Sample records for random phase model

  1. UA(1) breaking and phase transition in chiral random matrix model


    Sano, T.; Fujii, H.; Ohtani, M


    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temp...

  2. Stochastic modeling for starting-time of phase evolution of random seismic ground motions

    Directory of Open Access Journals (Sweden)

    Yongbo Peng


    Full Text Available In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for non-stationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components' starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N—S component of Northridge Earthquake at the type-II site are investigated. The frequency components' starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zero-mean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.

  3. Bayesian phase II adaptive randomization by jointly modeling time-to-event efficacy and binary toxicity. (United States)

    Lei, Xiudong; Yuan, Ying; Yin, Guosheng


    In oncology, toxicity is typically observable shortly after a chemotherapy treatment, whereas efficacy, often characterized by tumor shrinkage, is observable after a relatively long period of time. In a phase II clinical trial design, we propose a Bayesian adaptive randomization procedure that accounts for both efficacy and toxicity outcomes. We model efficacy as a time-to-event endpoint and toxicity as a binary endpoint, sharing common random effects in order to induce dependence between the bivariate outcomes. More generally, we allow the randomization probability to depend on patients' specific covariates, such as prognostic factors. Early stopping boundaries are constructed for toxicity and futility, and a superior treatment arm is recommended at the end of the trial. Following the setup of a recent renal cancer clinical trial at M. D. Anderson Cancer Center, we conduct extensive simulation studies under various scenarios to investigate the performance of the proposed method, and compare it with available Bayesian adaptive randomization procedures.

  4. A Locust Phase Change Model with Multiple Switching States and Random Perturbation (United States)

    Xiang, Changcheng; Tang, Sanyi; Cheke, Robert A.; Qin, Wenjie


    Insects such as locusts and some moths can transform from a solitarious phase when they remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key to effective management of outbreaks of species such as the desert locust Schistocercagregaria is early detection of when they are in the threshold state between the two phases, followed by timely control of their hopper stages before they fledge because the control of flying adult swarms is costly and often ineffective. Definitions of gregarization thresholds should assist preventive control measures and avoid treatment of areas that might not lead to gregarization. In order to better understand the effects of the threshold density which represents the gregarization threshold on the outbreak of a locust population, we developed a model of a discrete switching system. The proposed model allows us to address: (1) How frequently switching occurs from solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur, the existence of which indicate that solutions with larger amplitudes can switch to a stable attractor with a value less than the switching threshold density?; and (3) How does random perturbation influence the switching pattern? Our results show that both subsystems have refuge equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak equilibrium points and bistable equilibria can coexist for a wide range of parameters and can switch from one to another. This type of switching is sensitive to the intrinsic growth rate and the initial values of the locust population, and may result in locust population outbreaks and phase switching once a small perturbation occurs. Moreover, the simulation results indicate that the switching transient patterns become identical after some generations, suggesting that the evolving process of the perturbation system is not related to the initial value after some fixed number of

  5. Phase structure of the O(n) model on a random lattice for n > 2

    DEFF Research Database (Denmark)

    Durhuus, B.; Kristjansen, C.


    We show that coarse graining arguments invented for the analysis of multi-spin systems on a randomly triangulated surface apply also to the O(n) model on a random lattice. These arguments imply that if the model has a critical point with diverging string susceptibility, then either γ = +1...... by (γ̃, γ) = (-1/m, 1/m+1), m = 2, 3, . . . We also show that at the critical points with positive string susceptibility exponent the average number of loops on the surface diverges while the average length of a single loop stays finite....

  6. Random phase textures: theory and synthesis. (United States)

    Galerne, Bruno; Gousseau, Yann; Morel, Jean-Michel


    This paper explores the mathematical and algorithmic properties of two sample-based texture models: random phase noise (RPN) and asymptotic discrete spot noise (ADSN). These models permit to synthesize random phase textures. They arguably derive from linearized versions of two early Julesz texture discrimination theories. The ensuing mathematical analysis shows that, contrarily to some statements in the literature, RPN and ADSN are different stochastic processes. Nevertheless, numerous experiments also suggest that the textures obtained by these algorithms from identical samples are perceptually similar. The relevance of this study is enhanced by three technical contributions providing solutions to obstacles that prevented the use of RPN or ADSN to emulate textures. First, RPN and ADSN algorithms are extended to color images. Second, a preprocessing is proposed to avoid artifacts due to the nonperiodicity of real-world texture samples. Finally, the method is extended to synthesize textures with arbitrary size from a given sample.

  7. Ordering and phase transitions in random-field Ising systems (United States)

    Maritan, Amos; Swift, Michael R.; Cieplak, Marek; Chan, Moses H. W.; Cole, Milton W.; Banavar, Jayanth R.


    An exact analysis of the Ising model with infinite-range interactions in a random field and a local mean-field theory in three dimensions is carried out leading to a phase diagram with several coexistence surfaces and lines of critical points. The results show that the phase diagram depends crucially on whether the distribution of random fields is symmetric or not. Thus, Ising-like phase transitions in a porous medium (the asymmetric case) are in a different universality class from the conventional random-field model (symmetric case).

  8. Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices. (United States)

    Monthus, Cécile; Garel, Thomas


    We study the wetting transition and the directed polymer delocalization transition on diamond hierarchical lattices. These two phase transitions with frozen disorder correspond to the critical points of quadratic renormalizations of the partition function. (These exact renormalizations on diamond lattices can also be considered as approximate Migdal-Kadanoff renormalizations for hypercubic lattices.) In terms of the rescaled partition function z=Z/Z(typ) , we find that the critical point corresponds to a fixed point distribution with a power-law tail P(c)(z) ~ Phi(ln z)/z(1+mu) as z-->+infinity [up to some subleading logarithmic correction Phi(ln z)], so that all moments z(n) with n>mu diverge. For the wetting transition, the first moment diverges z=+infinity (case 0infinity (case 1fixed point distribution coincides with the transfer matrix describing a directed polymer on the Cayley tree, but the random weights determined by the fixed point distribution P(c)(z) are broadly distributed. This induces some changes in the traveling wave solutions with respect to the usual case of more narrow distributions.

  9. Random regression models

    African Journals Online (AJOL)


    modelled as a quadratic regression, nested within parity. The previous lactation length was ... This proportion was mainly covered by linear and quadratic coefficients. Results suggest that RRM could .... The multiple trait models in scalar notation are presented by equations (1, 2), while equation. (3) represents the random ...

  10. Nonlinear higher quasiparticle random phase approximation (United States)

    Smetana, Adam; Šimkovic, Fedor; Štefánik, Dušan; Krivoruchenko, Mikhail


    We develop a new approach to describe nuclear states of multiphonon origin, motivated by the necessity for a more accurate description of matrix elements of neutrinoless double-beta decay. Our approach is an extension of the Quasiparticle Random Phase Approximation (QRPA), in which nonlinear phonon operators play an essential role. Before applying the nonlinear higher QRPA (nhQRPA) to realistic problems, we test its efficiency with exactly solvable models. The first considered model is equivalent to a harmonic oscillator. The nhQRPA solutions follow from the standard QRPA equation, but for nonlinear phonon operators defined for each individual excited state separately. The second exactly solvable model is the proton-neutron Lipkin model that describes successfully not only energy spectrum of nuclei, but also beta-decay transitions. Again, we reproduce exactly the numerical solutions in the nhQRPA framework. We show in particular that truncation of the nonlinear phonon operators leads to an approximation similar to the self-consistent second QRPA, given the phonon operators are defined with a constant term. The test results demonstrate that the proposed nhQRPA is a promising tool for a realistic calculation of energy spectra and nuclear transitions.

  11. Phase Transitions on Random Lattices: How Random is Topological Disorder? (United States)

    Barghathi, Hatem; Vojta, Thomas


    We study the effects of topological (connectivity) disorder on phase transitions. We identify a broad class of random lattices whose disorder fluctuations decay much faster with increasing length scale than those of generic random systems, yielding a wandering exponent of ω = (d - 1) / (2 d) in d dimensions. The stability of clean critical points is thus governed by the criterion (d + 1) ν > 2 rather than the usual Harris criterion dν > 2 , making topological disorder less relevant than generic randomness. The Imry-Ma criterion is also modified, allowing first-order transitions to survive in all dimensions d > 1 . These results explain a host of puzzling violations of the original criteria for equilibrium and nonequilibrium phase transitions on random lattices. We discuss applications, and we illustrate our theory by computer simulations of random Voronoi and other lattices. This work was supported by the NSF under Grant Nos. DMR-1205803 and PHYS-1066293. We acknowledge the hospitality of the Aspen Center for Physics.

  12. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting


    of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light...

  13. The weighted random graph model (United States)

    Garlaschelli, Diego


    We introduce the weighted random graph (WRG) model, which represents the weighted counterpart of the Erdos-Renyi random graph and provides fundamental insights into more complicated weighted networks. We find analytically that the WRG is characterized by a geometric weight distribution, a binomial degree distribution and a negative binomial strength distribution. We also characterize exactly the percolation phase transitions associated with edge removal and with the appearance of weighted subgraphs of any order and intensity. We find that even this completely null model displays a percolation behaviour similar to what is observed in real weighted networks, implying that edge removal cannot be used to detect community structure empirically. By contrast, the analysis of clustering successfully reveals different patterns between the WRG and real networks.

  14. Phase transitions for information diffusion in random clustered networks (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin


    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  15. Cubic anisotropy created by defects of "random local anisotropy" type, and phase diagram of the O( n) Model (United States)

    Berzin, A. A.; Morosov, A. I.; Sigov, A. S.


    The expression for the cubic-type-anisotropy constant created by defects of "random local anisotropy" type is derived. It is shown that the Imry-Ma theorem stating that in space dimensions d equilibrium one. At the defect concentration lower than the critical one the long-range order takes place in the system. For a strongly anisotropic distribution of the easy axes, the Imry-Ma state is suppressed completely and the long-range order state takes place at any defect concentration.

  16. Modeling of liquid phases

    CERN Document Server

    Soustelle, Michel


    This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This second volume in the set is devoted to the study of liquid phases.

  17. The application of random phase filter in the image recognition (United States)

    Yang, Xiujuan; Zhong, Mei; Shao, Zhufeng


    We define one kind of new correlation, i.e. random phase correlation, which based on the Random Fourier Transform (RFT). An optical pattern recognition system, random phase filtering, is given according to random phase correlation. Furthermore its electro-optical setup is given for the application in image recognition. By the numerical simulation on computer, when the, we have found the proposed random phase filter can recognize the small change of object image and has higher recognition capability comparing of other three conventional correlators, the classical marched filter, the phase-only filter and the pure phase correlator.

  18. Cramer-Rao Bounds for M-PSK Packets with Random Phase (United States)

    Drake, Jeffrey


    In this paper, we derive new Cramer-Rao bounds (CRBs) for the estimation of phase from a block of random M-PSK (M=8) symbols for the case where the phase to be estimated is a random variable(r.v.). Existing bounds for 2 and 4-PSK which model the phase as non-random are extended to obtain a new 8-PSK CRB. The new bound which models the phase as a r.v. is compared to the new 8-PSK bound which models the phase as non-random. With 8-PSK we see clearly that use of the random phase CRB more accurately models the behavior if the phase, as normally happens, is supposed to be constrained to the interval [-pi/M,pi/M).

  19. Modeling of α/β for late rectal toxicity from a randomized phase II study: conventional versus hypofractionated scheme for localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Arcangeli Giorgio


    Full Text Available Abstract Background Recently, the use of hypo-fractionated treatment schemes for the prostate cancer has been encouraged due to the fact that α/β ratio for prostate cancer should be low. However a major concern on the use of hypofractionation is the late rectal toxicity, it is important to be able to predict the risk of toxicity for alternative treatment schemes, with the best accuracy. The main purpose of this study is to evaluate the response of rectum wall to changes in fractionation and to quantify the α/β ratio for late rectal toxicity Methods 162 patients with localized prostate cancer, treated with conformal radiotherapy, were enrolled in a phase II randomized trial. The patients were randomly assigned to 80 Gy in 40 fractions over 8 weeks (arm A or 62 Gy in 20 fractions over 5 weeks (arm B. The median follow-up was 30 months. The late rectal toxicity was evaluated using the Radiation Therapy Oncology Group (RTOG scale. It was assumed ≥ Grade 2 (G2 toxicity incidence as primary end point. Fit of toxicity incidence by the Lyman-Burman-Kutcher (LKB model was performed. Results The crude incidence of late rectal toxicity ≥ G2 was 14% and 12% for the standard arm and the hypofractionated arm, respectively. The crude incidence of late rectal toxicity ≥ G2 was 14.0% and 12.3% for the arm A and B, respectively. For the arm A, volumes receiving ≥ 50 Gy (V50 and 70 Gy (V70 were 38.3 ± 7.5% and 23.4 ± 5.5%; for arm B, V38 and V54 were 40.9 ± 6.8% and 24.5 ± 4.4%. An α/β ratio for late rectal toxicity very close to 3 Gy was found. Conclusion The ≥ G2 late toxicities in both arms were comparable, indicating the feasibility of hypofractionated regimes in prostate cancer. An α/β ratio for late rectal toxicity very close to 3 Gy was found.

  20. Phase-Field Modeling (United States)

    Karma, Alain

    The phase-field method is a powerful simulation tool to describe xxx the complex evolution of interfaces in a wide range of contexts without explicitly tracking these interfaces. Its main application to date has been to problems in materials science where the evolution of interfaces and defects in the interior or on the surface of a material has a profound impact on its behavior [8]. A partial list of applications to date in this general area includes alloy solidification [5], where models combine elements of the first phase-field models of the solidification of pure materials [9, 32] and the Cahn-Hilliard equation (7), solid-state precipitation [66], stress-driven interfacial instabilities [29, 41, 58], microstructural evolution in polycrystalline materials [17, 31, 36, 60], crystal nucleation [16], surface growth [13, 25, 44], thin film patterning [34], ferroelectric materials [57], dislocation dynamics [22, 49, 52, 55], and fracture [3, 11, 27, 56]. Interface tracking is avoided by making interfaces spatially diffuse with the help of order parameters that vary smoothly in space. Evolution equations for these order parameters are derived variationally from a Lyapounov functional that represents the total free-energy of the system. This theoretical construct provides great flexibility to model simultaneously various physical processes on different length and time scales within a single self-consistent set of coupled partial differential equations.

  1. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling (United States)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Li, Yi-Jin


    A three-dimensional finite element model for phase change random access memory is established to simulate electric, thermal and phase state distribution during (SET) operation. The model is applied to simulate the SET behaviors of the heater addition structure (HS) and the ring-type contact in the bottom electrode (RIB) structure. The simulation results indicate that the small bottom electrode contactor (BEC) is beneficial for heat efficiency and reliability in the HS cell, and the bottom electrode contactor with size Fx = 80 nm is a good choice for the RIB cell. Also shown is that the appropriate SET pulse time is 100 ns for the low power consumption and fast operation.

  2. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su


    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  3. Randomized Item Response Theory Models

    NARCIS (Netherlands)

    Fox, Gerardus J.A.


    The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by

  4. Random-lattice models and simulation algorithms for the phase equilibria in two-dimensional condensed systems of particles with coupled internal and translational degrees of freedom

    DEFF Research Database (Denmark)

    Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth


    In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...... where the spin degrees of freedom are slaved by the translational degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the lattice-melting transition. The internal degeneracy of the spin states in model III implies that the spin order...... transitional properties for model III are discussed in relation to experiments on planar bilayers of lipid-chain molecules whose properties are determined by a subtle coupling between the translational variables and the intrachain conformational states....

  5. Dynamic randomization and a randomization model for clinical trials data. (United States)

    Kaiser, Lee D


    Randomization models are useful in supporting the validity of linear model analyses applied to data from a clinical trial that employed randomization via permuted blocks. Here, a randomization model for clinical trials data with arbitrary randomization methodology is developed, with treatment effect estimators and standard error estimators valid from a randomization perspective. A central limit theorem for the treatment effect estimator is also derived. As with permuted-blocks randomization, a typical linear model analysis provides results similar to the randomization model results when, roughly, unit effects display no pattern over time. A key requirement for the randomization inference is that the unconditional probability that any patient receives active treatment is constant across patients; when this probability condition is violated, the treatment effect estimator is biased from a randomization perspective. Most randomization methods for balanced, 1 to 1, treatment allocation satisfy this condition. However, many dynamic randomization methods for planned unbalanced treatment allocation, like 2 to 1, do not satisfy this constant probability condition, and these methods should be avoided. Copyright © 2012 John Wiley & Sons, Ltd.

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling (United States)

    Gong, Yue-Feng; Ling, Yun; Song, Zhi-Tang; Feng, Song-Lin


    A three-dimensional finite element models for phase change random access memory (PCRAM) is established to simulate thermal and electrical behaviours during RESET operation. The RESET behaviours of the conventional structure (CS) and the ring-type contact in bottom electrode (RIB) are compared with each other. The simulation results indicate that the RIB cell has advantages of high heat efficiency for melting phase change material in cell, reduction of contact area and lower RESET current with maintaining good resistance contrast. The RESET current decreases from 1.26mA to 1.2mA and the heat consumption in GST material during programming increases from 12% to 37% in RIB structure. Thus the RIB structure PCRAM cell is suitable for future device with high heat efficiency and smaller RESET current.

  7. Random-Field Model of a Cooper Pair Insulator (United States)

    Proctor, Thomas; Chudnovsky, Eugene; Garanin, Dmitry


    The model of a disordered superconducting film with quantum phase fluctuations is mapped on a random-field XY spin model in 2+1 dimensions. Analytical studies within continuum field theory, supported by our recent numerical calculations on discrete lattices, show the onset of the low-temperature Cooper pair insulator phase. The constant external field in the random-field spin model maps on the Josephson coupling between the disordered film and a bulk superconductor. Such a coupling, if sufficiently strong, restores superconductivity in the film. This provides an experimental test for the quantum fluctuation model of a superinsulator.

  8. Single-random-phase holographic encryption of images (United States)

    Tsang, P. W. M.


    In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.

  9. Variance of phase fluctuations of waves propagating through a random medium (United States)

    Chu, Nelson C.; Kong, Jin AU; Yueh, Simon H.; Nghiem, Son V.; Fleischman, Jack G.; Ayasli, Serpil; Shin, Robert T.


    As an electromagnetic wave propagates through a random scattering medium, such as a forest, its energy is attenuated and random phase fluctuations are induced. The magnitude of the random phase fluctuations induced is important in estimating how well a Synthetic Aperture Radar (SAR) can image objects within the scattering medium. The two-layer random medium model, consisting of a scattering layer between free space and ground, is used to calculate the variance of the phase fluctuations induced between a transmitter located above the random medium and a receiver located below the random medium. The scattering properties of the random medium are characterized by a correlation function of the random permittivity fluctuations. The effective permittivity of the random medium is first calculated using the strong fluctuation theory, which accounts for large permittivity fluctuations of the scatterers. The distorted Born approximation is used to calculate the first-order scattered field. A perturbation series for the phase of the received field in the Rytov approximation is then introduced and the variance of the phase fluctuations is also calculated assuming that the transmitter and receiver are in the paraxial limit of the random medium, which allows an analytic solution to be obtained. Results are compared using the paraxial approximation, scalar Green's function formulation, and dyadic Green's function formulation. The effects studied are the dependence of the variance of the phase fluctuations on receiver location in lossy and lossless regions, medium thickness, correlation length and fractional volume of scatterers, depolarization of the incident wave, ground layer permittivity, angle of incidence, and polarization.

  10. The Ising model on random lattices in arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonzom, Valentin, E-mail: [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada); Gurau, Razvan, E-mail: [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo (Canada); Rivasseau, Vincent, E-mail: [Laboratoire de Physique Theorique, CNRS UMR 8627, Universite Paris XI, F-91405 Orsay Cedex (France)


    We study analytically the Ising model coupled to random lattices in dimension three and higher. The family of random lattices we use is generated by the large N limit of a colored tensor model generalizing the two-matrix model for Ising spins on random surfaces. We show that, in the continuum limit, the spin system does not exhibit a phase transition at finite temperature, in agreement with numerical investigations. Furthermore we outline a general method to study critical behavior in colored tensor models.

  11. A Mixed Effects Randomized Item Response Model (United States)

    Fox, J.-P.; Wyrick, Cheryl


    The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…

  12. Random phase-free computer-generated hologram

    CERN Document Server

    Shimobaba, Tomoyoshi


    Addition of random phase to the object light is required in computer-generated holograms (CGHs) to widely diffuse the object light and to avoid its concentration on the CGH; however, this addition causes considerable speckle noise in the reconstructed image. For improving the speckle noise problem, techniques such as iterative phase retrieval algorithms and multi-random phase method are used; however, they are time consuming and are of limited effectiveness. Herein, we present a simple and computationally inexpensive method that drastically improves the image quality and reduces the speckle noise by multiplying the object light with the virtual convergence light. Feasibility of the proposed method is shown using simulations and optical reconstructions; moreover, we apply it to lens-less zoom-able holographic projection. The proposed method is useful for the speckle problems in holographic applications.

  13. Enhanced wavefront reconstruction by random phase modulation with a phase diffuser

    DEFF Research Database (Denmark)

    Almoro, Percival F; Pedrini, Giancarlo; Gundu, Phanindra Narayan


    propagation in free space. The presentation of this technique is carried out using two setups. In the first setup, a diffuser plate is placed at the image plane of a metallic test object. The benefit of randomizing the phase of the object wave is the enhanced intensity recording due to high dynamic range...... of the diffusely scattered beam. The use of demagnification optics will also allow the investigations of relatively large objects. In the second setup, a transparent object is illuminated using a wavefront with random phase and constant amplitude by positioning the phase diffuser close to the object. The benefit...

  14. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift. (United States)

    Liu, Fengwei; Wu, Yongqian; Wu, Fan


    We propose a novel phase shifting interferometry from two normalized interferograms with random tilt phase-shift. The determination of tilt phase-shift is performed by extracting the tilted phase-shift plane from the phase difference of two normalized interferograms, and with the calculated tilt phase-shift value the phase distribution can be retrieved from the two normalized frames. By analyzing the distribution of phase difference and utilizing special points fitting method, the tilted phase-shift plane is extracted in three different cases, which relate to different magnitudes of tilts. Proposed method has been applied to simulations and experiments successfully and the satisfactory results manifest that proposed method is of high accuracy and high speed compared with the three step iterative method. Additionally, both open and closed fringe can be analyzed with proposed method. What's more, it cannot only eliminate the small tilt-shift error caused by slight vibration in phase-shifting interferometry, but also detect the large tilt phase-shift in phase-tilting interferometry. Thus, it will relaxes the requirements on the accuracy of phase shifter, and the costly phase shifter may even be useless by applying proposed method in high amplitude vibrated circumstance to achieve high-precision analysis.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling (United States)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin


    A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.

  16. Relativistic Quasiparticle Random Phase Approximation in Deformed Nuclei


    Pena Arteaga, Daniel


    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogoliubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of th...

  17. Deep Learning the Quantum Phase Transitions in Random Electron Systems: Applications to Three Dimensions (United States)

    Ohtsuki, Tomi; Ohtsuki, Tomoki


    Three-dimensional random electron systems undergo quantum phase transitions and show rich phase diagrams. Examples of the phases are the band gap insulator, Anderson insulator, strong and weak topological insulators, Weyl semimetal, and diffusive metal. As in the previous paper on two-dimensional quantum phase transitions [J. Phys. Soc. Jpn. 85, 123706 (2016)], we use an image recognition algorithm based on a multilayered convolutional neural network to identify which phase the eigenfunction belongs to. The Anderson model for localization-delocalization transition, the Wilson-Dirac model for topological insulators, and the layered Chern insulator model for Weyl semimetal are studied. The situation where the standard transfer matrix approach is not applicable is also treated by this method.

  18. Reconstruction of a random phase dynamics network from observations (United States)

    Pikovsky, A.


    We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.

  19. The parabolic Anderson model random walk in random potential

    CERN Document Server

    König, Wolfgang


    This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.

  20. Overlap Synchronisation in Multipartite Random Energy Models (United States)

    Genovese, Giuseppe; Tantari, Daniele


    In a multipartite random energy model, made of a number of coupled generalised random energy models (GREMs), we determine the joint law of the overlaps in terms of the ones of the single GREMs. This provides the simplest example of the so-called overlap synchronisation.

  1. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin


    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  2. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.


    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  3. Many-body localization in the quantum random energy model (United States)

    Laumann, Chris; Pal, Arijeet


    The quantum random energy model is a canonical toy model for a quantum spin glass with a well known phase diagram. We show that the model exhibits a many-body localization-delocalization transition at finite energy density which significantly alters the interpretation of the statistical ``frozen'' phase at lower temperature in isolated quantum systems. The transition manifests in many-body level statistics as well as the long time dynamics of on-site observables. CRL thanks the Perimeter Institute for hospitality and support.

  4. 3D Multisource Full‐Waveform Inversion using Dynamic Random Phase Encoding

    KAUST Repository

    Boonyasiriwat, Chaiwoot


    We have developed a multisource full‐waveform inversion algorithm using a dynamic phase encoding strategy with dual‐randomization—both the position and polarity of simultaneous sources are randomized and changed every iteration. The dynamic dual‐randomization is used to promote the destructive interference of crosstalk noise resulting from blending a large number of common shot gathers into a supergather. We compare our multisource algorithm with various algorithms in a numerical experiment using the 3D SEG/EAGE overthrust model and show that our algorithm provides a higher‐quality velocity tomogram than the other methods that use only monorandomization. This suggests that increasing the degree of randomness in phase encoding should improve the quality of the inversion result.

  5. Optical double image security using random phase fractional Fourier domain encoding and phase-retrieval algorithm (United States)

    Rajput, Sudheesh K.; Nishchal, Naveen K.


    We propose a novel security scheme based on the double random phase fractional domain encoding (DRPE) and modified Gerchberg-Saxton (G-S) phase retrieval algorithm for securing two images simultaneously. Any one of the images to be encrypted is converted into a phase-only image using modified G-S algorithm and this function is used as a key for encrypting another image. The original images are retrieved employing the concept of known-plaintext attack and following the DRPE decryption steps with all correct keys. The proposed scheme is also used for encryption of two color images with the help of convolution theorem and phase-truncated fractional Fourier transform. With some modification, the scheme is extended for simultaneous encryption of gray-scale and color images. As a proof-of-concept, simulation results have been presented for securing two gray-scale images, two color images, and simultaneous gray-scale and color images.

  6. New specifications for exponential random graph models

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Pattison, Philippa E.; Robins, Garry L.; Handcock, Mark S.; Stolzenberg, RM


    The most promising class of statistical models for expressing structural properties of social networks observed atone moment in time is the class of exponential random graph models (ERGMs), also known as p* models. The strong point of these models is that they can represent a variety of structural

  7. Comments on the random Thirring model (United States)

    Berkooz, Micha; Narayan, Prithvi; Rozali, Moshe; Simón, Joan


    The Thirring model with random couplings is a translationally invariant generalisation of the SYK model to 1+1 dimensions, which is tractable in the large N limit. We compute its two point function, at large distances, for any strength of the random coupling. For a given realisation, the couplings contain both irrelevant and relevant marginal operators, but statistically, in the large N limit, the random couplings are overall always marginally irrelevant, in sharp distinction to the usual Thirring model. We show the leading term to the β function in conformal perturbation theory, which is quadratic in the couplings, vanishes, while its usually subleading cubic term matches our RG flow.

  8. Phase-field model of eutectic growth

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A. (Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))


    A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically.

  9. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    Keywords. Disordered conductors; random matrix theory; Dyson's Coulomb gas model. ... An interesting random walk problem associated with the joint probability distribution of the ensuing ensemble is discussed and its connection with level dynamics is brought out. It is further proved that Dyson's Coulomb gas analogy ...

  10. Nonequilibrium modeling of three-phase distillation

    NARCIS (Netherlands)

    Higler, A.P.; Chande, R.; Taylor, R.; Baur, R.; Krishna, R.


    A nonequilibrium (NEQ) model for a complete three-phase distillation in tray columns is described. The model consists of a set of mass and energy balances for each of the three possible phases present. Mass and heat transfer between these phases is modeled using the Maxwell–Stefan equations.

  11. Supersymmetric SYK model and random matrix theory (United States)

    Li, Tianlin; Liu, Junyu; Xin, Yuan; Zhou, Yehao


    In this paper, we investigate the effect of supersymmetry on the symmetry classification of random matrix theory ensembles. We mainly consider the random matrix behaviors in the N=1 supersymmetric generalization of Sachdev-Ye-Kitaev (SYK) model, a toy model for two-dimensional quantum black hole with supersymmetric constraint. Some analytical arguments and numerical results are given to show that the statistics of the supersymmetric SYK model could be interpreted as random matrix theory ensembles, with a different eight-fold classification from the original SYK model and some new features. The time-dependent evolution of the spectral form factor is also investigated, where predictions from random matrix theory are governing the late time behavior of the chaotic hamiltonian with supersymmetry.

