Andrei; Clausen, Anders; Oxenløwe, Leif Katsuo
2004-01-01
A novel method of tuneable dispersion compensation at which phase modulation is applied in the receiver part is proposed for OTDM systems. Compensation of dispersion of 3.2 ps/nm at 160 Gb/s OTDM transmission is demonstrated.......A novel method of tuneable dispersion compensation at which phase modulation is applied in the receiver part is proposed for OTDM systems. Compensation of dispersion of 3.2 ps/nm at 160 Gb/s OTDM transmission is demonstrated....
Method to measure the phase modulation characteristics of a liquid crystal spatial light modulator.
Wu, Yunlong; Nie, Jinsong; Shao, Li
2016-11-01
The universal liquid crystal spatial light modulator (LC-SLM) is widely used in many aspects of optical studies. The working principles and applications of LC-SLM were introduced briefly. The traditional Twyman-Green interference method, which was used to measure the phase modulation characteristics of a liquid spatial light modulator, had some obvious disadvantages in practice. To avoid these issues, the traditional Twyman-Green interference method was improved. Also, a new method to process interference fringes and measure the shift distances and cycles automatically by computers was proposed. The phase modulation characteristics of P512-1064 LC-SLM produced by the Meadowlark Company were measured to verify the validity of the newly proposed method. In addition, in order to compensate and correct the nonlinear characteristics of the phase modulation curve, three universal inverse interpolation methods were utilized. The root mean squared error and residual sum of squares between the calibrated phase modulation curve and the ideal phase modulation curve were reduced obviously by taking advantage of the inverse interpolation methods. Subsequently, the method of shape-preserving subsection cubic interpolation had acquired the best performance with high computation efficiency. Experiments have been performed to verify the validity of the interpolation method. The experimental results showed that the phase modulation characteristics of LC-LSM could be acquired and calibrated automatically with convenience and high efficiency by utilizing the newly proposed processing method.
Single-random phase encoding architecture using a focus tunable lens
Mosso, E. F.; Bolognini, N.; Pérez, D. G.
2016-02-01
We propose a new nonlinear optical architecture based on a focus tunable lens and an iterative phase retrieval algorithm. It constitutes a compact encryption system that uses a single-random phase key to simultaneously encrypt (decrypt) amplitude and phase data. Summarily, the information encoded in a transmittance object (phase and amplitude) is randomly modulated by a diffuser when a laser beam illuminates it; once the beam reaches a focus tunable lens, different subjective speckle distributions are registered at some image plane as the focal length is tuned to different values. This set of speckle patterns constitutes a delocalized ciphertext, which is used in an iterative phase retrieval algorithm to reconstruct a complex ciphertext. The original data are decrypted propagating this ciphertext through a virtual optical system. In this system, amplitude data are straightforwardly decrypted while phase data can only be restored if the random modulation produced in the encryption process is compensated. Thus, an encryption-decryption process and authentication protocol can simultaneously be performed. We validate the feasibility of our proposal with simulated and experimental results.
Evaluation of Modulation Schemes for Three-Phase to Three-Phase Matrix Converters
Helle, Lars; Larsen, Kim B.; Joergensen, Allan Holm
2004-01-01
This paper presents a method for evaluating different modulation schemes employed with three-phase to three-phase matrix converters. The evaluation method addresses three important modulator characteristics: the output waveform quality, the input waveform quality and the switching losses associated...... on the output load angle. This new modulation approach is applicable whenever the output voltage reference is below half the input voltage, and the output voltage quality is then superior to that of the conventional space vector modulation scheme. The functionality of the new modulation scheme is validated...
Revealing novel quantum phases in quantum antiferromagnets on random lattices
R. Yu
2009-01-01
Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.
Considerations of digital phase modulation for narrowband satellite mobile communication
Grythe, Knut
1990-01-01
The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.
The effect of input phase modulation to a phase-sensitive optical amplifier
Li, Tian; Horrom, Travis; Jones, Kevin M; Lett, Paul D
2016-01-01
Many optical applications depend on amplitude modulating optical beams using devices such as acousto-optical modulators (AOMs) or optical choppers. Methods to add amplitude modulation (AM) often inadvertently impart phase modulation (PM) onto the light as well. While this PM is of no consequence to many phase-insensitive applications, phase-sensitive processes can be affected. Here we study the effects of input phase and amplitude modulation on the output of a quantum-noise limited phase-sensitive optical amplifier (PSA) realized in hot $^{85}$Rb vapor. We investigate the dependence of PM on AOM alignment and demonstrate a novel approach to quantifying PM by using the PSA as a diagnostic tool. We then use this method to measure the alignment-dependent PM of an optical chopper which arises due to diffraction effects as the chopper blade passes through the optical beam.
Random Dieudonne modules, random p-divisible groups, and random curves over finite fields
Cais, Bryden; Zureick-Brown, David
2012-01-01
We describe a probability distribution on isomorphism classes of principally quasi-polarized p-divisible groups over a finite field k of characteristic p which can reasonably be thought of as "uniform distribution," and we compute the distribution of various statistics (p-corank, a-number, etc.) of p-divisible groups drawn from this distribution. It is then natural to ask to what extent the p-divisible groups attached to a randomly chosen hyperelliptic curve (resp. curve, resp. abelian variety) over k are uniformly distributed in this sense. For instance, one can ask whether the proportion of genus-g curves over F_p whose Jacobian is ordinary approaches the limit that such a heuristic would predict. This heuristic is analogous to conjectures of Cohen-Lenstra type for fields k of characteristic other than p, in which case the random p-divisible group is defined by a random matrix recording the action of Frobenius. Extensive numerical investigation reveals some cases of agreement with the heuristic and some int...
Digital Monopulse Receivers for Phase Modulated Signals
2005-04-14
Mateo Burgos-García, Gema Ferreiro-Collar, Alberto Asensio Ló Grupo de Microondas y Dpto. Señales, Sistemas y Radio E.T.S.I. Telecomunic Universidad...Politécnica d Ciudad Universitaria 28040 Madrid, Spa Email: mateo@gmr.ssr. Digital Monopulse Rec Modulated Si T ∆ Σ Z1(t) Z2(t)log-amplifier of each...Microondas y Radar Dpto. Señales, Sistemas y Radiocomunicaciones E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Ciudad Universitaria s/n
Schilling, D. L.
1975-01-01
Encoding of video signals using adaptive delta modulation (DM) was investigated, along with the error correction of DM encoded signals corrupted by thermal noise. Conversion from pulse code modulation to delta modulation was studied; an expression for the signal to noise ratio of the DM signal derived was achieved by employing linear, 2-sample, interpolation between sample points. A phase locked loop using a nonlinear processor in lieu of a loop filter is discussed.
Design Considerations for Phased Array Modules
1980-11-01
basica )ly designed for C7 operation. In pulsed mode of oporation however, peak pov:e%.’ of 150:7 at 10.52GHz wras obtained for psoc pulse lengths and...repeating the above calculations with the appropriate value of referer:ce phase ýP applied to each element. Bearing in mind the tedious algebra involved in
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Crystal structure of the commensurately modulated ζ phase of PAMC
Harris, P.; Larsen, F.K.; Lebech, B.
1994-01-01
The commensurately modulated zeta low-temperature phase of bis(propylammonium) tetrachloromanganate(II), [NH3(C3H7)]2MnCl4, has been determined at 8 K. a = 7.437 (5), b = 7.082 (5), c = 13.096 (8) Angstrom, alpha = 105.59 (1)degrees. Superspace group P2(1)/b(0 beta 0)(1) over bar s, with beta = 1...... phase, indicating a 'lock-in' and phase shift between adjacent modulated layers. The modulation waves do not change much from the values of the epsilon phase, which confirms the lock-in of the modulation vector; only some components of the modulations of the propylammonium chains appear....../3, V = 664.4, Z = 2 D-x = 1.58 g cm(-3) Mo K alpha radiation, lambda = 0.71069 Angstrom, mu = 17.99 cm(-1) F(000) = 326, wR(F) = 0.064 for 1444 main reflections and wR(F) = 0.089 for 248 satellite reflections. The modulation vector flips and locks into a commensurate value compared with the epsilon...
Avena, L
2012-01-01
We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.
Sarkadi, Tamás; Koppa, Pál
2012-02-20
In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.
Phase Regeneration of a BPSK Data Signal Using a Lithium Niobate Phase Modulator
Mulvad, Hans Christian Hansen; Da Ros, Francesco; Galili, Michael
2015-01-01
We propose a scheme for phase regeneration of an optical binary phase shift keying (BPSK) data signal using a Lithium Niobate (LiNbO3) phase modulator. The scheme is based on heterodyne detection of the BPSK data signal with a continuous wave local oscillator (CW-LO). Carrier recovery...... is then achieved in the electrical domain using a ×2 frequency-multiplier and a narrow-band filtering scheme. Subsequently, a superposition of the recovered carrier and the heterodyne detected data signal is used to modulate the CW-LO in a LiNbO3 phase modulator. The result is a parametric mixing process...... in the optical domain, leading to a phase-regenerated BPSK data signal by the coherent superposition with a phase-inverted copy. The proposed scheme constitutes a compact and stable setup, where active phase-stabilization of the electrical data- and carrier-paths can potentially be avoided. An analytical...
Phase transitions for information diffusion in random clustered networks
Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin
2016-09-01
We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.
Random phase-free computer holography and its applications
Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi
2016-06-01
Random phase is required in computer-generated hologram (CGH) to widely diffuse object light and to avoid its concentration on the CGH; however, the random phase causes considerable speckle noise in the reconstructed image and degrades the image quality. We introduce a simple and computationally inexpensive method that improves the image quality and reduces the speckle noise by multiplying the object light with the designed convergence light. We furthermore propose the improved method of the designed convergence light with iterative method to reduce ringing artifacts. Subsequently, as the application, a lensless zoomable holographic projection is introduced.
NEW SELF-MIXING MICROINTERFEROMETER BASED ON EXTERNAL PHASE MODULATION
GUO Dongmei; WANG Ming
2007-01-01
A new self-mixing micro-interferometer based on external phase modulation is presented.Self-mixing interference occurs in a laser diode (LD) by reflecting the light from a mirror-like target in front of the laser. Sinusoidal phase modulation of the beam is obtained by an electro-optic crystal (EOC) in the external cavity. The phase of the interference signal is demodulated by Fourier analysis method. The combination of the modulation and demodulation decreases the sensitivity of the instrument to fluctuations of the laser power and the noise induced by environment. Experimentally, the new micro-interferometer is applied to measure the micro-displacement of a high precision commercial PZT with an accuracy of＜10 nm.
Detector Modules for the CMS Pixel Phase 1 Upgrade
Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul
2017-01-01
The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.
Zeringue, Clint; Dajani, Iyad; Naderi, Shadi; Moore, Gerald T; Robin, Craig
2012-09-10
Beam combining of phase-modulated kilowatt fiber amplifiers has generated considerable interest recently. We describe in the time domain how stimulated Brillouin scattering (SBS) is generated in an optical fiber under phase-modulated laser conditions, and we analyze different phase modulation techniques. The temporal and spatial evolutions of the acoustic phonon, laser, and Stokes fields are determined by solving the coupled three-wave interaction system. Numerical accuracy is verified through agreement with the analytical solution for the un-modulated case and through the standard photon conservation relation for counter-propagating optical fields. As a test for a modulated laser, a sinusoidal phase modulation is examined for a broad range of modulation amplitudes and frequencies. We show that, at high modulation frequencies, our simulations agree with the analytical results obtained from decomposing the optical power into its frequency components. At low modulation frequencies, there is a significant departure due to the appreciable cross talk among the laser and Stokes sidebands. We also examine SBS suppression for a white noise source and show significant departures for short fibers from analytically derived formulas. Finally, SBS suppression through the application of pseudo-random bit sequence modulation is examined for various patterns. It is shown that for a fiber length of 9 m the patterns at or near n=7 provide the best mitigation of SBS with suppression factors approaching 17 dB at a modulation frequency of 5 GHz.
Enabling Technologies for Direct Detection Optical Phase Modulation Formats
Xu, Xian
Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK
Phase modulation mode of scanning ion conductance microscopy
Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)
2014-08-04
This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.
Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.
Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V
2008-12-22
A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.
Single-random-phase holographic encryption of images
Tsang, P. W. M.
2017-02-01
In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.
Rivera-Ortega, Uriel; Meneses-Fabian, Cruz; Rodriguez-Zurita, Gustavo; Robledo-Sanchez, Carlos
2014-04-01
An alternative method for phase retrieval based on spatial and binary non-quadrature amplitude modulation (NQAM) is presented. This proposal is based on the superposition of a probe beam with a reference beam modulated in phase and amplitude (PAM) by NQAM, which is implemented by two neutral density filters (NDF) in a three-beam Mach-Zehnder interferometer (MZI). The principal advantage of this proposal lies in an analytical relationship between the variations of phase and visibility in an interferogram with the variations in the amplitudes of the reference beams used to implement NQAM; thus, the interferograms can be normalized and their introduced phase variations can be known from the measured intensities. Consequently it is possible to successfully retrieve the object phase. It is worthy to note that this method is capable of accepting that the phase and visibility variations in the interferograms could be spatial functions.
Code-modulated interferometric imaging system using phased arrays
Chauhan, Vikas; Greene, Kevin; Floyd, Brian
2016-05-01
Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.
Continuum Random Phase Approximation with finite-range interactions
Co' , Giampaolo [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); De Donno, Viviana [Universita del Salento, Dipartimento di Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Anguiano, Marta; Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)
2016-05-15
We rewrite the Random Phase Approximation secular equations in a form which allows the treatment of the continuum part of the single-particle spectrum without approximations. Within this formalism finite-range interactions can be used without restrictions. We present some results, obtained with Gogny interactions, where the role of the continuum is relevant. (orig.)
Phase shifting mask modulated laser patterning on graphene
Gao, Fan; Liu, Fengyuan; Ye, Ziran; Sui, Chenghua; Yan, Bo; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Zheng, Youdou; Shi, Yi
2017-01-01
A one-step graphene patterning method is developed in this paper. A phase shifting mask is used to modulate incident laser beam spatially and generate graphene patterns by laser heating. Periodic graphene nanoribbon and nanomesh structures are fabricated by employing 1D and 2D phase shifting masks, respectively. The noncontact, simple procedure, easy handling and economic properties of this method make it promising towards graphene-based device fabrication.
Modulation instabilities in randomly birefringent two-mode optical fibers
Li, Jin-Hua; Ren, Hai-Dong; Pei, Shi-Xin; Cao, Zhao-Lou; Xian, Feng-Lin
2016-12-01
Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Pcr, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Pcr), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Pcr, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The MI analysis in this paper is verified by numerical simulation. Project supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 14KJB140009), the National Natural Science Foundation of China (Grant No. 11447113), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 2241131301064).
10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation
Hu, Hao; Mulvad, Hans Christian Hansen; Peucheret, Christophe
2011-01-01
to compensate the chirp. The non-linear pulse compression stages are based on self-phase modulation (SPM) in dispersion-flattened highly non-linear fibers (DF-HNLF). The pulse source is tunable over the C-band with negligible pedestal. © 2011 Optical Society of America....... the high pulse quality. The pulse source is based on a linear pulse compression stage followed by two polarization-independent non-linear pulse compression stages. The linear pulse compression stage relies on a phase modulator, which is used to generate linear chirp and followed by a dispersive element...
Random phase-free computer-generated hologram
Shimobaba, Tomoyoshi
2015-01-01
Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.
Random phase-free computer-generated hologram.
Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-04-01
Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.
Particle modulations to turbulence in two-phase round jets
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Charge modulation as fingerprints of phase-string triggered interference
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-07
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T _{c} cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
Coherence control of pulse trains by spectral phase modulation
Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Setälä, Tero; Friberg, Ari T.
2017-09-01
We propose a technique to control the spectral and temporal coherence properties of pulsed beams of light via time-dependent manipulation of the spectral phase. Modulation schemes for the generation of partially coherent pulse trains from a train of fully coherent pulses are presented. The feasibility of experimental realization of the method is confirmed by numerical estimates.
Phase-controlled superconducting heat-flux quantum modulator
Giazotto, F.; Martínez-Pérez, M. J.
2012-09-01
We theoretically put forward the concept of a phase-controlled superconducting heat-flux quantum modulator. Its operation relies on phase-dependent heat current predicted to occur in temperature-biased Josephson tunnel junctions. The device behavior is investigated as a function of temperature bias across the junctions, bath temperature, and junctions asymmetry as well. In a realistic Al-based setup the structure could provide temperature modulation amplitudes up to ˜50 mK with flux-to-temperature transfer coefficients exceeding ˜125 mK/Φ0 below 1 K, and temperature modulation frequency of the order of a few MHz. The proposed structure appears as a promising building-block for the implementation of caloritronic devices operating at cryogenic temperatures.
Optical phase encryption by phase contrast using electrically addressed spatial light modulator
Nishchal, Naveen Kumar; Joseph, Joby; Singh, Kehar
2003-03-01
We report the use of an electrically addressed liquid crystal spatial light modulator (EALCSLM) operating in the phase mode as a phase-contrast filter (PCF). As an application, an optical phase encryption system has been implemented. We encrypt and decrypt a two-dimensional phase image obtained from an amplitude image. Encrypted image is holographically recorded in a Barium titanate crystal and is then decrypted by generating through phase conjugation, a conjugate of the encrypted image. The decrypted phase image is converted into an amplitude image using an EASLM as a PCF. The idea has been supported by the experimental results.
A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation
2002-01-01
The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the......The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase......-modulation of the present invention is performed by generating an amplitude modulation in the wave front, Fourier or Fresnel transforming the amplitude modulated wave front, filtering Fourier or Fresnel components of the Fourier or Fresnel distribution with a spatial filter such as a phase contrast filter, and regenerating...... the wave front whereby the initial amplitude modulation has transformed into a phase-modulation....
Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.
2010-02-16
Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.
Covert communications using random noise signals: overall system simulation and modulation analysis
Chuang, Jack; Narayanan, Ram M.
2005-06-01
In military communications, there exist numerous potential threats to message security. Ultra-wideband (UWB) signals provide secure communications because they cannot, in general, be detected using conventional receivers and they can be made relatively immune from jamming. The security of an UWB signal can be further improved by mixing it with random noise. By using a random noise signal, the user can conceal the message signal within the noise waveform and thwart detection by hostile forces. This paper describes a novel spread spectrum technique that can be used for secure and covert communications. The technique is based on the use of heterodyne correlation techniques to inject coherence in a random noise signal. The modulated signal to be transmitted containing the coherent carrier is mixed with a sample of an ultrawideband random noise signal. The frequency range of the ultra-wideband noise signal is appropriately chosen so that the lower sideband of the mixing process falls over the same frequency range. Both the frequency-converted noise-like signal and the original random noise signal are simultaneously transmitted on orthogonally polarized channels through a dual-polarized transmitting antenna. The receiver consists of a similar dual-polarized antenna that simultaneously receives the two orthogonally polarized transmitted signals, amplifies each in a minimum phase limiting amplifier, and mixes these signals in a double sideband up-converter. The upper sideband of the mixing process recovers the modulated signal, which can then be demodulated. The advantage of this technique lies in the relative immunity of the random noise-like un-polarized transmit signal from detection and jamming. Since the transmit signal "appears" totally un-polarized and noise-like, linearly polarized receivers are unable to identify, decode, or otherwise extract useful information from the signal. The system is immune from interference caused by high power linearly polarized signal
A third-order phase transition in random tilings
Colomo, F
2013-01-01
We consider the domino tilings of an Aztec diamond with a cut-off corner of macroscopic square shape and given size, and address the bulk properties of tilings as the size is varied. We observe that the free energy exhibits a third-order phase transition when the cut-off square, increasing in size, reaches the arctic ellipse---the phase separation curve of the original (unmodified) Aztec diamond. We obtain this result by studying the thermodynamic limit of certain nonlocal correlation function of the underlying six-vertex model with domain wall boundary conditions, the so-called emptiness formation probability (EFP). We consider EFP in two different representations: as a tau-function for Toda chains and as a random matrix model integral. The latter has a discrete measure and a linear potential with hard walls; the observed phase transition shares properties with both Gross-Witten-Wadia and Douglas-Kazakov phase transitions.
Temporally modulated phase retrieval method for weak temporal phase measurement of laser pulses
Qiao, Zhi; Wang, Xiaochao; Jing, Yuanyuan; Fan, Wei; Lin, Zunqi
2016-01-01
The measurement of weak temporal phase for picosecond and nanosecond laser pulses is important but quite difficult. We propose a simple iterative algorithm, which is based on a temporally movable phase modulation process, to retrieve the weak temporal phase of laser pulses. This unambiguous method can achieve a high accuracy and simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform-limited. Detailed analysis shows that this iterative method has valuable potential applications in the characterization of pulses with weak temporal phase.
Resistance of the double random phase encryption against various attacks.
Frauel, Yann; Castro, Albertina; Naughton, Thomas J; Javidi, Bahram
2007-08-06
Several attacks are proposed against the double random phase encryption scheme. These attacks are demonstrated on computer-generated ciphered images. The scheme is shown to be resistant against brute force attacks but susceptible to chosen and known plaintext attacks. In particular, we describe a technique to recover the exact keys with only two known plain images. We compare this technique to other attacks proposed in the literature.
Extended Quark Potential Model From Random Phase Approximation
DENGWei－Zhen; CHENXiao－Lin; 等
2002-01-01
The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.
Extended Quark Potential Model from Random Phase Approximation
DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming
2002-01-01
The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.
Quasiparticle Random Phase Approximation with an optimal Ground State
Simkovic, F; Raduta, A A
2001-01-01
A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.
CHEN Wei-cheng; XU Wen-cheng
2006-01-01
Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.
Phase shifting interferometry from two normalized interferograms with random tilt phase-shift.
Liu, Fengwei; Wu, Yongqian; Wu, Fan
2015-07-27
We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.
Large conditional single-photon cross-phase modulation
Beck, Kristin M; Duan, Yiheng; Vuletić, Vladan
2015-01-01
Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by $\\pi$ through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to $\\pi/3$ between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of $\\pi$ at low loss, enabling deterministic and universal photonic quantum logic.
Towards a FPGA-controlled deep phase modulation interferometer
Terán, M; Gesa, L l; Mateos, I; Gibert, F; Karnesis, N; Ramos-Castro, J; Schwarze, T S; Gerberding, O; Heinzel, G; Guzmán, F; Nofrarias, M
2014-01-01
Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.
Dynamic phase-control of a rising sun magnetron using modulated and continuous current
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)
2016-01-28
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.
Takahashi, Makoto; Uchida, Natsuko; Yoshida, Mami; Liang, Nan; Nakazawa, Kimitaka; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Hamada, Hironobu
2014-12-01
This study was undertaken to identify the temporal characteristics of corticospinal excitability of tibialis anterior muscle during the observation of the initial phase of gait. For this purpose, using transcranial magnetic stimulation, we recorded motor evoked potentials (MEPs) during the observation of the second step of an actor's first three steps of gait initiation with (complex gait) or without (normal gait) an obstacle and unstable surface. The results demonstrate that (1) MEPs during the observation of the initial phase of normal gait were significantly increased only at early swing phase, but not other phases (mid-swing, heel contact, mid-stance, and heel off) and (2) MEPs during the observation of the initial phase of complex gait were significantly increased at early swing and also at mid-swing and heel contact phases. These findings provide the first evidence that corticospinal excitability during the observation of gait, especially the initial phase, is modulated in phase- and motor-demanded-dependent manners.
Residual intensity modulation in resonator fiber optic gyros with sinusoidal wave phase modulation
Di-qing YING; Qiang LI; Hui-lian MA; Zhong-he JIN
2014-01-01
We present how residual intensity modulation (RIM) affects the performance of a resonator fiber optic gyro (R-FOG) through a sinusoidal wave phase modulation technique. The expression for the R-FOG system’s demodulation curve under RIM is obtained. Through numerical simulation with different RIM coefficients and modulation frequencies, we find that a zero deviation is induced by the RIM effect on the demodulation curve, and this zero deviation varies with the RIM coefficient and modulation frequency. The expression for the system error due to this zero deviation is derived. Simulation results show that the RIM-induced error varies with the RIM coefficient and modulation frequency. There also exists optimum values for the RIM coefficient and modulation frequency to totally eliminate the RIM-induced error, and the error increases as the RIM coefficient or modulation frequency deviates from its optimum value;however, in practical situations, these two parameters would not be exactly fixed but fluctuate from their respective optimum values, and a large system error is induced even if there exists a very small deviation of these two critical parameters from their optimum values. Simulation results indicate that the RIM-induced error should be con-sidered when designing and evaluating an R-FOG system.
Comprehensive research on self phase modulation based optical delay systems
Yang Ai-Ying; Sun Yu-Nan
2010-01-01
This paper comprehensively investigates the properties of self phase modulation based optical delay systems consisting of dispersion compensation fibre and highly nonlinear fibres.It researches into the impacts of power level launched into highly nonlinear fibres,conversion wavelength,dispersion slope,modulation format and optical filter bandwidth on the overall performance of optical delay systems.The results reveal that,if the power launched into highly nonlinear fibres is fixed,the time delay generally varies linearly with the conversion wavelength,but jumps intermittently at some conversion wavelengths.However,the time delay varies semi-periodically with the power launched into highly nonlinear fibres.The dispersion slope of highly nonlinear fibres has significant influence on the time delay,especially for the negative dispersion slope.The time delay differs with modulation formats due to the different combined interaction of nonlinearity and dispersion in fibres.The bandwidth of the optical filters also greatly affects the time delay because it determines the bandwidth of the passed signal in the self phase modulation based time delay systems.The output signal quality of the overall time delay systems depends on the conversion wavelength and input power level.The optimisation of the power level and conversion wavelength to provide the best output signal quality is made at the end of this paper.
Phase modulated solitary waves controlled by bottom boundary condition
Mukherjee, Abhik
2014-01-01
A forced KdV equation is derived to describe weakly nonlinear, shallow water surface wave propagation over non trivial bottom boundary condition. We show that different functional forms of bottom boundary conditions self-consistently produce different forced kdV equations as the evolution equations for the free surface. Solitary wave solutions have been analytically obtained where phase gets modulated controlled by bottom boundary condition whereas amplitude remains constant.