  12. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria


    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  13. Improvement of the image quality of random phase--free holography using an iterative method

    CERN Document Server

    Shimobaba, Tomoyoshi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi


    Our proposed method of random phase-free holography using virtual convergence light can obtain large reconstructed images exceeding the size of the hologram, without the assistance of random phase. The reconstructed images have low-speckle noise in the amplitude and phase-only holograms (kinoforms); however, in low-resolution holograms, we obtain a degraded image quality compared to the original image. We propose an iterative random phase-free method with virtual convergence light to address this problem.

  14. A new model of Random Regret Minimization

    NARCIS (Netherlands)

    Chorus, C.G.


    A new choice model is derived, rooted in the framework of Random Regret Minimization (RRM). The proposed model postulates that when choosing, people anticipate and aim to minimize regret. Whereas previous regret-based discrete choice-models assume that regret is experienced with respect to only the

  15. A Generalized Random Regret Minimization Model

    NARCIS (Netherlands)

    Chorus, C.G.


    This paper presents, discusses and tests a generalized Random Regret Minimization (G-RRM) model. The G-RRM model is created by replacing a fixed constant in the attribute-specific regret functions of the RRM model, by a regret-weight variable. Depending on the value of the regret-weights, the G-RRM

  16. Analytic interatomic forces in the random phase approximation

    CERN Document Server

    Ramberger, Benjamin; Kresse, Georg


    We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the GW approximation. This relationship allows to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.

  17. Simple Fermionic Model of Deconfined Phases and Phase Transitions (United States)

    Assaad, F. F.; Grover, Tarun


    Using quantum Monte Carlo simulations, we study a series of models of fermions coupled to quantum Ising spins on a square lattice with N flavors of fermions per site for N =1 , 2, and 3. The models have an extensive number of conserved quantities but are not integrable, and they have rather rich phase diagrams consisting of several exotic phases and phase transitions that lie beyond the Landau-Ginzburg paradigm. In particular, one of the prominent phases for N >1 corresponds to 2 N gapless Dirac fermions coupled to an emergent Z2 gauge field in its deconfined phase. However, unlike a conventional Z2 gauge theory, we do not impose "Gauss's Law" by hand; instead, it emerges because of spontaneous symmetry breaking. Correspondingly, unlike a conventional Z2 gauge theory in two spatial dimensions, our models have a finite-temperature phase transition associated with the melting of the order parameter that dynamically imposes the Gauss's law constraint at zero temperature. By tuning a parameter, the deconfined phase undergoes a transition into a short-range entangled phase, which corresponds to Néel antiferromagnet or superconductor for N =2 and a valence-bond solid for N =3 . Furthermore, for N =3 , the valence-bond solid further undergoes a transition to a Néel phase consistent with the deconfined quantum critical phenomenon studied earlier in the context of quantum magnets.

  18. Simple Fermionic Model of Deconfined Phases and Phase Transitions

    Directory of Open Access Journals (Sweden)

    F. F. Assaad


    Full Text Available Using quantum Monte Carlo simulations, we study a series of models of fermions coupled to quantum Ising spins on a square lattice with N flavors of fermions per site for N=1, 2, and 3. The models have an extensive number of conserved quantities but are not integrable, and they have rather rich phase diagrams consisting of several exotic phases and phase transitions that lie beyond the Landau-Ginzburg paradigm. In particular, one of the prominent phases for N>1 corresponds to 2N gapless Dirac fermions coupled to an emergent Z_{2} gauge field in its deconfined phase. However, unlike a conventional Z_{2} gauge theory, we do not impose “Gauss’s Law” by hand; instead, it emerges because of spontaneous symmetry breaking. Correspondingly, unlike a conventional Z_{2} gauge theory in two spatial dimensions, our models have a finite-temperature phase transition associated with the melting of the order parameter that dynamically imposes the Gauss’s law constraint at zero temperature. By tuning a parameter, the deconfined phase undergoes a transition into a short-range entangled phase, which corresponds to Néel antiferromagnet or superconductor for N=2 and a valence-bond solid for N=3. Furthermore, for N=3, the valence-bond solid further undergoes a transition to a Néel phase consistent with the deconfined quantum critical phenomenon studied earlier in the context of quantum magnets.

  19. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari


    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  20. Nonparametric estimation in random sum models

    Directory of Open Access Journals (Sweden)

    Hassan S. Bakouch


    Full Text Available Let X1,X2,…,XN be independent, identically distributed, non-negative, integervalued random variables and let N be a non-negative, integer-valued random variable independent of X1,X2,…,XN . In this paper, we consider two nonparametric estimation problems for the random sum variable. The first is the estimation of the means of Xi and N based on the second-moment assumptions on distributions of Xi and N . The second is the nonparametric estimation of the distribution of Xi given a parametric model for the distribution of N . Some asymptotic properties of the proposed estimators are discussed.

  1. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)



    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  2. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria


    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe...... a relation to the so-called uniform infinite tree and results on the Hausdorff and spectral dimension of two-dimensional space-time obtained in B. Durhuus, T. Jonsson, J.F. Wheater, J. Stat. Phys. 139, 859 (2010) are briefly outlined. For the latter we discuss results on the absence of spontaneous...

  3. A Dexterous Optional Randomized Response Model (United States)

    Tarray, Tanveer A.; Singh, Housila P.; Yan, Zaizai


    This article addresses the problem of estimating the proportion Pi[subscript S] of the population belonging to a sensitive group using optional randomized response technique in stratified sampling based on Mangat model that has proportional and Neyman allocation and larger gain in efficiency. Numerically, it is found that the suggested model is…

  4. An inventory model with random demand (United States)

    Mitsel, A. A.; Kritski, O. L.; Stavchuk, LG


    The article describes a three-product inventory model with random demand at equal frequencies of delivery. A feature of this model is that the additional purchase of resources required is carried out within the scope of their deficit. This fact allows reducing their storage costs. A simulation based on the data on arrival of raw and materials at an enterprise in Kazakhstan has been prepared. The proposed model is shown to enable savings up to 40.8% of working capital.

  5. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis


    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  6. Effects of random noise in a dynamical model of love

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yong, E-mail: [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)


    Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  7. Optimal Allocation in Stratified Randomized Response Model

    Directory of Open Access Journals (Sweden)

    Javid Shabbir


    Full Text Available A Warner (1965 randomized response model based on stratification is used to determine the allocation of samples. Both linear and log-linear cost functions are discussed under uni and double stratification. It observed that by using a log-linear cost function, one can get better allocations.

  8. Random effect selection in generalised linear models

    DEFF Research Database (Denmark)

    Denwood, Matt; Houe, Hans; Forkman, Björn

    We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest ...

  9. Improving randomness characterization through Bayesian model selection. (United States)

    Díaz Hernández Rojas, Rafael; Solís, Aldo; Angulo Martínez, Alí M; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Pérez Castillo, Isaac


    Random number generation plays an essential role in technology with important applications in areas ranging from cryptography to Monte Carlo methods, and other probabilistic algorithms. All such applications require high-quality sources of random numbers, yet effective methods for assessing whether a source produce truly random sequences are still missing. Current methods either do not rely on a formal description of randomness (NIST test suite) on the one hand, or are inapplicable in principle (the characterization derived from the Algorithmic Theory of Information), on the other, for they require testing all the possible computer programs that could produce the sequence to be analysed. Here we present a rigorous method that overcomes these problems based on Bayesian model selection. We derive analytic expressions for a model's likelihood which is then used to compute its posterior distribution. Our method proves to be more rigorous than NIST's suite and Borel-Normality criterion and its implementation is straightforward. We applied our method to an experimental device based on the process of spontaneous parametric downconversion to confirm it behaves as a genuine quantum random number generator. As our approach relies on Bayesian inference our scheme transcends individual sequence analysis, leading to a characterization of the source itself.

  10. The van Hemmen model and effect of random crystalline anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Denes M. de [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Godoy, Mauricio, E-mail: [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Arruda, Alberto S. de, E-mail: [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá, Mato Grosso (Brazil); Silva, Jonathas N. da [Universidade Estadual Paulista, 14800-901, Araraquara, São Paulo (Brazil); Ricardo de Sousa, J. [Instituto Nacional de Sistemas Complexos, Departamento de Fisica, Universidade Federal do Amazona, 69077-000, Manaus, Amazonas (Brazil)


    In this work, we have presented the generalized phase diagrams of the van Hemmen model for spin S=1 in the presence of an anisotropic term of random crystalline field. In order to study the critical behavior of the phase transitions, we employed a mean-field Curie–Weiss approach, which allows calculation of the free energy and the equations of state of the model. The phase diagrams obtained here displayed tricritical behavior, with second-order phase transition lines separated from the first-order phase transition lines by a tricritical point. - Highlights: • Several phase diagrams are obtained for the model. • The influence of the random crystalline anisotropy field on the model is investigated. • Three ordered (spin-glass, ferromagnetic and mixed) phases are found. • The tricritical behavior is examined.

  11. Three phase model of the processive motor protein kinesin. (United States)

    Zhang, Yunxin


    Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. So far, the physical mechanism underlying the unidirectional bias of the kinesin is not fully understood. Recently, Martin Bier have provided a stepper model [Martin Bier, 2003, Processive motor protein as an overdamped Brownian stepper, Phys. Rev. Lett. 91, 148104], in which the stepping cycle of kinesin includes two distinguished phases: (i) a power stroke phase and (ii) a ratcheted diffusion phase which is characterized as a "random diffusional search". At saturating ATP level, this model can fit the experimental results accurately. In this paper, we'll provide a modified Brownian stepper model, in which the dependence of ATP concentration is considered. In our model, the stepping cycle of kinesin is distinguished into three phases: an ATP-binding phase, a power stroke phase and a ratcheted diffusion phase. This modified model can reconstruct most of the experimental results accurately.

  12. A random walk model to evaluate autism (United States)

    Moura, T. R. S.; Fulco, U. L.; Albuquerque, E. L.


    A common test administered during neurological examination in children is the analysis of their social communication and interaction across multiple contexts, including repetitive patterns of behavior. Poor performance may be associated with neurological conditions characterized by impairments in executive function, such as the so-called pervasive developmental disorders (PDDs), a particular condition of the autism spectrum disorders (ASDs). Inspired in these diagnosis tools, mainly those related to repetitive movements and behaviors, we studied here how the diffusion regimes of two discrete-time random walkers, mimicking the lack of social interaction and restricted interests developed for children with PDDs, are affected. Our model, which is based on the so-called elephant random walk (ERW) approach, consider that one of the random walker can learn and imitate the microscopic behavior of the other with probability f (1 - f otherwise). The diffusion regimes, measured by the Hurst exponent (H), is then obtained, whose changes may indicate a different degree of autism.

  13. Core polarization effects in the Hartree--Fock--random phase approximation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.


    Core polarization effects in odd nuclei are investigated in the framework of the Hartree--Fock and random phase approximation schemes. The results of the particle vibration coupling model are recovered by linearizing the equations of motion in the interaction Hamiltonian between the external and the core particles. The formalism is used to study the renormalization of diagonal and off-diagonal M1 matrix elements. It is found that M1 polarization effects exhibit a very strong dependence on the range of the force. Copyright 1987 Academic Press, Inc.

  14. Role of small-norm components in extended random-phase approximation (United States)

    Tohyama, Mitsuru


    The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.

  15. Phase transitions of Ising mixed spin 1 and 3/2 with random crystal field distribution (United States)

    Sabri, S.; EL Falaki, M.; EL Yadari, M.; Benyoussef, A.; EL Kenz, A.


    The thermal and magnetic properties of the mixed spin-1 and spin-3/2 in the presence of the random crystal field are studied within the mean field approach based on the Bogoliubov inequality for the Gibbs free energy. The model exhibits first, second order transitions, a tricritical point, triple point and an isolated critical end point. It is found that the system displays simple and double compensation temperatures, five topologies of the phase diagrams. A re-entrant phenomenon is also discussed and the thermal dependences of total magnetization according to extended Neel classification have been also given.

  16. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann


    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  17. Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems (United States)

    Ohtsuki, Tomoki; Ohtsuki, Tomi


    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed.

  18. A novel three-phase model of brain tissue microstructure.

    Directory of Open Access Journals (Sweden)

    Jana L Gevertz

    Full Text Available We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brain's effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.

  19. Phase Field Modeling Using PetIGA

    KAUST Repository

    Vignal, Philippe


    Phase field modeling has become a widely used framework in the computational material science community. Its ability to model different problems by defining appropriate phase field parameters and relating it to a free energy functional makes it highly versatile. Thermodynamically consistent partial differential equations can then be generated by assuming dissipative dynamics, and setting up the problem as one of minimizing this free energy. The equations are nonetheless challenging to solve, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We end with an introduction to a new modeling concept, where free energy functions are built with a periodic equilibrium structure in mind.

  20. Phase transitions in Ising models on directed networks. (United States)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof


    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  1. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu


    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  2. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.


    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  3. Shaping the spectrum of random-phase radar waveforms (United States)

    Doerry, Armin W.; Marquette, Brandeis


    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  4. Cirrus Parcel Model Comparison Phase 2 (United States)

    Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Kaercher, Bernd; Liu, Xiaohong


    The Cirrus Parcel Model Comparison (CPMC) project, a project of the GEWEX Cloud System Study Working Group on cirrus clouds (GCSS WG2), is an international effort to advance our knowledge of numerical simulations of cirrus cloud initiation. This project was done in two phases. In Phase 1 of CPMC, the critical components determining the predicted cloud microphysical properties were identified using parcel models in which the aerosol and ice crystal size distributions are explicitly resolved, the formulation of the homogeneous freezing of aqueous solution droplets, especially the gradient of nucleation rate with respect to solution concentration; aerosol growth modeling; and the mass accommodation coefficient of water vapor on ice surface (the deposition coefficient). In Phase 1, all simulations were conducted using a given background aerosol distribution. To complete the comparison study, participant model responses to a range of background aerosol distributions are investigated in Phase 2.

  5. Particle filters for random set models

    CERN Document Server

    Ristic, Branko


    “Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based  on the Monte Carlo statistical method. The resulting  algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from  navigation and autonomous vehicles to bio-informatics and finance. While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models. This book...

  6. Spartan random processes in time series modeling (United States)

    Žukovič, M.; Hristopulos, D. T.


    A Spartan random process (SRP) is used to estimate the correlation structure of time series and to predict (interpolate and extrapolate) the data values. SRPs are motivated from statistical physics, and they can be viewed as Ginzburg-Landau models. The temporal correlations of the SRP are modeled in terms of ‘interactions’ between the field values. Model parameter inference employs the computationally fast modified method of moments, which is based on matching sample energy moments with the respective stochastic constraints. The parameters thus inferred are then compared with those obtained by means of the maximum likelihood method. The performance of the Spartan predictor (SP) is investigated using real time series of the quarterly S&P 500 index. SP prediction errors are compared with those of the Kolmogorov-Wiener predictor. Two predictors, one of which is explicit, are derived and used for extrapolation. The performance of the predictors is similarly evaluated.

  7. Double blind randomized phase II study with radiation + 5-fluorouracil ± celecoxib for resectable rectal cancer

    National Research Council Canada - National Science Library

    Debucquoy, Annelies; Roels, Sarah; Goethals, Laurence; Libbrecht, Louis; Cutsem, Eric Van; Geboes, Karel; Penninckx, Freddy; D’Hoore, André; McBride, William H; Haustermans, Karin


    To assess the feasibility and efficacy of the COX-2 inhibitor celecoxib in conjunction with preoperative chemoradiation for patients with locally advanced rectal cancer in a double blind randomized phase II study...

  8. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo


    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  9. Random Field Ising Models: Fractal Interfaces and their Implications (United States)

    Bupathy, A.; Kumar, M.; Banerjee, V.; Puri, S.


    We use a computationally efficient graph-cut (GC) method to obtain exact ground-states of the d = 3 random field Ising model (RFIM) on simple cubic (SC), bodycentered cubic (BCC) and face-centered cubic (FCC) lattices with Gaussian, Uniform and Bimodal distributions for the disorder Δ. At small-r, the correlation function C(r; Δ) shows a cusp singularity characterised by a non-integer roughness exponent α signifying rough fractal interfaces with dimension d f = d – α. In the paramagnetic phase (Δ > Δ c ), α ≃ 0:5 for all lattice and disorder types. In the ferromagnetic phase (Δ Fractal interfaces have important implications on growth and relaxation.

  10. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding. (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong


    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  11. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics. (United States)

    Nagahama, Yuki; Shimobaba, Tomoyoshi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi


    A holographic projector utilizes holography techniques. However, there are several barriers to realizing holographic projections. One is deterioration of hologram image quality caused by speckle noise and ringing artifacts. The combination of the random phase-free method and the Gerchberg-Saxton (GS) algorithm has improved the image quality of holograms. However, the GS algorithm requires significant computation time. We propose faster methods for image quality improvement of random phase-free holograms using the characteristics of ringing artifacts.

  12. Geometric Phase and Quantum Phase Transition in the Lipkin-Meshkov-Glick model


    Cui, H. T.; Li, K.; Yi, X. X.


    The relation between the geometric phase and quantum phase transition has been discussed in the Lipkin-Meshkov-Glick model. Our calculation shows the ability of geometric phase of the ground state to mark quantum phase transition in this model. The possibility of the geometric phase or its derivatives as the universal order parameter of characterizing quantum phase transitions has been also discussed.

  13. Kinetic Models with Randomly Perturbed Binary Collisions (United States)

    Bassetti, Federico; Ladelli, Lucia; Toscani, Giuseppe


    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules which, in some special cases, identify models for granular gases with a background heat bath (Carrillo et al. in Discrete Contin. Dyn. Syst. 24(1):59-81, 2009), and models for wealth redistribution in an agent-based market (Bisi et al. in Commun. Math. Sci. 7:901-916, 2009). Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. The characterization of these stationary states is of independent interest, since we show that they are stationary solutions of different evolution problems, both in the kinetic theory of rarefied gases (Cercignani et al. in J. Stat. Phys. 105:337-352, 2001; Villani in J. Stat. Phys. 124:781-822, 2006) and in the econophysical context (Bisi et al. in Commun. Math. Sci. 7:901-916, 2009).

  14. Energy spectrum and phase diagrams of two-sublattice hard-core boson model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk


    Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.

  15. Bridges in the random-cluster model

    Directory of Open Access Journals (Sweden)

    Eren Metin Elçi


    Full Text Available The random-cluster model, a correlated bond percolation model, unifies a range of important models of statistical mechanics in one description, including independent bond percolation, the Potts model and uniform spanning trees. By introducing a classification of edges based on their relevance to the connectivity we study the stability of clusters in this model. We prove several exact relations for general graphs that allow us to derive unambiguously the finite-size scaling behavior of the density of bridges and non-bridges. For percolation, we are also able to characterize the point for which clusters become maximally fragile and show that it is connected to the concept of the bridge load. Combining our exact treatment with further results from conformal field theory, we uncover a surprising behavior of the (normalized variance of the number of (non-bridges, showing that it diverges in two dimensions below the value 4cos2⁡(π/3=0.2315891⋯ of the cluster coupling q. Finally, we show that a partial or complete pruning of bridges from clusters enables estimates of the backbone fractal dimension that are much less encumbered by finite-size corrections than more conventional approaches.

  16. Random graph models for dynamic networks (United States)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.


    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  17. Preliminary Phase Field Computational Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in

  18. Cirrus Parcel Model Comparison Project. Phase 1 (United States)

    Lin, R . F.; Starr, D.; DeMott, P. J.; Cotton, R.; Sassen, K.; Jensen, E.


    The Cirrus Parcel Model Comparison is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify and quantify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. These factors are key to understanding microphysical development in cirrus and for developing realistic treatments of such processes in larger-scale models. Phase 1 of the project will be described.

  19. Multiple-wavelength double random phase encoding with CCD-plane sparse-phase multiplexing for optical information verification. (United States)

    Chen, Wen


    A novel method is proposed by using multiple-wavelength double random phase encoding (MW-DRPE) with CCD-plane sparse-phase multiplexing for optical information verification. Two different strategies are applied to conduct sparse-phase multiplexing in the CCD plane. The results demonstrate that large capacity can be achieved for optical multiple-image verification. The proposed optical verification strategy is implemented based on optical encoding, and the keys generated by optical encryption can further guarantee the safety of the designed optical multiple-image verification system. The proposed method provides a novel alternative for DRPE-based optical information verification.

  20. Phase Transitions in Model Active Systems (United States)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  1. Phase-field model of oxidation: Equilibrium. (United States)

    Sherman, Q C; Voorhees, P W


    A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below the Debye length L_{D}, where charge neutrality in the oxide does not occur, is formulated. The phase-field model is validated in the Wagner limit using a sharp interface Gouy-Chapman model for the electrostatic double layer. The phase-field simulations show that equilibrium oxide films below the Wagner limit are charged throughout due to their inability to electrostatically screen charge over the length of the film, L. The character of the defect and charge distribution profiles in the oxide vary depending on whether reduced oxygen adatoms are present on the gas-oxide interface. The Fermi level in the oxide increases for thinner films, approaching the Fermi level of the metal in the limit L/L_{D}→0, which increases the driving force for adsorbed oxygen reduction at the gas-oxide interface.

  2. Three Phase Power Imbalance Decomposition into Systematic Imbalance and Random Imbalance

    DEFF Research Database (Denmark)

    Kong, Wangwei; Ma, Kang; Wu, Qiuwei


    is calculated based on the systematic imbalance component to guide phase swapping. Case studies demonstrate that 72.8% of 782 low voltage substations have systematic imbalance components. The degree of power imbalance results reveal the maximum need for phase swapping and the random imbalance components reveal...

  3. A Randomized Double-Blind Crossover Study of Phase-Shift Sound Therapy for Tinnitus

    NARCIS (Netherlands)

    Heijneman, Karin M.; de Kleine, Emile; van Dijk, Pim

    Objective. The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. Study Design. A double-blind crossover randomized controlled trial. Setting. This study was conducted at the

  4. Effect of overpasses in the Biham-Middleton-Levine traffic flow model with random and parallel update rule (United States)

    Ding, Zhong-Jun; Jiang, Rui; Gao, Zi-You; Wang, Bing-Hong; Long, Jiancheng


    The effect of overpasses in the Biham-Middleton-Levine traffic flow model with random and parallel update rules has been studied. An overpass is a site that can be occupied simultaneously by an eastbound car and a northbound one. Under periodic boundary conditions, both self-organized and random patterns are observed in the free-flowing phase of the parallel update model, while only the random pattern is observed in the random update model. We have developed mean-field analysis for the moving phase of the random update model, which agrees with the simulation results well. An intermediate phase is observed in which some cars could pass through the jamming cluster due to the existence of free paths in the random update model. Two intermediate states are observed in the parallel update model, which have been ignored in previous studies. The intermediate phases in which the jamming skeleton is only oriented along the diagonal line in both models have been analyzed, with the analyses agreeing well with the simulation results. With the increase of overpass ratio, the jamming phase and the intermediate phases disappear in succession for both models. Under open boundary conditions, the system exhibits only two phases when the ratio of overpasses is below a threshold in the random update model. When the ratio of the overpass is close to 1, three phases could be observed, similar to the totally asymmetric simple exclusion process model. The dependence of the average velocity, the density, and the flow rate on the injection probability in the moving phase has also been obtained through mean-field analysis. The results of the parallel model under open boundary conditions are similar to that of the random update model.

  5. Statistical mechanics of random geometric graphs: Geometry-induced first-order phase transition. (United States)

    Ostilli, Massimo; Bianconi, Ginestra


    Random geometric graphs (RGGs) can be formalized as hidden-variables models where the hidden variables are the coordinates of the nodes. Here we develop a general approach to extract the typical configurations of a generic hidden-variables model and apply the resulting equations to RGGs. For any RGG, defined through a rigid or a soft geometric rule, the method reduces to a nontrivial satisfaction problem: Given N nodes, a domain D, and a desired average connectivity 〈k〉, find, if any, the distribution of nodes having support in D and average connectivity 〈k〉. We find out that, in the thermodynamic limit, nodes are either uniformly distributed or highly condensed in a small region, the two regimes being separated by a first-order phase transition characterized by a O(N) jump of 〈k〉. Other intermediate values of 〈k〉 correspond to very rare graph realizations. The phase transition is observed as a function of a parameter a∈[0,1] that tunes the underlying geometry. In particular, a=1 indicates a rigid geometry where only close nodes are connected, while a=0 indicates a rigid antigeometry where only distant nodes are connected. Consistently, when a=1/2 there is no geometry and no phase transition. After discussing the numerical analysis, we provide a combinatorial argument to fully explain the mechanism inducing this phase transition and recognize it as an easy-hard-easy transition. Our result shows that, in general, ad hoc optimized networks can hardly be designed, unless to rely to specific heterogeneous constructions, not necessarily scale free.

  6. Phase-field modeling of directional solidification (United States)

    Echebarria, Blas; Karma, Alain


    Phase-field models have become an important tool to simulate interfacial pattern formation in solidification and other systems. Here we investigate the directional solidification of a dilute binary alloy by means of a new phase-field model. The thin interface limit of this model yields a much less stringent restriction on the choice of interface thickness than previous models and permits, in addition, to eliminate non-equilibrium effects at the interface that are typically negligibly small in low growth rate experiments. Simulations of this model are used to investigate the interface evolution far above the onset of morphological instability for realistic values of the physical parameters and to make quantitative comparisons with experiments.

  7. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    simulator, which was then used to assess the impact of the capillary pressure on phase behavior in oil and gas production from tight reservoirs. Since capillary pressure and adsorption occur simultaneously in shale, its combined effect was studied. A model comparison for high-pressure adsorption in shale...... is presented. The adsorption data in shale is generally scarce, therefore, additional capabilities besides the accuracy were considered in the comparison. The multicomponent potential theory of adsorption yields the best results. Moreover, it shows to be useful to extrapolate adsorption data for hydrocarbons...... calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...

  8. Minocycline in Acute Cerebral Hemorrhage: An Early Phase Randomized Trial. (United States)

    Fouda, Abdelrahman Y; Newsome, Andrea S; Spellicy, Samantha; Waller, Jennifer L; Zhi, Wenbo; Hess, David C; Ergul, Adviye; Edwards, David J; Fagan, Susan C; Switzer, Jeffrey A


    Minocycline is under investigation as a neurovascular protective agent for stroke. This study evaluated the pharmacokinetic, anti-inflammatory, and safety profile of minocycline after intracerebral hemorrhage. This study was a single-site, randomized controlled trial of minocycline conducted from 2013 to 2016. Adults ≥18 years with primary intracerebral hemorrhage who could have study drug administered within 24 hours of onset were included. Patients received 400 mg of intravenous minocycline, followed by 400 mg minocycline oral daily for 4 days. Serum concentrations of minocycline after the last oral dose and biomarkers were sampled to determine the peak concentration, half-life, and anti-inflammatory profile. A total of 16 consecutive eligible patients were enrolled, with 8 randomized to minocycline. Although the literature supports a time to peak concentration (Tmax) of 1 hour for oral minocycline, the Tmax was estimated to be at least 6 hours in this cohort. The elimination half-life (available on 7 patients) was 17.5 hours (SD±3.5). No differences were observed in inflammatory biomarkers, hematoma volume, or perihematomal edema. Concentrations remained at neuroprotective levels (>3 mg/L) throughout the dosing interval in 5 of 7 patients. In intracerebral hemorrhage, a 400 mg dose of minocycline was safe and achieved neuroprotective serum concentrations. However, oral administration led to delayed absorption in these critically ill patients and should not be used when rapid, high concentrations are desired. Given the safety and pharmacokinetic profile of minocycline in intracerebral hemorrhage and promising data in the treatment of ischemic stroke, intravenous minocycline is an excellent candidate for a prehospital treatment trial. URL: Unique identifier: NCT01805895. © 2017 American Heart Association, Inc.

  9. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton


    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  10. Studies in astronomical time series analysis: Modeling random processes in the time domain (United States)

    Scargle, J. D.