Absolute Uniqueness of Phase Retrieval with Random Illumination
Fannjiang, Albert
2011-01-01
Random phase or amplitude illumination is proposed to remove at once all types of ambiguity, trivial or nontrivial, at once from phase retrieval. Almost sure irreducibility is proved for {\\em any} complex-valued object of arbitrary sparsity. While this irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a new perspective and an effective method for achieving absolute uniqueness in phase retrieval for {\\em every} object, not just objects outside of a measure-zero set. In particular, almost sure absolute uniqueness is proved for complex-valued objects under a general two-point assumption. For objects of nonnegative real and imaginary parts, absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases.
Multiple image encryption and watermarking by random phase matching
He, M. Z.; Cai, L. Z.; Liu, Q.; Wang, X. C.; Meng, X. F.
2005-03-01
Usually a set of transmitted patterns can realize encryption and/or watermarking just for one hidden image. In this paper, we propose a novel method of multiple image encryption and watermarking by random phase matching, which can encrypt and then decrypt more than one image with the same set of transmitted patterns based on the idea of double phase encoding and the wave field superposition. The principle and procedure of this method are explained. A series of computer simulations with phase-shifting interferometry have shown that two or four independent images can be encrypted and decrypted without or with watermarking successfully with one set of composite interferograms. The ability of this method to retrieve hidden image(s) from part of the transmitted patterns has also been verified. This technique can considerably raise the efficiency of data transmission, and it is particularly suitable for the image transmission via Internet.
Cascading dynamics on random networks: Crossover in phase transition
Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong
2012-02-01
In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.
Neutron diffusion in a randomly inhomogeneous multiplying medium with random phase approximation
Imre, Kaya [Courant Institute of Mathematical Sciences, New York University, New York 10012 (United States); Akcasu, A. Ziya [University of Michigan, Ann Arbor, Michigan 48109 (United States)
2012-06-15
Neutron diffusion in a randomly inhomogeneous multiplying medium is studied. By making use of a random phase assumption we show that the average neutron density approximately satisfies an integral equation in Fourier space, which is solved using Kummer functions. We used multi-dimensional formulation. In the case of one dimension, we obtain the result of Rosenbluth and Tao for the mean total density for large t. In the three-dimensional case, a closed form of solution is derived for the mean total neutron density. Its asymptotic behavior is also investigated for large t.
Blaaberg, Søren; Mørk, Jesper
2009-01-01
We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....
Auto-correlation Properties of Scattering Light in Ultrasound-modulated Random Media
ZHANG Xiqin; XING Da; LIU Ying; MA Shining
2001-01-01
In this paper, the auto-correlation properties of scattering light in random media modulated by ultrasound were studied. The expression of temporal auto-correlation function of scattering light amplitude in the ultrasound-modulated media was presented. The results show that the auto-correlation function is modulated as the ultrasound is introduced into the media and the modulation amplitude decays with correlation time. The influences of ultrasound amplitude, Brownian diffusion coefficient, scattering and absorption coefficients on auto-correlation function were discussed. The auto-correlation imaging of an object hidden in random media was also studied by the use of Monte Carlo simulations.
Natural transformation and phase variation modulation in Neisseria meningitidis.
Alexander, Heather L; Richardson, Anthony R; Stojiljkovic, Igor
2004-05-01
Neisseria meningitidis has evolved the ability to control the expression-state of numerous genes by phase variation. It has been proposed that the process aids this human pathogen in coping with the diversity of microenvironments and host immune systems. Therefore, increased frequencies of phase variation may augment the organism's adaptability and virulence. In this study, we found that DNA derived from various neisserial co-colonizers of the human nasopharynx increased N. meningitidis switching frequencies, indicating that heterologous neisserial DNA modulates phase variation in a transformation-dependent manner. In order to determine whether the effect of heterologous DNA was specific to the Hb receptor, HmbR, we constructed a Universal Rates of Switching cassette (UROS). With this cassette, we demonstrated that heterologous DNA positively affects phase variation throughout the meningococcal genome, as UROS phase variation frequencies were also increased in the presence of neisserial DNA. Overexpressing components of the neisserial mismatch repair system partially alleviated DNA-induced changes in phase variation frequencies, thus implicating mismatch repair titration as a cause of these transformation-dependent increases in switching. The DNA-dependent effect on phase variation was transient and may serve as a mechanism for meningococcal genetic variability that avoids the fitness costs encountered by global mutators.
Fully phase image encryption using double random-structured phase masks in gyrator domain.
Singh, Hukum; Yadav, A K; Vashisth, Sunanda; Singh, Kehar
2014-10-01
We propose a method for fully phase image encryption based on double random-structured phase mask encoding in the gyrator transform (GT) domain. The security of the system is strengthened by parameters used in the construction of a structured phase mask (SPM) based on a devil's vortex Fresnel lens (DVFL). The input image is recovered using the correct parameters of the SPMs, transform orders of the GT, and conjugate of the random phase masks. The use of a DVFL-based SPM enhances security by increasing the key space for encryption, and also overcomes the problem of axis alignment associated with an optical setup. The proposed scheme can also be implemented optically. The computed values of mean squared error between the retrieved and the original image show the efficacy of the proposed scheme. We have also investigated the scheme's sensitivity to the encryption parameters, and robustness against occlusion and multiplicative Gaussian noise attacks.
Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation
2012-05-11
a monolithically integrated widely-tunable laser- phase modulator ,” in Proc. Optical Fiber Communication Conf. OFC 2004, vol. 2, 2004. [92] M. N... modulation efficiency experimental setup. . . . . . . . . . . . . . 70 5.5 DBR FM modulation efficiency versus frequency. . . . . . . . . . . . 71 v 5.6...Phase-noise limited noise figure for FM DBR lasers from measured modulation efficiency and linewidth. . . . . . . . . . . . . . . . . . . . 71 5.7
Random phase wave: a soluble non-Markovian system
Dewar, R.L.
1977-12-01
The averaged propagator and the corresponding mass operator (non-Markovian particle-wave collision operator) of a particle being accelerated by a random potential are constructed explicitly in a model system. The model consists of an ensemble of monochromatic waves of random phase, such as arises in narrow-bandwidth plasma turbulence, and is particularly interesting as a system exhibiting strong trapping. An essential simplifying feature is that the propagator is evaluated in oscillation-center picture, which greatly simplifies the momentum-space operators occurring in the problem, and leads to a remarkable factorization of the mass operator. General analyticity and symmetry properties are derived using a projection-operator method, and verified for the solution of the model system. The nature of the memory exhibited by the mass operator is briefly examined.
Doorway States in the Random-Phase Approximation
De Pace, A; Weidenmueller, H A
2014-01-01
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
Doorway states in the random-phase approximation
De Pace, A., E-mail: depace@to.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Molinari, A. [Dipartimento di Fisica Teorica dell’Università di Torino, via P.Giuria 1, I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P.Giuria 1, I-10125 Torino (Italy); Weidenmüller, H.A. [Max-Planck-Institut für Kernphysik, D-69029 Heidelberg (Germany)
2014-12-15
By coupling a doorway state to a sea of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from the standard description of doorway states in the shell model. We derive the Pastur equation in the limit of large matrix dimension and show that the results agree with those of matrix diagonalization in large spaces. The complexity of the Pastur equation does not allow for an analytical approach that would approximately describe the doorway state. Our numerical results display unexpected features: The coupling of the doorway state with states of opposite energy leads to strong mutual attraction.
LI Ming-zi; ZHAO Hui-chang
2008-01-01
The identification features of composite pseudocode phase modulation and carry frequency modulation signal in-clude pseudocode and modulation frequency. In this paper, PWD is used to extract these features. First, the feature of pseudocode is extracted using the amplitude output of PWD and the correlation filter technology. Then the feature of fre-quency modulation is extracted by way of PWD analysis on the signal processed by anti-phase operation according to the extracted feature of pseudo code, i.e. position information of changed abruptly point of phase. The simulation result shows that both the features of frequency modulation and phase change position caused by the pseudocode phase modula-tion can be extracted effectively for SNR = 3 dB.
Measurement of characteristics and phase modulation accuracy increase of LC SLM "HoloEye PLUTO VIS"
Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, R. S.; Starikov, S. N.
2014-09-01
Phase liquid crystal spatial light modulators (LC SLM) are actively integrated in various optical systems for dynamic diffractive optical elements imaging. To achieve the best performance, high stability and linearity of phase modulation is required. This article presents results of measurement of characteristics and phase modulation accuracy increase of state of the art LC SLM with HD resolution "HoloEye PLUTO VIS".
Detection of phase randomly distributed weak transient signal using chaos
无
2005-01-01
In practical communication and radar system s, the phase of the received signal is random, the arrival time is unknown, the lasting time is limited and the SNR is often very low. In order to realize the detection of the signal, the method of using a group of nonlinear differential equations is presented. The theory of this chaos-based detection is analyzed. Computer simulation indicates that the shortest lasting time of the transient signal that can be detected out is 12 periods, the detection error of arrival time is less than 7/8 signal's period, the detection characteristics are got using Monte-Carlo simulation.
Relativistic quasiparticle random phase approximation in deformed nuclei
Pena Arteaga, D.
2007-06-25
Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)
Phase 1 pixel modules production and High Density Interconnect testing
Still, Joseph
2014-01-01
During the first run of the LHC, luminosity peaked at $1 \\times 10^{34} cm^{-2}s^{-1}$ with $ \\approx 50 ns$ bunch spacing a pile-up of about 25, or simultaneous inelastic collisions per crossing, occur in the CMS experiment. However after the upgrade of of the LHC during long shut down 1, luminosity, and therefore pile-up. Therefore the CMS pixel tracker has to be upgraded to be able to operate correctly under this news stronger constraints. That is how this CERN Summer Student project, which took place at the CERN Meyrin site, comes within the framework of the pixel detector upgrade in the CMS experiment with a work aimed on the phase 1 of pixel modules production and tests of the HDI. The production and tests of the HDI were held in cleanroom facilities. This included first hand as well as to work on pixel modules building and performing size and flatness tests on them, and on a other hand testing several HDIs. At first, prototypes modules were assembled before real modules building. Another aspect of work...
Modulation Format Independent Joint Polarization and Phase Tracking for Coherent Receivers
Czegledi, Cristian B; Karlsson, Magnus; Johannisson, Pontus
2016-01-01
The state of polarization and the carrier phase drift dynamically during transmission in a random fashion in coherent optical fiber communications. The typical digital signal processing solution to mitigate these impairments consists of two separate blocks that track each phenomenon independently. Such algorithms have been developed without taking into account mathematical models describing the impairments. We study a blind, model-based tracking algorithm to compensate for these impairments. The algorithm dynamically recovers the carrier phase and state of polarization jointly for an arbitrary modulation format. Simulation results show the effectiveness of the proposed algorithm, having a fast convergence rate and an excellent tolerance to phase noise and dynamic drift of the polarization. The computational complexity of the algorithm is lower compared to state-of-the-art algorithms at similar or better performance, which makes it a strong candidate for future optical systems.
MICS Asia Phase II - Sensitivity to the aerosol module
Sartelet, Karine; Sportisse, Bruno
2007-01-01
In the framework of the model inter-comparison study - Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM10. An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed...
Parallel phase modulation scheme for interferometric gravitational-wave detectors.
Hartman, M T; Quetschke, V; Tanner, D B; Reitze, D H; Mueller, G
2014-11-17
Advanced LIGO (aLIGO) requires multiple frequency sidebands to disentangle all of the main interferometer's length signals. This paper presents the results of a risk reduction experiment to produce two sets of frequency sidebands in parallel, avoiding mixed 'sidebands on sidebands'. Two phase modulation frequencies are applied to separate Electro-Optic Modulators (EOMs), with one EOM in each of the two arms of a Mach-Zehnder interferometer. In this system the Mach-Zehnder's arm lengths are stabilized to reduce relative intensity noise in the recombined carrier beam by feeding a corrective control signal back to the Rubidium Titanyl Phosphate (RTP) EOM crystals to drive the optical path length difference to zero. This setup's use of the RTP crystals as length actuators provides enough bandwidth in the feedback to meet arm length stability requirements for aLIGO.
Scale-free brain ensemble modulated by phase synchronization
Dan WU; Chao-yi LI; Jie LIU; Jing LU; De-zhong YAO
2014-01-01
To listen to brain activity as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which could translate the scalp electroencephalogram (EEG) into music notes according to the power law of both EEG and music. In the current study, this methodology was further extended to a musical ensemble of two channels. First, EEG data from two selected channels are translated into musical instrument digital interface (MIDI) sequences, where the EEG parameters modulate the pitch, duration, and volume of each musical note. The phase synchronization index of the two channels is computed by a Hilbert transform. Then the two MIDI sequences are integrated into a chorus according to the phase synchronization index. The EEG with a high synchronization index is represented by more consonant musical intervals, while the low index is expressed by inconsonant musical intervals. The brain ensemble derived from real EEG segments illustrates differences in harmony and pitch distribution during the eyes-closed and eyes-open states. Furthermore, the scale-free phenomena exist in the brainwave ensemble. Therefore, the scale-free brain ensemble modulated by phase synchronization is a new attempt to express the EEG through an auditory and musical way, and it can be used for EEG monitoring and bio-feedback.
The decryption of random phase multiplexing encoding system
Lee, Hsiao-Yi; Liu, Jung-Ping; Chang, Chi-Ching; Yau, Hon-Fai; Chang, Tsung-Chien
2004-10-01
Random-phase-multiplexing storage using photorefractive crystals is one of the most important topics in the field of photorefractive optics. To achieve random phase recording, we can use a diffuser to encrypt the reference light in a holographic recording setup. To decrypt the recorded pattern, the same diffuser used in encryption must be used in the reconstruction light, and it must be set in the original orientation. In this way, a number of 2-D patterns can be stored in a single photorefractive crystal with a single diffuser set at different orientations for different patterns. A merit in this recording method is that the encryption is virtually not possible to be decrypted if the original diffuser for encrypting is not available. In this paper, we proposed a way to decrypt the encrypted information in a photorefractive lithium niobate crystal without the possession of the original diffuser. In this method, we suppose somehow we know one of the patterns stored in the crystal, and then we retrieve the original diffuser with this pattern. And ultimately all the other patterns stored in the crystal are decrypted and retrieved with this retrieved diffuser.
M S Islam
2010-03-01
Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.
Novel modulated Hexatic Phases in Symmetric Liquid Crystal Dimers
Date, R; Luckhurst, G.; Shuman, M.; Seddon, J
1995-01-01
Homologues of the dimeric α,ω-bis(4-n-alkylanilinebenzylidene-4'-oxy)alkanes (m.OnO.m) have been synthesised with spacer lengths n ranging from 9 to 12 methylene units and with terminal alkyl chain lengths m of 10, 12 and 14. Characterisation of these materials has been carried out by X-ray diffraction, differential scanning calorimetry and optical microscopy. In six of these compounds a novel modulated tilted hexatic phase, denoted S1, has been identified, in which the smectic layers have a ...
Modulated phases of graphene quantum Hall polariton fluids
Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco
2016-11-01
There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron-electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron-electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron-electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length.
New space vector modulation technique for single-phase multilevel converters
León Galván, José Ignacio; Portillo Guisado, Ramón Carlos; García Franquelo, Leopoldo; Vázquez Pérez, Sergio; Carrasco Solís, Juan Manuel; Domínguez, E
2007-01-01
Single-phase multilevel converters are suitable for medium power applications as photovoltaic systems and switched reluctance machines. An overview of possible modulation methods including carrier-based pulse width modulation and space vector modulation techniques for multilevel single-phase converters is presented. A new space vector modulation for this type of converters is proposed. This space vector modulation method is very simple presenting low computational cost. Different solutions fo...
Finding non-eclipsing binaries through pulsational phase modulation
Murphy, Simon J.; Bedding, Timothy R.; Shibahashi, Hiromoto; Kurtz, Donald W.; Kjeldsen, Hans
2015-09-01
We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately measure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the parameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with delta Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightforward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone. This contribution is based largely upon the work by Murphy et al. [1], describing the phase-modulation method in detail.
Testing a random phase approximation for bounded turbulent flow
Ulitsky, Mark; Clark, Tim; Turner, Leaf
1999-05-01
Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.
Rajput, Sudheesh K.; Nishchal, Naveen K.
2017-04-01
We propose a novel security scheme based on the double random phase fractional domain encoding (DRPE) and modified Gerchberg-Saxton (G-S) phase retrieval algorithm for securing two images simultaneously. Any one of the images to be encrypted is converted into a phase-only image using modified G-S algorithm and this function is used as a key for encrypting another image. The original images are retrieved employing the concept of known-plaintext attack and following the DRPE decryption steps with all correct keys. The proposed scheme is also used for encryption of two color images with the help of convolution theorem and phase-truncated fractional Fourier transform. With some modification, the scheme is extended for simultaneous encryption of gray-scale and color images. As a proof-of-concept, simulation results have been presented for securing two gray-scale images, two color images, and simultaneous gray-scale and color images.
Stability of Phase-modulated Quantum Key Distribution System
Han, Z F; Gui, Y Z; Guo, G C; Han, Zheng-Fu; Mo, Xiao-Fan; Gui, You-Zhen; Guo, Guang-Can
2004-01-01
Phase drift and random fluctuation of interference visibility in double unbalanced M-Z QKD system are observed and distinguished. It has been found that the interference visibilities are influenced deeply by the disturbance of transmission fiber. Theory analysis shows that the fluctuation is derived from the envioronmental disturbance on polarization characteristic of fiber, especially including transmission fiber. Finally, stability conditions of one-way anti-disturbed M-Z QKD system are given out, which provides a theoretical guide in pragmatic anti-disturbed QKD.
Analytic interatomic forces in the random phase approximation
Ramberger, Benjamin; Kresse, Georg
2016-01-01
We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the GW approximation. This relationship allows to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.
Accuracy of the Faddeev Random Phase Approximation for Light Atoms
Barbieri, C; Degroote, M
2010-01-01
The accuracy of the Faddeev random phase approximation (FRPA) method is tested by calculating the total and ionization energies of a set of light atoms up to Ar. Comparisons are made with the results of coupled-cluster singles and doubles (CCSD), third-order algebraic diagrammatic construction [ADC(3)], and with the experiment. It is seen that even for two-electron systems, He and Be-2+, the inclusion of RPA effects leads to satisfactory results and therefore it does not over-correlate the ground state. The FRPA becomes progressively better for larger atomic numbers where it gives about 5 mH more correlation energy and it shifts ionization potentials by 2-10 mH, with respect to its sister method ADC(3). The corrections for ionization potentials consistently reduce the discrepancies with the experiment.
Key-space analysis of double random phase encryption technique
Monaghan, David S.; Gopinathan, Unnikrishnan; Naughton, Thomas J.; Sheridan, John T.
2007-09-01
We perform a numerical analysis on the double random phase encryption/decryption technique. The key-space of an encryption technique is the set of possible keys that can be used to encode data using that technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For a range of problem instances we plot the distribution of decryption errors in the key-space indicating the lack of feasibility of a simple brute-force attack.
Surface wake in the random-phase approximation
Garcia de Abajo, F.J. (Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Universidad del Pais Vasco, Apartado 649, 20080 San Sebastian (Spain)); Echenique, P.M. (Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Apartado 1072, 20080 San Sebastian (Spain))
1993-11-01
The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons ([approx]1.3[ital v][sub [ital F
A mathematical formulation of the random phase approximation for crystals
Cances, Eric
2011-01-01
This works extends the recent study on the dielectric permittivity of crystals within the Hartree model [E. Cances and M. Lewin, Arch. Rational Mech. Anal., 197 (2010) 139--177] to the time-dependent setting. In particular, we prove the existence and uniqueness of the nonlinear Hartree dynamics, also called the random phase approximation in the physics literature, in a suitable functional space allowing to describe a local defect embedded in a perfect crystal. We also give a rigorous mathematical definition of the microscopic frequency-dependent polarization matrix, and derive the macroscopic Maxwell-Gauss equation for insulating and semiconducting crystals, from a first order approximation of the nonlinear Hartree model, by means of homogenization arguments.
Impacts of cross-phase modulation on modulation instability of Airy pulses
Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng
2016-10-01
The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.
Tunable RF photonic phase shifter based on optical DSB modulation and FBG filtering
Wei, Yongfeng; Huang, Shanguo; Sun, Kai; Gao, Xinlu; Gu, Wanyi
2016-01-01
A broadband RF photonic phase shifter that can achieve the tunable phase shift with little RF amplitude variation is presented. It is based on homodyne mixing technique. The beating between phase-modulated optical carrier and the sidebands can generate RF signal with desired phase shift. Results show the RF phase shifter can achieve a continuous phase shift with low amplitude variation.
Improvement of the image quality of random phase--free holography using an iterative method
Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi
2015-01-01
Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in the amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.
Spectral changes induced by a phase modulator acting as a time lens
Plansinis, B. W. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics.; Donaldson, W. R. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Agrawal, G. P. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.
2015-07-06
We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.
QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop
L. Kirasamuthranon
2017-06-01
Full Text Available Among M-phase shift keying (M-PSK schemes, quadrature phase-shift keying (QPSK is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.
Analytical Assessment of the Q-Factor due to Cross-Phase Modulation (XPM)
Stephan; Pachnicke; Edgar; Voges
2003-01-01
The paper describes the impact of cross-phase modulation on NRZ modulated WDM systems. The impairments due to XPM will be related to a Q-factor and the effects of dispersion management will be covered.
Threshold-voltage modulated phase change heterojunction for application of high density memory
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang; Miao, Xiangshui [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.
Simulation of mm-wave signal generation using phase modulation in ROF system
ZHANG da-peng; YU Chong-xiu; XIN Xiang-jun; MA Jian-xin; ZHANG Jin-long
2009-01-01
The generation of optical millimeter waves via the improved phase modulator in a RoF system and the transmission char-acter of the signal are thenretically investigated. A new phase modulating scheme is proposed, in which the sidebands are separated by wave length demultiplexer and one of them doesn't feed digital signals, thereby the phase wake-off is restrained.
DSP based coherent receiver for phase-modulated radio-over-fiber optical links
Zibar, Darko; Tafur Monroy, Idelfonso; Peucheret, Christophe
2008-01-01
A novel DSP based coherent receiver for phase modulated radio-over-fiber optical links is reported. Using the proposed digital receiver, signal demodulation of 1.25 Gb/s ASK-modulated 10 GHz RF carrier is experimentally demonstrated.......A novel DSP based coherent receiver for phase modulated radio-over-fiber optical links is reported. Using the proposed digital receiver, signal demodulation of 1.25 Gb/s ASK-modulated 10 GHz RF carrier is experimentally demonstrated....
Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals
Zibar, Darko; Yu, Xianbin; Peucheret, Christophe
2008-01-01
A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....
Kouko, S. L.; Llinares, C.
1995-08-01
In order to choose a photoelastic modulator for an application in spectroscopic phase modulated ellipsometry a complete calibration of two different types of photoelastic modulators is achieved. First the model that describes the behavior of each of them is accurately determined since the calibration procedure depends on it. Both modulators behave as a static strain model with a phase shift of the form δ = δ_0 + {\\cal A}sin ω t. Using the suitable procedures, the driving voltage V_mod and the static strain δ_0 of both devices are accurately determined as a function of the wavelength from 0.25 μm to 0.75 μm. A method to reduce the errors due to incorrect settings of the modulation voltage and the static birefringence is also proposed. An accuracy check of the calibration done by comparing the indexes of refraction of two silica prisms obtained with our ellipsometer and with the high precision goniometer method shows a very good agreement. Dans le but de choisir un modulateur photoélastique pour une application en ellipsométrie spectroscopique à modulation de phase, le calibrage de deux modulateurs a été réalisé. Dans un premier temps, le modèle décrivant chacun des modulateurs a été déterminé avec précision vu que la procédure de calibrage dépend de celui-ci : les deux modulateurs fonctionnent suivant le modèle avec biréfringence statique ayant un déphasage de la forme δ = δ_0 + {\\cal A}sin ω t. En utilisant les procédures de calibrage appropriées, la tension de pilotage V_mod et la biréfringence statique δ_0 ont été déterminées avec précision en fonction de la longueur d'onde dans la gamme spectrale s'étendant de 0,25 μm à 0,75 μm. Une méthode pour réduire les erreurs dues au calibrage de la tension de modulation et à la biréfringence résiduelle est également proposée. Un test de la précision du calibrage fait en comparant les indices de réfraction de deux prismes de silice obtenus avec notre ellipsomètre et avec
Masking property of quantum random cipher with phase mask encryption
Sohma, Masaki; Hirota, Osamu
2014-10-01
The security analysis of physical encryption protocol based on coherent pulse position modulation (CPPM) originated by Yuen is one of the most interesting topics in the study of cryptosystem with a security level beyond the Shannon limit. Although the implementation of CPPM scheme has certain difficulty, several methods have been proposed recently. This paper deals with the CPPM encryption in terms of symplectic transformation, which includes a phase mask encryption as a special example, and formulates a unified security analysis for such encryption schemes. Specifically, we give a lower bound of Eve's symbol error probability using reliability function theory to ensure that our proposed system exceeds the Shannon limit. Then we assume the secret key is given to Eve after her heterodyne measurement. Since this assumption means that Eve has a great advantage in the sense of the conventional cryptography, the lower bound of her error indeed ensures the security level beyond the Shannon limit. In addition, we show some numerical examples of the security performance.
Modulation of electromagnetic fields by a depolarizer of random polarizer array
Ma, Ning; Hanson, Steen Grüner; Wang, Wei
2016-01-01
The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers with ran......The statistical properties of the electric fields with random changes of the polarization state in space generated by a depolarizer are investigated on the basis of the coherence matrix. The depolarizer is a polarizer array composed of a multitude of contiguous square cells of polarizers...... with randomly distributed polarization angles, where the incident fields experience a random polarization modulation after passing through the depolarizer. The propagation of the modulated electric fields through any quadratic optical system is examined within the framework of the complex ABCD matrix to show...