    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  11. Equilibrium phase diagram of a randomly pinned glass-former. (United States)

    Ozawa, Misaki; Kob, Walter; Ikeda, Atsushi; Miyazaki, Kunimasa


    We use computer simulations to study the thermodynamic properties of a glass-former in which a fraction c of the particles has been permanently frozen. By thermodynamic integration, we determine the Kauzmann, or ideal glass transition, temperature [Formula: see text] at which the configurational entropy vanishes. This is done without resorting to any kind of extrapolation, i.e., [Formula: see text] is indeed an equilibrium property of the system. We also measure the distribution function of the overlap, i.e., the order parameter that signals the glass state. We find that the transition line obtained from the overlap coincides with that obtained from the thermodynamic integration, thus showing that the two approaches give the same transition line. Finally, we determine the geometrical properties of the potential energy landscape, notably the T- and c dependence of the saddle index, and use these properties to obtain the dynamic transition temperature [Formula: see text]. The two temperatures [Formula: see text] and [Formula: see text] cross at a finite value of c and indicate the point at which the glass transition line ends. These findings are qualitatively consistent with the scenario proposed by the random first-order transition theory.

  12. Phase microscopy of technical and biological samples through random phase modulation with a difuser

    DEFF Research Database (Denmark)

    Almoro, Percival; Pedrini, Giancarlo; Gundu, Phanindra Narayan


    A technique for phase microscopy using a phase diffuser and a reconstruction algorithm is proposed. A magnified specimen wavefront is projected on the diffuser plane that modulates the wavefront into a speckle field. The speckle patterns at axially displaced planes are sampled and used in an iter...

  13. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe


    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.


    Energy Technology Data Exchange (ETDEWEB)



    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  15. Phase field modeling of crack propagation (United States)

    Spatschek, Robert; Brener, Efim; Karma, Alain


    Fracture is a fundamental mechanism of materials failure. Propagating cracks can exhibit a rich dynamical behavior controlled by a subtle interplay between microscopic failure processes in the crack tip region and macroscopic elasticity. We review recent approaches to understand crack dynamics using the phase field method. This method, developed originally for phase transformations, has the well-known advantage of avoiding explicit front tracking by making material interfaces spatially diffuse. In a fracture context, this method is able to capture both the short-scale physics of failure and macroscopic linear elasticity within a self-consistent set of equations that can be simulated on experimentally relevant length and time scales. We discuss the relevance of different models, which stem from continuum field descriptions of brittle materials and crystals, to address questions concerning crack path selection and branching instabilities, as well as models that are based on mesoscale concepts for crack tip scale selection. Open questions which may be addressed using phase field models of fracture are summarized.

  16. Modeling thermodynamics of Fe-N phases

    DEFF Research Database (Denmark)

    Pekelharing, Marjon I.; Böttger, Amarante; Somers, Marcel A. J.


    In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible configur...... over the available sites and the occurrence of a two phase region A+B as predicted by the model. The discrepancy between XRD and Mössbauer results is discussed in terms of a reason for extinguished superstructure reflections in the X-ray diffractogram of configuration A....

  17. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen


    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  18. Fractional Fourier transform-based optical encryption with treble random phase-encoding (United States)

    Xin, Yi; Tao, Ran; Wang, Yue


    We propose a new architecture of optical encryption technique using the fractional Fourier transform with three statistically independent random phase masks. Compared with the existing double-phase encoding method in the fractional Fourier-domain, the proposed extra phase mask in the last fractional Fourier domain makes the architecture symmetrical, and additive processing to the encrypted image can be turned into complex stationary white noise after decryption, and enlarge the key space without any degradation of its robustness to blind decryption. This property can be utilized to improve the quality of the recover image. Simulation results have verified the validity.

  19. Generation of sound by Alfven waves with random phases in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fainshtein, S.M.


    The problem of the excitation of sound by Alfven waves meeting in the solar plasma is discussed. Kinetic equations for the interacting waves are derived and analyzed on the assumption that the Alfven waves have random phases. Estimates are given which show the possibility of the generation of LF-pulsations in the solar atmosphere.

  20. Nanostructure-property relations for phase-change random access memory (PCRAM) line cells

    NARCIS (Netherlands)

    Kooi, B. J.; Oosthoek, J. L. M.; Verheijen, M. A.; Kaiser, M.; Jedema, F. J.; Gravesteijn, D. J.


    Phase-change random access memory (PCRAM) cells have been studied extensively using electrical characterization and rather limited by detailed structure characterization. The combination of these two characterization techniques has hardly been exploited and it is the focus of the present work.

  1. A Note on the Correlated Random Coefficient Model

    DEFF Research Database (Denmark)

    Kolodziejczyk, Christophe

    In this note we derive the bias of the OLS estimator for a correlated random coefficient model with one random coefficient, but which is correlated with a binary variable. We provide set-identification to the parameters of interest of the model. We also show how to reduce the bias of the estimator...

  2. The Analysis of Random Effects in Modeling Studies. (United States)

    Scheirer, C. James; Geller, Sanford E.


    Argues that in research on the effects of modeling, models must be analyzed as a random factor in order to avoid a positive bias in the results. The concept of a random factor is discussed, worked examples are provided, and a practical solution to the problem is proposed. (JMB)

  3. Compensatory and non-compensatory multidimensional randomized item response models

    NARCIS (Netherlands)

    Fox, J.P.; Entink, R.K.; Avetisyan, M.


    Randomized response (RR) models are often used for analysing univariate randomized response data and measuring population prevalence of sensitive behaviours. There is much empirical support for the belief that RR methods improve the cooperation of the respondents. Recently, RR models have been

  4. A random energy model for size dependence : recurrence vs. transience

    NARCIS (Netherlands)

    Külske, Christof


    We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as

  5. Security enhanced optical encryption system by random phase key and permutation key. (United States)

    He, Mingzhao; Tan, Qiaofeng; Cao, Liangcai; He, Qingsheng; Jin, Guofan


    Conventional double random phase encoding (DRPE) encrypts plaintext to white noise-like ciphertext which may attract attention of eavesdroppers, and recent research reported that DRPE is vulnerable to various attacks. Here we propose a security enhanced optical encryption system that can hide the existence of secret information by watermarking. The plaintext is encrypted using iterative fractional Fourier transform with random phase key, and ciphertext is randomly permuted with permutation key before watermarking. Cryptanalysis shows that linearity of the security system has been broken and the permutation key prevent the attacker from accessing the ciphertext in various attacks. A series of simulations have shown the effectiveness of this system and the security strength is enhanced for invisibility, nonlinearity and resistance against attacks.

  6. Double image encryption based on random phase encoding in the fractional Fourier domain. (United States)

    Tao, Ran; Xin, Yi; Wang, Yue


    A novel image encryption method is proposed by utilizing random phase encoding in the fractional Fourier domain to encrypt two images into one encrypted image with stationary white distribution. By applying the correct keys which consist of the fractional orders, the random phase masks and the pixel scrambling operator, the two primary images can be recovered without cross-talk. The decryption process is robust against the loss of data. The phase-based image with a larger key space is more sensitive to keys and disturbances than the amplitude-based image. The pixel scrambling operation improves the quality of the decrypted image when noise perturbation occurs. The novel approach is verified by simulations.

  7. Hacking on decoy-state quantum key distribution system with partial phase randomization (United States)

    Sun, Shi-Hai; Jiang, Mu-Sheng; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei


    Quantum key distribution (QKD) provides means for unconditional secure key transmission between two distant parties. However, in practical implementations, it suffers from quantum hacking due to device imperfections. Here we propose a hybrid measurement attack, with only linear optics, homodyne detection, and single photon detection, to the widely used vacuum + weak decoy state QKD system when the phase of source is partially randomized. Our analysis shows that, in some parameter regimes, the proposed attack would result in an entanglement breaking channel but still be able to trick the legitimate users to believe they have transmitted secure keys. That is, the eavesdropper is able to steal all the key information without discovered by the users. Thus, our proposal reveals that partial phase randomization is not sufficient to guarantee the security of phase-encoding QKD systems with weak coherent states.

  8. Phase-Image Encryption Based on 3D-Lorenz Chaotic System and Double Random Phase Encoding (United States)

    Sharma, Neha; Saini, Indu; Yadav, AK; Singh, Phool


    In this paper, an encryption scheme for phase-images based on 3D-Lorenz chaotic system in Fourier domain under the 4f optical system is presented. The encryption scheme uses a random amplitude mask in the spatial domain and a random phase mask in the frequency domain. Its inputs are phase-images, which are relatively more secure as compared to the intensity images because of non-linearity. The proposed scheme further derives its strength from the use of 3D-Lorenz transform in the frequency domain. Although the experimental setup for optical realization of the proposed scheme has been provided, the results presented here are based on simulations on MATLAB. It has been validated for grayscale images, and is found to be sensitive to the encryption parameters of the Lorenz system. The attacks analysis shows that the key-space is large enough to resist brute-force attack, and the scheme is also resistant to the noise and occlusion attacks. Statistical analysis and the analysis based on correlation distribution of adjacent pixels have been performed to test the efficacy of the encryption scheme. The results have indicated that the proposed encryption scheme possesses a high level of security.

  9. Design of language models at various phases of Tamil speech ...

    African Journals Online (AJOL)

    This paper describes the use of language models in various phases of Tamil speech recognition system for improving its performance. In this work, the language models are applied at various levels of speech recognition such as segmentation phase, recognition phase and the syllable and word level error correction phase.

  10. Space market model development project, phase 3 (United States)

    Bishop, Peter C.; Hamel, Gary P.


    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  11. Multiopinion coevolving voter model with infinitely many phase transitions. (United States)

    Shi, Feng; Mucha, Peter J; Durrett, Richard


    We consider an idealized model in which individuals' changing opinions and their social network coevolve, with disagreements between neighbors in the network resolved either through one imitating the opinion of the other or by reassignment of the discordant edge. Specifically, an interaction between x and one of its neighbors y leads to x imitating y with probability (1-α) and otherwise (i.e., with probability α) x cutting its tie to y in order to instead connect to a randomly chosen individual. Building on previous work about the two-opinion case, we study the multiple-opinion situation, finding that the model has infinitely many phase transitions (in the large graph limit with infinitely many initial opinions). Moreover, the formulas describing the end states of these processes are remarkably simple when expressed as a function of β=α/(1-α).

  12. Dynamic Modeling of Phase Crossings in Two-Phase Flow

    DEFF Research Database (Denmark)

    Madsen, Søren; Veje, Christian; Willatzen, Morten


    Two-phase flow and heat transfer, such as boiling and condensing flows, are complicated physical phenomena that generally prohibit an exact solution and even pose severe challenges for numerical approaches. If numerical solution time is also an issue the challenge increases even further. We present...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...

  13. What makes a phase transition? Analysis of the random satisfiability problem (United States)

    Zweig, Katharina A.; Palla, Gergely; Vicsek, Tamás


    In the last 30 years it was found that many combinatorial systems undergo phase transitions. One of the most important examples of these can be found among the random k-satisfiability problems (often referred to as k-SAT), asking whether there exists an assignment of Boolean values satisfying a Boolean formula composed of clauses with k random variables each. The random 3-SAT problem is reported to show various phase transitions at different critical values of the ratio of the number of clauses to the number of variables. The most famous of these occurs when the probability of finding a satisfiable instance suddenly drops from 1 to 0. This transition is associated with a rise in the hardness of the problem, but until now the correlation between any of the proposed phase transitions and the hardness is not totally clear. In this paper we will first show numerically that the number of solutions universally follows a lognormal distribution, thereby explaining the puzzling question of why the number of solutions is still exponential at the critical point. Moreover we provide evidence that the hardness of the closely related problem of counting the total number of solutions does not show any phase transition-like behavior. This raises the question of whether the probability of finding a satisfiable instance is really an order parameter of a phase transition or whether it is more likely to just show a simple sharp threshold phenomenon. More generally, this paper aims at starting a discussion where a simple sharp threshold phenomenon turns into a genuine phase transition.

  14. Information hiding based on double random-phase encoding and public-key cryptography. (United States)

    Sheng, Yuan; Xin, Zhou; Alam, Mohammed S; Xi, Lu; Xiao-Feng, Li


    A novel information hiding method based on double random-phase encoding (DRPE) and Rivest-Shamir-Adleman (RSA) public-key cryptosystem is proposed. In the proposed technique, the inherent diffusion property of DRPE is cleverly utilized to make up the diffusion insufficiency of RSA public-key cryptography, while the RSA cryptosystem is utilized for simultaneous transmission of the cipher text and the two phase-masks, which is not possible under the DRPE technique. This technique combines the complementary advantages of the DPRE and RSA encryption techniques and brings security and convenience for efficient information transmission. Extensive numerical simulation results are presented to verify the performance of the proposed technique.

  15. Phase-space representation and polarization domains of random electromagnetic fields. (United States)

    Castaneda, Roman; Betancur, Rafael; Herrera, Jorge; Carrasquilla, Juan


    The phase-space representation of stationary random electromagnetic fields is developed by using electromagnetic spatial coherence wavelets. The propagation of the field's power and states of spatial coherence and polarization results from correlations between the components of the field vectors at pairs of points in space. Polarization domains are theoretically predicted as the structure of the field polarization at the observation plane. In addition, the phase-space representation provides a generalization of the Poynting theorem. Theoretical predictions are examined by numerically simulating the Young experiment with electromagnetic waves. The experimental implementation of these results is a current subject of research.

  16. Viterbi Tracking of Randomly Phase-Modulated Data (and Related Topics). (United States)


    space I-ir, vr). were a random sequence on the unit circle C or equiva- Discretization of this bounded interval leads to a finite-state lently on the...and the symbol phase, arg ak. Also, of Recall ’k is defined on the circle C . Therefore, for clarity course, for PSK symbol sets only one symbol...x)) on [-V,w] g,(R(x)) Wropped on M-4 the Circle C . M*4 (c) (d) Fig. 5. Density functions of phase increment before and after folding. dix). It

  17. Quantitative phase-field model for phase transformations in multi-component alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Abhik Narayan


    Phase-field modeling has spread to a variety of applications involving phase transformations. While the method has wide applicability, derivation of quantitative predictions requires deeper understanding of the coupling between the system and model parameters. The present work highlights a novel phase-field model based on a grand-potential formalism allowing for an elegant and efficient solution to the problems in phase transformations. In particular, applications involving single and multi-phase, multi-component solidification have been investigated and a thorough study into the quantitative modeling of these problems have been examined.

  18. Security authentication with a three-dimensional optical phase code using random forest classifier: an overview (United States)

    Markman, Adam; Carnicer, Artur; Javidi, Bahram


    We overview our recent work [1] on utilizing three-dimensional (3D) optical phase codes for object authentication using the random forest classifier. A simple 3D optical phase code (OPC) is generated by combining multiple diffusers and glass slides. This tag is then placed on a quick-response (QR) code, which is a barcode capable of storing information and can be scanned under non-uniform illumination conditions, rotation, and slight degradation. A coherent light source illuminates the OPC and the transmitted light is captured by a CCD to record the unique signature. Feature extraction on the signature is performed and inputted into a pre-trained random-forest classifier for authentication.

  19. A randomized double-blind crossover study of phase-shift sound therapy for tinnitus. (United States)

    Heijneman, Karin M; de Kleine, Emile; van Dijk, Pim


    The purpose of this study was to compare the efficacy of the treatment of tinnitus with a phase-shifting pure tone to that of the same tone treatment without phase shifting. A double-blind crossover randomized controlled trial. This study was conducted at the University Medical Center Groningen. Twenty-two patients with predominantly tonal tinnitus underwent both intervention and control treatments. Each treatment consisted of three 30-minute sessions in 1 week. The control treatment was identical to the intervention treatment, except that the stimulus was a pure tone without phase shifting. Questionnaires, tinnitus loudness match, and annoyance and loudness ratings were used to measure treatment effects. Pure-tone treatment and phase-shift treatment had no significant effect on tinnitus according to questionnaires (Tinnitus Handicap Index, Tinnitus Reaction Questionnaire, Hospital Anxiety and Depression Scale, and Maastricht Questionnaire), audiological matching procedures, and loudness and annoyance ratings of tinnitus. Furthermore, phase-shift treatment showed no additional significant improvement in comparison with pure-tone treatment. Changes in questionnaire scores due to pure-tone and the phase-shift treatment were correlated. On average across the group, both treatments failed to demonstrate a significant effect. Both treatments were beneficial for some patients. However, a positive effect was not demonstrated that could be attributed to the periodic shifting of the phase of the stimulus tone.

  20. The phase transition of Axelrod's model revisited

    CERN Document Server

    Reia, Sandro M


    Axelrod's model with $F=2$ cultural features, where each feature can assume $k$ states drawn from a Poisson distribution of parameter $q$, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite size scaling to study the critical behavior of the order parameter $\\rho$, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as $\\rho \\sim \\left (q_c^0 - q \\right)^\\beta$ with $\\beta \\approx 0.25$ at the critical point $q_c^0 \\approx 3.10$ and that the exponent that measures the width of the critical region is $\

  1. Luteal Phase Support in the Intrauterine Insemination (IUI) Cycles: A Randomized Double Blind, Placebo Controlled Study.


    Batool Hossein Rashidi; Fatemeh Davari Tanha; Haleh Rahmanpour; Mahya Ghazizadeh


    Objective: To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI) cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG), in sub fertile couples. Materials and methods: This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They und...

  2. Methadone induction in primary care (ANRS-Methaville: a phase III randomized intervention trial

    Directory of Open Access Journals (Sweden)

    Roux Perrine


    Full Text Available Abstract Background In France, the rapid scale-up of buprenorphine, an opioid maintenance treatment (OMT, in primary care for drug users has led to an impressive reduction in HIV prevalence among injecting drug users (IDU but has had no major effect on Hepatitis C incidence. To date, patients willing to start methadone can only do so in a methadone clinic (a medical centre for drug and alcohol dependence (CSAPA or a hospital setting and are referred to primary care physicians after dose stabilization. This study aims to assess the effectiveness of methadone in patients who initiated treatment in primary care compared with those who initiated it in a CSAPA, by measuring abstinence from street opioid use after one year of treatment. Methods/Design The ANRS-Methaville study is a randomized multicenter non-inferiority control trial comparing methadone induction (lasting approximately 2 weeks in primary care and in CSAPA. The model of care chosen for methadone induction in primary care was based on study-specific pre-training of all physicians, exclusion criteria and daily supervision of methadone during the initiation phase. Between January 2009 and January 2011, 10 sites each having one CSAPA and several primary care physicians, were identified to recruit patients to be randomized into two groups, one starting methadone in primary care (n = 147, the other in CSAPA (n = 48. The primary outcome of the study is the proportion of participants abstinent from street opioids after 1 year of treatment i.e. non-inferiority of primary care model in terms of the proportion of patients not using street opioids compared with the proportion observed in those starting methadone in a CSAPA. Discussion The ANRS-Methaville study is the first in France to use an interventional trial to improve access to OMT for drug users. Once the non-inferiority results become available, the Ministry of Health and agency for the safety of health products may change the the

  3. Implementation of the direct evaluation of strains using a phase analysis code for random patterns

    CERN Document Server

    Molimard, Jérôme


    A new approach for decoding directly strains from surfaces encoded with random patterns has been developed and validated. It is based on phase analysis of small region of interest. Here we adapt to random patterns new concepts proposed by Badulescu (2009) on the grid method. First metrological results are encouraging: resolution is proportional to strain level, being 9% of the nominal value, for a spatial resolution of 9 pixels (ZOI 64 \\times 64 pixels2). Random noise has to be carefully controlled. A numerical example shows the relevance of the approach. Then, first application on a carbon fiber reinforced composite is developed. Fabric intertwining is studied using a tensile test. Over-strains are clearly visible, and results connect well with the previous studies

  4. Modeling Gene Regulation in Liver Hepatocellular Carcinoma with Random Forests

    National Research Council Canada - National Science Library

    Hilal Kazan


    .... We developed a random forest model that incorporates copy-number variation, DNA methylation, transcription factor, and microRNA binding information as features to predict gene expression in HCC...

  5. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation (United States)

    Gambacurta, D.; Grasso, M.; Vasseur, O.


    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  6. Superstatistical analysis and modelling of heterogeneous random walks (United States)

    Metzner, Claus; Mark, Christoph; Steinwachs, Julian; Lautscham, Lena; Stadler, Franz; Fabry, Ben


    Stochastic time series are ubiquitous in nature. In particular, random walks with time-varying statistical properties are found in many scientific disciplines. Here we present a superstatistical approach to analyse and model such heterogeneous random walks. The time-dependent statistical parameters can be extracted from measured random walk trajectories with a Bayesian method of sequential inference. The distributions and correlations of these parameters reveal subtle features of the random process that are not captured by conventional measures, such as the mean-squared displacement or the step width distribution. We apply our new approach to migration trajectories of tumour cells in two and three dimensions, and demonstrate the superior ability of the superstatistical method to discriminate cell migration strategies in different environments. Finally, we show how the resulting insights can be used to design simple and meaningful models of the underlying random processes.

  7. 2d frustrated Ising model with four phases


    Pasquini, M.; Serva, M.


    In this paper we consider a 2d random Ising system on a square lattice with nearest neighbour interactions. The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is admitted. More precisely, the vertical bonds are supposed to be non random while the horizontal bonds alternate: one row of all non random horizontal bonds is followed by one row where they are independent dichotomic random variables. We solve the model using an approximate approach...

  8. Phase field modeling of liquid metal embrittlement (United States)

    Spatschek, Robert; Wang, Nan; Karma, Alain


    Liquid metal embrittlement (LME) is a phenomenon whereby a liquid metal in contact with another, higher-melting-point polycrystalline metal, rapidly penetrates from the surface along grain boundaries. This phenomenon is known to be greatly accelerated by the application of tensile stress, resulting in the rapid propagation of intergranular cracks in normally ductile materials. Although this phenomenon has been known for a long time, it still lacks a convincing physical explanation. In particular, the relationship of LME to conventional fracture mechanics remains unclear. We investigate LME using a phenomenological three-order-parameter phase field model that describes both the short scale physics of crystal decohesion and macroscopic linear elasticity. The model reproduces expected macroscopic properties for well separated crack surfaces and additionally introduces short scale modifications for liquid layer thicknesses in the nanometric range, which depend on the interfacial and grain boundary energy as well as elastic effects. The results shed light on the relative importance of capillary phenomena and stress in the kinetics of LME.

  9. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope. (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei


    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  10. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    Ningfang Song


    Full Text Available A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10−5 deg/√h.

  11. Mathematical models and simulations of phase noise in phase-locked loops

    Directory of Open Access Journals (Sweden)

    Sethapong Limkumnerd


    Full Text Available Phase noises in Phase-Locked Loops (PLLs are a key parameter for communication systems that contribute the bit-rate-error of communication systems and cause synchronization problems. Accurate predictions of phase noises through mathematical models are consequently desirable for practical designs of PLLs. Despite many phase noise models derived from noise sources from electronic devices such as an oscillator and a multiplier have been proposed, no phase noise models that include noises from loop filters have specifically been investigated. This paper therefore investigates the roles of loop filters in phase noise contribution. The major scopes of this paper is a detailed analysis and simulations of phase noise models resulting from all components. i.e. a voltage-controlled oscillator, a multiplier and a filter. Two particular second-order passive and active low-pass filters are compared. The results show that simulations of phase noises without an inclusion of filter noises may not be accurate because the filter noises, particularly the active filter, significantly contribute the total phase noise. Moreover, the passive filter does not significantly dominate the phase noise at low offset frequency while the active filters entirely dominate. Therefore, the passive filter is a more efficient filter for PLL circuit at low offset frequency. The phase noise models presented in this paper are relatively simple and can be used for accurate phase noise prediction for PLL designs.

  12. A generalized model via random walks for information filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhuo-Ming, E-mail: [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)


    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.

  13. Quasiparticle random phase approximation predictions of the gamma-ray strength functions using the Gogny force (United States)

    Hilaire, Stéphane; Goriely, Stéphane; Péru, Sophie; Lechaftois, François; Deloncle, Isabelle; Martini, Marco


    Dipole excitations of nuclei are crucial since they play an important role in nuclear reaction modeling in connection with the photoabsorption and the radiative capture processes. We present here results for the gamma-ray strength function obtained in large-scale axially-symmetric deformed quasiparticle (qp) random phase approximations approach using the finite-range Gogny force, with a particular emphasis on the E1 mode. The convergence with respect to the number of harmonic oscillator shells adopted and the cut-off introduced in the 2-quasiparticle excitation energy space is analyzed. The microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA (HFB+QRPA) calculation has unfortunately to be broken, some phenomenological corrections being needed to take into account effects beyond the standard 2-qp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. The corresponding phenomenological parameters are adjusted on experimental photoabsorption data. In such a procedure, a rather satisfactory description of experimental data is obtained. To study the sensitivity of these phenomenological corrections on the extrapolation, both at low energies and towards exotic neutron-rich nuclei, three different prescriptions are considered. They are shown to lead to rather similar predictions of the E1 strength at low energies as well as for exotic neutron-rich nuclei. The Gogny-HFB+QRPA strength is finally applied to the calculation of radiative neutron capture cross sections and the predictions compared with those obtained with more traditional Lorentzian-type approaches.

  14. Model C critical dynamics of random anisotropy magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dudka, M [Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, UA-79011 Lviv (Ukraine); Folk, R [Institut fuer Theoretische Physik, Johannes Kepler Universitaet Linz, A-4040 Linz (Austria); Holovatch, Yu [Institute for Condensed Matter Physics, National Acad. Sci. of Ukraine, UA-79011 Lviv (Ukraine); Moser, G [Institut fuer Physik und Biophysik, Universitaet Salzburg, A-5020 Salzburg (Austria)


    We study the relaxational critical dynamics of the three-dimensional random anisotropy magnets with the non-conserved n-component order parameter coupled to a conserved scalar density. In the random anisotropy magnets, the structural disorder is present in the form of local quenched anisotropy axes of random orientation. When the anisotropy axes are randomly distributed along the edges of the n-dimensional hypercube, asymptotical dynamical critical properties coincide with those of the random-site Ising model. However the structural disorder gives rise to considerable effects for non-asymptotic critical dynamics. We investigate this phenomenon by a field-theoretical renormalization group analysis in the two-loop order. We study critical slowing down and obtain quantitative estimates for the effective and asymptotic critical exponents of the order parameter and scalar density. The results predict complex scenarios for the effective critical exponent approaching the asymptotic regime.

  15. Random matrix model for disordered conductors

    Indian Academy of Sciences (India)

    1. Introduction. Matrix models are being successfully employed in a variety of domains of physics includ- ing studies on heavy nuclei [1], mesoscopic disordered conductors [2,3], two-dimensional quantum gravity [4], and chaotic quantum systems [5]. Universal conductance fluctuations in metals [6] and spectral fluctuations in ...

  16. High-vs low-dose cytarabine combined with interferon alfa in patients with first chronic phase chronic myeloid leukemia. A prospective randomized phase III study

    NARCIS (Netherlands)

    Deenik, W.; van der Holt, B.; Verhoef, G. E. G.; Schattenberg, A. V. M. B.; Verdonck, L. F.; Daenen, S. M. G. J.; Zachee, P.; Westveer, P. H. M.; Smit, W. M.; Wittebol, S.; Schouten, H. C.; Lowenberg, B.; Ossenkoppele, G. J.; Cornelissen, J. J.

    A prospective randomized phase III study was performed to evaluate whether intensified cytarabine would induce a higher response rate and longer event-free interval as compared to low-dose cytarabine in chronic myeloid leukemia (CML). One hundred and eighteen patients with CML in early chronic phase

  17. High-vs low-dose cytarabine combined with interferon alfa in patients with first chronic phase chronic myeloid leukemia : A prospective randomized phase III study

    NARCIS (Netherlands)

    Deenik, W.; Holt, B. van der; Verhoef, G.E.; Schattenberg, A.V.M.B.; Verdonck, L.F.; Daenen, S.M.G.J.; Zachee, P.; Westveer, P.H.; Smit, W.M.; Wittebol, S.; Schouten, H.C.; Lowenberg, B.; Ossenkoppele, G.J.; Cornelissen, J.J.L.M.


    A prospective randomized phase III study was performed to evaluate whether intensified cytarabine would induce a higher response rate and longer event-free interval as compared to low-dose cytarabine in chronic myeloid leukemia (CML). One hundred and eighteen patients with CML in early chronic phase

  18. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia : 2-year follow-up from a randomized phase 3 trial (DASISION)

    NARCIS (Netherlands)

    Kantarjian, Hagop M.; Shah, Neil P.; Cortes, Jorge E.; Baccarani, Michele; Agarwal, Mohan B.; Soledad Undurraga, Maria; Wang, Jianxiang; Kassack Ipina, Juan Julio; Kim, Dong-Wook; Ogura, Michinori; Pavlovsky, Carolina; Junghanss, Christian; Milone, Jorge H.; Nicolini, Franck E.; Robak, Tadeusz; Van Droogenbroeck, Jan; Vellenga, Edo; Bradley-Garelik, M. Brigid; Zhu, Chao; Hochhaus, Andreas


    Dasatinib is a highly potent BCR-ABL inhibitor with established efficacy and safety in imatinib-resistant/-intolerant patients with chronic myeloid leukemia (CML). In the phase 3 DASISION trial, patients with newly diagnosed chronic-phase (CP) CML were randomized to receive dasatinib 100 mg (n =

  19. Global quantum discord and quantum phase transition in XY model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Si-Yuan [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Yu-Ran, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li, E-mail: [Institute of Modern Physics, Northwest University, Xian 710069 (China); Fan, Heng, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Institute of Modern Physics, Northwest University, Xian 710069 (China)


    We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.

  20. Equilibrium phase behavior and maximally random jammed state of truncated tetrahedra. (United States)

    Chen, Duyu; Jiao, Yang; Torquato, Salvatore


    Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid-solid transition and then a solid-solid transition. The isotropic liquid phase coexists with the Conway-Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [ J. Chem. Phys. 2011 , 135 , 151101 ]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005. At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation

  1. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  2. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.


    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  3. Simulating intrafraction prostate motion with a random walk model

    Directory of Open Access Journals (Sweden)

    Tobias Pommer, PhD


    Conclusions: Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.

  4. A note on moving average models for Gaussian random fields

    DEFF Research Database (Denmark)

    Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.

    The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...... basis, a general modeling framework which includes several types of non-Gaussian models. We propose a new one-parameter spatial correlation model which arises from a power kernel and show that the associated Hausdorff dimension of the sample paths can take any value between 2 and 3. As a result...

  5. Application of Poisson random effect models for highway network screening. (United States)

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer


    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications (United States)

    Grauer, Jared A.


    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  7. Modeling Concrete Material Structure: A Two-Phase Meso Finite Element Model (United States)

    Bonifaz, E. A.; Baus, Juan; Lantsoght, Eva O. L.

    Concrete is a compound material where aggregates are randomly placed within the cement paste. To describe the behavior of concrete structures at the ultimate, it is necessary to use nonlinear finite element models, which for shear and torsion problems do not always give satisfactory results. The current study aims at improving the modeling of concrete at the meso-level, which eventually can result in an improved assessment of existing structures. Concrete as a heterogeneous material is modeled consisting of hydrated cement paste and aggregates. The stress-strain curves of the hydrated cement paste and aggregates are described with results from the literature. A three-dimensional (3D) finite element model was developed to determine the influence of individual phases on the inelastic stress-strain distribution of concrete structures. A random distribution and morphology of the cement and aggregate fractions are achieved by using DREAM.3D. Two affordable computational dual-phase representative volume elements (RVEs) are imported to ABAQUS to be studied in compression and tension. The virtual specimens (concrete mesh) subjected to continuous monotonic strain loading conditions were constrained with 3D boundary conditions. Results demonstrate differences in stress-strain mechanical behavior in both compression and tension test simulations. A strong dependency of flow stress and plastic strain on phase type, aggregate (andesite) size, shape and distribution upon the composite local response are clearly observed. It is noted that the resistance to flow is higher in concrete meshes composed of finer and homogeneous aggregate particles because the Misses stresses and effective plastic strains are better distributed. This study shows that at the meso-level, concrete can be modeled consisting of aggregates and hydrated cement paste.

  8. Thermodynamic consistency and fast dynamics in phase field crystal modeling


    Cheng, Mowei; Cottenier, Stefaan; Emmerich, Heike


    A general formulation is presented to derive the equation of motion and to demonstrate thermodynamic consistency for several classes of phase field models at once. It applies to models with a conserved phase field, describing either uniform or periodic stable states, and containing slow as well as fast thermodynamic variables. The approach is based on an entropy functional formalism previously developed in the context of phase field models for uniform states [P. Galenko and D. Jou, Phys. Rev....

  9. Computationally efficient phase-field models with interface kinetics


    Vetsigian, Kalin; Goldenfeld, Nigel


    We present a new phase-field model of solidification which allows efficient computations in the regime when interface kinetic effects dominate over capillary effects. The asymptotic analysis required to relate the parameters in the phase-field with those of the original sharp interface model is straightforward, and the resultant phase-field model can be used for a wide range of material parameters.

  10. Regularity of solutions of a phase field model

    KAUST Repository

    Amler, Thomas


    Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.

  11. Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes (United States)

    Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing


    Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.

  12. Quaternion-Valued Single-Phase Model for Three-Phase Power Systems


    Gou, Xiaoming; Liu, Zhiwen; Liu, Wei; Xu, Yougen; Wang, Jiabin


    In this work, a quaternion-valued model is proposed in lieu of the Clarke's \\alpha, \\beta transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in three-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarke's transformation-based methods will fail to detect the zero sequence voltages. Based on the...

  13. Correlations in two-dimensional electron gas: Random-phase approximation with exchange and ladder results (United States)

    Pederiva, F.; Lipparini, E.; Takayanagi, K.


    We have evaluated the density-density response of the two-dimensional electron gas at zero temperature by solving the Dyson equation for the particle-hole Green's function, including exchange Coulomb matrix elements and short-range contributions in the ladder approximation. We study the effect of these correlations on the total energy, compressibility per particle, local field factor G(q), static structure factor and pair-correlation function. Results are compared with the normal random-phase approximation, local field theories and quantum Monte Carlo calculations.

  14. Optical information authentication via compressed sensing and double random phase encoding (United States)

    Chen, Junxin; Bao, Nan; Zhu, Zhi-liang


    This paper presents a novel information authentication scheme via compressed sensing and double random phase encoding. Two alternative architectures have been investigated, in which significantly compressed data with micro percentage is sufficient for authentication. At the decoder end, a noise-like image with no leakage of the plaintext is recovered and subsequently authenticated using a nonlinear optical correlation approach. The authentication effectiveness, noise resistance and security performance of the proposed scheme have been experimentally validated. This work was supported by the Fundamental Research Funds for the Central Universities (N162410002-4, N151904002), the National Natural Science Foundation of China (No. 61374178).

  15. Restoring the Pauli principle in the random phase approximation ground state (United States)

    Kosov, D. S.


    Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.

  16. Cryptographic salting for security enhancement of double random phase encryption schemes (United States)

    Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto


    Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.

  17. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.


    Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it, ...

  18. High energy X-ray phase and dark-field imaging using a random absorption mask. (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal


    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  19. Workshop on Strategic Behavior and Phase Transitions in Random and Complex Combinatorial Structures : Extended Abstracts

    CERN Document Server

    Kirousis, Lefteris; Ortiz-Gracia, Luis; Serna, Maria


    This book is divided into two parts, the first of which seeks to connect the phase transitions of various disciplines, including game theory, and to explore the synergies between statistical physics and combinatorics. Phase Transitions has been an active multidisciplinary field of research, bringing together physicists, computer scientists and mathematicians. The main research theme explores how atomic agents that act locally and microscopically lead to discontinuous macroscopic changes. Adopting this perspective has proven to be especially useful in studying the evolution of random and usually complex or large combinatorial objects (like networks or logic formulas) with respect to discontinuous changes in global parameters like connectivity, satisfiability etc. There is, of course, an obvious strategic element in the formation of a transition: the atomic agents “selfishly” seek to optimize a local parameter. However, up to now this game-theoretic aspect of abrupt, locally triggered changes had not been e...

  20. Random Multi-Hopper Model. Super-Fast Random Walks on Graphs


    Estrada, Ernesto; Delvenne, Jean-Charles; Hatano, Naomichi; Mateos, José L.; Metzler, Ralf; Riascos ( Universidad Mariana, Pasto, Colombia), Alejandro P; Schaub, Michael T.


    We develop a model for a random walker with long-range hops on general graphs. This random multi-hopper jumps from a node to any other node in the graph with a probability that decays as a function of the shortest-path distance between the two nodes. We consider here two decaying functions in the form of the Laplace and Mellin transforms of the shortest-path distances. Remarkably, when the parameters of these transforms approach zero asymptotically, the multi-hopper's hitting times between an...

  1. Semiparametric Bayesian Estimation of Random Coefficients Discrete Choice Models


    Tchumtchoua, Sylvie; Dey, Dipak


    Heterogeneity in choice models is typically assumed to have a normal distribution in both Bayesian and classical setups. In this paper, we propose a semiparametric Bayesian framework for the analysis of random coefficients discrete choice models that can be applied to both individual as well as aggregate data. Heterogeneity is modeled using a Dirichlet process prior which varies with consumers characteristics through covariates. We develop a Markov chain Monte Carlo algorithm for fitting such...


    Directory of Open Access Journals (Sweden)

    Ángeles M Gallego


    Full Text Available In this paper we show the use of the Boolean model and a class of RACS models that is a generalization of it to obtain simulations of random binary images able to imitate natural textures such as marble or wood. The different tasks required, parameter estimation, goodness-of-fit test and simulation, are reviewed. In addition to a brief review of the theory, simulation studies of each model are included.

  3. A Systematic Modelling Framework for Phase Transfer Catalyst Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Sales-Cruz, Mauricio; Hyung Kim, Sun


    Phase-transfer catalyst systems contain two liquid phases, with a catalyst (PTC) that transfers between the phases, driving product formation in one phase and being regenerated in the other phase. Typically the reaction involves neutral species in an organic phase and regeneration involves ions...... in an aqueous phase. These reacting systems are receiving increased attention as novel organic synthesis options due to their flexible operation, higher product yields, and ability to avoid hazardous or expensive solvents. Major considerations in the design and analysis of PTC systems are physical and chemical...... equilibria, as well as kinetic mechanisms and rates. This paper presents a modelling framework for design and analysis of PTC systems that requires a minimum amount of experimental data to develop and employ the necessary thermodynamic and reaction models and embeds them into a reactor model for simulation...

  4. Self-consistent random phase approximation - application to systems of strongly correlated fermions; Approximation des phases aleatoires self-consistante - applications a des systemes de fermions fortement correles

    Energy Technology Data Exchange (ETDEWEB)

    Jemai, M


    In the present thesis we have applied the self consistent random phase approximation (SCRPA) to the Hubbard model with a small number of sites (a chain of 2, 4, 6,... sites). Earlier SCRPA had produced very good results in other models like the pairing model of Richardson. It was therefore interesting to see what kind of results the method is able to produce in the case of a more complex model like the Hubbard model. To our great satisfaction the case of two sites with two electrons (half-filling) is solved exactly by the SCRPA. This may seem a little trivial but the fact is that other respectable approximations like 'GW' or the approach with the Gutzwiller wave function yield results still far from exact. With this promising starting point, the case of 6 sites at half filling was considered next. For that case, evidently, SCRPA does not any longer give exact results. However, they are still excellent for a wide range of values of the coupling constant U, covering for instance the phase transition region towards a state with non zero magnetisation. We consider this as a good success of the theory. Non the less the case of 4 sites (a plaquette), as indeed all cases with 4n sites at half filling, turned out to have a problem because of degeneracies at the Hartree Fock level. A generalisation of the present method, including in addition to the pairs, quadruples of Fermions operators (called second RPA) is proposed to also include exactly the plaquette case in our approach. This is therefore a very interesting perspective of the present work. (author)

  5. Positive random fields for modeling material stiffness and compliance

    DEFF Research Database (Denmark)

    Hasofer, Abraham Michael; Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob


    with material properties modeled in terms of the considered random fields.The paper addsthe gamma field, the Fisher field, the beta field, and their reciprocal fields to the catalogue. These fields are all defined on the basis of sums of squares of independent standard Gaussian random variables.All the existing......Positive random fields with known marginal properties and known correlation function are not numerous in the literature. The most prominent example is the log\\-normal field for which the complete distribution is known and for which the reciprocal field is also lognormal. It is of interest...... to supplement the catalogue of positive fields beyond the class of those obtained by simple marginal transformation of a Gaussian field, this class containing the lognormal field.As a minimum for a random field to be included in the catalogue itis required that an algorithm for simulation of realizations can...

  6. Using Random Forest Models to Predict Organizational Violence (United States)

    Levine, Burton; Bobashev, Georgly


    We present a methodology to access the proclivity of an organization to commit violence against nongovernment personnel. We fitted a Random Forest model using the Minority at Risk Organizational Behavior (MAROS) dataset. The MAROS data is longitudinal; so, individual observations are not independent. We propose a modification to the standard Random Forest methodology to account for the violation of the independence assumption. We present the results of the model fit, an example of predicting violence for an organization; and finally, we present a summary of the forest in a "meta-tree,"

  7. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan


    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows...... substantial amounts of the lighter component dissolved in the heavier solid. Calculations have been performed taking into account the recrystallization of the solid alkanes into a second solid form. The Coutinho UNIQUAC model has been used to describe the lower-temperature solid phases. The higher......-temperature mixed solid phase has been assumed to be either an ideal solution or to be described by Coutinho's Wilson activity coefficient model. This procedure accounts for more of the known behavior of mixed n-alkane solids. Comparison is also made with results assuming that all of the solid phases, both high...

  8. A random phased array device for delivery of high intensity focused ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Hand, J W [Radiological Sciences Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London W12 0HS (United Kingdom); Shaw, A; Sadhoo, N; Rajagopal, S [Acoustics Group, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Dickinson, R J [Department of Bioengineering, Imperial College London, London SW7 2AZ (United Kingdom); Gavrilov, L R [N.N. Andreev Acoustics Institute, 117036 Moscow (Russian Federation)], E-mail:


    Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least {+-}15 mm off axis and axially to more than {+-}15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci {+-}10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm{sup 3} in volume can be produced using the patterns of multiple foci.

  9. Affine cryptosystem of double-random-phase encryption based on the fractional Fourier transform. (United States)

    Xin, Zhou; Sheng, Yuan; Sheng-wei, Wang; Jian, Xie


    An affine mapping mathematical expression of the double-random-phase encryption technique has been deduced utilizing the matrix form of discrete fractional Fourier transforms. This expression clearly describes the encryption laws of the double-random-phase encoding techniques based on both the fractional Fourier transform and the ordinary Fourier transform. The encryption process may be regarded as a substantial optical realization of the affine cryptosystem. It has been illustrated that the encryption process converts the original image into a white Gaussian noise with a zero-mean value. Also, the decryption process converts the data deviations of the encrypted image into white Gaussian noises, regardless of the type of data deviations. These noises superimpose on the decrypted image and degrade the signal-to-noise ratio. Numerical simulations have been implemented for the different types of noises introduced into the encrypted image, such as the white noise with uniform distribution probability, the white noise with Gaussian distribution probability, colored noise, and the partial occlusion of the encrypted image.

  10. Band-phase-randomized Surrogates to assess nonlinearity in non-stationary time series

    CERN Document Server

    Guarin, Diego; Orozco, Alvaro


    Testing for nonlinearity is one of the most important preprocessing steps in nonlinear time series analysis. Typically, this is done by means of the linear surrogate data methods. But it is a known fact that the validity of the results heavily depends on the stationarity of the time series. Since most physiological signals are non-stationary, it is easy to falsely detect nonlinearity using the linear surrogate data methods. In this document, we propose a methodology to extend the procedure for generating constrained surrogate time series in order to assess nonlinearity in non-stationary data. The method is based on the band-phase-randomized surrogates, which consists (contrary to the linear surrogate data methods) in randomizing only a portion of the Fourier phases in the high frequency band. Analysis of simulated time series showed that in comparison to the linear surrogate data method, our method is able to discriminate between linear stationarity, linear non-stationary and nonlinear time series. When apply...

  11. Are Discrepancies in RANS Modeled Reynolds Stresses Random?

    CERN Document Server

    Xiao, Heng; Wang, Jian-xun; Paterson, Eric G


    In the turbulence modeling community, significant efforts have been made to quantify the uncertainties in the Reynolds-Averaged Navier--Stokes (RANS) models and to improve their predictive capabilities. Of crucial importance in these efforts is the understanding of the discrepancies in the RANS modeled Reynolds stresses. However, to what extent these discrepancies can be predicted or whether they are completely random remains a fundamental open question. In this work we used a machine learning algorithm based on random forest regression to predict the discrepancies. The success of the regression--prediction procedure indicates that, to a large extent, the discrepancies in the modeled Reynolds stresses can be explained by the mean flow feature, and thus they are universal quantities that can be extrapolated from one flow to another, at least among different flows sharing the same characteristics such as separation. This finding has profound implications to the future development of RANS models, opening up new ...

  12. Buffalos milk yield analysis using random regression models

    Directory of Open Access Journals (Sweden)

    A.S. Schierholt


    Full Text Available Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed, daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genético de Bubalinos (PROMEBUL and from records of EMBRAPA Amazônia Oriental - EAO herd, located in Belém, Pará, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre’s polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre’s polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.

  13. Advanced in numerical modelling of two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Paillere, H.; Kumbaro, A.; Toumi, I. [CEA Saclay, Dept. de Mecanique et de Technologie, 91 - Gif-sur-Yvette (France)


    Numerical modelling of two-phase flow using Godunov-type solvers is making progress. Schemes such as the Roe scheme, or the less sophisticated AUSM+scheme, have the ability to resolve propagating waves such as void or shock waves with no oscillations. Transition from two-phase to single phase flow can also be modelled, and interfaces captured in a satisfactory way. Extension to 3D and validation on more complex flow fields are also presently being performed. (authors)

  14. A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena

    Directory of Open Access Journals (Sweden)

    Jianxun Zhang


    Full Text Available A lithium-Ion battery is a typical degradation product, and its performance will deteriorate over time. In its degradation process, regeneration phenomena have been frequently encountered, which affect both the degradation state and rate. In this paper, we focus on how to build the degradation model and estimate the lifetime. Toward this end, we first propose a multi-phase stochastic degradation model with random jumps based on the Wiener process, where the multi-phase model and random jumps at the changing point are used to describe the variation of degradation rate and state caused by regeneration phenomena accordingly. Owing to the complex structure and random variables, the traditional Maximum Likelihood Estimation (MLE is not suitable for the proposed model. In this case, we treat these random variables as latent parameters, and then develop an approach for model identification based on expectation conditional maximum (ECM algorithm. Moreover, depending on the proposed model, how to estimate the lifetime with fixed changing point is presented via the time-space transformation technique, and the approximate analytical solution is derived. Finally, a numerical simulation and a practical case are provided for illustration.

  15. Robustness of double random phase encoding spread-space spread-spectrum image watermarking technique (United States)

    Liu, Shi; Hennelly, Bryan M.; Sheridan, John T.


    In this paper the robustness of a recently proposed image watermarking scheme is investigated, namely the Double Random Phase Encoding spread-space spread-spectrum watermarking (DRPE SS-SS) technique. In the DRPE SS-SS method, the watermark is in the form of a digital barcode image which is numerically encrypted using a simulation of the optical DRPE process. This produces a random complex image, which is then processed to form a real valued random image with a low number of quantization levels. This signal is added to the host image. Extraction of the barcode, involves applying an inverse DRPE process to the watermarked image followed by a low pass filter. This algorithm is designed to utilize the capability of the DRPE to reversibly spread the energy of the watermarking information in both the space and spatial frequency domains, and the energy of the watermark in any spatial or spatial frequency bin is very small. The common geometric transformations and signal processing operations are performed using both the informed and the blind detections for different barcode widths and different quantization levels. The results presented indicate that the DRPE SS-SS method is robust to scaling, JPEG compression distortion, cropping, low pass and high pass filtering. It is also demonstrated that the bigger the barcode width is, the lower the false positive rate will be.

  16. Influence of liquid crystalline phases on the tunability of a random laser (United States)

    Trull, José; Salud, Josep; Diez-Berart, Sergio; López, David O.


    In this paper, we report the temperature behavior of an optimized disordered photonic system-based liquid crystal by means of heat capacity and refractive index measurements. The scattering system is formed by a porous borosilicate glass random matrix (about 60%) infiltrated with a smectogenic liquid crystal (about 16%) and a small amount of laser dye (0.1%). The rest of the scattering system is about 24% air, giving rise to a high refractive index contrast scattering system. Such a system has the functionality to change the refractive index contrast with temperature due to the liquid crystal temperature behavior. The system, optically pumped by the second harmonic of a Q -switched Nd:YAG pulsed laser working at 532 nm, exhibits random laser action, the threshold of which depends upon the liquid crystalline mesophase. Temperatures of existence of the smectic-B phase correspond to the most optimized random laser. In such a mesophase, the transport mean free path has been determined as about 16 μm in a coherent backscattering experiment.

  17. Random gauge models of the superconductor-insulator transition in two-dimensional disordered superconductors (United States)

    Granato, Enzo


    We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.

  18. Mathematical Modeling of Two-Phase Flow. (United States)


    interactions between the fluids. In spite of much progress (Lahey & Moody 1977), two phase flow studies in nuclear reactors are still a concern. -7- The...Vi)] VX k> , (37) and the interfacial pressure on the kth phase by Pk,iIVak12 , <pk VXR>7 k ( 38) -21- Equation (38) is the dot product of Vak of...functions of a a k /at, Vak , Vk, VVk, 3Vk/at ... where ... represents the material -24- properties, such as the viscosities and densities of the two

  19. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek


    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  20. Elastic and dynamic properties of membrane phase-field models. (United States)

    Lázaro, Guillermo R; Pagonabarraga, Ignacio; Hernández-Machado, Aurora


    Phase-field models have been extensively used to study interfacial phenomena, from solidification to vesicle dynamics. In this article, we analyze a phase-field model that captures the relevant physical features that characterize biological membranes. We show that the Helfrich theory of elasticity of membranes can be applied to phase-field models, allowing to derive the expressions of the stress tensor, lateral stress profile and elastic moduli. We discuss the relevance and interpretations of these magnitudes from a phase-field perspective. Taking the sharp-interface limit we show that the membrane macroscopic equilibrium equation can be derived from the equilibrium condition of the phase-field interface. We also study two dynamic models that describe the behaviour of a membrane. From the study of the relaxational behaviour of the membrane we characterize the relevant dynamics of each model, and discuss their applications.

  1. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial


    Shalev Eliezer; Zafran Noah; Kadan Yfat; Garmi Gali; Nachum Zohar; Salim Raed


    Abstract Background A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Methods Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1), oxytocin (group 2) or both (group 3). A group of women who pr...

  2. Application of Random-Effects Probit Regression Models. (United States)

    Gibbons, Robert D.; Hedeker, Donald


    Develops random-effects probit model for case in which outcome of interest is series of correlated binary responses, obtained as product of longitudinal response process where individual is repeatedly classified on binary outcome variable or in multilevel or clustered problems in which individuals within groups are considered to share…

  3. Asthma Self-Management Model: Randomized Controlled Trial (United States)

    Olivera, Carolina M. X.; Vianna, Elcio Oliveira; Bonizio, Roni C.; de Menezes, Marcelo B.; Ferraz, Erica; Cetlin, Andrea A.; Valdevite, Laura M.; Almeida, Gustavo A.; Araujo, Ana S.; Simoneti, Christian S.; de Freitas, Amanda; Lizzi, Elisangela A.; Borges, Marcos C.; de Freitas, Osvaldo


    Information for patients provided by the pharmacist is reflected in adhesion to treatment, clinical results and patient quality of life. The objective of this study was to assess an asthma self-management model for rational medicine use. This was a randomized controlled trial with 60 asthmatic patients assigned to attend five modules presented by…

  4. First principles modeling of magnetic random access memory devices (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Butler, W.H.; Zhang, X.; Schulthess, T.C.; Nicholson, D.M.; Oparin, A.B. [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); MacLaren, J.M. [Department of Physics, Tulane University, New Orleans, Louisiana 70018 (United States)


    Giant magnetoresistance (GMR) and spin-dependent tunneling may be used to make magnetic random access memory devices. We have applied first-principles based electronic structure techniques to understand these effects and in the case of GMR to model the transport properties of the devices. {copyright} {ital 1999 American Institute of Physics.}

  5. Performance of Random Effects Model Estimators under Complex Sampling Designs (United States)

    Jia, Yue; Stokes, Lynne; Harris, Ian; Wang, Yan


    In this article, we consider estimation of parameters of random effects models from samples collected via complex multistage designs. Incorporation of sampling weights is one way to reduce estimation bias due to unequal probabilities of selection. Several weighting methods have been proposed in the literature for estimating the parameters of…

  6. Scale-free random graphs and Potts model

    Indian Academy of Sciences (India)

    real-world networks such as the world-wide web, the Internet, the coauthorship, the protein interaction networks and so on display power-law behaviors in the degree ... in this paper, we study the evolution of SF random graphs from the perspective of equilibrium statistical physics. The formulation in terms of the spin model ...

  7. Modeling fiber type grouping by a binary Markov random field

    NARCIS (Netherlands)

    Venema, H. W.


    A new approach to the quantification of fiber type grouping is presented, in which the distribution of histochemical type in a muscle cross section is regarded as a realization of a binary Markov random field (BMRF). Methods for the estimation of the parameters of this model are discussed. The first

  8. Quantum random oracle model for quantum digital signature (United States)

    Shang, Tao; Lei, Qi; Liu, Jianwei


    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  9. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). (United States)

    Vincent, Jean-Louis; Privalle, Christopher T; Singer, Mervyn; Lorente, José A; Boehm, Erwin; Meier-Hellmann, Andreas; Darius, Harald; Ferrer, Ricard; Sirvent, Josep-Maria; Marx, Gernot; DeAngelo, Joseph


    To compare the effectiveness and safety of the hemoglobin-based nitric oxide scavenger, pyridoxalated hemoglobin polyoxyethylene, against placebo in patients with vasopressor-dependent distributive shock. Multicenter, randomized, placebo-controlled, open-label study. Sixty-one participating ICUs in six European countries (Austria, Belgium, Germany, the Netherlands, Spain, and United Kingdom). All patients admitted with distributive shock, defined as the presence of at least two systemic inflammatory response syndrome criteria, persisting norepinephrine dependence and evidence of organ dysfunction/hypoperfusion despite adequate fluid resuscitation. Patients were randomized to receive 0.25 mL/kg/hr pyridoxalated hemoglobin polyoxyethylene (20 mg Hb/kg/hr) or an equal volume of placebo, infused for up to 150 hours, in addition to conventional vasopressor therapy. The study was stopped after interim analysis showed higher mortality in the pyridoxalated hemoglobin polyoxyethylene group and an increased prevalence of adverse events. At this time, 377 patients had been randomized to pyridoxalated hemoglobin polyoxyethylene (n = 183) or placebo (n = 194). Age, gender, type of patient (medical/surgical), and Acute Physiology and Chronic Health Evaluation II scores were similar between groups. Twenty-eight-day mortality rate was 44.3% in the pyridoxalated hemoglobin polyoxyethylene group versus 37.6% in the placebo group (OR, 1.29; 95% CI, 0.85-1.95; p = 0.227). In patients with higher organ dysfunction scores (Sepsis-related Organ Failure Assessment > 13), mortality rates were significantly higher in the pyridoxalated hemoglobin polyoxyethylene group when compared with those in placebo-treated patients (60.9% vs 39.2%; p = 0.014). Survivors who received pyridoxalated hemoglobin polyoxyethylene had a longer vasopressor-free time (21.3 vs 19.7 d; p = 0.035). In this randomized, controlled phase III trial in patients with vasopressor-dependent distributive shock

  10. Phase Chaos and Multistability in the Discrete Kuramoto Model

    DEFF Research Database (Denmark)

    Maistrenko, V. L.; Vasylenko, A. A.; Maistrenko, Y. L.


    The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear interact......The paper describes the appearance of a novel high-dimensional chaotic regime, called phase chaos, in the discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It is caused by the nonlinear...... interaction of the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional discrete Kuramoto model, we outline the region of phase chaos in the parameter plane, distinguish the region where the phase chaos coexists with other periodic attractors...

  11. Luteal Phase Support in the Intrauterine Insemination (IUI Cycles: A Randomized Double Blind, Placebo Controlled Study.

    Directory of Open Access Journals (Sweden)

    Batool Hossein Rashidi


    Full Text Available To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG, in sub fertile couples.This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg and hMG (75 IU in preparation for the IUI cycle. Study group (n = 127 received luteal phase support in the form of vaginal progesterone (400 mg twice a day, and control group (n = 126 received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups.The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3. The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45.It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  12. Luteal Phase Support in the Intrauterine Insemination (IUI) Cycles: A Randomized Double Blind, Placebo Controlled Study. (United States)

    Hossein Rashidi, Batool; Davari Tanha, Fatemeh; Rahmanpour, Haleh; Ghazizadeh, Mahya


    To evaluate the impact of luteal phase support with vaginal progesterone on pregnancy rates in the intrauterine insemination (IUI) cycles, stimulated with clomiphene citrate and human menopausal gonadotropin (hMG), in sub fertile couples. This prospective, randomized, double blind study was performed in a tertiary infertility center from March 2011 to January 2012. It consisted of 253 sub fertile couples undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with clomiphene citrate (100 mg) and hMG (75 IU) in preparation for the IUI cycle. Study group (n = 127) received luteal phase support in the form of vaginal progesterone (400 mg twice a day), and control group (n = 126) received placebo. Clinical pregnancy and abortion rates were assessed and compared between the two groups. The clinical pregnancy rate was not significantly higher for supported cycles than that for the unsupported ones (15.75% vs. 12.69%, p = 0.3). The abortion rate in the patients with progesterone luteal support compared to placebo group was not statistically different (10% vs. 18.75%, p = 0.45). It seems that luteal phase support with vaginal progesterone was not enhanced the success of IUI cycles outcomes, when clomiphene citrate and hMG were used for ovulation stimulation.