Kojima, Kentaro; Miyazaki, Takeshi; Nojima, Ken; Yamamoto, Hirotaka; Sasaki, Yasuhito
2004-03-01
In this paper, we present an experiment based on the previously reported theory concerning the extension of the measurable region of object vibration phasor in phase-modulated TV holographic interferometry. This theory is based on the following facts: (1) the modulation of speckle interference image is proportional to the Bessel function, (2) its argument indicates the distance between the phasors of phase modulation and object vibration in the complex plane, and (3) the modulation increases as the Bessel function argument approaches zero. The phase modulation phasor is scanned, and at each pixel, one seeks the phase modulation phasor producing the maximum modulation. From the modulations produced by four phase modulation phasors adjacent to the sought phase modulation phasor, the object vibration phasor can be calculated. We analyzed the vibration of a phosphor-bronze rectangular plate with free sides, which were vibrated at the center by a piezoelectric transducer (PZT). Twenty-one phase modulation phasors were employed. The results of measurement were presented, and it was confirmed that the object vibration phasor can be measured in the wider region based on the theory concerning the extension of the measurable region.
HONG Ling-Fei; ZHANG Chun-Xi; FENG Li-Shuang; YU Huai-Yong; LEI Ming
2012-01-01
Resonator micro-optic gyro (R-MOG) sensing rotation angular-velocity is based on Sagnac effect.We present a frequency modulation (FM) induced by the analog triangle-waveform phase modulation (ATAW-PM) technique in an R-MOG.Compared with the traditional serrodyne phase modulation or digital phase modulation methods,the proposed modulation technique has the intrinsic advantage in free of sweeping-back or step-effect induced pulse noise.The influence on dynamic range and resolution of the R-MOG by the parameters of analog trianglewaveform is theoretically analyzed.Experiments are carried out on an R-MOG composed of an integrated optic resonator with a free spectral range (FSR) and a fitness (F) of 1.6GHz and 61,respectively.Dynamic range of ±500 deg/s and bias drift of 0.6 deg/s over 1 h and 0.05 deg/s for 60 s are reliably obtained.%Resonator micro-optic gyro (R-MOG) sensing rotation angular-velocity is based on Sagnac effect. We present a frequency modulation (FM) induced by the analog triangle-waveform phase modulation (ATAW-PM) technique in an R-MOG. Compared with the traditional serrodyne phase modulation or digital phase modulation methods, the proposed modulation technique has the intrinsic advantage in free of sweeping-back or step-effect induced pulse noise. The influence on dynamic range and resolution of the R-MOG by the parameters of analog triangle-waveform is theoretically analyzed. Experiments are carried out on an R-MOG composed of an integrated optic resonator with a free spectral range (FSR) and a Btness (F) of 1.6 GHz and 61, respectively. Dynamic range of ±500 deg/s and bias drift of 0.6deg/s over 1 h and 0.05deg/s for 60s are reliably obtained.
HE Cunfu; HANG Lijun; WU Bin
2007-01-01
To conveniently carry out the pipeline leak experiment in a laboratory,leak acoustic signals are simulated by using the converse piezoelectric effect of a piezoelectric transducer (PZT) cylindrical phase modulator.On the basis of the piezoelectric equations and electromechanical equivalence principle,the transfer function of a PZT cylindrical phase modulator is delivered.A PZT cylindrical phase modulator is designed,and the numerical simulation is conducted.Results prove that the PZT cylindrical phase modulator can effectively simulate leak acoustic emission signals when the frequency is lower than 25 KHz.
Expectation values of single-particle operators in the random phase approximation ground state.
Kosov, D S
2017-02-07
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
Expectation values of single-particle operators in the random phase approximation ground state
Kosov, D. S.
2017-02-01
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force
TIAN Yuan; MA Zhong-Yu; Ring Peter
2009-01-01
In our previous work [Phys. Lett. (to be published), Chin. Phys. Lett. 23 (2006) 3226], we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA ) with this separable pairing interaction and calculate the excitation energies of the first excited 2+ .states and reduced B(E2; 0+ → 2+) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction.
Relativistic continuum random phase approximation in spherical nuclei
Daoutidis, Ioannis
2009-10-01
Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)
Expectation values of single-particle operators in the random phase approximation ground state
Kosov, Daniel S
2016-01-01
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.
Waveguide Phase Modulator for Integrated Planar Lightwave Circuits in KTP Project
National Aeronautics and Space Administration — This SBIR Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a Planar Lightwave...
Phase-modulated shaping of narrowband type-I parametric down-converted photons
Joseph1, A T; Pike2, E R; Sarkar2, S
2006-01-01
We present a general theoretical description of the temporal shaping of narrowband noncollinear type-I down-converted photons using a spectral phase filter with a symmetric phase distribution. By manipulating the spectral phase of the signal or idler photon, we demonstrate control of the correlation time and shape of the two-photon wave function with modulation frequency and modulation depth of the phase distribution.
Sun, Y -E; Johnson, A; Lumpkin, A; Ruan, J; Thurman-Keup, R
2010-01-01
We report on an experiment to produce a train of sub-picosecond microbunches using a transverse-to-longitudinal emittance exchange technique. The generation of a modulation on the longitudinal phase space is done by converting an initial horizontal modulation produced using a multislits mask. The preliminary experimental data clearly demonstrate the conversion process. To date only the final energy modulation has been measured. However numerical simulations, in qualitative agreement with the measurements, indicate that the conversion process should also introduce a temporal modulation.
Enhanced Cross-Phase Modulation via Phase Control in a Quantum dot Nanostructure
郝向英; 郑安寿; 王英; 李小刚
2012-01-01
A four-level quantum dot （QD） nanostructure interacting with four fields （two weak near-infrared （NIR） pulses and two control fields） forms the well-known double-cascade configuration.We investigate the cross-phase modulation （XPM） between the two NIR pulses.The results show,in such a closed-loop scheme,that the XPM can be greatly enhanced,while the linear absorption and two-photon absorption （gain） can be efficiently depressed by tuning the relative phase among the applied fields.This protocol may have potential applications in NIR all-optical switch design and quantum information processing with the solid-state materials.
Hennelly, B. M.; Javidi, B.; Sheridan, J. T.
2005-09-01
A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.
Phase Transitions in Sampling Algorithms and the Underlying Random Structures
Randall, Dana
Sampling algorithms based on Markov chains arise in many areas of computing, engineering and science. The idea is to perform a random walk among the elements of a large state space so that samples chosen from the stationary distribution are useful for the application. In order to get reliable results, we require the chain to be rapidly mixing, or quickly converging to equilibrium. For example, to sample independent sets in a given graph G, the so-called hard-core lattice gas model, we can start at any independent set and repeatedly add or remove a single vertex (if allowed). By defining the transition probabilities of these moves appropriately, we can ensure that the chain will converge to a use- ful distribution over the state space Ω. For instance, the Gibbs (or Boltzmann) distribution, parameterized by Λ> 0, is defined so that p(Λ) = π(I) = Λ|I| /Z, where Z = sum_{J in Ω} Λ^{|J|} is the normalizing constant known as the partition function. An interesting phenomenon occurs as Λ is varied. For small values of Λ, local Markov chains converge quickly to stationarity, while for large values, they are prohibitively slow. To see why, imagine the underlying graph G is a region of the Cartesian lattice. Large independent sets will dominate the stationary distribution π when Λ is sufficiently large, and yet it will take a very long time to move from an independent set lying mostly on the odd sublattice to one that is mostly even. This phenomenon is well known in the statistical physics community, and characterizes by a phase transition in the underlying model.
Corticospinal modulations during bimanual movement with different relative phases
Yoshifumi eNomura
2016-03-01
Full Text Available The purpose of this study was to investigate corticospinal modulation of bimanual movement with different relative phases (RPs. The participants rhythmically abducted and adducted the right index finger (unimanual movement or both index fingers (bimanual movement with a cyclic duration of 1 s. The RP of bimanual movement, defined as the time difference between one hand movement and the other hand movement, was 0°, 90°, or 180°. Motor evoked potentials in the right flexor dorsal interosseous muscle elicited by transcranial magnetic stimulation were obtained during unimanual or bimanual movement. Corticospinal excitability in the first dorsal interosseous muscle during bimanual movement with 90° RP was higher than that during unimanual movement or bimanual movement with 0° or 180° RP. The correlation between muscle activity level and corticospinal excitability during bimanual movement with 90° RP was smaller than that during unimanual movement or bimanual movement with 0° or 180° RP. The higher corticospinal excitability during bimanual movement with 90° RP may be caused by the greater effort expended to execute a difficult task, the involvement of interhemispheric interaction, a motor binding process, or task acquisition. The lower dependency of corticospinal excitability on the muscle activity level during bimanual movement with 90° RP may reflect the minor corticospinal contribution to bimanual movement with an RP that is not in the attractor state.
L2 Orthogonal Space Time Code for Continuous Phase Modulation
Hesse, Matthias; Deneire, Luc
2008-01-01
To combine the high power efficiency of Continuous Phase Modulation (CPM) with either high spectral efficiency or enhanced performance in low Signal to Noise conditions, some authors have proposed to introduce CPM in a MIMO frame, by using Space Time Codes (STC). In this paper, we address the code design problem of Space Time Block Codes combined with CPM and introduce a new design criterion based on L2 orthogonality. This L2 orthogonality condition, with the help of simplifying assumption, leads, in the 2x2 case, to a new family of codes. These codes generalize the Wang and Xia code, which was based on pointwise orthogonality. Simulations indicate that the new codes achieve full diversity and a slightly better coding gain. Moreover, one of the codes can be interpreted as two antennas fed by two conventional CPMs using the same data but with different alphabet sets. Inspection of these alphabet sets lead also to a simple explanation of the (small) spectrum broadening of Space Time Coded CPM.
A review of single-phase grid-connected inverters for photovoltaic modules
Kjaer, Soren Baekhoej; Pedersen, John Kim; Blaabjerg, Frede
2005-01-01
This review focuses on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid. The inverters are categorized into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single...
Cognitive digital receiver for burst mode phase modulated radio over fiber links
Guerrero Gonzalez, Neil; Zibar, Darko; Tafur Monroy, Idelfonso
2010-01-01
A novel cognitive receiver for modulation format recognition with reconfigurable carrier recovery scheme is proposed and experimentally demonstrated for phase modulated radio-over-fibre links. Demodulation of burst-mode mixed modulation formats (PSK and QAM) is demonstrated after 40km...
Hyde, Milo W; Basu, Santasri
2016-07-20
In a recent paper [Appl. Opt.55, 1112 (2016)APOPAI0003-693510.1364/AO.55.001112], the authors present a procedure for synthesizing Gaussian phase screens to generate Schell-model sources. Their synthesis method is analyzed, revealing interesting phenomena not fully described by the authors.
All-optical $\\mathcal{PT}$-symmetric amplitude to phase modulator
Gutiérrez, Oscar Ignacio Zaragoza; Rodríguez-Lara, B M
2015-01-01
We study electromagnetic field propagation through a planar three-waveguide coupler with linear gain and loss, in a configuration that is the optical analog of a quantum $\\mathcal{PT}$-symmetric system, and provide its closed-form analytic propagator. At an specific propagation length, we show that the device provides all-optical amplitude to phase modulation with a $\\pi$ modulation range, if an extra binary phase is allowed in the reference signal, as well as phase to amplitude modulation, with an amplitude modulation range that depends linearly on the gain-to-coupling ratio of the system.
A novel modulation and direct detection scheme of optical phase shift keying
Yongcai Yang(杨永才); Wolfgang Vogel
2004-01-01
This paper introduces a new modulation and direct detection scheme of optical phase shift keying (PSK)which is simple and practical in fiber optical communication. A phase modulator is used to modulate a continuous wave (CW) laser source and return-to-zero (RZ) signal that is changed from the initial transmitting information is used to control a phase modulator to form a optical PSK signal. In the receiver terminal, just add a signal delayed a half of one bit to itself so that the initial information can be restored.
Combined Transmission of Baseband NRZ-DQPSK and Phase Modulated Radio-over-Fibre
Jensen, Jesper Bevensee; Yu, Xianbin; Tafur Monroy, Idelfonso
2008-01-01
21.4 Gbit/s baseband DQPSK and 1.25 Gbit/s phase modulated RoF was transmitted over 80 km SSMF using polarization multiplexing.......21.4 Gbit/s baseband DQPSK and 1.25 Gbit/s phase modulated RoF was transmitted over 80 km SSMF using polarization multiplexing....
A robust optical phase modulated 60 GHz RoF WDM system
Yu, Xianbin; Kozuch, Wojciech; Turkiewicz, Jaroslaw
2010-01-01
robust 4-channel WDM optical phase modulated 60GHz wireless fiber system is proposed and simulated. In this system, a Fabry-Perot (FP) frequency interleaver is designed to suppress optical carriers for 60GHz signal generation. The simulated results show that this phase modulated WDM system...
Affects of binary and continuous phase modulations on the structure of Bessel beams
Dudley, Angela L
2010-09-01
Full Text Available The authors implement a novel technique to operate a phase-only spatial light modulator (SLM) in amplitude mode, allowing them to reproduce Durnin’s ring slit on a liquid crystal display (LCD). The affects of binary and continuous phase modulations...
Thrasher, Adam; Graham, Geoffrey M; Popovic, Milos R
2005-06-01
A major limitation of many functional electrical stimulation (FES) applications is that muscles tend to fatigue very rapidly. It was hypothesized that FES-induced muscle fatigue could be reduced by randomly modulating the pulse frequency, amplitude, and pulse width in a range of +/-15%. Seven subjects with spinal-cord injuries participated in this study. FES was applied to quadriceps and tibialis anterior muscles using surface electrodes. Isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) was compared between trials. Four different modes of FES were applied in random order: constant stimulation, randomized frequency, randomized amplitude, and randomized pulse width. There was no significant difference between the fatigue-time measurements for the four modes of stimulation (P=0.329). Therefore, random modulation appeared to have no effect. Based on an observed correlation between maximum force measurements and trial order, we concluded that having 10-min rest periods between trials was insufficient.
Deng, Lei; Pang, Xiaodan; Zhang, Xu
2013-01-01
We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor.......We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....
Dy, Christine J.; Gerasimenko, Yury P.; Edgerton, V Reggie; Dyhre-Poulsen, Poul; Courtine, Grégoire; Harkema, Susan J.
2010-01-01
Phase-dependent modulation of monosynaptic reflexes has been reported for several muscles of the lower limb of uninjured rats and humans. To assess whether this step-phase-dependent modulation can be mediated at the level of the human spinal cord, we compared the modulation of responses evoked simultaneously in multiple motor pools in clinically complete spinal cord injury (SCI) compared with noninjured (NI) individuals. We induced multisegmental responses of the soleus, medial gastrocnemius,...
Electron correlation effects beyond the random phase approximation
Fan, J. D.; Malozovsky, Y. M.
2016-04-01
The methods that have been used to deal with a many-particle system can be basically sorted into three types: Hamiltonian, field theory and phenomenological method. The first two methods are more popular. Traditionally, the Hamiltonian method has been widely adopted in the conventional electronic theory for metals, alloys and semiconductors. Basically, the mean-field approximation (MFA) that has been working well for a weakly coupled system like a metal is employed to simplify a Hamiltonian corresponding to a particular electron system. However, for a strongly coupled many-particle system like a cuprate superconductor MFA should in principle not apply. Therefore, the field theory on the basis of Green’s function and the Feynman diagrams must be invoked. In this method, one is however more familiar with the random phase approximation (RPA) that gives rise to the same results as MFA because of being short of the information for higher-order terms of interaction. For a strongly coupled electron system, it is obvious that one has to deal with higher-order terms of a pair interaction to get a correct solution. Any ignorance of the higher-order terms implies that the more sophisticated information contained in those terms is discarded. However, to date one has not reached a consensus on how to deal with the higher-order terms beyond RPA. We preset here a method that is termed the diagrammatic iteration approach (DIA) and able to derive higher-order terms of the interaction from the information of lower-order ones on the basis of Feynman diagram, with which one is able to go beyond RPA step by step. It is in principle possible that all of higher-order terms can be obtained, and then sorted to groups of diagrams. It turns out that each of the groups can be replaced by an equivalent one, forming a diagrammatic Dyson-equation-like relation. The diagrammatic solution is eventually “translated” to a four-dimensional integral equation. The method can be applied to a
Modulated liquid-crystal phases induced by polarity: Twist-bend, splay-bend, and blue phases
Selinger, Jonathan; Shamid, Shaikh; Allender, David
2014-03-01
Nematic liquid crystals exhibit flexoelectric couplings between polar order and gradients in the director field. When the couplings become strong enough, the uniform nematic phase can become unstable to the formation of a modulated polar phase. The question is then: What is the structure of the modulated polar phase? Classic work by Meyer and further studies by Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-core liquid crystals. Here, we investigate modulated polar phases through a combination of Landau theory and lattice simulations. We find a range of possibilities, including the twist-bend and splay-bend phases as well as polar blue phases, with 2D or 3D modulations of the director field and the polar order. We compare these polar blue phases with chiral blue phases, and discuss opportunities for observing them experimentally. Supported by NSF DMR-1106014.
Ma, Baiheng; Peng, Fei; Kang, Mingwu; Zhou, Jiawu
2014-11-01
Twisted-nematic liquid crystal displays (TN-LCD) are widely used in numerous research fields of optics working as spatial light modulators. Approaches to obtaining desired intensity or phase modulation by TN-LCD have been extensively studied based on the knowledge of TN-LCD's internal structure parameters, e.g., the orientation of LC molecules at the surfaces, the twist angle, the thickness of the LC layer, and the birefringence of the material. Generally TN-LCD placed between two linear polarizers (P) produces coupled intensity and phase modulation. To obtain the commonly used pure phase modulation, quarter wave plates (QWP) are often used in front of and/or behind the LCD. In this paper, we present a method to optimize the optical modulation properties of the TN-LCD to obtain pure phase modulation in the configuration of P-QWP-LCD-QWP-P each with proper orientation. Firstly an improved method for determining the Jones matrix of the TN-LCD without knowing its internal parameters is presented, which is based on the macroscopical Jones matrix descriptions for TN-LCD, linear polarizer and QWP. Only three sets of intensity measurements are needed for the complete determination of the TN-LCD's Jones matrix for a single wavelength. Then Jones matrix calculations are carried out to determine the orientations of the polarizers and QWPs for pure phase modulation response. In addition, we prove that the phase modulation depth (PMD) of the TN-LCD can be further increased provided that the mean intensity transmission is decreased to a lower level, which is very useful when the TN-LCD is used as a phase modulator and the ratio between the intensities of the desired diffracted order relative to the other diffracted orders is required higher. Experimental results coincide well with the optical modulation properties of the TN-LCD predicted by our determined Jones matrix. In contrast to the traditional method which requires knowledge of the TN-LCD's internal structure parameters
Chan, Erwin H W
2010-10-11
A technique that can suppress the dominant phase-induced intensity noise in fibre optic delay line signal processors is presented. It is based on phase modulation of the optical carrier to distribute the phase noise at the information band into a high frequency band which can be filtered out. This technique is suitable for suppressing the phase noise in various delay line structures and for integrating in the conventional fibre optic links. It can also suppress the coherent interference effect at the same time. A model for predicting the amount of phase noise reduction in various delay line structures using the optical phase modulation technique is presented for the first time and is experimentally verified. Experimental results demonstrate the technique can achieve a large phase noise reduction in various fibre optic delay line signal processors.
Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
Ohtsuki, Tomoki; Ohtsuki, Tomi
2016-12-01
Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.
Shaping the spectrum of random-phase radar waveforms
Doerry, Armin W.; Marquette, Brandeis
2017-05-09
The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.
Application of random matrix theory to microarray data for discovering functional gene modules.
Luo, Feng; Zhong, Jianxin; Yang, Yunfeng; Zhou, Jizhong
2006-03-01
We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.
Application of random matrix theory to microarray data for discovering functional gene modules
Luo, F. [Xiangtan University, Xiangtan Hunan, China; Zhong, Jianxin [ORNL; Yang, Y. F. [unknown; Zhou, Jizhong [ORNL
2006-03-01
We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.
Automated procedures for the assembly of the CMS Phase 1 upgrade pixel modules
Wade, Alex; CMS Collaboration
2016-03-01
The Phase 1 upgrade of the pixel tracker for the CMS experiment requires the assembly of approximately 1000 modules consisting of pixel sensors bump bonded to readout chips. The precision assembly of modules in this volume is made possible using several robotic processes for dispensing epoxy,positioning of sensor components, automatic wire-bonding and robotic deposition of elastomer for wire bond encapsulation. We will describe the these processes in detail, along with the measurements that quanitfy the quality of assembled modules, and describe the subsequent steps in which the sensor modules are used in the construction of the Phase 1 pixel tracker. With support from USCMS.
Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System
LI Jing; JING Feng; WANG Jian-Jun; XU Dang-Peng; LIN Hong-Huan; GENG Yuan-Chao; LI Ming-Zhong; DENG Ying; ZHU Na; ZHANG Rui
2011-01-01
The transmission characteristics of phase modulation pulse transmitted through the filter in the power amplifier are investigated theoretically and experimentally. The narrow bandpass filter can induce large temporal modula-tion depth for the phase modulation pulse and induce double amplitude modulation(AM)if the frequency shift is lower than half bandwidth of the signal spectrum. We should choose a wider bandwidth filter to minimize the impact of the filter on the output pulse and suppress the amplified spontaneous emission(ASE) for the power fiber amplifier. These results are of benefit to the design of the fiber front end system.
Phase retrieval based on cosine grating modulation and transport of intensity equation
Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian
2016-10-01
In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.
Walking phase modulates H-reflex amplitude in flexor carpi radialis.
Domingo, Antoinette; Klimstra, Marc; Nakajima, Tsuyoshi; Lam, Tania; Hundza, Sandra R
2014-01-01
It is well established that remote whole-limb rhythmic movement (e.g., cycling or stepping) induces suppression of the Hoffman (H-) reflex evoked in stationary limbs. However, the dependence of reflex amplitude on the phase of the movement cycle (i.e., phase-dependence) has not been consistent across this previous research. The authors investigated the phase-dependence of flexor carpi radialis (FCR) H-reflex amplitudes during active walking and in kinematically matched static postures across the gait cycle. FCR H-reflexes were elicited in the stationary forearm with electrical stimulation to the median nerve. Significant phase-dependent modulation occurred during walking when the gait cycle was examined with adequate phase resolution. The suppression was greatest during midstance and midswing, suggesting increased ascending communication during these phases. There was no phase-dependent modulation in static standing postures and no correlation between lower limb background electromyography levels and H-reflex amplitude during active walking. This evidence, along with previous research demonstrating no phase modulation during passive walking, suggests that afferent feedback associated with joint position and leg muscle activation levels are not the sole source of the phase modulation seen during active walking. Possible sources of phase modulation include combinations of afferent feedback related to active movement or central motor commands or both.
Three-Phase Modulated Pole Machine Topologies Utilizing Mutual Flux Paths
Washington, Jamie G.; Atkinson, Glynn J.; Baker, Nick J.
2012-01-01
This paper discusses three-phase topologies for modulated pole machines (MPMs). The authors introduce a new threephase topology, which takes advantage of mutual flux paths; this is analyzed using 3-D finite-element methods and compared to a three-phase topology using three single-phase units...... both performance and constructional benefits over prior MPM topologies....
Caballero Jambrina, Antonio; Zibar, Darko; Schäffer, Christian G.
2011-01-01
A digital coherent receiver employing photonic downconversion is presented and experimentally demonstrated for phase-modulated radio-over-fiber optical links. Photonic downconversion adds additional advantages to optical phase modulated links by allowing demodulation of signals with RF carrier...
Suppression of stimulated Brillouin scattering with phase modulator in soliton pulse compression
Bo Lü; Taorong Gong; Ming Chen; Muguang Wang; Tangjun Li; Genxiang Chen; Shuisheng Jian
2009-01-01
A phase modulator is employed in the scheme of soliton pulse compression with dispersion shifted fiber (DSF). Stimulated Brillouin scattering (SBS) effect, as a negative influence here, can be dramatically suppressed after optical phase modulation. The experimental result shows that the launched power required for high-order soliton pulse compression has been significantly increased by 11 dB under the condition of 100-MHz phase modulation. Accordingly, the experiment of picosecond pulse compression generated from electro-absorption sampling window (EASW) has also been implemented.
Modulated magnetic phase of structurally heterogeneous easy-plane weak ferromagnets
Dzhuraev, D. R.; Niyazov, L. N.; Sokolov, B. Yu.
2016-06-01
The modulated magnetic phase of a structurally heterogeneous easy-plane weak ferromagnet is considered in terms of the thermodynamic Landau theory of phase transitions. The temperature and field dependences of the main magnetic order modulation parameters are determined. The results obtained are compared with the experimental data obtained for the orientational phase transition into a modulated magnetic state that occurs in hematite and iron borate crystals doped with diamagnetic ions to create structural heterogeneity. The proposed theoretical model is shown to describe the entire set of experimental results consistently with some exceptions.
McOrist, J; Sharma, M D; Sheppard, C J R; West, E; Matsuda, K
2003-01-01
Hyperresolving (sometimes called 'superresolving' or 'ultraresolving') phase-only filters can be generated using an optically addressable liquid crystal spatial light modulator. This approach avoids the problems of low efficiency, and coupling between amplitude and phase modulation, that arise when using conventional liquid crystal modulators. When addressed by a programmed light intensity distribution, it allows filters to be changed rapidly to modify the response of a system or permit the investigation of different filter designs. In this paper we present experimental hyperresolved images obtained using an optically addressable parallel-aligned nematic LCD with two zone Toraldo type phase-only filters. The images are compared with theoretical predictions.
刘希强; 周惠兰; 曹文海; 李红; 李永红; 季爱东
2002-01-01
Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification.
XU Wen-cheng; XU Yong-zhao; YU Bing-tao; CUI Hu; CHEN Yong-zhu; LIU Song-hao
2005-01-01
Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum generated by two orthogonally polarized pulses is wider and flatter than that generated by single polarized pulse due to cross-phase modulation. The cross-phase modulation effect can enhance the supercontinuum spectrum generation. When the pump power of the input pulse is lower, the enhancement of supercontinuum spectrum generation by cross-phase modulation effect is more significant.