  13. A novel model of third phase inclusions on two phase boundaries (United States)

    Prudil, Andrew A.; Welland, Michael J.


    A new computationally efficient model of an included phase located at the interface between two other phases is developed by projecting the boundaries of the inclusion onto the boundary between the two other phases. This reduces the 3D problem to one on a 2D surface while still being embedded in 3D space, which significantly reduces computational expense of solving the system. The resulting model is similar to conventional phase-field models. The properties of the solution are examined, compared to classical theory, and the numerical behaviour, including a mesh sensitivity analysis, are discussed. The model accurately captures mesoscale effects, such as the Gibbs-Thompson effect, coarsening, and coalescence. An example application of the model simulating the evolution of grain boundary porosity in nuclear fuel is shown on a representative tetrakaidecahedron-shaped fuel grain.

  14. A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    based on Rapoport-Leas Equation and Film Model, a systematic literature review of the LBM CFD methods including the particle-based LBM and porous-medium-based LBM for multiphase flow, and the sample calculation of particle-based LBM in a random porous medium. Finally we come to present a new approach......In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...

  15. Evolution of the concentration PDF in random environments modeled by global random walk (United States)

    Suciu, Nicolae; Vamos, Calin; Attinger, Sabine; Knabner, Peter


    The evolution of the probability density function (PDF) of concentrations of chemical species transported in random environments is often modeled by ensembles of notional particles. The particles move in physical space along stochastic-Lagrangian trajectories governed by Ito equations, with drift coefficients given by the local values of the resolved velocity field and diffusion coefficients obtained by stochastic or space-filtering upscaling procedures. A general model for the sub-grid mixing also can be formulated as a system of Ito equations solving for trajectories in the composition space. The PDF is finally estimated by the number of particles in space-concentration control volumes. In spite of their efficiency, Lagrangian approaches suffer from two severe limitations. Since the particle trajectories are constructed sequentially, the demanded computing resources increase linearly with the number of particles. Moreover, the need to gather particles at the center of computational cells to perform the mixing step and to estimate statistical parameters, as well as the interpolation of various terms to particle positions, inevitably produce numerical diffusion in either particle-mesh or grid-free particle methods. To overcome these limitations, we introduce a global random walk method to solve the system of Ito equations in physical and composition spaces, which models the evolution of the random concentration's PDF. The algorithm consists of a superposition on a regular lattice of many weak Euler schemes for the set of Ito equations. Since all particles starting from a site of the space-concentration lattice are spread in a single numerical procedure, one obtains PDF estimates at the lattice sites at computational costs comparable with those for solving the system of Ito equations associated to a single particle. The new method avoids the limitations concerning the number of particles in Lagrangian approaches, completely removes the numerical diffusion, and

  16. Factors associated with publication of randomized phase iii cancer trials in journals with a high impact factor. (United States)

    Tang, P A; Pond, G R; Welch, S; Chen, E X


    Impact factor (if) is often used as a measure of journal quality. The purpose of the present study was to determine whether trials with positive outcomes are more likely to be published in journals with higher ifs. We reviewed 476 randomized phase iii cancer trials published in 13 journals between 1995 and 2005. Multivariate logistic regression models were used to investigate predictors of publication in journals with high ifs (compared with low and medium ifs). A positive outcome had the strongest association with publication in high-if journals [odds ratio (or): 4.13; 95% confidence interval (ci): 2.67 to 6.37; p impact factor bias," and investigators should be encouraged to submit reports of trials of high methodologic quality to journals with high ifs regardless of study outcomes.

  17. A monoecious and diploid Moran model of random mating. (United States)

    Hössjer, Ola; Tyvand, Peder A


    An exact Markov chain is developed for a Moran model of random mating for monoecious diploid individuals with a given probability of self-fertilization. The model captures the dynamics of genetic variation at a biallelic locus. We compare the model with the corresponding diploid Wright-Fisher (WF) model. We also develop a novel diffusion approximation of both models, where the genotype frequency distribution dynamics is described by two partial differential equations, on different time scales. The first equation captures the more slowly varying allele frequencies, and it is the same for the Moran and WF models. The other equation captures departures of the fraction of heterozygous genotypes from a large population equilibrium curve that equals Hardy-Weinberg proportions in the absence of selfing. It is the distribution of a continuous time Ornstein-Uhlenbeck process for the Moran model and a discrete time autoregressive process for the WF model. One application of our results is to capture dynamics of the degree of non-random mating of both models, in terms of the fixation index fIS. Although fIS has a stable fixed point that only depends on the degree of selfing, the normally distributed oscillations around this fixed point are stochastically larger for the Moran than for the WF model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Simulation model for a seven-phase BLDCM drive system (United States)

    Park, Sang-Hoon; Lee, Won-Cheol; Lee, Jung-Hyo; Yu, Jae-Sung; Kim, Gyu-Sik; Won, Chung-Yuen


    BLDC motors have many advantages over brushed DC motors and induction motors. So, BLDC motors extend their application to many industrial fields. In this paper, the digital simulation and modeling of a 7-phase brushless DC motor have been presented. The 14-switch inverter and a 7-phase brushless DC motor drive system are simulated using hysteresis current controller and logic of switching pattern with the Boolean¡s function. Through some simulations, we found that our modeling and analysis of a 7-phase BLDCM with PWM inverter would be helpful for the further studies of the multi-phase BLDCM drive systems.

  19. Random matrices as models for the statistics of quantum mechanics (United States)

    Casati, Giulio; Guarneri, Italo; Mantica, Giorgio


    Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.

  20. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server


    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  1. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.


    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  2. Detecting Gait Phases from RGB-D Images Based on Hidden Markov Model. (United States)

    Heravi, Hamed; Ebrahimi, Afshin; Olyaee, Ehsan


    Gait contains important information about the status of the human body and physiological signs. In many medical applications, it is important to monitor and accurately analyze the gait of the patient. Since walking shows the reproducibility signs in several phases, separating these phases can be used for the gait analysis. In this study, a method based on image processing for extracting phases of human gait from RGB-Depth images is presented. The sequence of depth images from the front view has been processed to extract the lower body depth profile and distance features. Feature vector extracted from image is the same as observation vector of hidden Markov model, and the phases of gait are considered as hidden states of the model. After training the model using the images which are randomly selected as training samples, the phase estimation of gait becomes possible using the model. The results confirm the rate of 60-40% of two major phases of the gait and also the mid-stance phase is recognized with 85% precision.

  3. Employment, Production and Consumption model: Patterns of phase transitions (United States)

    Lavička, H.; Lin, L.; Novotný, J.


    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  4. Fuzzy Field Theory as a Random Matrix Model (United States)

    Tekel, Juraj

    This dissertation considers the theory of scalar fields on fuzzy spaces from the point of view of random matrices. First we define random matrix ensembles, which are natural description of such theory. These ensembles are new and the novel feature is a presence of kinetic term in the probability measure, which couples the random matrix to a set of external matrices and thus breaks the original symmetry. Considering the case of a free field ensemble, which is generalization of a Gaussian matrix ensemble, we develop a technique to compute expectation values of the observables of the theory based on explicit Wick contractions and we write down recursion rules for these. We show that the eigenvalue distribution of the random matrix follows the Wigner semicircle distribution with a rescaled radius. We also compute distributions of the matrix Laplacian of the random matrix given by the new term and demonstrate that the eigenvalues of these two matrices are correlated. We demonstrate the robustness of the method by computing expectation values and distributions for more complicated observables. We then consider the ensemble corresponding to an interacting field theory, with a quartic interaction. We use the same method to compute the distribution of the eigenvalues and show that the presence of the kinetic terms rescales the distribution given by the original theory, which is a polynomially deformed Wigner semicircle. We compute the eigenvalue distribution of the matrix Laplacian and the joint distribution up to second order in the correlation and we show that the correlation between the two changes from the free field case. Finally, as an application of these results, we compute the phase diagram of the fuzzy scalar field theory, we find multiscaling which stabilizes this diagram in the limit of large matrices and compare it with the results obtained numerically and by considering the kinetic part as a perturbation.

  5. Modeling of Phase Equilibria Containing Associating Fluids

    DEFF Research Database (Denmark)

    Derawi, Samer; Kontogeorgis, Georgios

    . The background and main targets for this thesis are presented in Chapter 1. In Chapter 2, a comprehensive review of the application of group contribution (GC) models such as various forms of UNIFAC and the so-called AFC (Atom and Fragment Contributions) correlation model for Pow (octanol-water partition...... coefficient) calculations has been carried out. UNIFAC is an activity coefficient model while AFC is a model specifically developed for Pow calculations. Five different versions of UNIFAC and the AFC correlation model have been compared with each other and with experimental data. The range of applicability...

  6. Phase-field model for isothermal phase transitions in binary alloys (United States)

    Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.


    A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.

  7. A generalized model via random walks for information filtering (United States)

    Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng


    There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation.

  8. Connectivity properties of the random-cluster model (United States)

    Weigel, Martin; Metin Elci, Eren; Fytas, Nikolaos G.


    We investigate the connectivity properties of the random-cluster model mediated by bridge bonds that, if removed, lead to the generation of new connected components. We study numerically the density of bridges and the fragmentation kernel, i.e., the relative sizes of the generated fragments, and find that these quantities follow a scaling description. The corresponding scaling exponents are related to well known equilibrium critical exponents of the model. Using the Russo-Margulis formalism, we derive an exact relation between the expected density of bridges and the number of active edges. The same approach allows us to study the fluctuations in the numbers of bridges, thereby uncovering a new singularity in the random- cluster model as q clusters connected by bridges and candidate-bridges play a pivotal role. We discuss several different implementations of the necessary connectivity algorithms and assess their relative performance.

  9. An investigation of subchannel analysis models for single-phase and two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun


    The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.

  10. Generalized random sign and alert delay models for imperfect maintenance. (United States)

    Dijoux, Yann; Gaudoin, Olivier


    This paper considers the modelling of the process of Corrective and condition-based Preventive Maintenance, for complex repairable systems. In order to take into account the dependency between both types of maintenance and the possibility of imperfect maintenance, Generalized Competing Risks models have been introduced in "Doyen and Gaudoin (J Appl Probab 43:825-839, 2006)". In this paper, we study two classes of these models, the Generalized Random Sign and Generalized Alert Delay models. A Generalized Competing Risks model can be built as a generalization of a particular Usual Competing Risks model, either by using a virtual age framework or not. The models properties are studied and their parameterizations are discussed. Finally, simulation results and an application to real data are presented.

  11. M1 (e, e') excitations in {sup 30}Si and {sup 31}S from the quasiparticle random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Udias, J.M.; Faessler, Amand [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany); Nojarov, R. [Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, BG-1784, Sofia (Bulgaria)


    We apply the QRPA formalism developed in previous works to study the excitation of the M1 mode through (e, e') scattering on {sup 30}Si and {sup 32}S. The agreement with experiment is comparable with that of the shell model for sd-shell nuclei. Having in view previous works for heavy and medium nuclei, one could conclude that the quasiparticle random-phase approximation (QRPA) is applicable to nuclei from a wide range of masses. (author)

  12. Long-range correlation in synchronization and syncopation tapping: a linear phase correction model.

    Directory of Open Access Journals (Sweden)

    Didier Delignières

    Full Text Available We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing.

  13. Testing Numerical Modeling of Phase Coarsening by Microgravity Experiments (United States)

    Wang, K. G.; Glicksman, M. E.


    Quantitative understanding of the morphological evolution that occurs during phase coarsening is crucial for optimization of processing procedures to control the final structure and properties of multiphase materials. Generally, ground-based experimental studies of phase coarsening in solids are limited to model alloy systems. Data from microgravity experiments on phase coarsening in Sn-Pb solid-liquid mixtures, executed on the International Space Station, are archived in NASA's Physical Sciences Informatics (PSI) system. In such microgravity experiments, it is expected that the rate of sedimentation will be greatly reduced compared with terrestrial conditions, allowing the kinetics of phase coarsening to be followed more carefully and accurately. In this work we tested existing numerical models of phase coarsening using NASA's PSI microgravity data. Specially, we compared the microstructures derived from phase-field and multiparticle diffusion simulations with those observed in microgravity experiments.

  14. Pseudo-random-bit-sequence phase modulation for reduced errors in a fiber optic gyroscope. (United States)

    Chamoun, Jacob; Digonnet, Michel J F


    Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073  deg/√h and a drift of 0.023  deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.

  15. Dielectric matrix formulation of correlation energies in the Random Phase Approximation (RPA): inclusion of exchange effects

    CERN Document Server

    Mussard, Bastien; Jansen, Georg; Angyan, Janos


    Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...

  16. Insight into organic reactions from the direct random phase approximation and its corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ruzsinszky, Adrienn [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Zhang, Igor Ying; Scheffler, Matthias [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)


    The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11) represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.

  17. A statistical model of false negative and false positive detection of phase singularities (United States)

    Jacquemet, Vincent


    The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 106 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.

  18. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial.

    Directory of Open Access Journals (Sweden)

    Victoria K Snowdon


    Full Text Available Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2 is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1 and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension.To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v. infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d or terlipressin (single 2-mg i.v. bolus, and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT

  19. Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial (United States)

    Motzer, Robert J.; Rini, Brian I.; McDermott, David F.; Redman, Bruce G.; Kuzel, Timothy M.; Harrison, Michael R.; Vaishampayan, Ulka N.; Drabkin, Harry A.; George, Saby; Logan, Theodore F.; Margolin, Kim A.; Plimack, Elizabeth R.; Lambert, Alexandre M.; Waxman, Ian M.; Hammers, Hans J.


    Purpose Nivolumab is a fully human immunoglobulin G4 programmed death–1 immune checkpoint inhibitor antibody that restores T-cell immune activity. This phase II trial assessed the antitumor activity, dose-response relationship, and safety of nivolumab in patients with metastatic renal cell carcinoma (mRCC). Patients and Methods Patients with clear-cell mRCC previously treated with agents targeting the vascular endothelial growth factor pathway were randomly assigned (blinded ratio of 1:1:1) to nivolumab 0.3, 2, or 10 mg/kg intravenously once every 3 weeks. The primary objective was to evaluate the dose-response relationship as measured by progression-free survival (PFS); secondary end points included objective response rate (ORR), overall survival (OS), and safety. Results A total of 168 patients were randomly assigned to the nivolumab 0.3- (n = 60), 2- (n = 54), and 10-mg/kg (n = 54) cohorts. One hundred eighteen patients (70%) had received more than one prior systemic regimen. Median PFS was 2.7, 4.0, and 4.2 months, respectively (P = .9). Respective ORRs were 20%, 22%, and 20%. Median OS was 18.2 months (80% CI, 16.2 to 24.0 months), 25.5 months (80% CI, 19.8 to 28.8 months), and 24.7 months (80% CI, 15.3 to 26.0 months), respectively. The most common treatment-related adverse event (AE) was fatigue (24%, 22%, and 35%, respectively). Nineteen patients (11%) experienced grade 3 to 4 treatment-related AEs. Conclusion Nivolumab demonstrated antitumor activity with a manageable safety profile across the three doses studied in mRCC. No dose-response relationship was detected as measured by PFS. These efficacy and safety results in mRCC support study in the phase III setting. PMID:25452452

  20. Topological Terms and Phases of Sigma Models


    Thorngren, Ryan


    We study boundary conditions of topological sigma models with the goal of generalizing the concepts of anomalous symmetry and symmetry protected topological order. We find a version of 't Hooft's anomaly matching conditions on the renormalization group flow of boundaries of invertible topological sigma models and discuss several examples of anomalous boundary theories. We also comment on bulk topological transitions in dynamical sigma models and argue that one can, with care, use topological ...

  1. Phase field crystal modeling of ternary solidification microstructures


    Berghoff, Marco; Nestler, Britta


    In the present work, we present a free energy derivation of the multi-component phase-field crystal model [1] and illustrate the capability to simulate dendritic and eutectic solidification in ternary alloys. Fast free energy minimization by a simulated annealing algorithm of an approximated crystal is compared with the free energy of a fully simulated phase field crystal structure. The calculation of ternary phase diagrams from these free energies is described. Based on the free energies rel...

  2. A model for phase noise generation in amplifiers. (United States)

    Tomlin, T D; Fynn, K; Cantoni, A


    In this paper, a model is presented for predicting the phase modulation (PM) and amplitude modulation (AM) noise in bipolar junction transistor (BJT) amplifiers. The model correctly predicts the dependence of phase noise on the signal frequency (at a particular carrier offset frequency), explains the noise shaping of the phase noise about the signal frequency, and shows the functional dependence on the transistor parameters and the circuit parameters. Experimental studies on common emitter (CE) amplifiers have been used to validate the PM noise model at carrier frequencies between 10 and 100 MHz.

  3. Shape modelling using Markov random field restoration of point correspondences. (United States)

    Paulsen, Rasmus R; Hilger, Klaus B


    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized shapes and improves the capability of reconstruction of the training data. Furthermore, the method leads to an overall reduction in the total variance of the point distribution model. Thus, it finds correspondence between semi-landmarks that are highly correlated in the shape tangent space. The method is demonstrated on a set of human ear canals extracted from 3D-laser scans.

  4. Shape Modelling Using Markov Random Field Restoration of Point Correspondences

    DEFF Research Database (Denmark)

    Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen


    A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized...... shapes and improves the capability of reconstruction of the training data. Furthermore, the method leads to an overall reduction in the total variance of the point distribution model. Thus, it finds correspondence between semilandmarks that are highly correlated in the shape tangent space. The method...

  5. A Random Dot Product Model for Weighted Networks

    CERN Document Server

    DeFord, Daryl R


    This paper presents a generalization of the random dot product model for networks whose edge weights are drawn from a parametrized probability distribution. We focus on the case of integer weight edges and show that many previously studied models can be recovered as special cases of this generalization. Our model also determines a dimension--reducing embedding process that gives geometric interpretations of community structure and centrality. The dimension of the embedding has consequences for the derived community structure and we exhibit a stress function for determining appropriate dimensions. We use this approach to analyze a coauthorship network and voting data from the U.S. Senate.

  6. Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition (United States)

    Rafiq Abuturab, Muhammad


    A new asymmetric multiple information cryptosystem based on chaotic spiral phase mask (CSPM) and random spectrum decomposition is put forwarded. In the proposed system, each channel of secret color image is first modulated with a CSPM and then gyrator transformed. The gyrator spectrum is randomly divided into two complex-valued masks. The same procedure is applied to multiple secret images to get their corresponding first and second complex-valued masks. Finally, first and second masks of each channel are independently added to produce first and second complex ciphertexts, respectively. The main feature of the proposed method is the different secret images encrypted by different CSPMs using different parameters as the sensitive decryption/private keys which are completely unknown to unauthorized users. Consequently, the proposed system would be resistant to potential attacks. Moreover, the CSPMs are easier to position in the decoding process owing to their own centering mark on axis focal ring. The retrieved secret images are free from cross-talk noise effects. The decryption process can be implemented by optical experiment. Numerical simulation results demonstrate the viability and security of the proposed method.

  7. Mavoglurant in Parkinson's patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies. (United States)

    Trenkwalder, Claudia; Stocchi, Fabrizio; Poewe, Werner; Dronamraju, Nalina; Kenney, Chris; Shah, Amy; von Raison, Florian; Graf, Ana


    Two phase 2 randomized, double-blind studies were designed to evaluate efficacy and safety of immediate-release (study 1) and modified-release (study 2) mavoglurant formulations in PD l-dopa-induced dyskinesia. Patients were randomized to mavoglurant 100-mg or placebo (4:3) groups (study 1) and mavoglurant 200-mg, mavoglurant 150-mg, or placebo (2:1:1) groups (study 2). Primary outcome was antidyskinetic efficacy, as measured by change from baseline to week 12 in modified Abnormal Involuntary Movement Scale total score. Differences in least-squares mean (standard error) change in modified Abnormal Involuntary Movement Scale total score in week 12 did not reach statistical significance in either study (study 1: mavoglurant 100 mg twice a day versus placebo, 1.7 [1.31]; study 2: mavoglurant 150 mg twice a day (-1.3 [1.16]) and 200 mg twice a day (-0.2 [1.03]) versus placebo). Adverse events incidence was higher with mavoglurant than with placebo. Both studies failed to meet the primary objective of demonstrating improvement of dyskinesia with mavoglurant treatment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  8. Modeling random combustion of lycopodium particles and gas

    Directory of Open Access Journals (Sweden)

    M Bidabadi


    Full Text Available The random modeling combustion of lycopodium particles has been researched by many authors. In this paper, we extend this model and we also generate a different method by analyzing the effect of random distributed sources of combustible mixture. The flame structure is assumed to consist of a preheat-vaporization zone, a reaction zone and finally a post flame zone. We divide the preheat zone to different parts. We assumed that there is different distribution of particles in sections which are really random. Meanwhile, it is presumed that the fuel particles vaporize first to yield gaseous fuel. In other words, most of the fuel particles are vaporized at the end of the preheat zone. It is assumed that the Zel’dovich number is large; therefore, the reaction term in preheat zone is negligible. In this work, the effect of random distribution of particles in the preheat zone on combustion characteristics such as burning velocity, flame temperature for different particle radius is obtained.

  9. Multilevel random effect and marginal models for longitudinal data ...

    African Journals Online (AJOL)

    The models were applied to data obtained from a phase-III clinical trial on a new meningococcal vaccine. The goal is to investigate whether children injected by the candidate vaccine have a lower or higher risk for the occurrence of specific adverse events than children injected with licensed vaccine, and if so, to quantify the ...

  10. HYTEST Phase I Facility Commissioning and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger


    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  11. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    Directory of Open Access Journals (Sweden)

    Faliu Yi


    Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  12. Spatially random models, estimation theory, and robot arm dynamics (United States)

    Rodriguez, G.


    Spatially random models provide an alternative to the more traditional deterministic models used to describe robot arm dynamics. These alternative models can be used to establish a relationship between the methodologies of estimation theory and robot dynamics. A new class of algorithms for many of the fundamental robotics problems of inverse and forward dynamics, inverse kinematics, etc. can be developed that use computations typical in estimation theory. The algorithms make extensive use of the difference equations of Kalman filtering and Bryson-Frazier smoothing to conduct spatial recursions. The spatially random models are very easy to describe and are based on the assumption that all of the inertial (D'Alembert) forces in the system are represented by a spatially distributed white-noise model. The models can also be used to generate numerically the composite multibody system inertia matrix. This is done without resorting to the more common methods of deterministic modeling involving Lagrangian dynamics, Newton-Euler equations, etc. These methods make substantial use of human knowledge in derivation and minipulation of equations of motion for complex mechanical systems.

  13. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial (United States)

    Van Coevorden, Frits; Punt, Cornelis J. A.; Pierie, Jean-Pierre E. N.; Borel-Rinkes, Inne; Ledermann, Jonathan A.; Poston, Graeme; Bechstein, Wolf; Lentz, Marie-Ange; Mauer, Murielle; Folprecht, Gunnar; Van Cutsem, Eric; Ducreux, Michel; Nordlinger, Bernard


    Background: Tumor ablation is often employed for unresectable colorectal liver metastases. However, no survival benefit has ever been demonstrated in prospective randomized studies. Here, we investigate the long-term benefits of such an aggressive approach. Methods: In this randomized phase II trial, 119 patients with unresectable colorectal liver metastases (n  38%) was met. We now report on long-term OS results. All statistical tests were two-sided. The analyses were according to intention to treat. Results: At a median follow up of 9.7 years, 92 of 119 (77.3%) patients had died: 39 of 60 (65.0%) in the combined modality arm and 53 of 59 (89.8%) in the systemic treatment arm. Almost all patients died of progressive disease (35 patients in the combined modality arm, 49 patients in the systemic treatment arm). There was a statistically significant difference in OS in favor of the combined modality arm (hazard ratio [HR] = 0.58, 95% confidence interval [CI] = 0.38 to 0.88, P = .01). Three-, five-, and eight-year OS were 56.9% (95% CI = 43.3% to 68.5%), 43.1% (95% CI = 30.3% to 55.3%), 35.9% (95% CI = 23.8% to 48.2%), respectively, in the combined modality arm and 55.2% (95% CI = 41.6% to 66.9%), 30.3% (95% CI = 19.0% to 42.4%), 8.9% (95% CI = 3.3% to 18.1%), respectively, in the systemic treatment arm. Median OS was 45.6 months (95% CI = 30.3 to 67.8 months) in the combined modality arm vs 40.5 months (95% CI = 27.5 to 47.7 months) in the systemic treatment arm. Conclusions: This phase II trial is the first randomized study demonstrating that aggressive local treatment can prolong OS in patients with unresectable colorectal liver metastases. PMID:28376151

  14. Prediction models for clustered data: comparison of a random intercept and standard regression model. (United States)

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne


    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only

  15. Least squares estimation in a simple random coefficient autoregressive model

    DEFF Research Database (Denmark)

    Johansen, Søren; Lange, Theis


    we prove the curious result that View the MathML source. The proof applies the notion of a tail index of sums of positive random variables with infinite variance to find the order of magnitude of View the MathML source and View the MathML source and hence the limit of View the MathML source......The question we discuss is whether a simple random coefficient autoregressive model with infinite variance can create the long swings, or persistence, which are observed in many macroeconomic variables. The model is defined by yt=stρyt−1+εt,t=1,…,n, where st is an i.i.d. binary variable with p...

  16. Random unitary evolution model of quantum Darwinism with pure decoherence (United States)

    Balanesković, Nenad


    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  17. Statistical Modeling of Robotic Random Walks on Different Terrain (United States)

    Naylor, Austin; Kinnaman, Laura

    Issues of public safety, especially with crowd dynamics and pedestrian movement, have been modeled by physicists using methods from statistical mechanics over the last few years. Complex decision making of humans moving on different terrains can be modeled using random walks (RW) and correlated random walks (CRW). The effect of different terrains, such as a constant increasing slope, on RW and CRW was explored. LEGO robots were programmed to make RW and CRW with uniform step sizes. Level ground tests demonstrated that the robots had the expected step size distribution and correlation angles (for CRW). The mean square displacement was calculated for each RW and CRW on different terrains and matched expected trends. The step size distribution was determined to change based on the terrain; theoretical predictions for the step size distribution were made for various simple terrains. It's Dr. Laura Kinnaman, not sure where to put the Prefix.

  18. Random fractional Fourier transform. (United States)

    Liu, Zhengjun; Liu, Shutian


    We propose a novel random fractional Fourier transform by randomizing the transform kernel function of the conventional fractional Fourier transform. The random fractional Fourier transform inherits the excellent mathematical properties from the fractional Fourier transform and can be easily implemented in optics. As a primary application the random fractional Fourier transform can be directly used in optical image encryption and decryption. The double phase encoding image encryption schemes can thus be modeled with cascaded random fractional Fourier transformers.

  19. Long-Term Improvements After Multimodal Rehabilitation in Late Phase After Stroke: A Randomized Controlled Trial. (United States)

    Bunketorp-Käll, Lina; Lundgren-Nilsson, Åsa; Samuelsson, Hans; Pekny, Tulen; Blomvé, Karin; Pekna, Marcela; Pekny, Milos; Blomstrand, Christian; Nilsson, Michael


    Treatments that improve function in late phase after stroke are urgently needed. We assessed whether multimodal interventions based on rhythm-and-music therapy or horse-riding therapy could lead to increased perceived recovery and functional improvement in a mixed population of individuals in late phase after stroke. Participants were assigned to rhythm-and-music therapy, horse-riding therapy, or control using concealed randomization, stratified with respect to sex and stroke laterality. Therapy was given twice a week for 12 weeks. The primary outcome was change in participants' perception of stroke recovery as assessed by the Stroke Impact Scale with an intention-to-treat analysis. Secondary objective outcome measures were changes in balance, gait, grip strength, and cognition. Blinded assessments were performed at baseline, postintervention, and at 3- and 6-month follow-up. One hundred twenty-three participants were assigned to rhythm-and-music therapy (n=41), horse-riding therapy (n=41), or control (n=41). Post-intervention, the perception of stroke recovery (mean change from baseline on a scale ranging from 1 to 100) was higher among rhythm-and-music therapy (5.2 [95% confidence interval, 0.79-9.61]) and horse-riding therapy participants (9.8 [95% confidence interval, 6.00-13.66]), compared with controls (-0.5 [-3.20 to 2.28]); P =0.001 (1-way ANOVA). The improvements were sustained in both intervention groups 6 months later, and corresponding gains were observed for the secondary outcomes. Multimodal interventions can improve long-term perception of recovery, as well as balance, gait, grip strength, and working memory in a mixed population of individuals in late phase after stroke. URL: http// Unique identifier: NCT01372059. © 2017 American Heart Association, Inc.