Phase-locking-level statistics of coupled random fiber lasers.
Fridman, Moti; Pugatch, Rami; Nixon, Micha; Friesem, Asher A; Davidson, Nir
2012-10-01
We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We found that the measured distribution of the phase locking level of such coupled lasers can be described by the generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled lasers, and the calculated results are in good agreement with the experimental results.
Dy, Christine J; Gerasimenko, Yury P; Edgerton, V Reggie; Dyhre-Poulsen, Poul; Courtine, Grégoire; Harkema, Susan J
2010-05-01
Phase-dependent modulation of monosynaptic reflexes has been reported for several muscles of the lower limb of uninjured rats and humans. To assess whether this step-phase-dependent modulation can be mediated at the level of the human spinal cord, we compared the modulation of responses evoked simultaneously in multiple motor pools in clinically complete spinal cord injury (SCI) compared with noninjured (NI) individuals. We induced multisegmental responses of the soleus, medial gastrocnemius, tibialis anterior, medial hamstring, and vastus lateralis muscles in response to percutaneous spinal cord stimulation over the Th11-Th12 vertebrae during standing and stepping on a treadmill. Individuals with SCI stepped on a treadmill with partial body-weight support and manual assistance of leg movements. The NI group demonstrated phase-dependent modulation of evoked potentials in all recorded muscles with the modulation of the response amplitude corresponding with changes in EMG amplitude in the same muscle. The SCI group demonstrated more variation in the pattern of modulation across the step cycle and same individuals in the SCI group could display responses with a magnitude as great as that of modulation observed in the NI group. The relationship between modulation and EMG activity during the step cycle varied from noncorrelated to highly correlated patterns. These findings demonstrate that the human lumbosacral spinal cord can phase-dependently modulate motor neuron excitability in the absence of functional supraspinal influence, although with much less consistency than that in NI individuals.
Vengadeshwaran Velu
2016-01-01
Full Text Available Three-phase system has numerous advantages over the single-phase system in terms of instantaneous power, stability, and cost. Three-phase systems are not available in every location particularly in remote rural areas, hill stations, low voltage distribution homes, and so forth. Having a system that is capable of converting directly the readily available single-phase system to three phases will have greater usability in various applications. The routine techniques adopted in the direct ac-ac single-phase-to-three-phase converters do not yield the best desired outputs because of their complexity in the segregation process and bidirectional nature of the input signal. Other initiatives use ac-dc-ac converters which are huge and costly due to dc link energy storage devices. Further, none of these systems provide a convincing result in producing the standard three-phase output voltages that are 120° away from each other. This paper proposes an effective direct ac-ac single-phase-to-three-phase conversion technique based on space vector pulse width modulation based matrix converter system that produces a convincing three-phase output signals from a single-phase source with balanced modulation index characteristics. The details of the scientific programming adopted on the proposed technique were presented.
160 Gb/s Silicon All-Optical Data Modulator based on Cross Phase Modulation
Hu, Hao; Pu, Minhao; Ji, Hua
2012-01-01
We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal.......We have demonstrated 160 Gb/s all-optical data modulation with an extinction ratio of 18.5 dB based on XPM in a silicon nanowire. Error free performance is achieved for the optically modulated 160 Gb/s signal....
Hendriks, A
2012-08-01
Full Text Available amplitude modulation of the light, i.e., in amplitude and phase. We outline the theoretical concept, and then illustrate its use with the example of the laser beam shaping of Gaussian beams into flat-top beams. We quantify the performance of this approach...
Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model
Muraca, D., E-mail: diego.muraca@gmail.co [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina); Sanchez, F.H. [Departamento de Fisica-Instituto de Fisica de La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 69, (1900), La Plata (Argentina); Pampillo, L.G.; Saccone, F.D. [INTECIN - Instituto de Tecnologia y Ciencias de la Ingenieria ' Hilario Fernandez Long' (UBA-CONICET), Facultad de Ingenieria, Paseo Colon 850, (1063), Buenos Aires (Argentina)
2010-03-15
Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.
Collaborative Randomized Beamforming for Phased Array Radio Interferometers
Ocal, Orhan; Cherubini, Giovanni; Kazemi, Sanaz
2014-01-01
The Square Kilometre Array (SKA) will form the largest radio telescope ever built and such a huge instrument in the desert poses enormous engineering and logistic challenges. Algorithmic and architectural breakthroughs are needed. Data is collected and processed in groups of antennas before transport for central processing. This processing includes beamforming, primarily so as to reduce the amount of data sent. The principal existing technique points to a region of interest independently of the sky model and how the other stations beamform. We propose a new collaborative beamforming algorithm in order to maximize information captured at the stations (thus reducing the amount of data transported). The method increases the diversity in measurements through randomized beam- forming. We demonstrate through numerical simulation the effectiveness of the method. In particular, we show that randomized beamforming can achieve the same image quality while producing 40% less data when compared to the prevailing method m...
Peucheret, Christophe; Geng, Yan; Zsigri, Beata
2005-01-01
An integrated Michelson delay interferometer structure making use of waveguide gratings as reflective elements is proposed and fabricated by direct ultraviolet writing. Successful return-to-zero alternate-mark-inversion signal generation using phase-to-intensity modulation conversion...
Nonlinear Pulse Compression and Reshaping Using Cross-Phase Modulation in a Dispersion-Shifted Fiber
S.; W.; Chan; K.; K.; Chow; C.; Shu
2003-01-01
Nonlinear pulse compression has been demonstrated by cross-phase modulation in a dispersion-shifted fiber. The output is obtained from filtering of the broadened optical spectrum and a pulse width reduction from 61 to 28 ps is achieved.
Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement
Caini Zhang; Xiangzhao Wang
2003-01-01
In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement.The usefulness of the interferometer is demonstrated by simulations and experiments.
Sinusoidal Phase-Modulating Fabry-Perot Interferometer for Angular Displacement Measurement
无
2003-01-01
In this paper, a sinusoidal phase-modulating Fabry-Perot interferometer is proposed to measure angular displacement. The usefulness of the interferometer is demonstrated by simulations and experiments.
Digital coherent receiver for phase modulated radio-over-fibre optical links
Zibar, Darko; Yu, Xianbin; Peucheret, Christophe
2009-01-01
A novel digital signal processing-based coherent receiver for phase-modulated radio-over-fiber (RoF) optical links is presented and demonstrated experimentally. Error-free demodulation of 50-Mbaud binary phase-shift keying (BPSK) and quadrature phase-shift keying data signal modulated on a 5-GHz...... radio-frequency (RF) carrier is experimentally demonstrated using the proposed digital coherent receiver. Additionally, a wavelength-division-multiplexing (WDM) phase-modulated RoF optical link is experimentally demonstrated. A 3 x50 Mb/s WDM transmission of a BPSK modulated 5-GHz RF carrier is achieved...... over 25 km for the WDM channel spacing of 12.5 and 25 GHz, respectively....
Optical encryption for large-sized images using random phase-free method
Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Sugie, Takashige; Ito, Tomoyoshi
2015-01-01
We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.
Sinusoidal phase-modulating laser diode interferometer for real-time surface profile measurement
Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang
2007-01-01
A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2002-01-01
In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...
Photoassociation dynamics driven by second- and third-order phase-modulated laser fields
Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin
2016-05-01
We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.
Singh, Madan; Kumar, Arvind; Singh, Kehar
2008-10-01
In this paper, we have described a simple and secure double random phase encoding and decoding system to encrypt and decrypt a two-dimensional gray scale image. We have used jigsaw transforms of the second random phase mask and the encrypted image. The random phase mask placed in the Fourier plane is broken into independent non-overlapping segments by applying the jigsaw transform. To make the system more secure, a jigsaw transform on the encrypted image is also carried out. The encrypted image is also broken into independent non-overlapping segments. The jigsaw transform indices of random phase code and the encrypted image form the keys for the successful retrieval of the data. Encrypting with this technique makes it almost impossible to retrieve the image without using both the right keys. Results of computer simulation have been presented in support of the proposed idea. Mean square error (MSE) between the decrypted and the original image has also been calculated in support of the technique.
Phase Modulation for postcompensation of dispersion in 160-Gb/s systems
Siahlo, Andrei; Clausen, A. T.; Oxenløwe, Leif Katsuo
2005-01-01
Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end.......Tunable postcompensation of second-order dispersion by sinusoidal phase modulation is realized for a 160-Gb/s optical transmission system. Accumulated dispersions with magnitudes up to 4 ps/nm are compensated in the receiver end....
Spectral Compression of Intense Femtosecond Pulses by Self Phase Modulation in Silica Glass
Iwaszczuk, Krzysztof; Zhou, Binbin; Bache, Morten
2012-01-01
We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation.......We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation....
Caballero Jambrina, Antonio; Wong, Shing-Wa; Zibar, Darko
2011-01-01
A novel optical phase-modulated wireless-over-fiber backhaul architecture for next generation cellular network is presented and experimentally demonstrated for high capacity wireless multicarrier uplink transmission on a single wavelength.......A novel optical phase-modulated wireless-over-fiber backhaul architecture for next generation cellular network is presented and experimentally demonstrated for high capacity wireless multicarrier uplink transmission on a single wavelength....
Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20
Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.
1997-01-01
A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... and revealed its resonance dependence. A minimum of electric current through the sample corresponds to the main resonance detected by phase modulation technique....
Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation
Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.
2014-01-01
We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....
Surface phase defects induced downstream laser intensity modulation in high-power laser facility
Xin Zhang; Wei Zhou; Wanjun Dai; Dongxia Hu; Xuewei Deng; Wanqing Huang; Lidan Zhou; Qiang Yuan; Xiaoxia Huang; De’en Wang; Ying Yang
2016-01-01
Optics surface phase defects induced intensity modulation in high-power laser facility for inertial confinement fusion research is studied. Calculations and experiments reveal an exact mapping of the modulation patterns and the optics damage spot distributions from the surface phase defects. Origins are discussed during the processes of optics manufacturing and diagnostics, revealing potential improvements for future optics manufacturing techniques and diagnostic index, which is meaningful for fusion level laser facility construction and its operation safety.
Experimental Demonstration of Capacity-Achieving Phase-Shifted Superposition Modulation
Estaran Tolosa, Jose Manuel; Zibar, Darko; Caballero Jambrina, Antonio
2013-01-01
We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM.......We report on the first experimental demonstration of phase-shifted superposition modulation (PSM) for optical links. Successful demodulation and decoding is obtained after 240 km transmission for 16-, 32- and 64-PSM....
On The Use of A Phase Modulation Method for Decorrelation in Acoustic Feedback Cancellation
Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper
2012-01-01
of decorrelation. In this work, we study a subband phase modulation method, which was originally proposed for decorrelation in multichannel acoustic echo cancellation systems. We determine if this method is effective for decorrelation in acoustic feedback cancellation systems by comparing it to a structurally...... similar frequency shifting decorrelation method. We show that the phase modulation method is suitable for decorrelation in a hearing aid acoustic feedback cancellation system, although the frequency shifting method is in general slightly more effective....
Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel
2008-01-01
We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....
Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices
Lima, F. W. S.
2016-01-01
On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium.
Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi
2011-01-01
We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially wi...
Non-equilibrium Phase Transitions: Activated Random Walks at Criticality
Cabezas, M.; Rolla, L. T.; Sidoravicius, V.
2014-06-01
In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.
A phase-locked laser system based on modulation technique for atom interferometry
Li, Wei; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang
2016-01-01
We demonstrate a Raman laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.
A phase-locked laser system based on double direct modulation technique for atom interferometry
Li, Wei; Pan, Xiong; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang
2017-02-01
We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.
Novel electro-optical phase modulator based on GaInAs/InP modulation-doped quantum-well structures
Thirstrup, C.
1992-01-01
A novel electro-optical phase modulator working at 1.55 µm is analyzed and proposed. It is shown by a numerical model that in a GaInAs/InP pn-nin-pn multiple-quantum-well waveguide structure, large optical phase modulation can be obtained at small intensity modulation and with improved performance...... compared to what is achieved in quantum confined Stark effect modulators of the same material system. The device proposed is based on a modulation of the quasi-Fermi energies of the electrons in the GaInAs quantum wells. This operational principle allows GHz modulation frequencies. Applied Physics Letters...
Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping
Ming, Fangfei; Mulugeta, Daniel; Tu, Weisong; Smith, Tyler S.; Vilmercati, Paolo; Lee, Geunseop; Huang, Ying-Tzu; Diehl, Renee D.; Snijders, Paul C.; Weitering, Hanno H.
2017-03-01
Semiconductor surfaces and ultrathin interfaces exhibit an interesting variety of two-dimensional quantum matter phases, such as charge density waves, spin density waves and superconducting condensates. Yet, the electronic properties of these broken symmetry phases are extremely difficult to control due to the inherent difficulty of doping a strictly two-dimensional material without introducing chemical disorder. Here we successfully exploit a modulation doping scheme to uncover, in conjunction with a scanning tunnelling microscope tip-assist, a hidden equilibrium phase in a hole-doped bilayer of Sn on Si(111). This new phase is intrinsically phase separated into insulating domains with polar and nonpolar symmetries. Its formation involves a spontaneous symmetry breaking process that appears to be electronically driven, notwithstanding the lack of metallicity in this system. This modulation doping approach allows access to novel phases of matter, promising new avenues for exploring competing quantum matter phases on a silicon platform.
Design-oriented analytic model of phase and frequency modulated optical links
Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.
2016-07-01
An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.
Acoustically modulated x-ray phase contrast imaging.
Hamilton, Theron J; Bailat, Claude J; Rose-Petruck, Christoph; Diebold, Gerald J
2004-11-07
We report the use of ultrasonic radiation pressure with phase contrast x-ray imaging to give an image proportional to the space derivative of a conventional phase contrast image in the direction of propagation of an ultrasonic beam. Intense ultrasound is used to exert forces on objects within a body giving displacements of the order of tens to hundreds of microns. Subtraction of images made with and without the ultrasound field gives an image that removes low spatial frequency features and highlights high frequency features. The method acts as an acoustic 'contrast agent' for phase contrast x-ray imaging, which in soft tissue acts to highlight small density changes.
Simulation of heterogeneous two-phase media using random fields and level sets
George STEFANOU[1,2
2015-01-01
The accurate and efficient simulation of random heterogeneous media is important in the framework of modeling and design of complex materials across multiple length scales. It is usually assumed that the morphology of a random microstructure can be described as a non-Gaussian random field that is completely defined by its multivariate distribution. A particular kind of non-Gaussian random fields with great practical importance is that of translation fields resulting from a simple memory-less transformation of an underlying Gaussian field with known second-order statistics. This paper provides a critical examination of existing random field models of heterogeneous two-phase media with emphasis on level-cut random fields which are a special case of translation fields. The case of random level sets, often used to represent the geometry of physical systems, is also examined. Two numerical examples are provided to illustrate the basic features of the different approaches.
Transparent building-integrated PV modules. Phase 1: Comprehensive report
NONE
1998-09-28
This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.
Guo, Feng; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Li, Heng
2016-10-01
Stochastic resonance in a fractional harmonic oscillator with random mass and signal-modulated noise is investigated. Applying linear system theory and the characteristics of the noises, the analysis expression of the mean output-amplitude-gain (OAG) is obtained. It is shown that the OAG varies non-monotonically with the increase of the intensity of the multiplicative dichotomous noise, with the increase of the frequency of the driving force, as well as with the increase of the system frequency. In addition, the OAG is a non-monotonic function of the system friction coefficient, as a function of the viscous damping coefficient, as a function of the fractional exponent.
A Randomized Double-Blind Crossover Study of Phase-Shift Sound Therapy for Tinnitus
Heijneman, Karin M.; de Kleine, Emile; van Dijk, Pim
2012-01-01
Objective. The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. Study Design. A double-blind crossover randomized controlled trial. Setting. This study was conducted at the Univer
Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation
Taheri, Hossein; Wiesenfeld, Kurt; Adibi, Ali
2014-01-01
We propose a method for soliton formation in whispering-gallery-mode (WGM) resonators through input phase modulation. Our numerical simulations of a variant of the Lugiato-Lefever equation suggest that modulating the input phase at a frequency equal to the resonator free-spectral-range and at modest modulation depths provides a deterministic route towards soliton formation in WGM resonators without undergoing a chaotic phase. We show that the generated solitonic state is sustained when the modulation is turned off adiabatically. Our results support parametric seeding as a powerful means of control, besides input pump power and pump-resonance detuning, over frequency comb generation in WGM resonators. Our findings also help pave the path towards ultra-short pulse formation on a chip.
Signal analysis and processing for random binary phase coded pulse radar
孙光民; 刘国岁; 顾红
2004-01-01
The application of the random binary phase coded signal in the CW radar system has been limited by the difficulty to isolate the tranmission and reception signal. In order to make use of the random binary phase coded signal, the random binary phase coded pulse radar (RBPC-PR) system has been studied. First, the average ambiguity function (AAF) of the RBPC-PR signal has been analyzed. Then, a statistical method of reducing the range sidelobe (RSL) is presented. Finally, a signal processing scheme of the RBPC-PR is developed. The simulation results show that by using the scheme, the jamming immunity of the system, the resolution and accuracy of distance and velocity have been improved, and the distance and velocity vagueness caused by periods can also be removed. The RSL can be reduced over 30dB by the statistical average method, thus the probability ambiguity caused by random noise can be avoided.
DUAL THREE-PHASE ADJUSTABLE SPEED DRIVE WITH SYNCHRONIZED SPACE-VECTOR MODULATION
Oleschuk V.I.
2008-04-01
Full Text Available Split-phase symmetrical motor drive on the base of two voltage source inverters, controlled by algorithms of synchronized pulse width modulation (PWM, has been investigated. Simulation results are presented for dual three-phase power conversion systems with continuous, discontinuous and combined versions of synchronized PWM.
ZHANG Ji-dong; Wang Bao-yun; ZHENG Bao-yu
2004-01-01
Based on the polynomial phase-modulating sequences algorithm, this paper presents two schemes for the application of CDMA with polynomial phase signals to improve the signal separation performance. Simulation results illustrate the proposed approach have 1～3 dB improvement about signal-to-interference and noise ratio in most environment, compared with the PPS algorithm.
Image encryption using the Gyrator transform and random phase masks generated by using chaos
Vilardy, Juan M.; Jimenez, Carlos J.; Perez, Ronal
2017-06-01
The Gyrator transform (GT), chaotic random phase masks (CRPMs) and a random permutation of the Jigsaw transform (JT) are utilized to design an images encryption-decryption system. The encryption-decryption system is based on the double random phase encoding (DRPE) in the Gyrator domain (GD), this technique uses two random phase masks (RPMs) to encode the image to encrypt (original image) into a random noise. The RPMs are generated by using chaos, these masks are CRPMs. The parameters of the chaotic function have the control of the generation of the CRPMs. We apply a random permutation to the resulting image of the DRPE technique, with the purpose of obtaining an encrypted image with a higher randomness. In order to successfully retrieve the original image (without errors or noise-free) at the output of the decryption system is necessary to have all the proper keys, which are: the rotation angles of the GTs, the parameters of the chaotic function utilized to generate the two CRPMs and the random permutation of the JT. We check and analyze the validity of the image encryption and decryption systems by means of computing simulations.
Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope
Jian Mi; Chunxi Zhang; Zheng Li; Zhanjun Wu
2006-01-01
@@ Taking account of shot noise, thermal noise, dark current noise, and intensity noise that come from broad band light source, the dependence of the random walk coefficient of fiber optic gyroscope (FOG) on bias phase and light power is studied theoretically and experimentally. It is shown that with different optical and electronic parameters, the optimal bias phase is different and should be adjusted accordingly to improve the FOG precision. By choosing appropriate bias phase, the random walk coefficient of the aim FOG is reduced from 0.0026 to 0.0019 deg./h1/2.
Enbutsu, Koji; Umeki, Takeshi; Tadanaga, Osamu; Asobe, Masaki; Takenouchi, Hirokazu
2015-07-15
We propose a quasi-phase-matched second-harmonic generator integrated with an electro-optic phase modulator in a directly bonded LiNbO3 (DB-LN) waveguide to obtain high signal-to-noise ratio (SNR) pump light for a phase-sensitive amplifier (PSA). This integrated device exhibits 1-MHz modulation and 1-W second-harmonic-generation properties sufficient for phase-locking between the signal and pump and for PSA gain, respectively. A novel PSA configuration based on the high-input-power tolerance of the device helps to suppress the noise from the erbium-doped fiber amplifier used for pump-light generation and leads to an improvement of the SNR of the pump light. The SNR improvement was confirmed by comparing the noise figure of a PSA employing the DB-LN waveguide with that of a PSA using a Ti-diffused LN waveguide modulator.
Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi
2011-07-01
We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.
Syed, Nitu; Faisal, Mohammad
2013-12-01
We investigate the intrachannel cross-phase modulation (IXPM)-induced phase shift in optical return-to-zero pulse propagating in a periodically dispersion-managed long-haul optical fiber transmission line. Necessary dynamical equations for various pulse parameters have been derived using variational analysis to estimate the phase shift. These equations are solved by the Runge-Kutta method. The analytical result is verified by numerical simulation based on split-step Fourier method. We therefore explore the effects of various parameters, such as transmission distance, input power, duty cycle, dispersion map strength, and residual dispersion, on phase shift for a 40 Gb/s single-channel transmission system. We also check the impact of variation of bit rate on phase shift. We find that IXPM-induced phase shift can be mitigated by proper adjustment of dispersion management and different pulse parameters like duty cycle, dispersion map strength, and peak power.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons.
Liao, Wen-Te; Pálffy, Adriana; Keitel, Christoph H
2012-11-09
The coherent storage and phase modulation of x-ray single-photon wave packets in the resonant scattering of light off nuclei is theoretically investigated. We show that by switching off and on again the magnetic field in the nuclear sample, phase-sensitive storage of photons in the keV regime can be achieved. Corresponding π phase modulation of the stored photon can be accomplished if the retrieving magnetic field is rotated by 180°. The development of such x-ray single-photon control techniques is a first step towards forwarding quantum optics and quantum information to shorter wavelengths and more compact photonic devices.
Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J
2014-01-01
A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.
Time-division phase modulated single-photon interference in a Sagnac interferometer
WU Guang; ZHOU Chunyuan; ZENG Heping
2003-01-01
We introduce a stable, long-distance single- photon Sagnac interferometer, which has a balanced configuration to efficiently compensate phase drift caused by change of the fiber-optic path. By using time-division phase modulation, single-photon interference was realized at 1550 nm in a 5-km-long as well as 27-km-long Sagnac fiber loops, with a fringe visibility higher than 90% and long-term stability. The stable performance of the single-photon interference indicated that the time-division phase-modulated Sag- nac interferometer might readily lead to practical applications in single-photon routing and quantum cryptography.
Modulation Schemes of Multi-phase Three-Level Z-Source Inverters
Gao, F.; Loh, P.C.; Blaabjerg, Frede;
2007-01-01
This paper investigates the modulation schemes of three-level multiphase Z-source inverters with either two Z-source networks or single Z-source network connected between the dc sources and inverter circuitry. With the proper offset added for achieving both desired four-leg operation and optimized...... harmonic performance, the proposed modulation schemes of four-leg three-level Z-source inverters can satisfy the expected buck-boost operation under unbalanced modulation conditions. Except of the modulation complexity hidden in the four-leg inverters, five-phase three-level Z-source inverters show totally...... different modulation requirement and output performance. For clearly illustrating the detailed modulation process, time domain analysis instead of the traditional multi-dimensional space vector demonstration is assumed which reveals the right way to insert shoot-through durations in the switching sequence...
Pattern manipulation via on-chip phase modulation between orbital angular momentum beams
Li, Huanlu [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Strain, Michael J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Wolfson Centre, Institute of Photonics, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW (United Kingdom); Meriggi, Laura; Sorel, Marc [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP (United Kingdom); Chen, Lifeng; Zhu, Jiangbo; Cicek, Kenan [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Wang, Jianwei; Thompson, Mark G. [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); Cai, Xinlun, E-mail: caixlun5@mail.sysu.edu.cn [Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1UB (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Siyuan, E-mail: s.yu@bristol.ac.uk [Department of Electrical and Electronic Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)
2015-08-03
An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications. It can be intentionally implemented with other modulation elements to achieve more complicated applications.
Effect of Phase Shifted Frequency Modulation on Two Level Atom-Field Interaction
K.V. Priyesh; Ramesh Babu Thayyullathil
2012-01-01
We have studied the effect of phase shifted frequency modulation on two level atom with field interaction using Jaynes-Cummings model. Here the frequency of the interacting field is sinusoidally varying with time with a constant phase. Due to the presence of phase in the frequency modulation, the variation of population inversion with time is different from the standard case. There are no exact collapses and revivals in the variation of population inversion but it oscillates sinusoidally with time. In coherent field atom interaction the population inversion behaves as in the case of Fock state atom interaction, when frequency modulation with a non zero phase is applied. The study done with squeezed field has shown the same behavior of the population inversion.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A piezoelectnc polyvinylidene flouride (PVF2) film with transparent indium tin oxide electrode metallization is placed directly in the path of a single mode fiber output, to form an extrinsic optical interferometer. This device can be used concurrently with another extrinsic inteferometer on a fiber directional coupler to generate a carrier phase modulation on which the signal phase shift is superimposed. Experimental results of the induced phase shifting coefficient are presented for two arrangements of the piezofilm differing in their boundary clamping conditions.
Sample-specific conductance fluctuations modulated by the superconducting phase
den Hartog, SG; Kapteyn, CMA; van Wees, BJ; Klapwijk, TM; Borghs, G
1998-01-01
We present an overview of sample-specific transport properties tuned by the superconducting phase difference between two superconductors connected to a disordered 2-dimensional electron gas (2DEG). We demonstrate a crossover from ensemble-averaged to sample-specific resistance oscillations of a T-sh
Characteristics of phase-averaged equations for modulated wave groups
Klopman, G.; Petit, H.A.H.; Battjes, J.A.
2000-01-01
The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993). Th
Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T
2015-06-20
We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array.
Arditi, Tal; Granot, Er'el; Sternklar, Shmuel
2007-09-15
Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.
Bhat, Gopalakrishna K.
1994-10-01
A fringe analysis technique, which makes use of the spatial filtering property of the Fourier transform method, for the elimination of random impulsive noise in the wrapped phase maps obtained using the phase stepping technique, is presented. Phase noise is converted into intensity noise by transforming the wrapped phase map into a continuous fringe pattern inside the digital image processor. Fourier transform method is employed to filter out the intensity noise and recover the clean wrapped phase map. Computer generated carrier fringes are used to preserve the sign information. This technique makes the two dimensional phase unwrapping process less involved, because it eliminates the local phase fluctuations, which act as pseudo 2π discontinuities. The technique is applied for the elimination of noise in a phase map obtained using electro-optic holography.
Wang, Xiaogang; Zhao, Daomu; Chen, Yixiang
2014-08-10
We present a study about information disclosure in phase-truncation-based cryptosystems. The main information of the original image to be encoded can be obtained by using a decryption key in the worst case. The problem cannot be thoroughly solved by imaginary part truncating, keeping the encryption keys as private keys, or applying different phase keys for different plaintexts during each encryption process as well as the phase modulation in the frequency domain. In order to eliminate the risk of unintended information disclosure, we further propose a nonlinear spatial and spectral encoding technique using a random amplitude mask (RAM). The encryption process involving two security layers can be fully controlled by a RAM. The spatial encoding of the plaintext images and the simultaneous encryption of the plaintext images and the encryption key greatly enhance the security of system, avoiding several attacks that have cracked the phase-truncation-based cryptosystems. Besides, the hybrid encryption system retains the advantage of a trap door one-way function of phase truncation. Numerical results have demonstrated the feasibility and effectiveness of the proposed encryption algorithm.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Large resistivity modulation in mixed-phase metallic systems
Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy
2015-03-01
We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.
Continuous-time cross-phase modulation and quantum computation
Shapiro, J H; Razavi, Mohsen; Shapiro, Jeffrey H.
2006-01-01
The weak nonlinear Kerr interaction between single photons and intense laser fields has been recently proposed as a basis for distributed optics-based solutions to few-qubit applications in quantum communication and computation. Here, we analyze the above Kerr interaction by employing a continuous-time multi-mode model for the input/output fields to/from the nonlinear medium. In contrast to previous single-mode treatments of this problem, our analysis takes into account the full temporal content of the free-field input beams as well as the non-instantaneous response of the medium. The main implication of this model, in which the cross-Kerr phase shift on one input is proportional to the photon flux of the other input, is the existence of phase noise terms at the output. We show that these phase noise terms will degrade the performance of the parity gate proposed by Munro, Nemoto, and Spiller [New J. Phys. 7, 137 (2005)].
Hida, Kazuo; Chen, Wei
2005-07-01
The effect of spatial modulation of the single-site anisotropy D on the ground state of the S=1 Heisenberg chains is investigated. In the case of period 2 modulation, it is found that the phase diagram contains the Haldane phase, large-D phase, Néel phase of udud-type and u0d0-type. It is shown that the hidden antiferromagnetic order in the Haldane phase compatible with the spatial modulation of D-term get frozen resulting in the emergence of various types of Néel orders. The investigation of the model with longer period D-modulation also confirms this picture.
Modulation of auroral electrojet currents using dual HF beams with ELF phase offset
Golkowski, M.; Cohen, M.; Moore, R. C.
2012-12-01
The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.
Study on 8DPSK of multi-phase modulation technology based on CSRZ
XU Heng-ying; NIU Hui-juan; ZHANG Min; WANG Fang; BAI Cheng-lin; ZHANG Xiao-guang
2011-01-01
A new modulation format in optical fiber communication system, the eight differential phase shift keying (8DPSK) of multi-phase modulation technology based on carrier-suppressed return-to-zero (CSRZ) is proposed in this paper. The formulae of CSRZ-8DPSK modem methods are derived theoretically and the methods are demonstrated. Spectra based on CSRZ and CSRZ-8DPSK modulation methods and their eye diagrams by simulation with MATLAB are obtained. The results show that the CSRZ-8DPSK modulation methods have narrower spectra with higher efficiency. The performance of eye diagrams is also much satisfactory after demodulation, suggesting some possible applications of the methods in the next generation of optical fiber communications.
Yen-Ching Wang
2016-06-01
Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.
A low-noise delta-sigma phase modulator for polar transmitters.
Zhou, Bo
2014-01-01
A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.
A Low-Noise Delta-Sigma Phase Modulator for Polar Transmitters
Bo Zhou
2014-01-01
Full Text Available A low-noise phase modulator, using finite-impulse-response (FIR filtering embedded delta-sigma (ΔΣ fractional-N phase-locked loop (PLL, is fabricated in 0.18 μm CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of −104 dBc/Hz and −120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.
Tailor the functionalities of metasurfaces: From perfect absorption to phase modulation
Qu, Che; Hao, Jiaming; Qiu, Meng; Li, Xin; Xiao, Shiyi; Miao, Ziqi; Dai, Ning; He, Qiong; Sun, Shulin; Zhou, Lei
2015-01-01
Metasurfaces in metal/insulator/metal configuration have recently been widely used in photonics research, with applications ranging from perfect absorption to phase modulation, but why and when such structures can realize what kind of functionalities are not yet fully understood. Here, based on a coupled-mode theory analysis, we establish a complete phase diagram in which the optical properties of such systems are fully controlled by two simple parameters (i.e., the intrinsic and radiation losses), which are in turn dictated by the geometrical/material parameters of the underlying structures. Such a phase diagram can greatly facilitate the design of appropriate metasurfaces with tailored functionalities (e.g., perfect absorption, phase modulator, electric/magnetic reflector, etc.), demonstrated by our experiments and simulations in the Terahertz regime. In particular, our experiments show that, through appropriate structural/material tuning, the device can be switched across the functionality phase boundaries...
WANG Xiao-Lin; ZHOU Pu; MA Hao-Tong; CHEN Zi-Lun; LI Xiao; XU Xiao-Jun; LIU Ze-Jin
2009-01-01
We demonstrate a scalable architecture for coherent combining of pulsed fiber ring lasers based on mutual injection and direct phase modulation. By direct phase modulation in the common arm of two ring lasers, synchronous pulsed lasers can be generated and coherent combining of the two synchronous lasers is obtained. Two pulsed fiber ring lasers are coherently combined with 0.55 μJ pulse energy and 10μs pulse duration at a repetition rate of 27.5 kHz. Experimental results show that the two fiber ring lasers are phase locked with an invariable phase difference of π and have good temporal synchronization and spatial coherence. The combining efficiency of the two pulsed fiber laser reaches 90% and the fringe contrast is larger than 40%. Neither active phase control nor polarization control is used in our experiment and this method can be extended to combine more beams and higher repetition rate scaling up to higher power.
Optical signal monitoring in phase modulated optical fiber transmission systems
Zhao, Jian
Optical performance monitoring (OPM) is one of the essential functions for future high speed optical networks. Among the parameters to be monitored, chromatic dispersion (CD) is especially important since it has a significant impact on overall system performance. In this thesis effective CD monitoring approaches for phase-shift keying (PSK) based optical transmission systems are investigated. A number of monitoring schemes based on radio frequency (RF) spectrum analysis and delay-tap sampling are proposed and their performance evaluated. A method for dispersion monitoring of differential phase-shift keying (DPSK) signals based on RF power detection is studied. The RF power spectrum is found to increase with the increase of CD and decrease with polarization mode dispersion (PMD). The spectral power density dependence on CD is studied theoretically and then verified through simulations and experiments. The monitoring sensitivity for nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) and return-to-zero differential phase-shift keying (RZ-DPSK) based systems can reach 80ps/nm/dB and 34ps/nm/dB respectively. The scheme enables the monitoring of differential group delay (DGD) and CD simultaneously. The monitoring sensitivity of CD and DGD can reach 56.7ps/nm/dB and 3.1ps/dB using a bandpass filter. The effects of optical signal-to-noise ratio (OSNR), DGD, fiber nonlinearity and chirp on the monitoring results are investigated. Two RF pilot tones are employed for CD monitoring of DPSK signals. Specially selected pilot tone frequencies enable good monitoring sensitivity with minimum influence on the received signals. The dynamic range exceeding 35dB and monitoring sensitivity up to 9.5ps/nm/dB are achieved. Asynchronous sampling technique is employed for CD monitoring. A signed CD monitoring method for 10Gb/s NRZ-DPSK and RZ-DPSK systems using asynchronous delay-tap sampling technique is studied. The demodulated signals suffer asymmetric waveform distortion if
Destruction of first-order phase transition in a random-field Ising model
Crokidakis, Nuno; Nobre, Fernando D [Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ (Brazil)], E-mail: nuno@if.uff.br, E-mail: fdnobre@cbpf.br
2008-04-09
The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width {sigma}. It is argued that this distribution is more appropriate for a theoretical description of real systems than other simpler cases, i.e. the bimodal ({sigma} = 0) and single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destroyed for increasing values of {sigma}, similarly to what happens in the compound Fe{sub x}Mg{sub 1-x}Cl{sub 2}, whose finite-temperature first-order phase transition is presumably destroyed by an increase in the field randomness.
Tanbun-Ek, T.; Chen, Y. K.; Grenko, J. A.; Byrne, E. K.; Johnson, J. E.; Logan, R. A.; Tate, A.; Sergent, A. M.; Wecht, K. W.; Sciortine, P. F.; Chu, S. N. G.
1994-12-01
A device quality of selective epitaxy growth of InGaAsP/InP multiple quantum well (MQW) structure using low-pressure metalorganic vapor phase epitaxy (MOVPE) technique is described. The technique is applied to a monolithically integrated electroabsorption modulator with distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers. Superior device characteristics such as efficient modulation, low threshold current and high efficiency operation of the integrated devices are obtained.
Phase-field modeling of submonolayer growth with the modulated nucleation regime
Dong, X.L.; Xing, H.; Chen, C.L., E-mail: chenchl@nwpu.edu.cn; Wang, J.Y.; Jin, K.X.
2015-10-16
In this letter, we perform the phase-field simulations to investigate nucleation regime of submonolayer growth via a quantified nucleation term. Results show that the nucleation related kinetic coefficients have changed the density of islands and critical sizes to modulate the nucleation regime. The scaling behavior of the island density can be agreed with the classical theory only when effects of modulations have been quantified. We expect to produce the quantitative descriptions of nucleation for submonolayer growth in phase-field models. - Highlights: • The phase-field simulations are systematically compared with the classical nucleation rate theory. • The modulations of nucleation regime by the different kinetic coefficients have been studied. • Appropriate kinetic coefficients contribute to the agreed nucleation regime with the scaling law.
Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude
Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiaojun
2017-05-01
Acoustic holography has extensive possibilities in acoustic sensing, acoustic illusion, contactless particle manipulation, and medical imaging. Based on coating unit cells and perforated panels, an acoustic composite metasurface is constructed with a decoupled modulation of phase and amplitude, which has been used to design acoustic holography. This proposal not only has lower complexity than conventional acoustic holography of active arrays due to the avoidance of complex structures and circuits but also provides more flexibility than acoustic holography based on the acoustic metasurface with phase-only modulation benefitting from the efficient decoupled modulation of phase and amplitude. We have further demonstrated three acoustic holographic applications, such as multi-directional transmission, multi-focal focusing, and holographic imaging. Due to the low complexity and the great flexibility, this proposal has potential to achieve the high-quality holograms with high information content, fine resolution, and large scale.
Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt
2008-01-01
We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase modu
An Improved Modulation Strategy for the Three-Phase Z-Source Inverters (ZSIs)
Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede
2017-01-01
Z-source inverters (ZSIs), compared to the two-stage architecture, i.e. boost-converter (BC)-fed voltage source inverter (VSI), embrace some interesting features, like the reduced size and complexity of the entire conversion system. Several research activities have been established to improve...... the performance of the so-called ZSI since it has been proposed in 2003, and many modifications have been introduced accordingly. These modifications include the structure of the ZSI, i.e. modifying the topology itself, and its modulation. From the modulation prospective, all the modulation strategies of the ZSI......, as the added ST pulses are inserted inside the zero states. Hence, in this digest, an improved modulation strategy is proposed to enhance the performance of the three-phase ZSIs, including all the other improved topologies. The proposed modulation strategy, which is called high-boost-based modified space...
A layered modulation method for pixel matching in online phase measuring profilometry
Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand
2016-10-01
An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.
A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications
Ghaffar, Farhan Abdul
2012-09-30
A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.
Kimura, Morihiko; Tominaga, Takeshi; Kimijima, Izo; Takatsuka, Yuichi; Takashima, Shigemitsu; Nomura, Yasuo; Kasumi, Fujio; Yamaguchi, Akihiro; Masuda, Norikazu; Noguchi, Shinzaburo; Eshima, Nobuoki
2014-05-01
Toremifene, a selective estrogen receptor modulator, is used as adjuvant therapy for postmenopausal patients with breast cancer in Japan. For Japanese patients, however, only limited data are available on the efficacy and safety profile of toremifene. To establish the long term efficacy and safety of toremifene for Japanese patients, we conducted a prospective, multicenter, randomized phase III trial comparing toremifene and tamoxifen. The subjects were postmenopausal Japanese patients who had undergone surgery for node-negative breast cancer. Toremifene or tamoxifen was administered for 2 years. The primary endpoint was demonstration of the non-inferiority of toremifene compared with tamoxifen in respect of 5-year survival. Secondary endpoints were cumulative overall survival, cumulative disease-free survival, effects on lipid profiles, and adverse events. A total of 253 patients were enrolled. The baseline characteristics of the two treatment groups were well-balanced. Median follow-up was 66.5 months. Five-year survival was similar for toremifene and tamoxifen (97.0 vs. 96.9 %; 90 % confidence interval -3.9 to 4.1), indicating that toremifene is not inferior to tamoxifen for postmenopausal Japanese patients with early breast cancer. Cumulative overall survival and cumulative disease-free survival were also very similar for toremifene and tamoxifen (97.5 vs. 97.3 %, log-rank test P = 0.9458; 88.4 vs. 90.6 %, log-rank test P = 0.3359, respectively). Adverse events in both groups were similar and mostly mild or moderate. Thus, both are equally effective and well tolerated. Our results suggest that the efficacy and safety of toremifene and tamoxifen are equivalent for postmenopausal Japanese patients with early breast cancer.
The random phase property and the Lyapunov spectrum for disordered multi-channel systems
Roemer, Rudolf A
2009-01-01
A random phase property establishing a link between quasi-one-dimensional random Schroedinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the full hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-And...
Dailin Li(李代林); Xiangzhao Wang(王向朝); Yingming Liu(刘英明)
2004-01-01
A double sinusoidal phase modulating (SPM) laser diode interferometer for thickness measurements of a transparent plate is presented. A carrier signal is given to the interference signal by using a piezoelectric transducer, and the SPM interferometry is applied to measure the thickness of a transparent plate. By combining the double-modulation technique with the Bessel function ratio method, the measurement error originating from light intensity fluctuations caused by the modulation current can be decreased greatly.The thicknesses of a glass parallel plate and a quartz glass are measured in real time, and the corresponding experimental results are also given.
Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)
2015-07-07
In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.
Asymptotic key generation rates with phase-randomized coherent light by decoy method
Hayashi, M
2007-01-01
The asymptotic key generation (AKG) rates of quantum key distribution (QKD) with the decoy method are discussed in both the forward error correction and the reverse error correction cases when the QKD system is equipped with phase-randomized coherent light with arbitrary number of intensities. For this purpose, we derive a useful convex expansion of the phase-randomized coherent state. We also derive upper bounds of AKG rates on a natural and concrete channel model. Using these upper bounds, we numerically check that the AKG rates are almost saturated when the number of intensities is three.
Phase Diagram and Tricritical Behavior of a Spin-2 Transverse Ising Model in a Random Field
LIANG Ya-Qiu; WEI Guo-Zhu; SONG Li-Li; SONG Guo-Li; ZANG Shu-Liang
2004-01-01
The phase diagrams of a spin-2 transverse Ising model with a random field on honeycomb, square, and simple-cubic lattices, respectively, are investigated within the framework of an effective-field theory with correlations.We find the behavior of the tricritical point and the reentrant phenomenon for the system with any coordination number z, when the applied random field is bimodal. The behavior of the tricritical point is also examined as a function of applied transverse field. The reentrant phenomenon comes from the competition between the transverse field and the random field.
Modulation Schemes for Single-Phase B6 Converters With Two Asymmetrical Terminal Voltages
Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede
2016-01-01
B6 converter uses six switches divided equally among three phase-legs. It has commonly been used as a three-phase rectifier or inverter, mostly under balanced conditions. Three-phase conversion is however not the only area, where B6 converter has been used. The same topology has been tried...... asymmetrical. How these asymmetrical references should be formulated to meet various performance specifications of a single-phase B6 converter is the theme of this paper. Simulation and experimental results have been obtained for verifying the modulation schemes proposed....
Fu, Jian; Xu, Yingying; Dong, Hongtao
2010-01-01
We demonstrate that n classical fields modulated with n different pseudorandom phase sequences can constitute a 2^n-dimensional Hilbert space that contains tensor product structure. By using classical fields modulated with pseudorandom phase sequences, we discuss effective simulation of Bell states and GHZ state, and apply both correlation analysis and von Neumann entropy to characterize the simulation. We obtain similar results with the cases in quantum mechanics and find that the conclusions can be easily generalized to n quantum particles. The research on simulation of quantum entanglement may be important, for it not only provides useful insights into fundamental features of quantum entanglement, but also yields new insights into quantum computation.
Robust BPSK Impulse Radio UWB-over-Fiber Systems Using Optical Phase Modulation
Pham, Tien Thang; Guerrero Gonzalez, Neil; Yu, Xianbin
2011-01-01
The impact of fiber dispersion on the performance of optical phase modulated impulse-radio-ultrawideband (IR-UWB) signals is experimentally investigated. 2Gbps BPSK IR-UWB over 78km fiber transmission is successfully achieved by using digital coherent detection......The impact of fiber dispersion on the performance of optical phase modulated impulse-radio-ultrawideband (IR-UWB) signals is experimentally investigated. 2Gbps BPSK IR-UWB over 78km fiber transmission is successfully achieved by using digital coherent detection...
In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator
Ling WANG; Zhi-hua DING; Guo-hua SHI; Yu-dong ZHANG
2009-01-01
Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted.Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.
L-Band Transmit/Receive Module for Phase-Stable Array Antennas
Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir
2008-01-01
Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has
Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation
Boscolo, S.; Mouradian, L. Kh; Finot, C.
2016-10-01
We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.
Optimization of phase contrast in bimodal amplitude modulation AFM
Mehrnoosh Damircheli
2015-04-01
Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Optimization of phase contrast in bimodal amplitude modulation AFM.
Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo
2015-01-01
Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Modulation of mixed-phase titania photoluminescence by oxygen adsorption
Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P. [Dipartimento di Fisica, Universitá degli Studi di Napoli “Federico II,” Via Cintia, I-80126 Napoli (Italy); Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy); Lettieri, S., E-mail: stefano.lettieri@spin.cnr.it [Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy)
2014-07-21
We investigate the effect of oxygen (O{sub 2}) adsorption on photoluminescence properties of mixed-phase titania nanoparticle films deposited by femtosecond pulsed laser deposition, aiming to assess preliminary conclusions about the feasibility of opto-chemical sensing based on titania. We evidence that O{sub 2} produces opposite responses in rutile and anatase photoluminescence efficiency, highlighting interesting potentialities for future double-parametric optical sensing based on titania. The results evidence an important role of lattice oxygen atoms, suggesting that the standard Schottky barrier mechanism driving the response toward gas species in most used metal-oxide sensors (e.g., tin dioxide) is not the only active mechanism in titania.
Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films
Yoon, Hyojin; Choi, Minseok; Lim, Tae-Won; Kwon, Hyunah; Ihm, Kyuwook; Kim, Jong Kyu; Choi, Si-Young; Son, Junwoo
2016-10-01
Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)-metal (HxVO2)-insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.
Optimized generation of spatial qudits by using a pure phase spatial light modulator
Varga, J. J. M.; Rebón, L.; Solís-Prosser, M. A.; Neves, L.; Ledesma, S.; Iemmi, C.
2014-11-01
We present a method for preparing arbitrary pure states of spatial qudits, namely, D-dimensional (D≥slant 2) quantum systems carrying information in the transverse momentum and position of single photons. For this purpose, a set of D slits with complex transmission are displayed on a spatial light modulator (SLM). In a recent work we have shown a method that requires a single phase-only SLM to control independently the complex coefficients which define the quantum state of dimension D. The amplitude information was codified by introducing phase gratings inside each slit, and the phase value of the complex transmission was added to the phase gratings. After a spatial filtering process, we obtained in the image plane the desired qudit state. Although this method has proven to be a good alternative to compact the previously reported architectures, it presents some features that could be improved. In this paper we present an alternative scheme to codify the required phase values that minimizes the effects of temporal phase fluctuations associated to the SLM where the codification is carried out. In this scheme, the amplitudes are set by appropriate phase gratings addressed at the SLM, while the relative phases are obtained by a lateral displacement of these phase gratings. We show that this method improves the quality of the prepared state and provides very high fidelities of preparation for any state. An additional advantage of this scheme is that a complete 2π modulation is obtained by shifting the grating by one period; hence the encoding is not limited by the phase modulation range achieved by the SLM. Numerical simulations, that take into account the phase fluctuations, show high fidelities for thousands of qubit states covering the whole Bloch sphere surface. Similar analyses are performed for qudits with D = 3 and D = 7.
Phase Diagrams and Tricritical Behaviour of the Spin-2 Ising Model in a Longitudinal Random Field
LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Qi; SONG Guo-Li
2004-01-01
@@ Within the framework of the effective-field theory with correlations, we study the ferromagnetic spin-2 randomfield Ising model (RFIM) in the presence of a crystal field on honeycomb (z = 3), square (z = 4) and simple cubic (z = 6) lattices. The effects of the crystal field and the longitudinal random field on the phase diagrams are investigated. Some characteristic features of the phase diagrams, such as the tricritical phenomena, reentrant phenomena and existence of two tricritical points, are found.
Security enhancement of double-random phase encryption by iterative algorithm
Qian, Sheng-Xia; Li, Yongnan; Kong, Ling-Jun; Li, Si-Min; Ren, Zhi-Cheng; Tu, Chenghou; Wang, Hui-Tian
2014-08-01
We propose an approach to enhance the security of optical encryption based on double-random phase encryption in a 4f system. The phase key in the input plane of the 4f system is generated by the Yang-Gu algorithm to control the phase of the encrypted information in the output plane of the 4f system, until the phase in the output plane converges to a predesigned distribution. Only the amplitude of the encrypted information must be recorded as a ciphertext. The information, which needs to be transmitted, is greatly reduced. We can decrypt the ciphertext with the aid of the predesigned phase distribution and the phase key in the Fourier plane. Our approach can resist various attacks.
Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields
Brinkmann, Maximilian; Fallnich, Carsten
2013-01-01
We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order modulation instability dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.
Preparing arbitrary pure states of spatial qudits with a single phase-only spatial light modulator
Varga, J. J. M.; Solís-Prosser, A. M. A.; Rebón, L.; Arias, A.; Neves, L.; Iemmi, C.; Ledesma, S.
2015-04-01
We present a new method for preparing multidimensional spatial qudits by means of a single phase-only spatial light modulator (SLM). This method improves previous ones that use two SLMs, one working in amplitude regime and the other in phase regime. To that end, we addressed diffraction gratings on the slits that define the state and then we performed a spatial filtering in the Fourier plane. The amplitude of the coefficients of the quantum state are determined by the modulation deep of the diffraction gratings, and the relative phase is the mean phase value of the diffraction gratings. This encoding result to be more compact, less expensive and use the photons more efficiently.
Xu, Dong; Cao, Ye; Tong, Zheng-rong; Yang, Jing-peng
2017-01-01
A continuously tunable microwave photonic notch filter with complex coefficient based on phase modulation is proposed and demonstrated. The complex coefficient is generated using a Fourier-domain optical processor (FD-OP) to control the amplitude and phase of the optical carrier and radio-frequency (RF) phase modulation sidebands. By controlling the FD-OP, the frequency response of the filter can be tuned in the full free spectral range ( FSR) without changing the shape and the FSR of the frequency response. The results show that the center frequency of the notch filter can be continuously tuned from 17.582 GHz to 29.311 GHz with FSR of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.
张秀莉; 张泽廷; 张卫东; 郝欣
2004-01-01
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
Annona muricata modulate brain-CXCL10 expression during cerebral malaria phase
Djamiatun, Kis; Matug, Sumia M. A.; Prasetyo, Awal; Wijayahadi, Noor; Nugroho, Djoko
2017-02-01
Cerebral malaria (CM) contributes in malaria mortality. People in endemic region get benefices by using A. muricata-leaf extract (AME) before qualified for receiving standard anti-malaria, because AME restrains malaria infection and modulate immune responses. CXCL10 expressed by astrocytes limit brain inflammation. Vascular leakage was found in the brain of experimental CM. Additionally, biomarker related with vascular leakage, angiopoietin-2 (Ang-2) levels increase in CM-patients. Objectives of this study were to determine the efficacy of ethanolic-AME in regulating brain-CXCL10-expression and Ang-2 levels during CM-phase. The study was post-test-only-control-group design. Thirty Swiss-mice were randomly divided in 6 groups. C+ and C- groups were PbA-inoculated and healthy-mice, respectively. X1 and X2 groups were healthy-mice treated with AME 100 and 150 mg/Kg BW/day, respectively. X3 and X4 groups were PbA-inoculated and received either dose mentioned above. CXCL10 was stained by IHC, and determined by Allred score. Plasma-Ang-2 was measured by elisa-method. Kruskal-Wallis-test showed the difference of CXCL10-expression among the studied groups (p=0.003). CXCL10-expression of C+ group was lower than healthy-mice which were C-, X1 and X2 groups (p=0.008, p=0.045, and p=0.012). CXCL10-expression of X3 was comparable to healthy mice (C-, X1 and X2), and was higher than C+ and X4 groups (p=0.012 and p=0.028). CXCL10-expression of X4 group was lower than C- and X2 groups (p=0.011 and p=0.016). Kruskal-Wallis-test showed no difference of Ang-2-levels among 6 groups (p = 0.175). The conclusion is A. muricata influences brain-CXCL10 expression during CM phase, but has no association with Ang-2 levels during CM phase.