  20. Social aggregation in pea aphids: experiment and random walk modeling.

    Directory of Open Access Journals (Sweden)

    Christa Nilsen

    Full Text Available From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control.

  1. Information inefficiency in a random linear economy model

    CERN Document Server

    Jerico, Joao Pedro


    We study the effects of introducing information inefficiency in a model for a random linear economy with a representative consumer. This is done by considering statistical, instead of classical, economic general equilibria. Employing two different approaches we show that inefficiency increases the consumption set of a consumer but decreases her expected utility. In this scenario economic activity grows while welfare shrinks, that is the opposite of the behavior obtained by considering a rational consumer.

  2. Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn. (United States)

    Kroupa, A; Káňa, T; Buršík, J; Zemanová, A; Šob, M


    A method for modelling of size-dependent phase diagrams was developed by combining the semiempirical CALPHAD method and ab initio calculations of surface stresses for intermetallic phases. A novel approach was devised for the calculation of surface energy, free of systematic errors from the selection of different parameters of the software (e.g. number of the k-points) and for handling layered structures and off-stoichiometric slabs. Our approach allows the determination of complex size-dependent phase diagrams of systems with intermetallic phases, which was not possible up to now. The method was verified for the modelling of the phase diagram of the Ni-Sn system and basic comparison with rare experimental results was shown. There is reasonable agreement between the calculated and experimental results. The modelling of size-dependent phase diagrams of real systems allows the prediction of phase equilibria existing in nanosystems and possible changes in material properties. There is a need for such knowledge and the existence of reliable data for simpler systems is crucial for further application of this approach. This should motivate future experimental work.

  3. A multi-phase flow model for electrospinning process

    Directory of Open Access Journals (Sweden)

    Xu Lan


    Full Text Available An electrospinning process is a multi-phase and multi-physicical process with flow, electric and magnetic fields coupled together. This paper deals with establishing a multi-phase model for numerical study and explains how to prepare for nanofibers and nanoporous materials. The model provides with a powerful tool to controlling over electrospinning parameters such as voltage, flow rate, and others.

  4. Quantitative phase-field modeling for boiling phenomena. (United States)

    Badillo, Arnoldo


    A phase-field model is developed for quantitative simulation of bubble growth in the diffusion-controlled regime. The model accounts for phase change and surface tension effects at the liquid-vapor interface of pure substances with large property contrast. The derivation of the model follows a two-fluid approach, where the diffuse interface is assumed to have an internal microstructure, defined by a sharp interface. Despite the fact that phases within the diffuse interface are considered to have their own velocities and pressures, an averaging procedure at the atomic scale, allows for expressing all the constitutive equations in terms of mixture quantities. From the averaging procedure and asymptotic analysis of the model, nonconventional terms appear in the energy and phase-field equations to compensate for the variation of the properties across the diffuse interface. Without these new terms, no convergence towards the sharp-interface model can be attained. The asymptotic analysis also revealed a very small thermal capillary length for real fluids, such as water, that makes impossible for conventional phase-field models to capture bubble growth in the millimeter range size. For instance, important phenomena such as bubble growth and detachment from a hot surface could not be simulated due to the large number of grids points required to resolve all the scales. Since the shape of the liquid-vapor interface is primarily controlled by the effects of an isotropic surface energy (surface tension), a solution involving the elimination of the curvature from the phase-field equation is devised. The elimination of the curvature from the phase-field equation changes the length scale dominating the phase change from the thermal capillary length to the thickness of the thermal boundary layer, which is several orders of magnitude larger. A detailed analysis of the phase-field equation revealed that a split of this equation into two independent parts is possible for system sizes

  5. Topological phase transitions in the gauged BPS baby Skyrme model (United States)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.


    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  6. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)


    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  7. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results (United States)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.


    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  8. Modified phase-field-crystal model for solid-liquid phase transitions. (United States)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai


    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  9. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik


    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  10. Calibration of stormwater quality regression models: a random process? (United States)

    Dembélé, A; Bertrand-Krajewski, J-L; Barillon, B


    Regression models are among the most frequently used models to estimate pollutants event mean concentrations (EMC) in wet weather discharges in urban catchments. Two main questions dealing with the calibration of EMC regression models are investigated: i) the sensitivity of models to the size and the content of data sets used for their calibration, ii) the change of modelling results when models are re-calibrated when data sets grow and change with time when new experimental data are collected. Based on an experimental data set of 64 rain events monitored in a densely urbanised catchment, four TSS EMC regression models (two log-linear and two linear models) with two or three explanatory variables have been derived and analysed. Model calibration with the iterative re-weighted least squares method is less sensitive and leads to more robust results than the ordinary least squares method. Three calibration options have been investigated: two options accounting for the chronological order of the observations, one option using random samples of events from the whole available data set. Results obtained with the best performing non linear model clearly indicate that the model is highly sensitive to the size and the content of the data set used for its calibration.

  11. Kaleidoscope of exotic quantum phases in a frustrated XY model. (United States)

    Varney, Christopher N; Sun, Kai; Galitski, Victor; Rigol, Marcos


    The existence of quantum spin liquids was first conjectured by Pomeranchuk some 70 years ago, who argued that frustration in simple antiferromagnetic theories could result in a Fermi-liquid-like state for spinon excitations. Here we show that a simple quantum spin model on a honeycomb lattice hosts the long sought for Bose metal with a clearly identifiable Bose surface. The complete phase diagram of the model is determined via exact diagonalization and is shown to include four distinct phases separated by three quantum phase transitions.

  12. The KM phase in semi-realistic heterotic orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Giedt, Joel


    In string-inspired semi-realistic heterotic orbifolds models with an anomalous U(1){sub X},a nonzero Kobayashi-Masakawa (KM) phase is shown to arise generically from the expectation values of complex scalar fields, which appear in nonrenormalizable quark mass couplings. Modular covariant nonrenormalizable superpotential couplings are constructed. A toy Z{sub 3} orbifold model is analyzed in some detail. Modular symmetries and orbifold selection rules are taken into account and do not lead to a cancellation of the KM phase. We also discuss attempts to obtain the KM phase solely from renormalizable interactions.

  13. Richly parameterized linear models additive, time series, and spatial models using random effects

    CERN Document Server

    Hodges, James S


    A First Step toward a Unified Theory of Richly Parameterized Linear ModelsUsing mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based understanding of models with random effects.Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results. The aut

  14. Phase transitions in models of human cooperation (United States)

    Perc, Matjaž


    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  15. High-temperature series expansions for random Potts models

    Directory of Open Access Journals (Sweden)



    Full Text Available We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique, quenched disorder averages can be calculated exactly for arbitrary uncorrelated coupling distributions while keeping the disorder strength p as well as the dimension d as symbolic parameters. We present analyses of the new series for the susceptibility of the Ising (q=2 and 4-state Potts model in three dimensions up to the order 19 and 18, respectively, and compare our findings with results from field-theoretical renormalization group studies and Monte Carlo simulations.

  16. Marginal and Random Intercepts Models for Longitudinal Binary Data with Examples from Criminology (United States)

    Long, Jeffrey D.; Loeber, Rolf; Farrington, David P.


    Two models for the analysis of longitudinal binary data are discussed: the marginal model and the random intercepts model. In contrast to the linear mixed model (LMM), the two models for binary data are not subsumed under a single hierarchical model. The marginal model provides group-level information whereas the random intercepts model provides…

  17. Random Predictor Models for Rigorous Uncertainty Quantification: Part 1 (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.


    This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean and the variance of the model's parameters, thus of the predicted output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, can be bounded tightly and rigorously.

  18. Random matrices and the six-vertex model

    CERN Document Server

    Bleher, Pavel


    This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wa...

  19. Munition Expenditure Model Verification: KWIK. Phase I. (United States)


    environmental , and smoke plume behavior for each trial. 3. To compare and evaluate smoke munition expenditure calculations of the KWIK model from...Equipment Center ATTN: Technical Information Center Dr. Eugene W. Bierly Orlando, FL 32813 Director, Division of Atmos Sciences National Scinece Foundation...Meteorology Division Fort Monmouth, NJ 07703 AFGL/LY Hanscom AFB, MA 01731 Commander US Army Satellite Comm Agency The Environmental Research ATTN

  20. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін


    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  1. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe


    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  2. A symmetry-breaking phase transition in a dynamical decision model (United States)

    Lambert, Gaultier; Chevereau, Guillaume; Bertin, Eric


    We consider a simple decision model in which a set of agents randomly choose one of two competing shops selling the same perishable products (typically food). The satisfaction of agents with respect to a given store is related to the freshness of the previously bought products. Agents select with a higher probability the store that they are most satisfied with. Studying the model from a statistical physics perspective, both through numerical simulations and mean-field analytical methods, we find a rich behaviour with continuous and discontinuous phase transitions between a symmetric phase where both stores maintain the same level of activity, and a phase with broken symmetry where one of the two shops attracts more customers than the other.

  3. Synchronization of multi-phase oscillators: an Axelrod-inspired model (United States)

    Kuperman, M. N.; Zanette, D. H.


    Inspired by Axelrod’s model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction - which occurs between homologous phases - is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where any two oscillators can be synchronized in some of their phases, while their remain unsynchronized in the others.

  4. A phase-field model for fracture in biological tissues. (United States)

    Raina, Arun; Miehe, Christian


    This work presents a recently developed phase-field model of fracture equipped with anisotropic crack driving force to model failure phenomena in soft biological tissues at finite deformations. The phase-field models present a promising and innovative approach to thermodynamically consistent modeling of fracture, applicable to both rate-dependent or rate-independent brittle and ductile failure modes. One key advantage of diffusive crack modeling lies in predicting the complex crack topologies where methods with sharp crack discontinuities are known to suffer. The starting point is the derivation of a regularized crack surface functional that [Formula: see text]-converges to a sharp crack topology for vanishing length-scale parameter. A constitutive balance equation of this functional governs the crack phase-field evolution in a modular format in terms of a crack driving state function. This allows flexibility to introduce alternative stress-based failure criteria, e.g., isotropic or anisotropic, whose maximum value from the deformation history drives the irreversible crack phase field. The resulting multi-field problem is solved by a robust operator split scheme that successively updates a history field, the crack phase field and finally the displacement field in a typical time step. For the representative numerical simulations, a hyperelastic anisotropic free energy, typical to incompressible soft biological tissues, is used which degrades with evolving phase field as a result of coupled constitutive setup. A quantitative comparison with experimental data is provided for verification of the proposed methodology.

  5. General single phase wellbore flow model

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.


    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  6. Nonparametric Estimation of Distributions in Random Effects Models

    KAUST Repository

    Hart, Jeffrey D.


    We propose using minimum distance to obtain nonparametric estimates of the distributions of components in random effects models. A main setting considered is equivalent to having a large number of small datasets whose locations, and perhaps scales, vary randomly, but which otherwise have a common distribution. Interest focuses on estimating the distribution that is common to all datasets, knowledge of which is crucial in multiple testing problems where a location/scale invariant test is applied to every small dataset. A detailed algorithm for computing minimum distance estimates is proposed, and the usefulness of our methodology is illustrated by a simulation study and an analysis of microarray data. Supplemental materials for the article, including R-code and a dataset, are available online. © 2011 American Statistical Association.

  7. Modelling compressible dense and dilute two-phase flows (United States)

    Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin


    Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various

  8. Statistical Downscaling of Temperature with the Random Forest Model

    Directory of Open Access Journals (Sweden)

    Bo Pang


    Full Text Available The issues with downscaling the outputs of a global climate model (GCM to a regional scale that are appropriate to hydrological impact studies are investigated using the random forest (RF model, which has been shown to be superior for large dataset analysis and variable importance evaluation. The RF is proposed for downscaling daily mean temperature in the Pearl River basin in southern China. Four downscaling models were developed and validated by using the observed temperature series from 61 national stations and large-scale predictor variables derived from the National Center for Environmental Prediction–National Center for Atmospheric Research reanalysis dataset. The proposed RF downscaling model was compared to multiple linear regression, artificial neural network, and support vector machine models. Principal component analysis (PCA and partial correlation analysis (PAR were used in the predictor selection for the other models for a comprehensive study. It was shown that the model efficiency of the RF model was higher than that of the other models according to five selected criteria. By evaluating the predictor importance, the RF could choose the best predictor combination without using PCA and PAR. The results indicate that the RF is a feasible tool for the statistical downscaling of temperature.

  9. A Phase Ib open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia. (United States)

    Misra, Hemant; Bainbridge, James; Berryman, John; Abuchowski, Abraham; Galvez, Kenneth Mauricio; Uribe, Luis Fernando; Hernandez, Angel Luis; Sosa, Nestor Rodolfo

    Treatment of sickle cell anemia is a challenging task and despite the well understood genetic and biochemical pathway of sickle hemoglobin, current therapy continues to be limited to the symptomatic treatment of pain, supplemental oxygen, antibiotics, red blood cell transfusions and hydroxyurea. SANGUINATE is a carbon monoxide releasing molecule and oxygen transfer agent under clinical development for the treatment of sickle cell anemia and comorbidities. An open-label randomized Phase Ib study was performed in adult sickle cell anemia patients. Two dose levels of SANGUINATE were compared to hydroxyurea in 24 homozygotes for Hb SS. Twelve subjects received either a low dose (160mg/kg) of SANGUINATE or 15mg/kg hydroxyurea. Another 12 subjects received either a high dose (320mg/kg) of SANGUINATE or 15mg/kg hydroxyurea. The primary endpoint was the safety of SANGUINATE versus hydroxyurea in sickle cell anemia patients. Secondary endpoints included determination of the plasma pharmacokinetics and assessment of hematologic measurements. Musculoskeletal related adverse events were the most common. Transient troponin I levels increased in three patients, one of whom had an increase in tricuspid regurgitant velocity; however, no clinical signs were noted. Following an assessment of vital signs, tricuspid regurgitant velocity, electrocardiogram, serum biochemistry, hematology, urinalysis, and analysis of reported adverse events, SANGUINATE was found to be safe in stable sickle cell anemia patients. The clinical trial met its primary objective of demonstrating an acceptable safety profile for SANGUINATE in patients with sickle cell anemia. This trial established the safety of SANGUINATE at both dose levels and permitted its advance to Phase II trials. Copyright © 2016 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  10. Relations between Lagrangian models and synthetic random velocity fields. (United States)

    Olla, Piero; Paradisi, Paolo


    The authors propose an alternative interpretation of Markovian transport models based on the well-mixed condition, in terms of the properties of a random velocity field with second order structure functions scaling linearly in the space-time increments. This interpretation allows direct association of the drift and noise terms entering the model, with the geometry of the turbulent fluctuations. In particular, the well-known nonuniqueness problem in the well-mixed approach is solved in terms of the antisymmetric part of the velocity correlations; its relation with the presence of nonzero mean helicity and other geometrical properties of the flow is elucidated. The well-mixed condition appears to be a special case of the relation between conditional velocity increments of the random field and the one-point Eulerian velocity distribution, allowing generalization of the approach to the transport of nontracer quantities. Application to solid particle transport leads to a model satisfying, in the homogeneous isotropic turbulence case, all the conditions on the behavior of the correlation times for the fluid velocity sampled by the particles. In particular, correlation times in the gravity and in the inertia dominated case, respectively, longer and shorter than in the passive tracer case; in the gravity dominated case, correlation times longer for velocity components along gravity, than for the perpendicular ones. The model produces, in channel flow geometry, particle deposition rates in agreement with experiments.

  11. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves


    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  12. Validation of the k-filtering technique for a signal composed of random-phase plane waves and non-random coherent structures

    Directory of Open Access Journals (Sweden)

    O. W. Roberts


    Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.

  13. Dynamic response of a two-dimensional electron gas: Exact treatment of Coulomb exchange in the random-phase approximation (United States)

    Takayanagi, K.; Lipparini, E.


    The Dyson equation for the particle-hole Green's function, including Coulomb exchange matrix elements, has been solved exactly for a two-dimensional electron gas. Static and dynamic dielectric functions have been calculated and compared with normal random-phase-approximation and recent quantum Monte Carlo results.

  14. Alpha-galactosylceramide in chronic hepatitis B infection: results from a randomized placebo-controlled Phase I/II trial.

    NARCIS (Netherlands)

    Woltman, A.M.; Borg, M.J. Ter; Binda, R.S.; Sprengers, D.; Blomberg, B.M.E. von; Scheper, R.J.; Hayashi, K.; Nishi, N.; Boonstra, A.; Molen, R.G. van der; Janssen, H.L.


    BACKGROUND: The glycosphingolipid alpha-galactosylceramide (alpha-GalCer) is known to stimulate invariant natural killer T-cells (iNKTs) and is able to induce powerful antiviral immune responses. The present dose-escalating randomized placebo-controlled Phase I/II trial aimed to investigate

  15. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key (United States)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.


    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  16. Mathematical modelling of ultrasound propagation in multi-phase flow

    DEFF Research Database (Denmark)

    Simurda, Matej


    Transit-time ultrasonic flow meter is a well established and widely used method for measuring flow of fluids. However, its application when multi-phase flow conditions occur remains to be a challenging task, particularly in industrial applications. The presence of the multi-phase flow typically....... A good agreement (error below $2.1$ \\%) is found. The approach is afterwards used on a large set of experimental measurements conducted on an industrial multi-phase flow rig. It is demonstrated how the model can be used to give a good estimate of the signal deviation for a given gas-void fraction...... and size of the secondary phase inclusions. The presented work is, to the best of the author's knowledge, the only study available in the open literature that discusses simulation of ultrasonic flow meters under multi-phase flow conditions and its comparison to experimental measurements to such extent....

  17. Geometric curvature and phase of the Rabi model

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lijun; Huai, Sainan; Guo, Liping; Zhang, Yunbo, E-mail:


    We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.

  18. A Lagrangian-Lagrangian Model for Two-Phase Bubbly Flow around Circular Cylinder

    Directory of Open Access Journals (Sweden)

    M. Shademan


    Full Text Available A Lagrangian-Lagrangian model is developed using an in-house code to simulate bubble trajectory in two-phase bubbly flow around circular cylinder. Random Vortex Method (RVM which is a Lagrangian approach is used for solving the liquid phase. The significance of RVM relative to other RANS/LES methods is its capability in directly modelling the turbulence. In RVM, turbulence is modeled by solving the vorticity transport equation and there is no need to use turbulence closure models. Another advantage of RVM relative to other CFD approaches is its independence from mesh generation. For the bubbles trajectory, equation of motion of bubbles which takes into account effect of different forces are coupled with the RVM. Comparison of the results obtained from current model with the experimental data confirms the validity of the model. Effect of different parameters including flow Reynolds number, bubble diameter and injection point on the bubbles' trajectory are investigated. Results show that increase in the Reynolds number reduces the rising velocity of the bubbles. Similar behavior is observed for the bubbles when their diameter was decreased. According to the analysis carried out, present Lagrangian-Lagrangian model solves the issues of mesh generation and turbulence modelling which exist in common two phase flow modelling schemes.

  19. A mechanical erosion model for two-phase mass flows

    CERN Document Server

    Pudasaini, Shiva P


    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...

  20. Phase structure of a surface model with many fine holes. (United States)

    Koibuchi, H


    We study the phase structure of a surface model by using the canonical Monte Carlo simulation technique on triangulated, fixed connectivity, and spherical surfaces with many fine holes. The size of a hole is assumed to be of the order of lattice spacing (or bond length) and hence can be negligible compared to the surface size in the thermodynamic limit. We observe in the numerical data that the model undergoes a first-order collapsing transition between the smooth phase and the collapsed phase. Moreover the Hasudorff dimension H remains in the physical bound, i.e., H model in this paper and the previous one with many holes, whose size is of the order of the surface size, because the previous surface model with large-sized holes has only the collapsing transition and no transition of surface fluctuations.

  1. Bimodal random crystal field distribution effects on the ferrimagnetic mixed spin-1/2 and spin-3/2 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Ali, E-mail: [Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I Karatekin University, Department of Physics, 18100 Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I (Turkey); Albayrak, Erhan [Erciyes University, Department of Physics, 38039 Kayseri (Turkey)


    The effects of bimodal random crystal field on the phase diagrams and magnetization curves of ferrimagnetic mixed spin-1/2 and spin-3/2 Blume-Capel model are examined by using the effective field theory with correlations for honeycomb lattice. The phase diagrams are obtained on the ({Delta},kT/|J|), ({Delta},T{sub comp}) and (p,kT/|J|) planes for given values of p and {Delta}, respectively. The model exhibits only the second-order phase transitions as in the Blume-Capel model with constant crystal fields. In addition, it was found that the model presents one or two compensation temperatures for appropriate values of random crystal field for given probability in contrast to constant crystal field case. Therefore, it is shown that the random crystal field considerably affects the thermal variations of net and sublattice magnetizations. - Highlights: Black-Right-Pointing-Pointer Mixed spin-1/2 and spin-3/2 BC model with random crystal field was investigated. Black-Right-Pointing-Pointer Effective-field theory with correlations was used in obtaining the critical temperatures. Black-Right-Pointing-Pointer The phase diagrams of the model were shown for various planes. Black-Right-Pointing-Pointer Randomness of the crystal field leads to emergence the compensation temperatures. Black-Right-Pointing-Pointer It was found that the model exhibits only second-order phase transitions.

  2. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. (United States)

    Rush, A John; Marangell, Lauren B; Sackeim, Harold A; George, Mark S; Brannan, Stephen K; Davis, Sonia M; Howland, Robert; Kling, Mitchel A; Rittberg, Barry R; Burke, William J; Rapaport, Mark H; Zajecka, John; Nierenberg, Andrew A; Husain, Mustafa M; Ginsberg, David; Cooke, Robert G


    Vagus nerve stimulation (VNS) alters both concentrations of neurotransmitters or their metabolites and functional activity of central nervous system regions dysregulated in mood disorders. An open trial has suggested efficacy. This 10-week, acute, randomized, controlled, masked trial compared adjunctive VNS with sham treatment in 235 outpatients with nonpsychotic major depressive disorder (n = 210) or nonpsychotic, depressed phase, bipolar disorder (n = 25). In the current episode, participants had not responded adequately to between two and six research-qualified medication trials. A two-week, single-blind recovery period (no stimulation) and then 10 weeks of masked active or sham VNS followed implantation. Medications were kept stable. Primary efficacy outcome among 222 evaluable participants was based on response rates (>/=50% reduction from baseline on the 24-item Hamilton Rating Scale for Depression [HRSD(24)]). At 10-weeks, HRSD(24) response rates were 15.2% for the active (n = 112) and 10.0% for the sham (n = 110) groups (p = .251, last observation carried forward [LOCF]). Response rates with a secondary outcome, the Inventory of Depressive Symptomatology - Self-Report (IDS-SR(30)), were 17.0% (active) and 7.3% (sham) (p = .032, LOCF). VNS was well tolerated; 1% (3/235) left the study because of adverse events. This study did not yield definitive evidence of short-term efficacy for adjunctive VNS in treatment-resistant depression.

  3. Broadband diffuse terahertz wave scattering by flexible metasurface with randomized phase distribution. (United States)

    Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei


    Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.

  4. Combining double random phase encoding for color image watermarking in quaternion gyrator domain (United States)

    Shao, Zhuhong; Duan, Yuping; Coatrieux, Gouenou; Wu, Jiasong; Meng, Jinyu; Shu, Huazhong


    Quaternion representation of color image has attracted great attention due to its capability to treat holistically the three color channels. In a more general way, it has successfully been used in multi-channel signal processing applications over the past few decades. In this study, a joint encryption/watermarking system with more security based on double random phase encoding (DRPE) in quaternion gyrator transform domain is addressed. In the proposed scheme, an RGB-scale watermark image together with a grayscale watermark image or not is encoded into a quaternion matrix and encrypted through the DRPE, the encrypted data is then fused into the middle coefficients of the quaternion gyrator-transformed host image. In the process of extracting watermarks, it is impossible to retrieve them without authorized keys. Compared with the three channels independently processing approach implemented in fractional Fourier domain, the proposed algorithm achieves lower complexity by reason of avoiding repetitive operations. Experimental results have demonstrated the feasibility of the proposed algorithm and its superior performance in terms of noise robustness.

  5. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)


    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  6. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao


    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  7. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis

    DEFF Research Database (Denmark)

    Vollmer, T L; Sorensen, P S; Selmaj, K


    using EDSS was -31 % [hazard ratio (HR) 0.69, p = 0.063], and using Multiple Sclerosis Functional Composite (MSFC) z-score was -77 % (p = 0.150), vs. placebo. IFNβ-1a reduced ARR 26 % (RR = 0.74, 95 % CI 0.60-0.92, p = 0.007), showed no effect on PBVC loss (+11 %, p = 0.14), and changes in disability......The phase III placebo-controlled BRAVO study assessed laquinimod effects in patients with relapsing-remitting MS (RRMS), and descriptively compared laquinimod with interferon beta (IFNβ)-1a (Avonex(®) reference arm). RRMS patients age 18-55 years with Expanded Disability Status Scale (EDSS) scores...... months. The primary endpoint was annualized relapse rate (ARR); secondary endpoints included percent brain volume change (PBVC) and 3-month confirmed disability worsening. In all, 1,331 patients were randomized: laquinimod (n = 434), placebo (n = 450), and IFNβ-1a (n = 447). ARR was not significantly...

  8. Biometrics based key management of double random phase encoding scheme using error control codes (United States)

    Saini, Nirmala; Sinha, Aloka


    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  9. Innovative measurement of parallelism for parallel transparent plate based on optical scanning holography by using a random-phase pupil. (United States)

    Luo-Zhi, Zhang; Jian-Ping, Hu; Dao-Ming, Wan; Xing, Zeng; Chun-Miao, Li; Xin, Zhou


    A potential method is proposed to measure the parallelism of parallel transparent plate with an advanced lower limit and a convenient process by optical scanning holography (OSH) using a random-phase pupil, which is largely distinct from traditional methods. As a new possible application of OSH, this promising method is demonstrated theoretically and numerical simulations are carried out on a 2  cm×2  cm parallel plate. Discussions are also made on the quality of reconstructed image as well as local mean square error (MSE), which are closely related with the parallelism of sample. These amounts may become the judgments of parallelism, while in most interference methods judgments are paces between two interference fringes. In addition, randomness of random-phase pupil also affects the quality of reconstructed image and local MSE. According to the simulation results, high parallelism usually brings about distinguishable reconstructed information and suppressed local MSE.

  10. Estimating Random Regret Minimization models in the route choice context

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo

    The discrete choice paradigm of random regret minimization (RRM) has been recently proposed in several choice contexts. In the route choice context, the paradigm has been used to model the choice among three routes, to define regret-based equilibrium in risky conditions, and to formulate regret......-based stochastic user equilibrium. However, in the same context the RRM literature has not confronted three major challenges: (i) accounting for similarity across alternative routes, (ii) analyzing choice set composition effects on choice probabilities, and (iii) comparing the RRM model with advanced RUM...... counterparts. This paper looks into RRM-based route choice models from these three perspectives by (i) proposing utility-based and regret-based correction terms to account for similarity across alternatives, (ii) analyzing the variation of choice set probabilities with the choice set composition, and (iii...

  11. Super Yang-Mills theory as a random matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, W. [Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840 (United States)


    We generalize the Gervais-Neveu gauge to four-dimensional {ital N}=1 superspace. The model describes an {ital N}=2 super Yang-Mills theory. All chiral superfields ({ital N}=2 matter and ghost multiplets) exactly cancel to all loops. The remaining Hermitian scalar superfield (matrix) has a renormalizable massive propagator and simplified vertices. These properties are associated with {ital N}=1 supergraphs describing a superstring theory on a random lattice world sheet. We also consider all possible finite matrix models, and find they have a universal large-color limit. These could describe gravitational strings if the matrix-model coupling is fixed to unity, for exact electric-magnetic self-duality.

  12. Exponential random graph models for networks with community structure. (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian


    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  13. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States); Theory Department, TRIUMF,4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Profumo, Stefano; Stefaniak, Tim [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States)


    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  14. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim, E-mail:, E-mail:, E-mail: [Department of Physics, University of California Santa Cruz, 1156 High St, Santa Cruz, CA 95064 (United States)


    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  15. Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase

    CERN Document Server

    Neumann, Rebecca; Ippisch, Olaf


    Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...