In-Phase Wavelength Conversion Based On Cross-Gain Modulation in Semiconductor Optical Amplifier
ZHANG Xinliang; HUANG Dexiu; SUN Junqiang; LIU Deming; YI Heqing
2000-01-01
In-phase wavelength conversion based on cross-gain modulation in a semiconductor optical amplifier biased around critical threshold current has been demonstrated. The converted signal and the pump signal have the same bit sequence 1101011000. The stimulated emission competition between the amplification of input signals and the amplified spontaneous emission was used to illustrate the conversion mechanism. Experiment results showed that in-phase wavelength conversion can be achieved with simple structure and high output extinction ratio.
Cross-phase modulation-induced penalties in multichannel DWDM optical transport networks
Xu Zhu(朱栩); Qingji Zeng(曾庆济)
2003-01-01
In dense wavelength division multiplexing (DWDM) optical transmission systems, cross-phase modulation(XPM) due to Kerr effect causes phase shift on each channel, which will ultimately be transformed toamplitude noise that leads to power penalties. In this letter, the XPM-induced penalty in multi-channelDWDM systems is investigated theoretically and an applied algorithm that can be practically used inengineering design is proposed.
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
Nie, You-Qi; Liu, Yang; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Leilei; Payne, Frank [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)
2015-06-15
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei
2015-06-01
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
Krochik, G. M.
1980-02-01
Stimulated Raman scattering of a randomly modulated pump is investigated by the method of successive approximations. This involves expanding solutions in terms of small parameters, which are ratios of the correlation scales of random effects to other characteristic dynamic scales of the problem. Systems of closed equations are obtained for the moments of the amplitudes of the Stokes and pump waves and of the molecular vibrations. These describe the dynamics of the process allowing for changes in the pump intensity and statistics due to a three-wave interaction. By analyzing equations in higher-order approximations, it is possible to establish the conditions of validity of the first (Markov) and second approximations. In particular, it is found that these are valid for pump intensities JL both above and below the critical value Jcr near which the gain begins to increase rapidly and reproduction of the pump spectrum by the Stokes wave is initiated. Solutions are obtained for average intensities of the Stokes wave and molecular vibrations in the first approximation in a constant pump field. It is established that, for JLgtrsimJcr, the Stokes wave undergoes rapid nonsteady-state amplification which is associated with an increase in the amplitude of the molecular vibrations. The results of the calculations show good agreement with known experimental data.
Reichhardt, C.; Olson Reichhardt, C. J.
2017-02-01
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.
Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda
2017-01-20
Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.
Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs
Gaudillière, Alexandre; Scoppola, Benedetto; Scoppola, Elisabetta; Viale, Massimiliano
2011-12-01
We give a rigorous proof of two phase transitions for a disordered statistical mechanics system used to define an algorithm to find large cliques inside Erdös random graphs. Such a system is a conservative probabilistic cellular automaton inspired by the cavity method originally introduced in spin glass theory.
Ishizawa, Atsushi; Nishikawa, Tadashi; Mizutori, Akira; Takara, Hidehiko; Takada, Atsushi; Sogawa, Tetsuomi; Koga, Masafumi
2013-12-02
We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.
3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding
Boonyasiriwat, Chaiwoot
2010-10-17
We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.
Fractional Fourier transform-based optical encryption with treble random phase-encoding
Xin, Yi; Tao, Ran; Wang, Yue
2008-03-01
We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.
Single pulse TMS-induced modulations of resting brain neurodynamics encoded in EEG phase.
Stamoulis, Catherine; Oberman, Lindsay M; Praeg, Elke; Bashir, Shahid; Pascual-Leone, Alvaro
2011-06-01
Integration of electroencephalographic (EEG) recordings and transcranial magnetic stimulation (TMS) provides a useful framework for quantifying stimulation-induced modulations of neural dynamics. Amplitude and frequency modulations by different TMS protocols have been previously investigated, but the study of stimulation-induced effects on EEG phase has been more limited. We examined changes in resting brain dynamics following single TMS pulses, focusing on measures in the phase domain, to assess their sensitivity to stimulation effects. We observed a significant, approximately global increase in EEG relative phase following prolonged (>20 min) single-pulse TMS. In addition, we estimated higher rates of phase fluctuation from the slope of estimated phase curves, and higher numbers of phase resetting intervals following TMS over motor cortex, particularly in frontal and centro-parietal/parietal channels. Phase changes were only significantly different from their pre-TMS values at the end of the stimulation session, which suggests that prolonged single-pulse TMS may result in cumulative changes in neural activity reflected in the phase of the EEG. This is a novel result, as prior studies have reported only transient stimulation-related effects in the amplitude and frequency domains following single-pulse TMS.
Coherent Control of Photofragment Distributions Using Laser Phase Modulation in the Weak-Field Limit
Garcia-Vela, Alberto; Henriksen, Niels Engholm
2015-01-01
The possibility of quantum interference control of the final state distributions of photodissociation fragments by means of pure phase modulation of the pump laser pulse in the weak-field regime is demonstrated theoretically for the first time. The specific application involves realistic wave pac...
Self-phase modulation of a single-cycle THz pulse
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, M. C.
2013-01-01
We demonstrate self-phase modulation (SPM) of a single-cycle THz pulse in a semiconductor, using bulk n-GaAs as a model system. The SPM arises from the heating of free electrons in the electric field of the THz pulse. Electron heating leads to an ultrafast reduction of the plasma frequency, which...
Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime
Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.
2012-01-01
In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...
Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.
2016-01-01
We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...
Sub-millisecond, high stroke phase modulation using polymer network liquid crystals.
Love, Gordon D; Kirby, Andrew K; Ramsey, Robert A
2010-03-29
We describe the production of a high speed, and high stroke, phase modulator using a polymer network liquid crystal device. We present data showing fast response times (sub millisecond) in a device which can operate at visible wavelengths with a simple electrical addressing scheme.
Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...
Phase-dependent modulation of short latency cutaneous reflexes during walking in man.
Baken, B.C.M.; Dietz, V.; Duysens, J.E.J.
2005-01-01
In reduced animal preparation (cat fictive locomotion) most of our knowledge on the phase-dependent modulation of cutaneous reflexes concerns early- (P1 responses) rather than medium-latency (P2) responses. In contrast, in humans, virtually only P2 responses have been studied because P1 responses ar
Coherent control of quantum transport: modulation-enhanced phase detection and band spectroscopy
Tarallo, Marco G; Wang, F Y; Tino, Guglielmo M
2012-01-01
Amplitude modulation of a tilted optical lattice can be used to steer the quantum transport of matter wave packets in a very flexible way. This allows the experimental study of the phase sensitivity in a multimode interferometer based on delocalization-enhanced Bloch oscillations and to probe the band structure modified by a constant force.
Gallegos-Lopez, Gabriel; Perisic, Milun; Kinoshita, Michael H.
2017-03-14
Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a motor drive system. The disclosed embodiments provide a mechanism for adjusting modulation index of voltage commands to improve linearity of the voltage commands.
Jun; Endo; Akira; Ohki; Rieko; Sato; Toshio; Ito; Yuichi; Tohmori; Yasuhiro; Suzuki
2003-01-01
We successfully demonstrated low power penalty operation of a cross-phase modulated (XPM) wavelength converter using a semiconductor optical amplifier (SOA) power equalizer. We also clarified the SOA equalizing level for more adaptive wavelength conversion and achieved a power penalty of less than 1 dB over the wide input dynamic range of 15 dB.
Digital coherent receiver for subcarrier multiplexed phase modulated radio-over-fibre signals
Zibar, Darko; Larsen, Knud J.; Tafur Monroy, Idelfonso
2009-01-01
Digital coherent detection of multi-channel subcarrier multiplexed optically phase-modulated radio-over-fibre signals is experimentally demonstrated. Successful detection after transmission over a 40 km long fibre link of four or five 25 Mbaud BPSK/QPSK subcarrier channels in 5 GHz bandwidth...... is demonstrated using offline digital signal processing....
Tavassoli, Vahid
This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.
Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links
Cao, Minghua; Li, Jianqiang; Dai, Jian; Dai, Yitang; Yin, Feifei; Zhou, Yue; Xu, Kun
2016-06-01
We have experimentally presented a digital coherent receiver employing photonic aided bandpass sampling technology for phase-modulated radio-over-fiber (RoF) links. An optical intensity modulator (IM) is utilized as the bandpass sampler which performs encoded on-off keyed pulse sequence on the optical local oscillator. Quaternary Phase Shift Keying (QPSK) modulated data signal with 20 MHz bandwidth at 5.2 GHz, 10.2 GHz and 15.2 GHz RF carrier frequency is experimentally demonstrated to be successfully detected by using balanced photodiodes (BPDs) with only 800 MHz analog bandwidth. It demonstrates that the required analog bandwidth of BPDs and ADCs can be dramatically reduced in a direct sampled coherent RoF communications system.
Sutherland, J. C.
2016-07-01
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. They have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and of strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model
Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.
2011-03-14
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.
Hacking on decoy-state quantum key distribution system with partial phase randomization
Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei
2014-04-01
Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.
Choice of optical system is critical for the security of double random phase encryption systems
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Cassidy, Derek; Zhao, Liang; Ryle, James P.; Healy, John J.; Sheridan, John T.
2017-06-01
The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.
Güven, Can; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Güven, Can; Hinczewski, Michael; Berker, A Nihat
2010-11-01
The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire thermodynamic functions. The method, previously used on systems with no quenched randomness, is extended in this study to systems with quenched randomness. Local magnetizations and correlation functions as a function of spin separation are calculated as tensor products subject to renormalization-group transformation. Phase diagrams are extracted from the long-distance behavior of the correlation functions. The approach is illustrated with the quenched bond-diluted Ising model on the triangular lattice. An accurate phase diagram is obtained in temperature and bond-dilution probability for the entire temperature range down to the percolation threshold at zero temperature.
An ultrafast quantum random number generator based on quantum phase fluctuations
Xu, Feihu; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong
2012-01-01
A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we propose and experimentally demonstrate an ultrafast QRNG at a rate over 6 Gb/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with post-processing. We quantify the quantum randomness through min-entropy by modeling our system, and employ two extractors, Trevisan's extractor and Toeplitz-hashing, to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.
Ohtsuki, Tomi; Ohtsuki, Tomoki
2017-04-01
Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.
Sasaki, O; Ikeada, Y; Suzuki, T
1998-08-01
We propose an interferometer in which the relationship between the degree of coherence (DCH) and the optical path difference (OPD) is utilized for determining an OPD longer than a wavelength. A superluminescent diode is employed as the source of the interferometer, and sinusoidal phase-modulating interferometry is used to detect the DCH and the phase of the interference signal. The combination of the OPD determined from the DCH and the phase of an interference signal enables us to measure an OPD longer than a wavelength with a high accuracy of a few nanometers. Experimental results show clearly the usefulness of the interferometer for a step-profile measurement.
Cross-phase modulation instability in mode-locked laser based on reduced graphene oxide
Gaol, Lei; Liu, Min; Huang, Wei
2014-01-01
Cross-phase modulation instability (XPMI) is experimentally observed in a fiber ring cavity with net normal dispersion and mode-locked by long fiber taper. The taper is deposited with reduced graphene oxide, which can decrease the threshold of XPMI due to the enhanced nonlinearity realized by 8 mm evanescent field interaction length and strong mode confinement. Experimental results indicate that the phase matching conditions in two polarization directions are different, and sidebands with different intensities are generated. This phase matching condition can be satisfied even the polarization state of the laser varies greatly under different pump strengths.
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2001-01-01
We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....
A. A. Zinchik
2015-09-01
Full Text Available Subject of Research. This paper discusses numerical simulation of spiral beams. Spiral beams have been experimentally obtained with the use of liquid crystal spatial light modulators (LCD SLM. The ability of dynamical change for the laser beam parameters has been studied. Method. Spiral beams are traditionally obtained by means of static masks defining the amplitude and phase distribution of the beam. The paper deals with modernized method with the use of two LCD SLMs. Modulators form separately the amplitude and phase distribution of the laser beam. Main Results. Numerical modeling of space spiral beams with different amplitude and phase characteristics has been carried out with the use of VirtualLab 5.0 software package manufactured by LightTrans GmbH. Simulation results are compared to the results of a natural experiment. Experimental results are in good agreement with computer simulation. It is shown that LCD SLMs application gives the possibility for dynamical change of the spiral beam parameters, their structure and the dependence of rotation angle on the distance. Distribution phase inversion leads to a change in the rotation direction of the laser beam and, therefore, to a change in the direction of its orbital angular momentum. Practical Relevance. The use of spatial modulators makes it possible to change dynamically the beam parameters, including rotation direction change. The results can be applied for solution of problems related to laser manipulating of microparticles, as well as the problems of determining the phase inhomogeneities of transparent objects.
Phase-modulated waveform design for extended target detection in the presence of clutter.
Gong, Xuhua; Meng, Huadong; Wei, Yimin; Wang, Xiqin
2011-01-01
The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter) and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD) of signal under the maximum signal-to-clutter-and-noise ratio (SCNR) criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.
Phase-Modulated Waveform Design for Extended Target Detection in the Presence of Clutter
Xiqin Wang
2011-07-01
Full Text Available The problem to be addressed in this paper is a phase-modulated waveform design for the detection of extended targets contaminated by signal-dependent noise (clutter and additive noise in practical radar systems. An optimal waveform design method that leads to the energy spectral density (ESD of signal under the maximum signal-to-clutter-and-noise ratio (SCNR criterion is introduced first. In order to make full use of the transmission power, a novel phase-iterative algorithm is then proposed for designing the phase-modulated waveform with a constant envelope, whose ESD matches the optimal one. This method is proven to be able to achieve a small SCNR loss by minimizing the mean-square spectral distance between the optimal waveform and the designed waveform. The results of extensive simulations demonstrate that our approach provides less than 1 dB SCNR loss when the signal duration is greater than 1 μs, and outperforms the stationary phase method and other phase-modulated waveform design methods.
Spiral versus modulated collinear phases in the quantum axial next-nearest-neighbor Heisenberg model
Oitmaa, J.; Singh, R. R. P.
2016-12-01
Motivated by the discovery of spiral and modulated collinear phases in several magnetic materials, we investigate the magnetic properties of Heisenberg spin S =1 /2 antiferromagnets in two and three dimensions, with frustration arising from second-neighbor couplings in one axial direction [the axial next-nearest-neighbor Heisenberg (ANNNH) model]. Our results clearly demonstrate the presence of an incommensurate spiral phase at T =0 in two dimensions, extending to finite temperatures in three dimensions. The crossover between Néel and spiral order occurs at a value of the frustration parameter considerably above the classical value 0.25, a sign of substantial quantum fluctuations. We also investigate a possible modulated collinear phase with a wavelength of four lattice spacings and find that it has substantially higher energy and hence is not realized in the model.
Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation
Wu, Zilu; Krinsky, Sam; Loos, Henrik; Murphy, James; Shaftan, Timur; Sheehy, Brian; Shen, Yuzhen; Wang, Xijie; Yu Li Hua
2004-01-01
High Gain Harmonic Generation (HGHG), because it produces longitudinally coherent pulses derived from a coherent seed, presents remarkable possibilities for manipulating FEL pulses. If spectral phase modulation imposed on the seed modulates the spectral phase of the HGHG in a deterministic fashion, then chirped pulse amplification, pulse shaping, and coherent control experiments at short wavelengths become possible. In addition, the details of the transfer function will likely depend on electron beam and radiator dynamics and so prove to be a useful tool for studying these. Using the DUVFEL at the National Synchrotron Light Source at Brookhaven National Laboratory, we present spectral phase analyses of both coherent HGHG and incoherent SASE ultraviolet FEL radiation, applying Spectral Interferometry for Direct Electric Field Reconstruction (SPIDER), and assess the potential for employing compression and shaping techniques.
Reducing coherent noise in interference systems using the phase modulation technique.
Cui, Ji-Wen; Tao, Zhang; Liu, Zhao-Bo; Tan, Jiu-Bin
2015-08-20
The phase modulation technique is adopted to reduce the coherent noise that arises from spurious interference. By choosing an appropriate driving signal, the method can reduce the coherent function of coherent noise to a great degree while keeping the coherent function of a coherent signal nearly unchanged. Simulation results show that for the grating interferometer, the phase error caused by coherent noise is reduced by 81.53% on average. For the Twyman interferometer, the fringe quality and contrast deteriorated by coherent noise are significantly improved. Furthermore, an experiment is set up in the phase-modulated Twyman interferometer to verify the feasibility of the principle. It is concluded that the method is effective to reduce the coherent noise in interference systems.
Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems
XU Ming; ZHOU Zhen; PU Xiao; JI Jian-Hua; YANG Shu-Wen
2011-01-01
Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45°if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.%@@ Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45° if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.
2012-06-13
... silicon photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00,...
Guo, Xiaoqiang; Cavalcanti, Marcelo C.; Farias, Alexandre M.;
2013-01-01
Modulation strategy is one of the most important issues for three-level neutral-point-clamped inverters in three-phase transformerless photovoltaic systems. A challenge for modulation is how to keep the common-mode voltages constant to reduce the leakage currents. A single-carrier modulation...
A phase 3 randomized trial comparing inolimomab vs usual care in steroid-resistant acute GVHD.
Socié, Gérard; Vigouroux, Stéphane; Yakoub-Agha, Ibrahim; Bay, Jacques-Olivier; Fürst, Sabine; Bilger, Karin; Suarez, Felipe; Michallet, Mauricette; Bron, Dominique; Gard, Philippe; Medeghri, Zakaria; Lehert, Philippe; Lai, Chinglin; Corn, Tim; Vernant, Jean-Paul
2017-02-02
Treatment of steroid-resistant acute graft-versus-host disease (GVHD) remains an unmet clinical need. Inolimomab, a monoclonal antibody to CD25, has shown encouraging results in phase 2 trials. This phase 3 randomized, open-label, multicenter trial compared inolimomab vs usual care in adult patients with steroid-refractory acute GVHD. Patients were randomly selected to receive treatment with inolimomab or usual care (the control group was treated with antithymocyte globulin [ATG]). The primary objective was to evaluate overall survival at 1 year without changing baseline allocated therapy. A total of 100 patients were randomly placed: 49 patients in the inolimomab arm and 51 patients in the ATG arm. The primary criteria were reached by 14 patients (28.5%) in the inolimomab and 11 patients (21.5%) in the ATG arms, with a hazard ratio of 0.874 (P = .28). With a minimum follow-up of 1 year, 26 (53%) and 31 (60%) patients died in the inolimomab and ATG arms, respectively. Adverse events were similar in the 2 arms, with fewer viral infections in the inolimomab arm compared with the ATG arm. The primary end point of this randomized phase 3 trial was not achieved. The lack of a statistically significant effect confirms the need for development of more effective treatments for acute GVHD. This trial is registered to https://www.clinicaltrialsregister.eu/ctr-search/search as EUDRACT 2007-005009-24.
Chen, Yaohui; Mørk, Jesper
2009-01-01
We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....
A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator
Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang
2017-01-01
A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.
Performance analysis of variable speed multiphase induction motor with pole phase modulation
Liu Huijuan
2016-09-01
Full Text Available The pole phase modulation (PPM technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM. The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.
Armstrong, Darrell J.
2014-09-01
The need for pulse energies exceeding 4 kJ and pulse lengths [?] 2 ns in Sandia's Z-Beamlet laser (ZBL) requires that the single-frequency spectrum of its fiber-laser master oscillator be converted to a phase modulated spectrum with a modulation in dex [?] 5. Because accidental injection of single-frequency light into ZBL could result i n damage to optical materials from transverse stimulated Brillouin scattering, the presence of phase modulated (PM) light must be monitored by a reliable failsafe system that can stop a las er shot within of a few 10's of ns following a failure of the PM system. This requirement is met by combining optical heterodyne detection with high-speed electronics to indicate the pres ence or absence of phase modulated light. The transition time for the failsafe signal resultin g from a sudden failure using this technique is approximately 35 ns. This is sufficiently short to safely stop a single-frequency laser pulse from leaving ZBL's regenerative amplifier with a n approximately 35 ns margin of safety. This manual and technical reference contains detai led instructions for daily use of the PM failsafe system and provides enough additional informat ion for its maintenance and repair.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate
Stivala, Salvatore; Pasquazi, Alessia; Oliveri, Roberto L; Morandotti, Roberto; Assanto, Gaetano; 10.1364/OL.35.000363
2012-01-01
We observe second harmonic generation via random quasi-phase-matching in a 2.0 \\mu m periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component.
The two-body random spin ensemble and a new type of quantum phase transition
Pizorn, Iztok; Prosen, Tomaz [Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Mossmann, Stefan; Seligman, Thomas H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, CP 62132 Cuernavaca, Morelos (Mexico)], E-mail: tomaz.prosen@fmf.uni-lj.si
2008-02-15
We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.
The two-body random spin ensemble and a new type of quantum phase transition
Pižorn, Iztok; Prosen, Tomaž; Mossmann, Stefan; Seligman, Thomas H.
2008-02-01
We study in this paper the properties of a two-body random matrix ensemble for distinguishable spins. We require the ensemble to be invariant under the group of local transformations and analyze a parametrization in terms of the group parameters and the remaining parameters associated with the 'entangling' part of the interaction. We then specialize to a spin chain with nearest-neighbour interactions and numerically find a new type of quantum-phase transition related to the strength of a random external field, i.e. the time-reversal-breaking one-body interaction term.
Pogorelaya, D. A.; Smolovik, M. A.; Strigalev, V. E.; Aleynik, A. S.; Deyneka, I. G.
2016-08-01
The investigation is devoted to residual amplitude modulation (RAM) of phase electro-optic modulator, which guides are made in LiNbO3 crystal by Ti diffusion technology. An analysis is presented that shows influence of RAM on the signal of fiber-optic gyroscope. The RAM compensation method is offered.
Kosterev, Anatoliy (Inventor)
2010-01-01
A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.
Effectiveness of rf phase modulation for increasing bunch length in electron storage rings
Orsini; Mosnier
2000-04-01
Aiming at increasing the apparent bunch length and hence the beam lifetime in electron storage rings, rf phase modulation near one parametric resonance has been experimentally investigated. Since the possible benefit of this technique depends greatly on the ring parameters, we studied the effect of such a modulation for different rf parameters on the longitudinal emittance. Theoretical predictions and results of simulations are compared and discussed. It is shown that synchrotron radiation tends to spoil the parametric resonance. In particular, a criterion for island survival has been found.
Performance Evaluation of Digital Coherent Receivers for Phase-Modulated Radio-Over-Fiber Links
Caballero Jambrina, Antonio; Zibar, Darko; Tafur Monroy, Idelfonso
2011-01-01
The performance of optical phase-modulated (PM) radio-over-fiber (RoF) links assisted with coherent detection and digital signal processing (PM-Coh) is analyzed and experimentally demonstrated for next-generation wireless-over-fiber systems. PM-Coh offers high linearity for transparent transport......-bandwidth electronics. Analytical assessment and simulations are used to determine the ultimate performance with respect to laser linewidth, modulation index, and receiver sensitivity. Then, two different scenarios are studied and experimentally demonstrated as an application of PM-Coh links: a high...
High-Quality Ultrashort Pulse Generation Utilizing a Self-Phase Modulation-Based Reshaper
无
2007-01-01
An ultrashort 10-GHz pulse generation scheme was successfully demonstrated using a bulk material InGaAsP electroabsorption modulator to generate the seed pulse. A self-phase modulation-based reshaper was used after the adiabatic soliton compression in a comb-like dispersion profiled fiber. Experiments and simulations confirm that the reshaper effectively removes the pulse pedestal and improves the pulse extinction ratio. As a result, the 10-GHz pulse had no pedestal, a high extinction ratio, and a pulse width of only 1.4 ps.
Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro
2006-05-01
We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.
Colour hologram projection with an SLM by exploiting its full phase modulation range.
Jesacher, Alexander; Bernet, Stefan; Ritsch-Marte, Monika
2014-08-25
We demonstrate independent and simultaneous manipulation of light beams of different wavelengths by a single hologram, which is displayed on a phase-only liquid crystal spatial light modulator (SLM). The method uses the high dynamic phase modulation range of modern SLMs, which can shift the phase of each pixel in a range between 0 up to 10π, depending on the readout wavelength. The extended phase range offers additional degrees of freedom for hologram encoding. Knowing the phase modulation properties of the SLM (i.e. the so-called lookup table) in the entire exploited wavelength range, an exhaustive search algorithm allows to combine different independently calculated 2π-holograms into a multi-level hologram with a phase range extending over several multiples of 2π. The combined multi-level hologram then reconstructs the original diffractive patterns with only small phase errors at preselected wavelengths, thus projecting the desired image fields almost without any crosstalk. We demonstrate this feature by displaying a static hologram at an SLM which is read out with an incoherent red-green-blue (RGB) beam, projecting a color image at a camera chip. This is done for both, a Fourier setup which needs a lens for image focusing, and in a "lensless" Fresnel setup, which also avoids the appearance of a focused zero-order spot in the image center. The experimentally obtained efficiency of a two-colour combination is on the order of 83% for each wavelength, with a crosstalk level between the two colour channels below 2%, whereas a three-colour combination still reaches an efficiency of about 60% and a crosstalk level below 5%.
Roth, Matthias; Heber, Jörg; Janschek, Klaus
2016-03-01
The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.