  16. Phase-Field Surface Tension Modeling for Two-Phase Navier-Stokes Flow (United States)

    Jacqmin, David


    The phase-field method applied to the multiphase Navier-Stokes equations provides a continuum-surface-tension model that is energetically and, with care, thermodynamically consistent. The phase-field Navier-Stokes equations are the Navier-Stokes equations with continuum-surface-tension forcing derived from the phase-field free energy plus the advective Cahn-Hilliard equation for describing phase convection. This equation system appears to have O(ɛ) convergence to the true multiphase Navier-Stokes equations (ɛ is interface thickness). The talk will discuss the numerical implementation of the equations with special attention paid to convergence of numerical methods in the double limit ɛ arrow 0, h arrow 0. Results will be shown for contact line flow, for interface breakup and coalescence, and for film flow and coating flow instabilities and behavior.

  17. A multi-scale strength model with phase transformation (United States)

    Barton, N.; Arsenlis, A.; Rhee, M.; Marian, J.; Bernier, J.; Tang, M.; Yang, L.


    We present a multi-scale strength model that includes phase transformation. In each phase, strength depends on pressure, strain rate, temperature, and evolving dislocation density descriptors. A donor cell type of approach is used for the transfer of dislocation density between phases. While the shear modulus can be modeled as smooth through the BCC to rhombohedral transformation in vanadium, the multi-phase strength model predicts abrupt changes in the material strength due to changes in dislocation kinetics. In the rhombohedral phase, the dislocation density is decomposed into populations associated with short and long Burgers vectors. Strength model construction employs an information passing paradigm to span from the atomistic level to the continuum level. Simulation methods in the overall hierarchy include density functional theory, molecular statics, molecular dynamics, dislocation dynamics, and continuum based approaches. We demonstrate the behavior of the model through simulations of Rayleigh Taylor instability growth experiments of the type used to assess material strength at high pressure and strain rate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-ABS-464695).

  18. Modelling Phase Change in a 3D Thermal Transient Analysis


    Haque, EEU; Hampson, PR


    A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) s...

  19. : The origins of the random walk model in financial theory


    Walter, Christian


    Ce texte constitue le chapitre 2 de l'ouvrage Le modèle de marche au hasard en finance, de Christian Walter, à paraître chez Economica, collection " Audit, assurance, actuariat ", en juin 2013. Il est publié ici avec l'accord de l'éditeur.; Three main concerns pave the way for the birth of the random walk model in financial theory: an ethical issue with Jules Regnault (1834-1894), a scientific issue with Louis Bachelier (1870-1946) and a pratical issue with Alfred Cowles (1891-1984). Three to...

  20. Hyperbaric oxygen brain injury treatment (HOBIT) trial: a multifactor design with response adaptive randomization and longitudinal modeling. (United States)

    Gajewski, Byron J; Berry, Scott M; Barsan, William G; Silbergleit, Robert; Meurer, William J; Martin, Renee; Rockswold, Gaylan L


    The goals of phase II clinical trials are to gain important information about the performance of novel treatments and decide whether to conduct a larger phase III trial. This can be complicated in cases when the phase II trial objective is to identify a novel treatment having several factors. Such multifactor treatment scenarios can be explored using fixed sample size trials. However, the alternative design could be response adaptive randomization with interim analyses and additionally, longitudinal modeling whereby more data could be used in the estimation process. This combined approach allows a quicker and more responsive adaptation to early estimates of later endpoints. Such alternative clinical trial designs are potentially more powerful, faster, and smaller than fixed randomized designs. Such designs are particularly challenging, however, because phase II trials tend to be smaller than subsequent confirmatory phase III trials. The phase II trial may need to explore a large number of treatment variations to ensure that the efficacy of optimal clinical conditions is not overlooked. Adaptive trial designs need to be carefully evaluated to understand how they will perform and to take full advantage of their potential benefits. This manuscript discusses a Bayesian response adaptive randomization design with a longitudinal model that uses a multifactor approach for predicting phase III study success via the phase II data. The approach is based on an actual clinical trial design for the hyperbaric oxygen brain injury treatment trial. Specific details of the thought process and the models informing the trial design are provided. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Rigorously testing multialternative decision field theory against random utility models. (United States)

    Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg


    Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes (United States)

    Alonso, Juan J.; Allés, B.


    Using tempered Monte Carlo simulations, we study the the spin-glass phase of dense packings of Ising dipoles pointing along random axes. We consider systems of dipoles (i) placed on the sites of a simple cubic lattice with lattice constant d, and (ii) placed at the center of random close packed spheres of diameter d that occupy 64% of the volume. For both cases, we find a spin-glass phase below a certain temperature T sg. By analysing the data obtained for the overlap parameter, the associated correlation length, as well as the statistics of the overlap distributions of individual samples, we find a behavior consistent with quasi-long-range order in the spin-glass phase, similar to the one previously found in strongly diluted dipolar systems.

  3. Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes. (United States)

    Alonso, Juan J; Allés, B


    Using tempered Monte Carlo simulations, we study the the spin-glass phase of dense packings of Ising dipoles pointing along random axes. We consider systems of dipoles (i) placed on the sites of a simple cubic lattice with lattice constant d, and (ii) placed at the center of random close packed spheres of diameter d that occupy 64% of the volume. For both cases, we find a spin-glass phase below a certain temperature T sg. By analysing the data obtained for the overlap parameter, the associated correlation length, as well as the statistics of the overlap distributions of individual samples, we find a behavior consistent with quasi-long-range order in the spin-glass phase, similar to the one previously found in strongly diluted dipolar systems.

  4. A note on modeling vehicle accident frequencies with random-parameters count models. (United States)

    Anastasopoulos, Panagiotis Ch; Mannering, Fred L


    In recent years there have been numerous studies that have sought to understand the factors that determine the frequency of accidents on roadway segments over some period of time, using count data models and their variants (negative binomial and zero-inflated models). This study seeks to explore the use of random-parameters count models as another methodological alternative in analyzing accident frequencies. The empirical results show that random-parameters count models have the potential to provide a fuller understanding of the factors determining accident frequencies.

  5. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben


    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  6. The Application of Phase Type Distributions for Modelling Queuing Systems

    Directory of Open Access Journals (Sweden)



    Full Text Available Queuing models are important tools for studying the performance of complex systems, but despite the substantial queuing theory literature, it is often necessary to use approximations in the case the system is nonmarkovian. Phase type distribution is by now indispensable tool in creation of queuing system models. The purpose of this paper is to suggest a method and software for evaluating queuing approximations. A numerical queuing model with priorities is used to explore the behaviour of exponential phase-type approximation of service-time distribution. The performance of queuing systems described in the event language is used for generating the set of states and transition matrix between them. Two examples of numerical models are presented – a queuing system model with priorities and a queuing system model with quality control.

  7. Investigations of a Two-Phase Fluid Model

    CERN Document Server

    Nadiga, B T


    We study an interface-capturing two-phase fluid model in which the interfacial tension is modelled as a volumetric stress. Since these stresses are obtainable from a Van der Waals-Cahn-Hilliard free energy, the model is, to a certain degree, thermodynamically realistic. Thermal fluctuations are not considered presently for reasons of simplicity. The utility of the model lies in its momentum-conservative representation of surface tension and the simplicity of its numerical implementation resulting from the volumetric modelling of the interfacial dynamics. After validation of the model in two spatial dimensions, two prototypical applications---instability of an initially high-Reynolds-number liquid jet in the gaseous phase and spinodal decomposition in a liquid-gas system--- are presented.

  8. Safety and Activity of UR-1505 in Atopic Dermatitis: A Randomized, Double-blind Phase II Exploratory Trial. (United States)

    Vives, Roser; Pontes, Caridad; Sarasa, Maria; Millier, Aurelie


    UR-1505 is a new small molecule with immune modulator properties intended for the topical treatment of inflammatory skin diseases that has shown anti-inflammatory effects in models of skin inflammation. We compared the activity of UR-1505 ointment against its vehicle in the treatment of atopic dermatitis. Secondary objectives included exploring dose response, safety, and local tolerability of UR-1505. Patients with AD lesions on 2 symmetrical topographic areas (arms, leg, or trunk) were included in this unicenter randomized, double-blind, within-patient, controlled Phase II exploratory trial and received simultaneously 2 different treatments (0.5%, 1%, or 2% UR-1505 and vehicle or 0.1% tacrolimus ointment) once daily during 28 days. The primary efficacy end point was the change from baseline in the Investigator Global Assessment score at Day 28. Secondary end points were percentage of area clearance, local Eczema Area Severity Index (local EASI), and local tolerability. A linear mixed model was used, fitting treatment, body side, and group (treatment at the contralateral side) as fixed factors and the patient as a random effect. Twenty-eight patients were randomized and 25 patients were included in the per protocol analysis, with 50 evaluable lesions (n = 13 for vehicle, n = 8 for UR-1505 0.5%, n = 9 for 1% UR-1505, n=8 for 2% UR-1505, and n=12 for tacrolimus). The mean Investigator Global Assessment score change from baseline at Day 28 was -1.7 for vehicle, -1.0, -1.2, and -1.5 for 0.5%, 1%, and 2% UR-1505, respectively, and -2.6% for tacrolimus (P = 0.002). No serious nor causal adverse reactions were reported in this study, but patients reported numerous local symptoms after product applications, especially itching, tingling, tightness, and heat/burning sensations at frequencies that were similar for vehicle, 1% UR-1505, and 2% UR-1505; more frequent with 0.5% UR-1505; and lowest for tacrolimus. This study found that UR-1505 may not be a suitable option for the

  9. Numerical model of a three-phase Busbar Trunking System


    Delgado San Román, Fernando; Renedo Estébanez, Carlos Javier; Ortiz Fernández, Alfredo; Fernández Diego, Inmaculada


    The thermal behavior of an industrial Low Voltage non-segregated three-phase busduct is analyzed by means of the comparison of a 3D numerical model with experimental results. This model has been carried out using COMSOL Multiphysics, software based on finite element method. The numerical model replicates the short-circuit test, using the same geometry configuration and the boundary conditions of the laboratory in which this assay is carried out. The standard IEC 61439 is applied, both in test...

  10. Phase transition of p-adic Ising λ-model

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Mutlay; Akın, Hasan [Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, TR27260 (Turkey); Mukhamedov, Farrukh [Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia P.O. Box, 141, 25710, Kuantan Pahang (Malaysia)


    We consider an interaction of the nearest-neighbors and next nearest-neighbors for the mixed type p-adic λ-model with spin values (−1, +1) on a Cayley tree of order two. In the previous work we have proved the existence of the p-adic Gibbs measure for the model. In this work we have proved the existence of the phase transition occurs for the model.

  11. Model dependence of peripheral NN phase parameters at medium energy (United States)

    Kloet, W. M.; Tjon, J. A.


    The model dependence of high L partial waves in nucleon-nucleon scattering for Tlab=400-1000 MeV is studied. Unlike at low energy, model predictions are not unique. This is due to the delta isobar, which plays a major role in determining high L inelasticities as well as real phase shifts. The differences between various model predictions are mainly due to the use of different delta propagators and delta vertex functions.

  12. Model dependence of peripheral NN phase parameters at medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Kloet, W.M.; Tjon, J.A.


    The model dependence of high L partial waves in nucleon-nucleon scattering for T/sub lab/ = 400--1000 MeV is studied. Unlike at low energy, model predictions are not unique. This is due to the delta isobar, which plays a major role in determining high L inelasticities as well as real phase shifts. The differences between various model predictions are mainly due to the use of different delta propagators and delta vertex functions.

  13. Genetic parameters for various random regression models to describe the weight data of pigs

    NARCIS (Netherlands)

    Huisman, A.E.; Veerkamp, R.F.; Arendonk, van J.A.M.


    Various random regression models have been advocated for the fitting of covariance structures. It was suggested that a spline model would fit better to weight data than a random regression model that utilizes orthogonal polynomials. The objective of this study was to investigate which kind of random

  14. Genetic parameters for different random regression models to describe weight data of pigs

    NARCIS (Netherlands)

    Huisman, A.E.; Veerkamp, R.F.; Arendonk, van J.A.M.


    Various random regression models have been advocated for the fitting of covariance structures. It was suggested that a spline model would fit better to weight data than a random regression model that utilizes orthogonal polynomials. The objective of this study was to investigate which kind of random

  15. RIM: A Random Item Mixture Model to Detect Differential Item Functioning (United States)

    Frederickx, Sofie; Tuerlinckx, Francis; De Boeck, Paul; Magis, David


    In this paper we present a new methodology for detecting differential item functioning (DIF). We introduce a DIF model, called the random item mixture (RIM), that is based on a Rasch model with random item difficulties (besides the common random person abilities). In addition, a mixture model is assumed for the item difficulties such that the…

  16. RIM: A random item mixture model to detect Differential Item Functioning

    NARCIS (Netherlands)

    Frederickx, S.; Tuerlinckx, T.; de Boeck, P.; Magis, D.


    In this paper we present a new methodology for detecting differential item functioning (DIF). We introduce a DIF model, called the random item mixture (RIM), that is based on a Rasch model with random item difficulties (besides the common random person abilities). In addition, a mixture model is

  17. Modeling melt convection in phase-field simulations of solidification

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, C.; Diepers, H.J.; Steinbach, I.; Karma, A.; Tong, X.


    A novel diffuse interface model is presented for the direct numerical simulation of microstructure evolution in solidification processes involving convection in the liquid phase. The solidification front is treated as a moving interface in the diffuse approximation as known from phase-field theories. The no-slip condition between the melt and the solid is realized via a drag resistivity in the diffuse interface region. The model is shown to accurately reproduce the usual sharp interface conditions in the limit of a thin diffuse interface region. A first test of the model is provided for flow through regular arrays of cylinders with a stationary interface. Then, two examples are presented that involve solid/liquid phase-change: (1) coarsening of a mush of a binary alloy, where both the interface curvature and the flow permeability evolve with time, and (2) dendritic growth in the presence of melt convection with particular emphasis on the operating point of the tip.

  18. A MATLAB GUI to study Ising model phase transition (United States)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  19. Gaussian random bridges and a geometric model for information equilibrium (United States)

    Mengütürk, Levent Ali


    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  20. Trunk Exercises Improve Gait Symmetry in Parkinson Disease: A Blind Phase II Randomized Controlled Trial. (United States)

    Hubble, Ryan P; Naughton, Geraldine; Silburn, Peter A; Cole, Michael H


    Deficits in step-to-step symmetry and trunk muscle activations have been linked to falls in Parkinson disease. Given such symptoms are poorly managed with anti-parkinsonian medications, alternate therapies are needed. This blind phase II randomized controlled trial sought to establish whether exercise can improve step-to-step symmetry in Parkinson disease. Twenty-four Parkinson disease patients with a falls history completed baseline assessments of symptom severity, balance confidence, mobility, and quality of life. Step-to-step symmetry was assessed by deriving harmonic ratios from three-dimensional accelerations collected for the head and trunk. Patients were randomly assigned to either 12 wks of exercise and falls prevention education or falls prevention education only. Both groups repeated the baseline tests 12 and 24 wks after the initial assessment. The Australian and New Zealand Clinical Trials Registry number is ACTRN12613001175763. At 12 wks, the exercise group had statistically significant and clinically relevant improvements in anterior-posterior step-to-step trunk symmetry. In contrast, the education group recorded statistically significant and clinically meaningful reductions in medial-lateral and vertical step-to-step trunk symmetry at 12 wks. Given that step-to-step symmetry improved for the exercise group and declined for the education group after intervention, active interventions seem more suited to increasing independence and quality of life for people with Parkinson disease. Complete the self-assessment activity and evaluation online at CME OBJECTIVES: Upon completion of this article, the reader should be able to do the following: (1) Describe the effect deficits in trunk muscle function have on gait in individuals with Parkinson disease; (2) Identify the benefits of targeted trunk exercises on step-to-step symmetry; and (3) Discuss the benefits of improving step-to-step symmetry in individuals with Parkinson

  1. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. (United States)

    Chen, Andrew C; Martin, Andrew J; Choy, Bonita; Fernández-Peñas, Pablo; Dalziell, Robyn A; McKenzie, Catriona A; Scolyer, Richard A; Dhillon, Haryana M; Vardy, Janette L; Kricker, Anne; St George, Gayathri; Chinniah, Niranthari; Halliday, Gary M; Damian, Diona L


    Nonmelanoma skin cancers, such as basal-cell carcinoma and squamous-cell carcinoma, are common cancers that are caused principally by ultraviolet (UV) radiation. Nicotinamide (vitamin B3) has been shown to have protective effects against damage caused by UV radiation and to reduce the rate of new premalignant actinic keratoses. In this phase 3, double-blind, randomized, controlled trial, we randomly assigned, in a 1:1 ratio, 386 participants who had had at least two nonmelanoma skin cancers in the previous 5 years to receive 500 mg of nicotinamide twice daily or placebo for 12 months. Participants were evaluated by dermatologists at 3-month intervals for 18 months. The primary end point was the number of new nonmelanoma skin cancers (i.e., basal-cell carcinomas plus squamous-cell carcinomas) during the 12-month intervention period. Secondary end points included the number of new squamous-cell carcinomas and basal-cell carcinomas and the number of actinic keratoses during the 12-month intervention period, the number of nonmelanoma skin cancers in the 6-month postintervention period, and the safety of nicotinamide. At 12 months, the rate of new nonmelanoma skin cancers was lower by 23% (95% confidence interval [CI], 4 to 38) in the nicotinamide group than in the placebo group (P=0.02). Similar differences were found between the nicotinamide group and the placebo group with respect to new basal-cell carcinomas (20% [95% CI, -6 to 39] lower rate with nicotinamide, P=0.12) and new squamous-cell carcinomas (30% [95% CI, 0 to 51] lower rate, P=0.05). The number of actinic keratoses was 11% lower in the nicotinamide group than in the placebo group at 3 months (P=0.01), 14% lower at 6 months (Pnicotinamide was discontinued. Oral nicotinamide was safe and effective in reducing the rates of new nonmelanoma skin cancers and actinic keratoses in high-risk patients. (Funded by the National Health and Medical Research Council; ONTRAC Australian New Zealand Clinical Trials

  2. Modeling and analysis for general non-isothermal convective phase field systems


    Haas, Robert


    In this work general non-isothermal phase field models for multi-phase and multi-component systems are considered. The modelling of the free energy by Ginzburg-Landau functionals for multi-phase systems is considered and analyzed theoretically and numerically. Furthermore a general non-isothermal phase field model for convective systems with multiple components and phases has been derived. Finally for a isothermal multi-phase phase field model the existence of a solution is proved in...

  3. Auxiliary Parameter MCMC for Exponential Random Graph Models (United States)

    Byshkin, Maksym; Stivala, Alex; Mira, Antonietta; Krause, Rolf; Robins, Garry; Lomi, Alessandro


    Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the development of snowball sampling methods for ERGMs. We propose an auxiliary parameter Markov chain Monte Carlo (MCMC) algorithm for sampling from the relevant probability distributions. The method is designed to decrease the number of allowed network states without worsening the mixing of the Markov chains, and suggests a new approach for the developments of MCMC samplers for ERGMs. We demonstrate the method on both simulated and actual (empirical) network data and show that it reduces CPU time for parameter estimation by an order of magnitude compared to current MCMC methods.

  4. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction. (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza


    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Magnetic phase diagram and quantum phase transitions in a two-species boson model (United States)

    Belemuk, A. M.; Chtchelkatchev, N. M.; Mikheyenkov, A. V.; Kugel, K. I.


    We analyze the possible types of ordering in a boson-fermion model. The Hamiltonian is inherently related to the Bose-Hubbard model for vector two-species bosons in optical lattices. We show that such a model can be reduced to the Kugel-Khomskii type spin-pseudospin model, but in contrast to the usual version of the latter model, we are dealing here with the case of spin S =1 and pseudospin 1 /2 . We show that the interplay of spin and pseudospin degrees of freedom leads to a rather nontrivial magnetic phase diagram including the spin-nematic configurations. Tuning the spin-channel interaction parameter Us gives rise to quantum phase transitions. We find that the ground state of the system always has the pseudospin domain structure. On the other hand, the sign change of Us switches the spin arrangement of the ground state within domains from a ferro- to antiferromagnetic one. Finally, we revisit the spin (pseudospin)-1/2 Kugel-Khomskii model and see the inverse picture of phase transitions.

  6. Quantum Ising phases and transitions in transverse Ising models

    CERN Document Server

    Suzuki, Sei; Chakrabarti, Bikas K


    Quantum phase transitions, driven by quantum fluctuations, exhibit intriguing features offering the possibility of potentially new applications, e.g. in quantum information sciences. Major advances have been made in both theoretical and experimental investigations of the nature and behavior of quantum phases and transitions in cooperatively interacting many-body quantum systems. For modeling purposes, most of the current innovative and successful research in this field has been obtained by either directly or indirectly using the insights provided by quantum (or transverse field) Ising models because of the separability of the cooperative interaction from the tunable transverse field or tunneling term in the relevant Hamiltonian. Also, a number of condensed matter systems can be modeled accurately in this approach, hence granting the possibility to compare advanced models with actual experimental results. This work introduces these quantum Ising models and analyses them both theoretically and numerically in gr...

  7. A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii.

    Directory of Open Access Journals (Sweden)

    Clive R McMahon

    Full Text Available Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth rates often differ over an animal's lifetime a single curve may not accurately capture the growth. Broken-stick models constrained to pass through a common point have been proposed to describe the different growth phases, but these are often unsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single, converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinear function (SJ2P, tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanian pademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth--joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate that male pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wild pademelons for life history studies but given the high variability of the data used to parametrise the second growth phase of the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection of longitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth over the lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates from commonly used wildlife management practices to provide crucial insights into the demographic behaviour of animal populations.

  8. Bicomponent Block Copolymers Derived from One or More Random Copolymers as an Alternative Route to Controllable Phase Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, Arman R. [Corporate Research and Development, The Procter and Gamble Company, Cincinnati OH 45224 USA; Ryan, Justin J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27695 USA; Satkowski, Michael M. [Corporate Research and Development, The Procter and Gamble Company, Cincinnati OH 45224 USA; Lee, Byeongdu [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Smith, Steven D. [Corporate Research and Development, The Procter and Gamble Company, Cincinnati OH 45224 USA; Spontak, Richard J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27695 USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh NC 27695 USA


    Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms of the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.

  9. Using random boundary conditions to simulate disordered quantum spin models in two-dimensional systems (United States)

    Yuste, A.; Moreno-Cardoner, M.; Sanpera, A.


    Disordered quantum antiferromagnets in two-dimensional compounds have been a focus of interest in the last years due to their exotic properties. However, with very few exceptions, the ground states of the corresponding Hamiltonians are notoriously difficult to simulate making their characterization and detection very elusive, both theoretically and experimentally. Here we propose a method to signal quantum disordered antiferromagnets by doing exact diagonalization in small lattices using random boundary conditions and averaging the observables of interest over the different disorder realizations. We apply our method to study the Heisenberg spin-1/2 model in an anisotropic triangular lattice. In this model, the competition between frustration and quantum fluctuations might lead to some spin-liquid phases as predicted from different methods ranging from spin-wave mean-field theory to 2D-DMRG or PEPS. Our method accurately reproduces the ordered phases expected of the model and signals quantum disordered phases by the presence of a large number of quasidegenerate ground states together with an undefined local order parameter. The method presents a weak dependence on finite-size effects.

  10. Residual phase noise modeling of amplifiers using silicon bipolar transistors. (United States)

    Theodoropoulos, Konstantinos; Everard, Jeremy


    In this paper, we describe the modeling of residual 1/f phase noise for Si bipolar amplifiers operating in the linear region. We propose that for Si bipolar amplifiers, the 1/f phase noise is largely caused by the base emitter recombination flicker noise. The up-conversion mechanism is described through linear approximation of the phase variation of the amplifier phase response by the variation of the device parameters (C(b)c, C(be), g(m), r(e)) caused by the recombination 1/f noise. The amplifier phase response describes the device over the whole frequency range of operation for which the influence of the poles and zeros is investigated. It is found that for a common emitter amplifier it is sufficient to only incorporate the effect of the device poles to describe the phase noise behavior over most of its operational frequency range. Simulations predict the measurements of others, including the flattening of the PM noise at frequencies beyond f(3dB), not predicted by previous models.

  11. ATX-101 for reduction of submental fat: A phase III randomized controlled trial. (United States)

    Humphrey, Shannon; Sykes, Jonathan; Kantor, Jonathan; Bertucci, Vince; Walker, Patricia; Lee, Daniel R; Lizzul, Paul F; Gross, Todd M; Beddingfield, Frederick C


    ATX-101, an injectable form of deoxycholic acid, causes adipocytolysis when injected subcutaneously into fat. We sought to evaluate the efficacy and safety of ATX-101. In this phase III trial (REFINE-2), adults dissatisfied with their moderate or severe submental fat (SMF) were randomized to ATX-101 or placebo. Coprimary end points, evaluated at 12 weeks after last treatment, were composite improvements of 1 or more grades and 2 or more grades in SMF observed on both the validated Clinician- and Patient-Reported SMF Rating Scales. Other end points included magnetic resonance imaging-based assessment of submental volume, assessment of psychological impact of SMF, and additional patient-reported outcomes. Among those treated with ATX-101 or placebo (n = 258/treatment group), 66.5% versus 22.2%, respectively, achieved a composite improvement of 1 or more grades (Mantel-Haenszel risk ratio 2.98; 95% confidence interval 2.31-3.85) and 18.6% versus 3.0% achieved a composite improvement of 2 or more grades in SMF (Mantel-Haenszel risk ratio 6.27; 95% confidence interval 2.91-13.52; P ATX-101 were more likely to achieve submental volume reduction confirmed by magnetic resonance imaging, greater reduction in psychological impact of SMF, and satisfaction with treatment (P ATX-101 group and 76.9% in the placebo group were localized to the injection site. Follow-up was limited to 44 weeks. ATX-101 is an alternative treatment for SMF reduction. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Thermochemistry and Geometries for Transition-Metal Chemistry from the Random Phase Approximation. (United States)

    Waitt, Craig; Ferrara, Nashali M; Eshuis, Henk


    Performance of the random phase approximation (RPA) is tested for thermochemistry and geometries of transition-metal chemistry using various benchmarks obtained either computationally or experimentally. Comparison is made to popular (semi)local meta- and hybrid density functionals as well as to the second-order Møller-Plesset perturbation theory (MP2) and its spin-component-scaled derivatives. The benchmark sets include reaction energies, barrier heights, and dissociation energies of prototype bond-activation reactions, dissociation energies for a set of large transition-metal complexes, bond lengths and dissociation energies of metal hydride ions, and bond lengths and angles of a set of closed-shell first-row transition-metal complexes. The emphasis is on first-row transition-metal chemistry, though for energies, elements beyond the first-row are included. Attention is paid to the basis set convergence of RPA. For thermochemistry, RPA performs on par or better than the density functional theory (DFT) functionals presented and is significantly more accurate than MP2. The largest errors are observed in dissociation energies where the electronic environment is altered substantially. For structural parameters, very good results were obtained, and RPA meets the high quality of structures from DFT. In most cases, well-converged structures are obtained with basis sets of triple-zeta quality. MP2 optimized values can often not be obtained and are on average of inferior quality. Though chemical accuracy is not reached, the RPA method is a step forward toward a systematic, parameter-free, all-round method to describe transition-metal chemistry.

  13. Early Aqueous Suppressant Therapy on Hypertensive Phase Following Glaucoma Drainage Device Procedure: A Randomized Prospective Trial. (United States)

    Law, Simon K; Kornmann, Helen L; Giaconi, JoAnn A; Kwong, Allen; Tran, Eric; Caprioli, Joseph


    To prospectively evaluate the effect of early aqueous suppression (therapy) on hypertensive phase (HP) and intraocular pressure (IOP) control after implantation of silicone Ahmed glaucoma valve (AGV). Patients who underwent AGV implantation were randomized to initiate therapy (including β-blockers, α-agonists, or carbonic anhydrase inhibitors) when postoperative IOP>10 mm Hg (low-IOP initiation group) or >17 mm Hg (moderate-IOP initiation group). HP was defined as an IOP>21 mm Hg during the first 6 postoperative months, after an initial IOP reduction to measures included the occurrence of HP and IOP control. Fifty-two eyes (50 patients) underwent AGV implantation. Average follow-up was 21.9±10.7 months. HP was observed in 21 eyes (40.4%) with average peak IOP of 30±8 mm Hg, onset at 32±30 days, and duration of 15±32 days. One year postoperatively, those eyes with HP had higher IOP than eyes that did not develop HP (15.1±5.2, 11.4±4.3, respectively; P=0.021) and required more additional glaucoma surgeries (28.6%, 3.2%, respectively; P=0.013). The peak IOP at week 3 postoperatively in the low-IOP initiation group (26 eyes) was significantly lower than in the moderate-IOP initiation group (26 eyes; 15.7±3.6, 20.6±8.9, respectively; P=0.012). Eyes with therapy started after HP onset had significantly higher postoperative IOP from 2 to 4 months. Therapy initiated before the development of HP was not associated with a higher complication rate. Aqueous suppression initiated in the early postoperative period while IOPs were still in the low-teens and was able to reduce the incidence of IOP spike associated with the HP without an increased complication rate.