Topological phase transition in hexagonal boron-nitride bilayers modulated by gate voltage
Jin, Guojun; Zhai, Xuechao
2013-03-01
We study the gate-voltage modulated electronic properties of hexagonal boron-nitride bilayers with two different stacking structures in the presence of intrinsic and Rashba spin-orbit interactions. Our analytical results show that there are striking cooperation effects arising from the spin-orbit interactions and the interlayer bias voltage. For realizing topological phase transition, in contrast to a gated graphene bilayer for increasing its energy gap, the energy gap of a boron-nitride bilayer is significantly reduced by an applied gate voltage. For the AA stacking-bilayer which has the inversion symmetry, a strong topological phase is found, and there is an interesting reentrant behavior from a normal phase to a topological phase and then to a normal phase again, characterized by the topological index. Therefore, the gate voltage modulated AA-boron nitride bilayer can be taken as a newcomer of the topological insulator family. For the AB stacking-bilayer which is lack of the inversion symmetry, it is always topologically trivial, but exhibits an unusual quantum Hall phase with four degenerate low-energy states localized at a single edge. It is suggested that these theoretical findings could be verified experimentally in the transport properties of boron-nitride bylayers. This research was supported by the NSFC (Nos. 60876065, 11074108), PAPD, and NBRPC (Nos. 2009CB929504, 2011CB922102).
Si1Sb2Te3 phase change material for chalcogenide random access memory
Zhang Ting; Song Zhi-Tang; Liu Bo; Liu Wei-Li; Feng Song-Lin; Chen Bomy
2007-01-01
This paper investigated phase change Si1Sb2Te3 material for application of chalcogenide random access memory.Current-voltage performance was conducted to determine threshold current of phase change from amorphous phase to polycrystalline phase.The film holds a threshold current about 0.155 mA,which is smaller than the value 0.31 mA of Ge2Sb2Te5 film.Amorphous Si1Sb2Te3 changes to face-centred-cubic structure at～180°C and changes to hexagonal structure at～270°C.Annealing temperature dependent electric resistivity of Si1Sb2Te3 film was studied by four-point probe method.Data retention of the films was characterized as well.
Role of an encapsulating layer for reducing resistance drift in phase change random access memory
Jin, Bo; Kim, Jungsik; Pi, Dong-Hai; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-12-01
Phase change random access memory (PCRAM) devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM) and the encapsulating layer material (YELM) according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM) while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.
The phase diagram of random Boolean networks with nested canalizing functions
Peixoto, Tiago P
2010-01-01
We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number $b_t$ of nodes with value one, and the network sensitivity $\\lambda$, and we compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 2004 101 49 17102-7], these networks have a rich phase diagram, were both the "chaotic" and frozen phases are present, as well as an oscillatory regime of the value of $b_t$. We argue that the presence of only the frozen phase in the work of Kauffman et al. was due simply to the specific parametrization used, and is not an inherent feature of this class of functions. However, these networks are significantly more stable than the variants where all possible Boolean functions are allowed.
Role of an encapsulating layer for reducing resistance drift in phase change random access memory
Bo Jin
2014-12-01
Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.
Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.
2009-09-11
A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.
Randomized Algorithms For High Quality Treatment Planning in Volumetric Modulated Arc Therapy
Yang, Yu; Wen, Zaiwen
2015-01-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the propo...
Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations.
van Diepen, Rosanne M; Cohen, Michael X; Denys, Damiaan; Mazaheri, Ali
2015-08-01
The perception of near-threshold visual stimuli has been shown to depend in part on the phase (i.e., time in the cycle) of ongoing alpha (8-13 Hz) oscillations in the visual cortex relative to the onset of that stimulus. However, it is currently unknown whether the phase of the ongoing alpha activity can be manipulated by top-down factors such as attention or expectancy. Using three variants of a cross-modal attention paradigm with constant predictable stimulus onsets, we examined if cues signaling to attend to either the visual or the auditory domain influenced the phase of alpha oscillations in the associated sensory cortices. Importantly, intermixed in all three experiments, we included trials without a target to estimate the phase at target presentation without contamination from the early evoked responses. For these blank trials, at the time of expected target and distractor onset, we examined (1) the degree of the uniformity in phase angles across trials, (2) differences in phase angle uniformity compared with a pretarget baseline, and (3) phase angle differences between visual and auditory target conditions. Across all three experiments, we found that, although the cues induced a modulation in alpha power in occipital electrodes, neither the visual condition nor the auditory cue condition induced any significant phase-locking across trials during expected target or distractor presentation. These results suggest that, although alpha power can be modulated by top-down factors such as attention and expectation, the phase of the ongoing alpha oscillation is not under such control.
Phase diagram and criticality of the random anisotropy model in the large-N limit
Mouhanna, Dominique; Tarjus, Gilles
2016-12-01
We revisit the thermodynamic behavior of the random-anisotropy O(N ) model by investigating its large-N limit. We focus on the system at zero temperature where the mean-field-like artifacts of the large-N limit are less severe. We analyze the connection between the description in terms of self-consistent Schwinger-Dyson equations and the functional renormalization group. We provide a unified description of the phase diagram and critical behavior of the model and clarify the nature of the possible "glassy" phases. Finally we discuss the implications of our findings for the finite-N and finite-temperature systems.
Information hiding based on double random-phase encoding and public-key cryptography.
Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li
2009-03-01
A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.
Markman, Adam; Carnicer, Artur; Javidi, Bahram
2017-05-01
We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.
Impulse attack-free four random phase mask encryption based on a 4-f optical system.
Kumar, Pramod; Joseph, Joby; Singh, Kehar
2009-04-20
Optical encryption methods based on double random phase encryption (DRPE) have been shown to be vulnerable to different types of attacks. The Fourier plane random phase mask (RPM), which is the most important key, can be cracked with a single impulse function attack. Such an attack is viable because the Fourier transform of a delta function is a unity function. Formation of a unity function can be avoided if RPMs are placed in front of both lenses in a 4-f optical setup, thereby protecting the DRPE from an impulse attack. We have performed numerical simulations to verify the proposed scheme. Resistance of this scheme is checked against the brute force and the impulse function attacks. The experimental results validate the feasibility of the scheme.
Simulation of single-photon state tomography using phase-randomized coherent states
Valente, P
2016-01-01
We have experimentally simulated the quantum state tomography of single-photon states of temporal modes of duration T and constant amplitude using phase randomized coherent states (PRCS). A stationary laser beam, whose phase relative to a local oscillator is varied at random, was used as a multiple realization of a PRCS of the temporal mode. The quadrature fluctuations histograms corresponding to the marginal distributions of the PRCS, were acquired with an oscilloscope using a sampling period T. Following a recent suggestion by Yuan et al \\cite{YUAN16}, we have derived estimates for the marginal distribution of the single-photon state. Based on these estimates, the approximate Wigner function and density matrix of the single-photon state were reconstructed with good precision. The sensitivity of the simulation to experimental errors and the number of PRCS used is addressed.
Phase diagram of the classical Heisenberg model in a trimodal random field distribution
Santos-Filho, A.; Albuquerque, D. F. de; Santos-Filho, J. B.; Batista, T. S. Araujo
2016-11-01
The classical spin 1 / 2 Heisenberg model on a simple cubic lattice, with fluctuating bond interactions between nearest neighbors and in the presence of a random magnetic field, is investigated by effective field theory based on two-spin cluster. The random field is drawn from the asymmetric and anisotropic trimodal probability distribution. The fluctuating bond is extracted from the symmetric and anisotropic bimodal probability. We estimate the transition temperatures, and the phase diagram in the Tc- h, Tc- p and Tc - α planes. We observe that the temperature of the tricritical point decreases with the increase of disorder in exchange interactions until the system ceases to display tricritical behavior. The disorder of the interactions and reentrant phenomena depends on the trimodal distribution of the random field.
All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators
Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L
2012-01-01
True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...
Implementation of the direct evaluation of strains using a phase analysis code for random patterns
Molimard, Jérôme
2011-01-01
A new approach for decoding directly strains from surfaces encoded with random patterns has been developed and validated. It is based on phase analysis of small region of interest. Here we adapt to random patterns new concepts proposed by Badulescu (2009) on the grid method. First metrological results are encouraging: resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9 pixels (ZOI 64 \\times 64 pixels2). Random noise has to be carefully controlled. A numerical example shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite is developed. Fabric intertwining is studied using a tensile test. Over-strains are clearly visible, and results connect well with the previous studies
Hartree-Fock and Random Phase Approximation theories in a many-fermion solvable model
Co', Giampaolo
2016-01-01
We present an ideal system of interacting fermions where the solutions of the many-body Schroedinger equation can be obtained without making approximations. These exact solutions are used to test the validity of two many-body effective approaches, the Hartree-Fock and the Random Phase Approximation theories. The description of the ground state done by the effective theories improves with increasing number of particles.
Solutions of random-phase approximation equation for positive-semidefinite stability matrix
Nakada, H
2016-01-01
It is mathematically proven that, if the stability matrix $\\mathsf{S}$ is positive-semidefinite, solutions of the random-phase approximation (RPA) equation are all physical or belong to Nambu-Goldstone (NG) modes, and the NG-mode solutions may form Jordan blocks of $\\mathsf{N\\,S}$ ($\\mathsf{N}$ is the norm matrix) but their dimension is not more than two. This guarantees that the NG modes in the RPA can be separated out via canonically conjugate variables.
Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation
Engel, Jonathan, E-mail: engelj@physics.unc.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Mustonen, M. T., E-mail: mika.mustonen@yale.edu [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06052 (United States)
2016-06-21
We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.
Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links
Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee
2014-01-01
packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...
Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos
2016-08-01
3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.
What makes a phase transition? Analysis of the random satisfiability problem
Zweig, K A; Vicsek, T; 10.1016/j.physa.2009.12.051
2010-01-01
In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions ...
Few-Photon All-Optical {\\pi} Phase modulation Based on a Double-{\\Lambda} System
Chen, Yen-Chun; Lo, Hsiang-Yu; Tsai, Bing-Ru; Yu, Ite A; Chen, Ying-Cheng; Chen, Yong-Fan
2013-01-01
We propose an efficient all-optical phase modulation based on a double-{\\Lambda} system and demonstrate a {\\pi} phase shift of a few-photon pulse induced by another few-photon pulse in cold rubidium atoms with this scheme. By changing the phases of the applied laser fields, one can control the property of the double-{\\Lambda} medium. This phase-dependent mechanism makes the double-{\\Lambda} system different form the conventional cross-Kerr-based system which only depends on the applied laser intensities. The proposed scheme provides a new route to generate strong nonlinear interactions between photons, and may have potential for applications in quantum information technologies.
Phase-dependent spectral control of pulsed modulation instability via dichromatic seed fields
Brinkmann, Maximilian; Kues, Michael; Fallnich, Carsten
2014-09-01
We investigated experimentally and numerically the spectral control of modulation instability (MI) dynamics via the initial phase relation of two weak seed fields. Specifically, we show how second-order MI dynamics exhibit phase-dependent anti-correlated growth rates of adjacent spectral sidebands. This effect enables a novel method to control MI-based frequency conversion: in contrast to first-order MI dynamics, which exhibit a uniform phase dependence of the growth rates, second-order MI dynamics allow to redistribute the spectral energy, leading to an asymmetric spectrum. Therefore, the presented findings should be very attractive to different applications, such as phase-sensitive amplification or supercontinuum generation initiated by MI.
Fiber-optic project-fringe interferometry with sinusoidal phase modulating system
Zhang, Fukai; Duan, Fajie; Lv, Changrong; Duan, Xiaojie; Bo, En; Feng, Fan
2013-06-01
A fiber-optic sinusoidal phase-modulating (SPM) interferometer for fringe projection is presented. The system is based on the SPM technique and makes use of the Mach-Zehnder interferometer structure and Young's double pinhole interference principle to achieve interference fringe projection. A Michelson interferometer, which contains the detection of Fresnel reflection on its fiber end face and interference at one input port of a 3 dB coupler, is utilized to achieve feedback precise control of the fringe phase, which is sensitive to phase drifting produced by the nature of the fiber. The phase diversity for the closed-loop SPM system can be real-time measured with a precision of 3 mrad. External disturbances mainly caused by temperature fluctuations can be reduced to 57 mrad for the fringe map. The experimental results have shown the usefulness of the system.
Phase Quantization Study of Spatial Light Modulator for Extreme High contrast Imaging
Dou, Jiangpei
2016-01-01
Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave front control is a critical technique to attenuate the speckle noise in order to achieve an extreme high contrast. We present the phase quantization study of spatial light modulator for wave front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask, respectively. The simulation result has constrained the specification for phase accuracy of SLM in above two optical configurations. Finally, we have demonstrated that the S...
All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.
Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing
2016-01-15
VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.
Tao, Yufeng; Wang, Ming; Guo, Dongmei
2016-07-01
The theoretical basis of self-mixing interference (SMI) employing a resonant phase modulator is explored to prove its tempting advantages. The adopted method induces a pure phase carrier without increasing system complexity. A simple time-domain signal process is used to estimate modulation depth and precisely track vibrating trail, which promises the flexibility of measuring ultrasonic vibration regardless of the constraint of the Bessel functions. The broad bandwidth, low speckle noise, compact, safe, and easy operating SMI system obtains the best resolution of a poor reflection environment. Numerical simulation discusses the spectrum broadening and errors due to multiple reflections. Experimental results agree with theory coherently and are compared with laser Doppler vibration meter showing a dynamical error better than 20 nm in ultrasonic vibration measurement.
Single phase-change analysis of two different PCMs filled in a heat transfer module
Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)
2014-07-15
Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.
The nature of relaxation processes revealed by the action signals of phase modulated light fields
Osipov, Vladimir Al; Hansen, Thorsten; Pullerits, Tõnu; Karki, Khadga Jung
2016-01-01
In the article we develop a theory of the action signals induced by the two-photon absorption of two phase modulated laser beams. In such experiments the phase of each laser beams is modulated at the frequencies $\\phi_1$ and $\\phi_2$, respectively, and the nonlinear signals are isolated at frequencies $m\\phi=m(\\phi_1-\\phi_2)$ ($m=0,1,2,\\dots$). We demonstrate that the ratio of the amplitudes of primary ($m=1$) and secondary ($m=2$) signals, $A_{\\phi}:A_{2\\phi}$, can be used as an indicator of the type of relaxation processes taking place in the material. The reference ratio value $4:1$ is achieved for the fast linear relaxation processes, and changes smoothly as the relaxation time increases. In case of bimolecular relaxation the ratio becomes a rapidly changing function of the excitation intensity. Our theoretical findings are supported by the experimental observations.
Optical A/D Quantizer Scheme Based on Parallel Phase Modulators
LI Zheng
2005-01-01
A high-speed and high-resolution optical A/D quantizer is proposed. Its architecture is discussed. Bit circuits are built by using the phase modulators in parallel. Based on the different character of the half-wave voltage for every phase modulator and the polarized bias design of incident light, the RF input signal is coded and transmitted in the form of optical digital signal. According to the principle of the architecture, the high-resolution quantizers with 8-bit and 12-bit, et al. are built, which operate at 100 GS/s.Their quantization noise is invariable almost with bit circuits increasing. The simulation result of 4-bit A/D quantizer is also given.
Alternative approach of conducting phase-modulated all-optical logic gates
Chakraborty, Bikash; Mukhopadhyay, Sourangshu
2009-03-01
It is well established that optical devices and components are more advantageous than their electronic counterparts because of inherent parallelism in optics. Basically electronics are found to be very unsuitable in high speed (above gigahertz) data processing systems whereas tremendous operational speed (in the range of terahertz) can be achieved with the help of optics. The parallelism of optics and the properties of low loss transmission make optics a powerful technology for digital computing and processing and in long-range communications. Again it is well established that logic gates are the basic building blocks of any computing or data processing system. Therefore, any optical data processor needs suitable optically run logic gates. A method of conducting phase-modulated all-optical logic gates is proposed. Here we will exploit the advantages of phase modulation not only in processing but also in encoding as well decoding also.
Campmany, J.; Bertran, E.; Canillas, A.; Andujar, J.L.; Costa, J. (Universitat de Barcelona, Catalonia (Spain))
1993-04-01
The authors point out that there is an intrinsic magnification of error in the measurement of transparent or semitransparent thin films by the usual method of phase-modulated ellipsometry. This procedure is suitable for absorbing materials, but for nonabsorbing materials it gives a great amount of error in the measurement of ellipsometric angles at some critical values. A new methodology is proposed for the phase-modulated ellipsometric measurements that avoids this magnification. The advantages of this new method are illustrated by measuring the index of refraction of a low-pressure chemical-vapor-deposited SiO[sub 2] thin film with greater accuracy than that achieved by the usual method. 16 refs., 6 figs.
Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator
Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.
2011-10-19
We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.
Zibar, Darko; Caballero Jambrina, Antonio; Guerrero Gonzalez, Neil
2009-01-01
A digital coherent receiver employing photonic downconversion is presented and experimentally demonstrated for phase-modulated radio-over-fibre optical links. The receiver is capable of operating at frequencies exceeding the bandwidth of electrical analog-to-digital converter by using photonic...... downconversion to translate the high-frequency input RF signal to the operating frequency range of the analog-to-digital converter. First, using linear digital demodulation scheme we measure SFDR of the link at microwave frequency of 5 GHz. Thereafter, successful signal demodulation of 50 Mbit/s binary phase...... shift keying (BPSK) modulated data signal at 5 GHz RF carrier frequency is experimentally demonstrated by using an analog-to-digital converter with only 1 GHz bandwidth. We successfully demonstrate signal demodulation, using the proposed digital coherent receiver with photonic downconversion, after 40...
Al-Sarawi, Said; Hansen, Hedley; Zhu, Yingbo
2007-12-01
Phased array antennas have a large number of civilian and military applications. In this paper we briefly review common approaches to an integrated implementation of radar and electronic warfare digital phase array module and highlight features that are common to both of these applications. Then we discuss how the promising features of the radio frequency integrated circuit (RFIC)-based technology can be utilized in building a transceiver module that meets the requirements of both radar and electronic warfare applications with minimum number of external components. This is achieved by researching the pros and cons of the different receiver architectures and their performance from the targeted applications point of view. Then, we survey current RFIC technologies and highlight the pros and cons of these technologies and how they impact the performance of the discussed receiver architectures.
A novel binaural pitch elicited by phase-modulated noise: MEG and psychophysical observations.
Witton, Caroline; Hillebrand, Arjan; Furlong, Paul L; Henning, G Bruce
2012-06-01
Binaural pitches are auditory percepts that emerge from combined inputs to the ears but that cannot be heard if the stimulus is presented to either ear alone. Here, we describe a binaural pitch that is not easily accommodated within current models of binaural processing. Convergent magnetoencephalography (MEG) and psychophysical measurements were used to characterize the pitch, heard when band-limited noise had a rapidly changing interaural phase difference. Several interesting features emerged: First, the pitch was perceptually lateralized, in agreement with the lateralization of the evoked changes in MEG spectral power, and its salience depended on dichotic binaural presentation. Second, the frequency of the pure tone that matched the binaural pitch lay within a lower spectral sideband of the phase-modulated noise and followed the frequency of that sideband when the modulation frequency or center frequency and bandwidth of the noise changed. Thus, the binaural pitch depended on the processing of binaural information in that lower sideband.
Fu, Jian
2010-01-01
We demonstrate that a tensor product structure could be obtained by introducing pseudorandom phase sequences into classical fields with two orthogonal modes. Using classical fields modulated with pseudorandom phase sequences, we discuss efficient simulation of several typical quantum states, including product state, Bell states, GHZ state, and W state. By performing quadrature demodulation scheme, we could obtain the mode status matrix of the simulating classical fields, based on which we propose a sequence permutation mechanism to reconstruct the simulated quantum states. The research on classical simulation of quantum states is important, for it not only enables potential practical applications in quantum computation, but also provides useful insights into fundamental concepts of quantum mechanics.
Optimization of a four-temporal phase lock for photoelastic-modulated polarimetry.
Tsai, Hsiu-Ming; Chao, Yu-Faye
2009-08-01
A set of four-temporal phases in photoelastic-modulated polarimetry is proposed to measure the Stokes parameters. In comparison with the conventional polarimetry, which uses a set of four-spatial angles by rotating a quarter-wave plate to obtain the polarimetric parameters, this temporal type polarimetry not only can reduce the time consumption but also can avoid the measurement error from the beam deviation. In addition, based on singular value decomposition, the figure of merit of this temporal phase technique can improve its signal-to-noise ratio by a factor of 2 in comparison with the rotating quarter-wave plate.
Tight Focusing Properties of Phase Modulated Radially Polarized Laguerre Bessel Gaussian Beam
Prabakaran, K.; Sangeetha, P.; Karthik, V.; Rajesh, K. B.; Musthafa, A. M.
2017-05-01
We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.
Modulated systems in external fields: Conditions for the presence of reentrant phase diagrams
Mendoza-Coto, Alejandro; Billoni, Orlando V.; Cannas, Sergio A.; Stariolo, Daniel A.
2016-08-01
We introduce a coarse-grained model capable of describing the phase behavior of two-dimensional ferromagnetic systems with competing exchange and dipolar interactions, as well as an external magnetic field. An improved expression for the mean-field entropic contribution allows us to compute the phase diagram in the whole temperature versus external field plane. We find that the topology of the phase diagram may be qualitatively different depending on the ratio between the strength of the competing interactions. In the regime relevant for ultrathin ferromagnetic films with perpendicular anisotropy we confirm the presence of inverse-symmetry breaking from a modulated phase to a homogeneous one as the temperature is lowered at constant magnetic field, as reported in experiments. For other values of the competing interactions we show that reentrance may be absent. Comparing thermodynamic quantities in both cases, as well as the evolution of magnetization profiles in the modulated phases, we conclude that the reentrant behavior is a consequence of the suppression of domain wall degrees of freedom at low temperatures at constant fields.
Tekavec, Patrick F; Lott, Geoffrey A; Marcus, Andrew H
2007-12-07
Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.
Dabidian, Nima; Kholmanov, Iskandar; Lu, Feng; Lai, Jongwon Lee Kueifu; Jin, Mingzhou; Fallahazad, Babak; Tutuc, Emanuel; Belkin, Mikhail A; Shvets, Gennady
2015-01-01
Plasmonic metasurfaces are able to modify the wavefront by altering the light intensity, phase and polarization state. Active plasmonic metasurfaces would allow dynamic modulation of the wavefront which give rise to interesting application such as beam-steering, holograms and tunable waveplates. Graphene is an interesting material with dynamic property which can be controlled by electrical gating at an ultra-fast speed. We use a graphene integrated metasurface to induce a tunable phase change to the wavefront. The metasurface support a Fano resonance which produces high-quality resonances around 7.7 microns. The phase change is measured using a Michleson interferometry setup. It is shown that the reflection phase changes by about 55 degrees. In particular the phase can change by about 28 degrees while the amplitude is nearly constant. The asymmetric optical response of the metasurface is used to modulate the ellipticity of the reflected wave in response to an incident field at 45 degree. We finally show a pro...
Injection of a Phase Modulated Source into the Z-Beamlet Laser for Increased Energy Extraction.
Rambo, Patrick K.; Armstrong, Darrell J.; Schwarz, Jens; Smith, Ian C; Shores, Jonathon; Speas, Christopher; Porter, John L.
2014-11-01
The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.
Second-Harmonic Generation in Optical Fibres Induced by a Cross-Phase Modulation Effect
CUI Wei-Na; HUANG Guo-Xiang
2005-01-01
@@ When two optical pulses copropagate inside a single-modefibre, intensity-dependent refractive index couples the pulses through a cross-phase modulation (XPM). We show that a second-harmonic generation (SHG) on a continuous-wave background is possible in the optical fibre induced by the XPM effect. By means of a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their explicit solutions are provided and discussed.
On the application of neural networks to the classification of phase modulated waveforms
Buchenroth, Anthony; Yim, Joong Gon; Nowak, Michael; Chakravarthy, Vasu
2017-04-01
Accurate classification of phase modulated radar waveforms is a well-known problem in spectrum sensing. Identification of such waveforms aids situational awareness enabling radar and communications spectrum sharing. While various feature extraction and engineering approaches have sought to address this problem, the use of a machine learning algorithm that best utilizes these features is becomes foremost. In this effort, a comparison of a standard shallow and a deep learning approach are explored. Experiments provide insights into classifier architecture, training procedure, and performance.
Jun, Chang Su; Kim, Byoung Yoon
2011-03-28
We describe experimental investigation of pulsed output from a multi-wavelength fiber ring laser incorporating low frequency phase modulation with large modulation amplitude. The Erbium-doped fiber (EDF) ring laser generated more than 8 wavelength channels with the help of a phase modulator operating at 26.2 kHz and a periodic intra-cavity filter. For most cases, the laser output is pulsed in the form of mode-locking at 5.62 MHz and/or Q-switching at harmonic and sub-harmonic of the phase modulation frequency. Chaotic pulse output is also observed. The behavior of the output pulses are described as functions of pump power and phase modulation amplitude. The relative intensity noise (RIN) value of a single wavelength channel is measured to be under -100 dB/Hz (-140 dB/Hz beyond 1.5 GHz).
Gao, Zhensen; Dai, Bo; Wang, Xu; Kataoka, Nobuyuki; Wada, Naoya
2010-12-01
We propose and experimentally demonstrate a reconfigurable two-dimensional (temporal-spectral) time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access (OCDMA) application. The time-domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. A Fiber Bragg Gratings array is used for generating the two-dimensional wavelength hopping pattern while the high speed phase modulator is used for generating the spectral phase pattern. The proposed scheme can enable simultaneous generation of the time domain spectral phase encoding and DPSK data modulation using only a single phase modulator. In the experiment, the two-dimensional SPE codes have been generated and modulated with 2.5-Gb/s DPSK data using a single phase modulator. Transmission of the 2.5-Gb/s DPSK data over 49km fiber with BER<10-9 has been demonstrated successfully. The proposed scheme exhibits the potential to simplify the architecture and improve the security of the OCDMA system.
Design and implementation of FPGA-based phase modulation control for series resonant inverters
N Gayathri; M C Chandorkar
2008-10-01
Owing to the tremendous advances in the digital technology, and improved reliability and performance of the digital control mechanisms, this paper focuses on design and implementation of digital controller using FPGA-based circuit design approach. The digital controller proposed is designed for series resonant inverter used in DC–DC converter applications. Phase modulation technique is proposed for the realization of digital controller on FPGA. The Series Resonant Converter (SRC) is considered in this paper as a preferred converter topology for high power, high voltage power supplies. This paper studies the implementation of phase shift modulation technique using FPGA. The inverter designed, is IGBT based, and Zero Voltage Switching (ZVS) technique is implemented due to reduced stresses on devices and increased efﬁciency. The phase modulated series resonant inverters (PM-SRC) promotes ZVS operation when its switching frequency is greater than resonant frequency. The designed PM controller is realized using FPGA on which control algorithm and other features of a controller are developed. The series resonant inverter is built and tested for full load under open loop and closed loop conditions at a switching frequency of 20 kHz. The results are presented under varying load conditions. The simulation and the experimental results were found to match closely.
Vapour-liquid phase diagram for an ionic fluid in a random porous medium.
Holovko, M F; Patsahan, O; Patsahan, T
2016-10-19
We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.
Vapour-liquid phase diagram for an ionic fluid in a random porous medium
Holovko, M. F.; Patsahan, O.; Patsahan, T.
2016-10-01
We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.
陈皓; 桂伟
2014-01-01
从定义和角频率两个角度分析调相，同时从定义和相角两个角度分析调频。进而用数学公式对直接调相和利用调频间接调相、直接调频和利用调相间接调频进行比较，再定量的对调频和调相信号进行比较，从而阐述了调频与调相之间内在的联系。%The paper analyses phase modulation from two angles of definition and angular frequency,and analyses frequency modulation from two angles of definition and phase angle. And then uses a mathematical formula for the comparation between direct phase modulation and indirect phase modulation by frequency,for the comparation between direct frequency modulation and indirect frequency modulation by phase,and then the quantitative comparison of frequency modulation and phase modulation. Then elaborates the nternal connection between FM and PM.
Brumwell, F. R.; Dooling, J. C.; McMichael, G. E.
1999-09-01
Phase modulation (PM) is used to increase the current limit in the IPNS RCS. A device referred to as a scrambler introduces a small oscillating phase between the two RCS rf cavities at approximately twice the synchrotrons frequency, f{sub s}. The modulation introduced by the scrambler generates longitudinal oscillations in the bunch at 2f{sub s}. Modulations in the bunch are also observed transversely indicating a coupling between longitudinal and transverse motion. Comparing PM with amplitude modulation (AM), coupling to the beam is roughly equivalent at 2f{sub s}.
Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.
2016-06-01
We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.
Investigating Quantum Modulation States
2016-03-01
3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...Coherent states are the most classical of quantum states. Generation and detection of their polarization and phase modulations are well...stream cipher maps message bits onto random blocks of bits producing modulated states that are intrinsically noisy. The ciphertext so generated is
Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis
Shulda, Sarah; Richards, Ryan M.
2016-02-19
Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at a constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.
Nanoscale phase engineering of thermal transport with a Josephson heat modulator
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
2016-03-01
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Simulating atmospheric turbulence using a phase-only spatial light modulator
Burger, L
2008-04-01
Full Text Available intensity, called scintillation (see Fig. 1). These two artifacts are also observed with the naked eye in the case of starlight: the so-called twinkling of the stars is precisely this randomness in path and intensity. It is now well understood... and military applications (see refs 1 and 2 for a good overview of the field). A modern optical element in the form of a spatial light modulator (SLM) has allowed new approaches to adaptive optics, and has already been recommended and used...
PS-Module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade
Grossmann, Johannes
2016-01-01
During the HL-LHC era an instantaneous luminosity of $5\\times10^{34}\\,\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ will be reached and possibly $3000\\mskip3mu\\mathrm{fb} ^{-1}$ integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R\\&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has $p_{\\mathrm{T}}\\,$-discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.
PS-module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade
Grossmann, J.
2017-02-01
During the HL-LHC era an instantaneous luminosity of 5×1034 cm‑2s‑1 will be reached and possibly 3000 fb‑1 integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has pT -discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.
Hida, Kazuo
2007-02-01
The ground state properties of the high spin Heisenberg chains with alternating single site anisotropy are investigated by means of the numerical exact daigonaization and DMRG method. It is found that the ferrimagnetic state appears between the Haldane phase and period doubled Néel phase for the integer spin chains. On the other hand, the transition from the Tomonaga-Luttinger liquid state into the ferrimagnetic state takes place for the half-odd-integer spin chains. In the ferrimagnetic phase, the spontaneous magnetization varies continuously with the modulation amplitude of the single site anisotropy. Eventually, the magnetization is locked to fractional values of the saturated magnetization. These fractional values satisfy the Oshikawa-Yamanaka-Affleck condition. The local spin profile is calculated to reveal the physical nature of each state. In contrast to the case of frustration induced ferrimagnetism, no incommensurate magnetic superstructure is found.
Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond
Geng, Yan
This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying...... labeling has been proposed as an efficient way to implement packet routing and forwarding functionalities in future IP-over-WDM networks. An in-band subcarrier multiplexing (SCM) labeled signal using 40 Gbit/s DSPK payload and 25 Mbit/s non return-to-zero(NRZ) SCM label, is successfully transmitted over 80...... noise, and consequently degrade the performance of systems making use of RZ-DPSK format. All-optical signal regeneration avoiding O-E-O conversion is desired to improve signal quality in ultra long-haul transmission systems. Proof-of-principle numerical simulation results are provided, that suggest...
Coulomb and spin-orbit interactions in random phase approximation calculations
De Donno, V; Anguiano, M; Lallena, A M
2013-01-01
We present a fully self-consistent computational framework composed by Hartree-Fock plus ran- dom phase approximation where the spin-orbit and Coulomb terms of the interaction are included in both steps of the calculations. We study the effects of these terms of the interaction on the random phase approximation calculations, where they are usually neglected. We carry out our investigation of excited states in spherical nuclei of oxygen, calcium, nickel, zirconium, tin and lead isotope chains. We use finite-range effective nucleon-nucleon interactions of Gogny type. The size of the effects we find is, usually, of few hundreds of keV. There are not simple approximations which can be used to simulate these effects since they strongly depend on all the variables related to the excited states, angular momentum, parity, excitation energy, isoscalar and isovector characters. Even the Slater approximation developed to account for the Coulomb exchange terms in Hartree-Fock is not valid in random phase approximation ca...
Chaos Control for Coupling of the Double-Well Duffing System Based on Random Phase Disturbance
Wu, Gang; Li, Longsuo; Cong, Xinrong
2013-06-01
Non-feedback methods of chaos control are suited for practical applications. For possible practical applications of the control methods, the robustness of the methods in the presence of noise is of special interest. The noise can be in the form of external disturbances to the system or in the form of uncertainties due to inexact model of the system. This paper deals with the effect of random phase disturbance for a class of coupling of the Double-Well Duffing system in the presence of the noise. Lyapunov index is an important indicator to describe chaos. When the sign of the top Lyapunov exponent is positive, the system is chaotic. We compute top Lyapunov exponent by the Khasminskii's transform formula of spherical coordinate and extension of Wedig's algorithm based on linear stochastic system. With the change of the average of top Lyapunov exponent sign, we show that random phase can suppress chaos. Finally Poincaré map and phase portraits analysis are studied to confirm the obtained results.
Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media.
Kalyuzhnyi, Y V; Holovko, M; Patsahan, T; Cummings, P T
2014-12-18
The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.
Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators
Huferath-von Luepke, Silke; Bock, Martin; Grunwald, Ruediger
2009-06-01
Recently, we proposed a new approach of a noncollinear correlation technique for ultrashort-pulsed coherent optical signals which was referred to as Bessel-autocorrelator (BAC). The BAC-principle combines the advantages of Bessellike nondiffracting beams like stable propagation, angular robustness and self-reconstruction with the principle of temporal autocorrelation. In comparison to other phase-sensitive measuring techniques, autocorrelation is most straightforward and time-effective because of non-iterative data processing. The analysis of nonlinearly converted fringe patterns of pulsed Bessel-like beams reveals their temporal signature from details of fringe envelopes. By splitting the beams with axicon arrays into multiple sub-beams, transversal resolution is approximated. Here we report on adaptive implementations of BACs with improved phase resolution realized by phase-only liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Programming microaxicon phase functions in gray value maps enables for a flexible variation of phase and geometry. Experiments on the diagnostics of few-cycle pulses emitted by a mode-locked Ti:sapphire laser oscillator at wavelengths around 800 nm with 2D-BAC and angular tuned BAC were performed. All-optical phase shift BAC and fringe free BAC approaches are discussed.
Non-photic modulation of phase shifts to long light pulses.
Antle, Michael C; Sterniczuk, Roxanne; Smith, Victoria M; Hagel, Kimberly
2007-12-01
Circadian rhythms can be reset by both photic and non-photic stimuli. Recent studies have used long light exposure to produce photic phase shifts or to enhance non-photic phase shifts. The presence or absence of light can also influence the expression of locomotor rhythms through masking; light during the night attenuates locomotor activity, while darkness during the day induces locomotor activity in nocturnal animals. Given this dual role of light, the current study was designed to examine the relative contributions of photic and non-photic components present in a long light pulse paradigm. Mice entrained to a light/dark cycle were exposed to light pulses of various durations (0, 3, 6, 9, or 12 h) starting at the time of lights-off. After the light exposure, animals were placed in DD and were either left undisturbed in their home cages or had their wheels locked for the remainder of the subjective night and subsequent subjective day. Light treatments of 6, 9, and 12 h produced large phase delays. These treatments were associated with decreased activity during the nocturnal light and increased activity during the initial hours of darkness following light exposure. When the wheels were locked to prevent high-amplitude activity, the resulting phase delays to the light were significantly attenuated, suggesting that the activity following the light exposure may have contributed to the overall phase shift. In a second experiment, telemetry probes were used to assess what effect permanently locking the wheels had on the phase shift to the long light pulses. These animals had phase shifts fully as large as animals without any form of wheel lock, suggesting that while non-photic events can modulate photic phase shifts, they do not play a role in the full phase-shift response observed in animals exposed to long light pulses. This paradigm will facilitate investigations into non-photic responses of the mouse circadian system.
Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I
Someya, Yoshiko
1981-12-01
The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.
Aketagawa, M.; Madden, M.; Uesugi, S.; Kumagai, T.; Maeda, Y.; Okuyama, E.
2012-11-01
In the conventional methods to measure radial, axial and angular motions of spindles, complicated artifacts with relative large volume (such as two balls linked with a cylinder) are required. Small volume artifact is favorable from the viewpoint of the accurate and practical measurement of the spindle motion. This paper describes a concurrent measurement of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers. In the measurement, the concentric circle grating with fine pitch is installed on top of the spindle of interest. The grating is a reference artifact in the method. Three optical sensors are fixed over the concentric circle grating, and observe the proper positions of the grating. The optical sensor consists of a frequency modulated laser diode as a light source, and two interferometers. One interferometer observes an interference fringe between reflected light form a fixed mirror and 0-th order diffraction light from the grating to measure the axial motion. Another interferometer observes an interference fringe between +/-2nd diffraction lights from the grating to measure the radial motion. Using three optical sensors, three radial displacements and three axial displacements of the proper observed position of the grating can be measured. From these measured displacements, radial, axial and angular motions of the spindle can be calculated concurrently. In the paper, a measurement instrument, a novel fringe interpolation technique by sinusoidal phase modulation and experimental results are discussed.
Phase-locked modulation delay between the poles of pulsar B1055-52
Weltevrede, Patrick; Johnston, Simon
2012-01-01
We present a detailed single pulse study of PSR B1055-52 based on observations at the Parkes radio telescope. The radio emission is found to have a complex modulation dominated by a periodicity of ~20 times its rotational period P (0.197s), whose phase and strength depends on pulse longitude. This periodicity exhibits a phase-locked delay of about 2.5P between the main pulse (MP) and interpulse (IP), presumed to be the opposite poles of the pulsar. This delay corresponds to a light travel distance of many times the light cylinder radius. More complex modulations are found within the MP on timescales down to about 9P, and both these and the principal modulation vary strongly across the (at least) 7 components which the MP and IP exhibit. The nature of the single pulse emission, which ranges from smooth and longitudinally extended to `spiky', is also component-dependent. Despite these disparities, the total pulse intensity distributions at the MP and IP are virtually identical in shape, suggesting a common emis...
Lu, Yong; Xiao, Guochun; Wang, Xiongfei
2016-01-01
The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...... solving the coupling problem introduced by the common switching leg. The modulation method is similar to the well-known space vector modulation widely used with three-phase voltage source converters, which thus brings extra flexibility to the TL-UPQC system. Two optimized modulation modes with either...... reduced switching loss or harmonic distortion are derived, evaluated, and discussed, in order to demonstrate the flexibility brought by the space vector modulated TL-UPQC. Simulations and experimental results are presented to verify the feasibility and effectiveness of the proposed space vector modulation...
Neuhauser, Daniel; Rabani, Eran; Baer, Roi
2013-04-04
A fast method is developed for calculating the random phase approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix, and the trace is taken by a stochastic approach using random perturbation vectors. For a fixed statistical error in the total energy per electron, the method scales, at most, quadratically with the system size; however, in practice, due to self-averaging, it requires less statistical sampling as the system grows, and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. We find that the RPA correlation energies per electron are largely independent of the nanocrystal size. In addition, we show that a correlated sampling technique enables calculation of the energy difference between two slightly distorted configurations with scaling and a statistical error similar to that of the total energy per electron.
The chiral phase transition in a random matrix model with molecular correlations
Wettig, T; Weidenmüller, H A; Wettig, Tilo
1995-01-01
The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.
2014-01-01
Transmit/Receive Module (T/R Module) is one of the most essential blocks for Phased Array Radio Detection and Ranging (RADAR) system; due to being very influential on system level performance. To achieve high performance specifications, T/R Module structures are constructed with using III-V devices, which has some significant disadvantages; they are costly, and also consume too much area and power. As a result, application area of T/R Module is mainly restricted with the military and dedicate...
Optimization of the sinusoidal phase modulation technique in resonant fiber optic gyro
Wang, Linglan; Li, Hanzhao; Zhang, Jianjie; Ma, Huilian; Jin, Zhonghe
2017-03-01
The sinusoidal wave phase modulation and demodulation have been widely used in the signal processing system of the resonant fiber optic gyro (RFOG). An appropriate selection of the modulation frequency is of great importance, for the frequency value directly affects the slope of the demodulation curve at the resonance point which carries the gyro output information. A large demodulation slope is pursued in a high-performance RFOG. In this paper, an analytical expression of the demodulation slope is for the first time deduced in both transmission-type and reflection-type fiber ring resonators without any approximation. The relationship between the slope value and the modulation frequency at the resonance point is accurately calculated. The calculated best modulation frequency maximizing the demodulation slope at the resonance point is different from previous widely used optimal frequency given by the Lorentzian approximation method. More importantly, both theoretical and experimental results indicate that the achieved maximal demodulation slope from the proposed analytical expression method is double of that obtaining from the Lorentzian approximation method.
Litvin, IA
2007-09-01
Full Text Available Recent approaches to demonstrating adaptive optics and atmospheric turbulence have made use of spatial light modulators (SLMs) as the active phase element. However, there are limitations in using SLMs as an accurate method of simulating turbulence...
Bang, Ole; Graversen, T. W.; Clausen, Carl A. Balslev
2000-01-01
Quasi-phase-matching gratings induces Kerr effects in quadratic nonlinear materials. We show analytically and confirm numerically how modulating the grating changes the effective quadratic and cubic nonlinearities and allows for multi-wavelength second-harmonic generation....
R Ganapathy; V C Kuriakose
2002-04-01
We obtain conditions for the occurrence of cross-phase modulational instability in the normal dispersion regime for the coupled higher order nonlinear Schrödinger equation with higher order dispersion and nonlinear terms.
LIU Ning; LIAO Changjun; LIU Songhao; GUO Qi; XU Wengchen
2001-01-01
The crosstalk in WDM systems caused by cross-phase modulation (XPM) in erbium-doped fiber amplifiers(EDFA) was studied analytically. The results confirm that the EDFA induced phase shift does cause crosstalk in WDM systems. The crosstalk between two channels both with modulated pulse signals is studied for the first time. It was found that the EDFA induced phase shift will cause serious deterioration of the eye diagram when the optical signals continue to travel in the normal-dispersion regime of the transmission fiber, while in the anomalous-dispersion regime this phase shift will not cause much deterioration of the eye diagram.
Saleh, Mohammed F; Travers, John C; Russell, Philip St J; Biancalana, Fabio
2012-01-01
We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive gas. Due to photoionization, previously unknown types of asymmetric self-phase modulation and `universal' modulational instabilities existing in both normal and anomalous dispersion regions appear. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.
YUAN Baohong; ZHOU Zhongxiang; HOU Chunfeng; SUN Xiudong
2001-01-01
We used the perturbation expanding method to the hopping model and studied coupling effects of the modulation depth between two photorefractive phase gratings stored in one point with an external applied DC electric field . It has been found that the modulation depth of one of the two gratings seriously affects the spatial-charge field of the other grating.
Isoscalar Giant Resonances of 120Sn in the Quasiparticle Relativistic Random Phase Approximation
CAO Li-Gang; MA Zhong-Yu
2004-01-01
@@ The quasiparticle relativistic random phase approximation (QRRPA) is formulated based on the relativistic mean field ground state in the response function formalism. The pairing correlations are taken into account in the Bardeen-Cooper-Schrieffer approximation with a constant pairing gap. The numerical calculations are performed in the case of various isoscalar giant resonances of nucleus 120Sn with parameter set NL3. The calculated results show that the QRRPA approach could satisfactorily reproduce the experimental data of the energies of low-lying states.
Comparison of Gamow-Teller strengths in the random phase approximation
Nabi, Jameel-Un
2012-01-01
The Gamow-Teller response is astrophysically important for a number of nuclides, particularly around iron. The random phase approximation (RPA) is an efficient way to generate strength distributions. In order to better understand both theoretical systematics and uncertainties, we compare the Gamow-Teller strength distributions for a suite of nuclides and for a suite of interactions, including semi-realistic interactions in the $1p$-$0f$ space with the RPA and a separable multi-shell interaction in the quasi-particle RPA. We also compare with experimental results for GT$_-$ on ${54}$Fe.
Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen
2011-01-01
We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....
Yang, Ding; Ma, Zhongyu
2013-01-01
Journal of Combinatorial Theory, Series B, 98(1):173-225, 2008n exotic nuclei are studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function. Different from the cases in stable nuclei, there are strong low-energy excitations in neutron-rich nuclei and proton-rich nuclei. The neutron or proton excess pushes the centroid of the strength function to lower energies and increases the fragmentation of the strength distribution. The effect of treating the contribution of continuum exactly are also discussed.
Dual random phase encoding: a temporal approach for fiber optic applications.
Cuadrado-Laborde, Christian; Duchowicz, Ricardo; Torroba, Roberto; Sicre, Enrique E
2008-04-10
We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.
Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory
Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee
2011-04-01
The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.
Generalized model of double random phase encoding based on linear algebra
Nakano, Kazuya; Takeda, Masafumi; Suzuki, Hiroyuki; Yamaguchi, Masahiro
2013-01-01
We propose a generalized model for double random phase encoding (DRPE) based on linear algebra. We defined the DRPE procedure in six steps. The first three steps form an encryption procedure, while the later three steps make up a decryption procedure. We noted that the first (mapping) and second (transform) steps can be generalized. As an example of this generalization, we used 3D mapping and a transform matrix, which is a combination of a discrete cosine transform and two permutation matrices. Finally, we investigated the sensitivity of the proposed model to errors in the decryption key.
Cryptographic salting for security enhancement of double random phase encryption schemes
Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto
2017-10-01
Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.
Matsuo, Masayuki
2014-01-01
We formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random phase approximation (QRPA). A focus is put on very neutron-rich nuclei and low-energy neutron kinetic energy in the range of O(1 keV) - O(1 MeV), relevant for the rapid neutron-capture process of nucleosynthesis. We begin with the photo-absorption cross section and the E1 strength function, t...
Random-phase approximation and its applications in computational chemistry and materials science
Ren, Xinguo; Rinke, Patrick; Joas, Christian; Scheffler, Matthias
2012-11-01
The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.
Optical information authentication via compressed sensing and double random phase encoding
Chen, Junxin; Bao, Nan; Zhu, Zhi-liang
2017-10-01
This paper presents a novel information authentication scheme via compressed sensing and double random phase encoding. Two alternative architectures have been investigated, in which significantly compressed data with micro percentage is sufficient for authentication. At the decoder end, a noise-like image with no leakage of the plaintext is recovered and subsequently authenticated using a nonlinear optical correlation approach. The authentication effectiveness, noise resistance and security performance of the proposed scheme have been experimentally validated. This work was supported by the Fundamental Research Funds for the Central Universities (N162410002-4, N151904002), the National Natural Science Foundation of China (No. 61374178).
Yu, Jianjun; Jeppesen, Palle
2001-01-01
Simultaneous demultiplexing and regeneration of 40-Gb/s optical time division multiplexed (OTDM) signal based on self-phase and cross-phase modulation in a dispersion shifted fiber is numerically and experimentally investigated. The optimal walkoff time between the control pulse and OTDM signal...
Oshima, Teppei; Matsudo, Yusuke; Kakue, Takashi; Arai, Daisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2015-09-01
Digital holography has the twin image problem that unwanted lights (conjugate and direct lights) overlap in the object light in the reconstruction process. As a method for extracting only the object light, phase-shifting digital holography is widely used; however, this method is not applicable for the observation of moving objects, because this method requires the recording of plural holograms. In this study, we propose a twin-image reduction method by combining the "periphery" method with the "random phase-shifting" method. The proposed method succeeded in improving the reconstruction quality, compared to other one-shot recording methods ("parallel phase-shifting digital holography" and "random phase-shifting").
Clark, S A
2001-01-01
device has been designed to minimize power requirements, 3dB bandwidths in excess of 1kHz have been achieved for less than 10mW of drive power. A basic set of design parameters is developed which allow estimation of bandwidth and power requirements based on an initial knowledge of the material system and the intended modulator architecture. Silicon can be very effectively exploited in integrated optics due to its well-defined process chemistry and the availability of techniques developed primarily for the semiconductor industry which allow control over dimensions and the creation of arbitrary two dimensional structures with great precision and repeatability. In this thesis the complete design and simulation of thermo-optic phase modulators, realised in silicon-on-insulator (SOI), is presented. Since material thermal and optical parameters vary with temperature, anomalous departure between first-order theory and experimentation can exist when operating under conditions whereby material parameters are markedly ...
Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production
Bartek, Rachel
2015-01-01
The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.
Deterministic reshaping of single-photon spectra using cross-phase modulation
Matsuda, Nobuyuki
2016-01-01
The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicabl...
Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation
翟文超; 李赞; 司江勃; 柏均
2015-01-01
A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation.
On network coding and modulation mapping for three-phase bidirectional relaying
Chang, Ronald Y.
2015-12-03
© 2015 IEEE. In this paper, we consider the network coding (NC) enabled three-phase protocol for information exchange between two users in a wireless two-way (bidirectional) relay network. Modulo-based (nonbinary) and XOR-based (binary) NC schemes are considered as information mixture schemes at the relay while all transmissions adopt pulse amplitude modulation (PAM). We first obtain the optimal constellation mapping at the relay that maximizes the decoding performance at the users for each NC scheme. Then, we compare the two NC schemes, each in conjunction with the optimal constellation mapping at the relay, in different conditions. Our results demonstrate that, in the low SNR regime, binary NC outperforms nonbinary NC with 4-PAM, while they have mixed performance with 8-PAM. This observation applies to quadrature amplitude modulation (QAM) composed of two parallel PAMs.
Yang, J; Chan, E H W; Wang, X; Feng, X; Guan, B
2015-05-04
An all-optical photonic microwave phase shifter that can realize a continuous 360° phase shift over a wide frequency range is presented. It is based on the new concept of controlling the amplitude and phase of the two RF modulation sidebands via a Fourier-domain optical processor. The operating frequency range of the phase shifter is largely increased compared to the previously reported Fourier-domain optical processor based phase shifter that uses only one RF modulation sideband. This is due to the extension of the lower RF operating frequency by designing the amplitude and phase of one of the RF modulation sidebands while the other sideband is designed to realize the required RF signal phase shift. The two-sideband amplitude-and-phase-control based photonic microwave phase shifter has a simple structure as it only requires a single laser source, a phase modulator, a Fourier-domain optical processor and a single photodetector. Investigation on the bandwidth limitation problem in the conventional Fourier-domain optical processor based phase shifter is presented. Comparisons between the measured phase shifter output RF amplitude and phase responses with theory, which show excellent agreement, are also presented for the first time. Experimental results demonstrate the full -180° to + 180° phase shift with little RF signal amplitude variation of less than 3 dB and with a phase deviation of less than 4° over a 7.5 GHz to 26.5 GHz frequency range, and the phase shifter exhibits a long term stable performance.
Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica
Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF, 07738 (Mexico); Tamayo-Rivera, L; Silva-Pereyra, H G; Reyes-Esqueda, J A; Rodriguez-Fernandez, L; Crespo-Sosa, A; Cheang-Wong, J C; Oliver, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 04510, Mexico, DF (Mexico); Rangel-Rojo, R [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada Apartado Postal 360, Ensenada, BC, 22860 (Mexico); Torres-Martinez, R, E-mail: crstorres@yahoo.com.mx [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada Unidad Queretaro, Instituto Politecnico Nacional, Santiago de Queretaro, Queretaro, 76090 (Mexico)
2011-09-02
The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.
40 Gbit/s serial data signal regeneration using self-phase modulation in a silicon nanowire
Ji, Hua; Wang, Ju; Hu, Hao
2012-01-01
We experimentally demonstrate self-phase modulation based all-optical regeneration of a 40 Gbit/s serial data signal in a silicon nanowire. Bit error rate characterization shows 2 dB receiver power improvement.......We experimentally demonstrate self-phase modulation based all-optical regeneration of a 40 Gbit/s serial data signal in a silicon nanowire. Bit error rate characterization shows 2 dB receiver power improvement....
Computer and graphics modeling of heat transfer and phase change in a wall with randomly imbibed PCM
Solomon, A.D.
1989-03-01
We describe the theoretical basis and computer implementation of a simulation code for heat transfer and phase change in a rectangular 2-dimensional region in which PCM has been randomly placed with a preassigned volume fraction.