  14. Randomized phase 2 study of obinutuzumab monotherapy in symptomatic, previously untreated chronic lymphocytic leukemia. (United States)

    Byrd, John C; Flynn, Joseph M; Kipps, Thomas J; Boxer, Michael; Kolibaba, Kathryn S; Carlile, David J; Fingerle-Rowson, Guenter; Tyson, Nicola; Hirata, Jamie; Sharman, Jeff P


    Obinutuzumab is a glycoengineered, type 2 anti-CD20 humanized antibody with single-agent activity in relapsed chronic lymphocytic leukemia (CLL). With other CD20 antibodies, a dose-response relationship has been shown. We therefore performed a randomized phase 2 study in symptomatic, untreated CLL patients to evaluate if an obinutuzumab dose response exists. Obinutuzumab was given at a dose of 1000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 8 and day 15 of cycle 1; 1000 mg day 1 of cycles 2-8) or 2000 mg (100 mg IV day 1, 900 mg day 2, 1000 mg day 3, 2000 mg day 8 and day 15 of cycle 1; 2000 mg day 1 of cycles 2-8). The primary end point was overall response rate (ORR). Eighty patients were enrolled with similar demographics: median age 67 years, 41% high-risk Rai disease, and 10% del(17p)(13.1). ORR (67% vs 49%, P = .08) and complete response (CR) or CR with incomplete cytopenia response (20% vs 5%) favored 2000 mg obinutuzumab. Overall, therapy was well tolerated, and infusion events were manageable. This study demonstrates significant efficacy of obinutuzumab monotherapy, for 1000 mg as well as for 2000 mg, in untreated CLL patients with acceptable toxicity. Although exploratory, a dose-response relationship may exist, but its relevance to improving progression-free survival is uncertain and will require further follow-up. This trial was registered at as #NCT01414205. © 2016 by The American Society of Hematology.

  15. Nuclear pasta phases within the quark-meson coupling model (United States)

    Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.


    In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.

  16. Characterization of topological phases in models of interacting fermions

    Energy Technology Data Exchange (ETDEWEB)

    Motruk, Johannes


    The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z{sub N} charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z{sub N} symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i) the Hall conductivity, (ii) the spectral flow and level counting in the ES, (iii) the topological entanglement entropy, and (iv) the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI

  17. Dividing phases in two-phase flow and modeling of interfacial drag

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T.; Rajamaeki, M. [VTT Energy (Finland)


    Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.

  18. Joint modeling of ChIP-seq data via a Markov random field model

    NARCIS (Netherlands)

    Bao, Yanchun; Vinciotti, Veronica; Wit, Ernst; 't Hoen, Peter A C

    Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for

  19. Modeling Human Population Separation History Using Physically Phased Genomes. (United States)

    Song, Shiya; Sliwerska, Elzbieta; Emery, Sarah; Kidd, Jeffrey M


    Phased haplotype sequences are a key component in many population genetic analyses since variation in haplotypes reflects the action of recombination, selection, and changes in population size. In humans, haplotypes are typically estimated from unphased sequence or genotyping data using statistical models applied to large reference panels. To assess the importance of correct haplotype phase on population history inference, we performed fosmid pool sequencing and resolved phased haplotypes of five individuals from diverse African populations (including Yoruba, Esan, Gambia, Maasai, and Mende). We physically phased 98% of heterozygous SNPs into haplotype-resolved blocks, obtaining a block N50 of 1 Mbp. We combined these data with additional phased genomes from San, Mbuti, Gujarati, and Centre de'Etude du Polymorphism Humain European populations and analyzed population size and separation history using the pairwise sequentially Markovian coalescent and multiple sequentially Markovian coalescent models. We find that statistically phased haplotypes yield a more recent split-time estimation compared with experimentally phased haplotypes. To better interpret patterns of cross-population coalescence, we implemented an approximate Bayesian computation approach to estimate population split times and migration rates by fitting the distribution of coalescent times inferred between two haplotypes, one from each population, to a standard isolation-with-migration model. We inferred that the separation between hunter-gatherer populations and other populations happened ∼120-140 KYA, with gene flow continuing until 30-40 KYA; separation between west-African and out-of-African populations happened ∼70-80 KYA; while the separation between Maasai and out-of-African populations happened ∼50 KYA. Copyright © 2017 by the Genetics Society of America.

  20. Modeling Human Population Separation History Using Physically Phased Genomes (United States)

    Song, Shiya; Sliwerska, Elzbieta; Emery, Sarah; Kidd, Jeffrey M.


    Phased haplotype sequences are a key component in many population genetic analyses since variation in haplotypes reflects the action of recombination, selection, and changes in population size. In humans, haplotypes are typically estimated from unphased sequence or genotyping data using statistical models applied to large reference panels. To assess the importance of correct haplotype phase on population history inference, we performed fosmid pool sequencing and resolved phased haplotypes of five individuals from diverse African populations (including Yoruba, Esan, Gambia, Maasai, and Mende). We physically phased 98% of heterozygous SNPs into haplotype-resolved blocks, obtaining a block N50 of 1 Mbp. We combined these data with additional phased genomes from San, Mbuti, Gujarati, and Centre de’Etude du Polymorphism Humain European populations and analyzed population size and separation history using the pairwise sequentially Markovian coalescent and multiple sequentially Markovian coalescent models. We find that statistically phased haplotypes yield a more recent split-time estimation compared with experimentally phased haplotypes. To better interpret patterns of cross-population coalescence, we implemented an approximate Bayesian computation approach to estimate population split times and migration rates by fitting the distribution of coalescent times inferred between two haplotypes, one from each population, to a standard isolation-with-migration model. We inferred that the separation between hunter-gatherer populations and other populations happened ∼120–140 KYA, with gene flow continuing until 30–40 KYA; separation between west-African and out-of-African populations happened ∼70–80 KYA; while the separation between Maasai and out-of-African populations happened ∼50 KYA. PMID:28049708

  1. Thermal phase transition in a QCD-like holographic model (United States)

    Evans, Nick; Threlfall, Ed


    We investigate the high-temperature phase of a dilaton flow deformation of the anti-de Sitter/conformal field theory correspondence. We argue that these geometries should be interpreted as the N=4 gauge theory perturbed by a SO(6) invariant scalar mass and that the high-temperature phase is just the well-known anti-de Sitter-Schwarzschild solution. We compute, within supergravity, the resulting Hawking-Page phase transition, which in this model can be interpreted as a deconfining transition in which the vacuum expectation value for the operator TrF2 dissolves. In the presence of quarks the model also displays a simultaneous chiral symmetry restoring transition with the Goldstone mode and other quark bound states dissolving into the thermal bath.

  2. Quantitative phase-field modeling for wetting phenomena. (United States)

    Badillo, Arnoldo


    A new phase-field model is developed for studying partial wetting. The introduction of a third phase representing a solid wall allows for the derivation of a new surface tension force that accounts for energy changes at the contact line. In contrast to other multi-phase-field formulations, the present model does not need the introduction of surface energies for the fluid-wall interactions. Instead, all wetting properties are included in a unique parameter known as the equilibrium contact angle θeq. The model requires the solution of a single elliptic phase-field equation, which, coupled to conservation laws for mass and linear momentum, admits the existence of steady and unsteady compact solutions (compactons). The representation of the wall by an additional phase field allows for the study of wetting phenomena on flat, rough, or patterned surfaces in a straightforward manner. The model contains only two free parameters, a measure of interface thickness W and β, which is used in the definition of the mixture viscosity μ=μlϕl+μvϕv+βμlϕw. The former controls the convergence towards the sharp interface limit and the latter the energy dissipation at the contact line. Simulations on rough surfaces show that by taking values for β higher than 1, the model can reproduce, on average, the effects of pinning events of the contact line during its dynamic motion. The model is able to capture, in good agreement with experimental observations, many physical phenomena fundamental to wetting science, such as the wetting transition on micro-structured surfaces and droplet dynamics on solid substrates.

  3. Network Inoculation: Heteroclinics and phase transitions in an epidemic model

    CERN Document Server

    Yang, Hui; Gross, Thilo


    In epidemiological modelling, dynamics on networks, and in particular adaptive and heterogeneous networks have recently received much interest. Here we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description one of these corresponds to a local bifurcation whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region exposure of the system to a pathogen will lead to an outbreak that collapses, but leaves the network in a configuration wher...

  4. Energy-dissipation-model for metallurgical multi-phase-systems

    Energy Technology Data Exchange (ETDEWEB)

    Mavrommatis, K.T. [Rheinisch-Westfaelische Technische Hochschule Aachen, Aachen (Germany)


    Entropy production in real processes is directly associated with the dissipation of energy. Both are potential measures for the proceed of irreversible processes taking place in metallurgical systems. Many of these processes in multi-phase-systems could then be modelled on the basis of the energy-dissipation associated with. As this entity can often be estimated using very simple assumptions from first principles, the evolution of an overall measure of systems behaviour can be studied constructing an energy-dissipation -based model of the system. In this work a formulation of this concept, the Energy-Dissipation-Model (EDM), for metallurgical multi-phase-systems is given. Special examples are studied to illustrate the concept, and benefits as well as the range of validity are shown. This concept might be understood as complement to usual CFD-modelling of complex systems on a more abstract level but reproducing essential attributes of complex metallurgical systems. (author)

  5. Hedonic travel cost and random utility models of recreation

    Energy Technology Data Exchange (ETDEWEB)

    Pendleton, L. [Univ. of Southern California, Los Angeles, CA (United States); Mendelsohn, R.; Davis, E.W. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies


    Micro-economic theory began as an attempt to describe, predict and value the demand and supply of consumption goods. Quality was largely ignored at first, but economists have started to address quality within the theory of demand and specifically the question of site quality, which is an important component of land management. This paper demonstrates that hedonic and random utility models emanate from the same utility theoretical foundation, although they make different estimation assumptions. Using a theoretically consistent comparison, both approaches are applied to examine the quality of wilderness areas in the Southeastern US. Data were collected on 4778 visits to 46 trails in 20 different forest areas near the Smoky Mountains. Visitor data came from permits and an independent survey. The authors limited the data set to visitors from within 300 miles of the North Carolina and Tennessee border in order to focus the analysis on single purpose trips. When consistently applied, both models lead to results with similar signs but different magnitudes. Because the two models are equally valid, recreation studies should continue to use both models to value site quality. Further, practitioners should be careful not to make simplifying a priori assumptions which limit the effectiveness of both techniques.

  6. Research on three-phase traffic flow modeling based on interaction range (United States)

    Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting


    On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.

  7. Detailed behavioral modeling of bang-bang phase detectors

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Andreani, Pietro; Keil, U. D.


    In this paper, the metastability of current-mode logic (CML) latches and flip-flops is studied in detail. Based on the results of this analysis, a behavioral model of bang-bang phase detectors (BBPDs) is proposed, which is able to reliably capture the critical deadzone effect. The impact of jitter...

  8. Quantitative phase-field model of alloy solidification (United States)

    Echebarria, Blas; Folch, Roger; Karma, Alain; Plapp, Mathis


    We present a detailed derivation and thin interface analysis of a phase-field model that can accurately simulate microstructural pattern formation for low-speed directional solidification of a dilute binary alloy. This advance with respect to previous phase-field models is achieved by the addition of a phenomenological “antitrapping” solute current in the mass conservation relation [A. Karma, Phys. Rev. Lett. 87, 115701 (2001)]. This antitrapping current counterbalances the physical, albeit artificially large, solute trapping effect generated when a mesoscopic interface thickness is used to simulate the interface evolution on experimental length and time scales. Furthermore, it provides additional freedom in the model to suppress other spurious effects that scale with this thickness when the diffusivity is unequal in solid and liquid [R. F. Almgren, SIAM J. Appl. Math. 59, 2086 (1999)], which include surface diffusion and a curvature correction to the Stefan condition. This freedom can also be exploited to make the kinetic undercooling of the interface arbitrarily small even for mesoscopic values of both the interface thickness and the phase-field relaxation time, as for the solidification of pure melts [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The performance of the model is demonstrated by calculating accurately within a phase-field approach the Mullins-Sekerka stability spectrum of a planar interface and nonlinear cellular shapes for realistic alloy parameters and growth conditions.

  9. Modelling two-phase transport of 3H/3He

    NARCIS (Netherlands)

    Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.


    Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by

  10. Building a Virtual Model of a Baleen Whale: Phase 2 (United States)


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Building a virtual model of a baleen whale: Phase 2 Dr...display or manipulate the entire volume in real time. Throughout the entire body of the whale, each individual scan section contains pixels that are 0.6

  11. Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...

    African Journals Online (AJOL)

    The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...

  12. Open Business Models (Latin America) - Phase I | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Open Business Models (Latin America) - Phase I. The Centro de Tecnologia e Sociedade (CTS - Center for Technology and Society) is part of the Fundação Getulio Vargas Law School in Rio de Janeiro and is the only institution in Brazil that specifically deals with the interplay of law, technology and society. The CTS is ...

  13. Phase transition in the Sznajd model with independence (United States)

    Sznajd-Weron, K.; Tabiszewski, M.; Timpanaro, A. M.


    We propose a model of opinion dynamics which describes two major types of social influence —conformity and independence. Conformity in our model is described by the so-called outflow dynamics (known as Sznajd model). According to sociologists' suggestions, we introduce also a second type of social influence, known in social psychology as independence. Various social experiments have shown that the level of conformity depends on the society. We introduce this level as a parameter of the model and show that there is a continuous phase transition between conformity and independence.

  14. Phase transition in the Sznajd model with independence

    CERN Document Server

    Sznajd-Weron, K; Timpanaro, A M


    We propose a model of opinion dynamics which describes two major types of social influence -- conformity and independence. Conformity in our model is described by the so called outflow dynamics (known as Sznajd model). According to sociologists' suggestions, we introduce also a second type of social influence, known in social psychology as independence. Various social experiments have shown that the level of conformity depends on the society. We introduce this level as a parameter of the model and show that there is a continuous phase transition between conformity and independence.

  15. Hybrid random walk-linear discriminant analysis method for unwrapping quantitative phase microscopy images of biological samples (United States)

    Kim, Diane N. H.; Teitell, Michael A.; Reed, Jason; Zangle, Thomas A.


    Standard algorithms for phase unwrapping often fail for interferometric quantitative phase imaging (QPI) of biological samples due to the variable morphology of these samples and the requirement to image at low light intensities to avoid phototoxicity. We describe a new algorithm combining random walk-based image segmentation with linear discriminant analysis (LDA)-based feature detection, using assumptions about the morphology of biological samples to account for phase ambiguities when standard methods have failed. We present three versions of our method: first, a method for LDA image segmentation based on a manually compiled training dataset; second, a method using a random walker (RW) algorithm informed by the assumed properties of a biological phase image; and third, an algorithm which combines LDA-based edge detection with an efficient RW algorithm. We show that the combination of LDA plus the RW algorithm gives the best overall performance with little speed penalty compared to LDA alone, and that this algorithm can be further optimized using a genetic algorithm to yield superior performance for phase unwrapping of QPI data from biological samples.

  16. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial. (United States)

    Nachum, Zohar; Garmi, Gali; Kadan, Yfat; Zafran, Noah; Shalev, Eliezer; Salim, Raed


    A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1), oxytocin (group 2) or both (group 3). A group of women who progressed spontaneously without intervention composed the control group (group 4). The primary outcome was the duration of time from initiation of augmentation until delivery. A total of 213 women were consented and randomized to group 1 (70 women), group 2 (72 women) and group 3 (71 women). Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08) and 180 minutes compared to group 2 and 4 (p = 0.001). Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03), group 2 (p = 0.001) and group 4 (p = 0.001). Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  17. Modelling the dissolution of non-aqueous phase liquid blobs in sphere packings. (United States)

    Dalla, Elisa; Hilpert, Markus; Miller, Casey; Pitea, Demetrio


    Pore-scale modelling is appealing for investigating and obtaining macroscale constitutive equations for multiphase porous medium systems, because this approach bridges the macroscopic and microscopic scales. In this study, we develop a method to simulate and study the dissolution of non-aqueous phase liquid (NAPL) blobs; accurately quantifying NAPL mass transfer is crucial for modelling decontamination studies faithfully. We simulate a random packing of spheres and a residual NAPL distribution by matching macroscopic morphological descriptors of an experimental NAPL distribution; then we simulate single-phase flow by using a lattice-Boltzmann approach. Finally we numerically solve the advection-diffusion equation in the pore space to simulate mass transfer and transport of the dissolved components. Based upon different simulation results, we evaluate the sensitivity of the mass transfer coefficient with respect to two non-dimensional parameters and compare the simulation results to existing empirical relationships.

  18. Parallel phase model : a programming model for high-end parallel machines with manycores.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junfeng (Syracuse University, Syracuse, NY); Wen, Zhaofang; Heroux, Michael Allen; Brightwell, Ronald Brian


    This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.

  19. Model-based magnetization retrieval from holographic phase images

    Energy Technology Data Exchange (ETDEWEB)

    Röder, Falk, E-mail: [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)


    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.

  20. Random field Ising model swept by propagating magnetic field wave: Athermal nonequilibrium phasediagram (United States)

    Acharyya, Muktish


    The dynamical steady state behaviour of the random field Ising ferromagnet swept by a propagating magnetic field wave is studied at zero temperature by Monte Carlo simulation in two dimensions. The distribution of the random field is bimodal type. For a fixed set of values of the frequency, wavelength and amplitude of propagating magnetic field wave and the strength of the random field, four distinct dynamical steady states or nonequilibrium phases were identified. These four nonequilibrium phases are characterised by different values of structure factors. State or phase of first kind, where all spins are parallel (up). This phase is a frozen or pinned where the propagating field has no effect. The second one is the propagating type, where the sharp strips formed by parallel spins are found to move coherently. The third one is also propagating type, where the boundary of the strips of spins is not very sharp. The fourth kind shows no propagation of strips of magnetic spins, forming a homogeneous distribution of up and down spins. This is disordered phase. The existence of these four dynamical phases or modes depends on the value of the amplitude of propagating magnetic field wave and the strength of random (static) field. A phase diagram has also been drawn, in the plane formed by the amplitude of propagating field and the strength of random field. It is also checked that the existence of these dynamical phases is neither a finite size effect nor a transient phenomenon.

  1. Droplet localization in the random XXZ model and its manifestations (United States)

    Elgart, A.; Klein, A.; Stolz, G.


    We examine many-body localization properties for the eigenstates that lie in the droplet sector of the random-field spin- \\frac 1 2 XXZ chain. These states satisfy a basic single cluster localization property (SCLP), derived in Elgart et al (2018 J. Funct. Anal. (in press)). This leads to many consequences, including dynamical exponential clustering, non-spreading of information under the time evolution, and a zero velocity Lieb–Robinson bound. Since SCLP is only applicable to the droplet sector, our definitions and proofs do not rely on knowledge of the spectral and dynamical characteristics of the model outside this regime. Rather, to allow for a possible mobility transition, we adapt the notion of restricting the Hamiltonian to an energy window from the single particle setting to the many body context.

  2. [Critical of the additive model of the randomized controlled trial]. (United States)

    Boussageon, Rémy; Gueyffier, François; Bejan-Angoulvant, Theodora; Felden-Dominiak, Géraldine


    Randomized, double-blind, placebo-controlled clinical trials are currently the best way to demonstrate the clinical effectiveness of drugs. Its methodology relies on the method of difference (John Stuart Mill), through which the observed difference between two groups (drug vs placebo) can be attributed to the pharmacological effect of the drug being tested. However, this additive model can be questioned in the event of statistical interactions between the pharmacological and the placebo effects. Evidence in different domains has shown that the placebo effect can influence the effect of the active principle. This article evaluates the methodological, clinical and epistemological consequences of this phenomenon. Topics treated include extrapolating results, accounting for heterogeneous results, demonstrating the existence of several factors in the placebo effect, the necessity to take these factors into account for given symptoms or pathologies, as well as the problem of the "specific" effect.

  3. Random field Ising model and community structure in complex networks (United States)

    Son, S.-W.; Jeong, H.; Noh, J. D.


    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  4. Method of model reduction and multifidelity models for solute transport in random layered porous media (United States)

    Xu, Zhijie; Tartakovsky, Alexandre M.


    This work presents a method of model reduction that leads to models with three solutions of increasing fidelity (multifidelity models) for solute transport in a bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the reduced model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. In contrast to the linear scaling with the correlation length and the mean velocity from macrodispersion theory, our model predicts a nonlinear and a quadratic dependence of the effective dispersion on the correlation length and the mean velocity, respectively. We observe that velocity fluctuations enhance dispersion in a nonmonotonic fashion (a stochastic spike phenomenon): The dispersion initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity (correlation). Maximum enhancement in dispersion can be obtained at a correlation length about 0.25 the size of the porous media perpendicular to flow. This information can be useful for engineering such random layered porous media. Numerical simulations are implemented to compare solutions with varying fidelity.

  5. Random graph theory and neuropercolation for modeling brain oscillations at criticality. (United States)

    Kozma, Robert; Puljic, Marko


    Mathematical approaches are reviewed to interpret intermittent singular space-time dynamics observed in brain imaging experiments. The following aspects of brain dynamics are considered: nonlinear dynamics (chaos), phase transitions, and criticality. Probabilistic cellular automata and random graph models are described, which develop equations for the probability distributions of macroscopic state variables as an alternative to differential equations. The introduced modular neuropercolation model is motivated by the multilayer structure and dynamical properties of the cortex, and it describes critical brain oscillations, including background activity, narrow-band oscillations in excitatory-inhibitory populations, and broadband oscillations in the cortex. Input-induced and spontaneous transitions between states with large-scale synchrony and without synchrony exhibit brief episodes with long-range spatial correlations as observed in experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis


    Constantinescu, Cris S.; Asher, Aliya; Fryze, Waldemar; Kozubski, Wojciech; Wagner, Frank; Aram, Jehan; Tanasescu, Radu; Korolkiewicz, Roman P.; Dirnberger-Hertweck, Maren; Steidl, Stefan; Libretto, Susan E.; Sprenger, Till; Radue, Ernst W.


    Objectives: To determine the safety, pharmacokinetics (PK), and immunogenicity of the recombinant human monoclonal antibody MOR103 to granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with multiple sclerosis (MS) with clinical or MRI activity. Methods: In this 20-week, randomized, double-blind, placebo-controlled phase 1b dose-escalation trial (registration number NCT01517282), adults with relapsing-remitting MS (RRMS) or secondary progressive MS (SPMS) received an IV infu...

  7. Electronic Properties of Random Polymers: Modelling Optical Spectra of Melanins (United States)

    Bochenek, Kinga; Gudowska-Nowak, Ewa


    Melanins are a group of complex pigments of biological origin, widely spread in all species from fungi to man. Among diverse types of melanins, the human melanins, eumelanins, are brown or black nitrogen-containing pigments, mostly known for their photoprotective properties in human skin. We have undertaken theoretical studies aimed to understand absorption spectra of eumelanins and their chemical precursors. The structure of the biopigment is poorly defined, although it is believed to be composed of cross-linked heteropolymers based on indolequinones. As a basic model of the eumelanin structure, we have chosen pentamers containing hydroquinones (HQ) and/or 5,6-indolequinones (IQ) and/or semiquinones (SQ) often listed as structural melanin monomers. The eumelanin oligomers have been constructed as random compositions of basic monomers and optimized for the energy of bonding. Absorption spectra of model assemblies have been calculated within the semiempirical intermediate neglect of differential overlap (INDO) approximation. Model spectrum of eumelanin has been further obtained by sum of independent spectra of singular polymers. By comparison with experimental data it is shown that the INDO/CI method manages to reproduce well characteristic properties of experimental spectrum of synthetic eumelanins.

  8. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design...... of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor-liquid...

  9. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design...... of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor...

  10. Modelling Phase Change in a 3D Thermal Transient Analysis

    Directory of Open Access Journals (Sweden)

    E Haque


    Full Text Available A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer and adjacent (metal surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.

  11. Model mismatch analysis and compensation for modal phase measuring deflectometry. (United States)

    Huang, Lei; Xue, Junpeng; Gao, Bo; McPherson, Chris; Beverage, Jacob; Idir, Mourad


    The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry.

  12. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor-liquid......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design...

  13. Model selection and averaging of nonlinear mixed-effect models for robust phase III dose selection. (United States)

    Aoki, Yasunori; Röshammar, Daniel; Hamrén, Bengt; Hooker, Andrew C


    Population model-based (pharmacometric) approaches are widely used for the analyses of phase IIb clinical trial data to increase the accuracy of the dose selection for phase III clinical trials. On the other hand, if the analysis is based on one selected model, model selection bias can potentially spoil the accuracy of the dose selection process. In this paper, four methods that assume a number of pre-defined model structure candidates, for example a set of dose-response shape functions, and then combine or select those candidate models are introduced. The key hypothesis is that by combining both model structure uncertainty and model parameter uncertainty using these methodologies, we can make a more robust model based dose selection decision at the end of a phase IIb clinical trial. These methods are investigated using realistic simulation studies based on the study protocol of an actual phase IIb trial for an oral asthma drug candidate (AZD1981). Based on the simulation study, it is demonstrated that a bootstrap model selection method properly avoids model selection bias and in most cases increases the accuracy of the end of phase IIb decision. Thus, we recommend using this bootstrap model selection method when conducting population model-based decision-making at the end of phase IIb clinical trials.

  14. The phase diagrams of the mixed-spin ternary-alloy consisting of half-integer spins: Standard-random approach (United States)

    Albayrak, Erhan


    The ternary-alloy in the form ABpC1-p is investigated on the Bethe lattice with the odd numbered shells containing only A atoms (spin-1/2), while the even shells randomly containing either B (spin-3/2) or C (spin-5/2) atoms with different concentrations p and 1 - p, respectively. The phase diagrams are calculated on the (p ,kTc /JAB) and (R = |JAC | /JAB ,kTc /JAB) planes for given values of R and p, respectively, with the coordination numbers z = 3 , 4 , 5 and 6 by studying the thermal variations of the order-parameters. It is found that there exist a critical value of R, i.e. Rc ≅ 0.653, which is independent of z. In addition, the critical temperatures increase as z increases. The present work is an extension of the previous work [1] and it only differs from it by the implementation technique of randomness into the model. The obtained phase diagrams are in agreement with the site-dependent random case [1] except at low temperatures. On the other hand, there is an overall agreement with the literature.

  15. Bit error rate analysis of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams with the help of random phase screens. (United States)

    Eyyuboğlu, Halil T


    Using the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens. Upon arriving at the receiver plane, detection is performed in a circuitry consisting of a pin photodiode and a matched filter. The symbols detected are compared with the transmitted ones, errors are counted, and from there the probability of error is evaluated numerically. Within the range of source and propagation parameters tested, the lowest probability of error is obtained for the annular Gaussian beam. Our investigation reveals that there is hardly any difference between the aperture-averaged scintillations of the beams used, and the distinctive advantage of the annular Gaussian beam lies in the fact that the receiver aperture captures the maximum amount of power when this particular beam is launched from the transmitter plane.

  16. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))


    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  17. Phase transition and information cascade in a voting model (United States)

    Hisakado, M.; Mori, S.


    In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.

  18. Analysis of the phase structure in extended Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Seniuch, M.


    We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)

  19. Phase field modeling of partially saturated deformable porous media (United States)

    Sciarra, Giulio


    A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still^ to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy's law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the "force", associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly localized flows (fingering) and localized deformations of the skeleton (fracturing).

  20. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing


    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  1. A Unified Approach to Power Calculation and Sample Size Determination for Random Regression Models (United States)

    Shieh, Gwowen


    The underlying statistical models for multiple regression analysis are typically attributed to two types of modeling: fixed and random. The procedures for calculating power and sample size under the fixed regression models are well known. However, the literature on random regression models is limited and has been confined to the case of all…

  2. The new JET phased ICRH array: first experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bures, M.; Bhatnagar, V.; Brown, T.; Fechner, B.; Gormezano, C.; Kaye, A.; Lennholm, M.; Righi, E.; Rimini, F.; Sibley, A.; Start, D.; Wade, T. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Goulding, R. [Oak Ridge National Lab., TN (United States); Lamalle, P. [Ecole Royale Militaire, Brussels (Belgium). Lab. de Physique des Plasmas; Nguyen, F. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)


    New ICRH antennas on JET were designed to couple to the new JET divertor plasma configurations and to improve the Fast Wave Current Drive (FWCD) capabilities. The A2 antenna consists of 4 straps whose currents can be phased at arbitrary angles. The real time automatic tuning acts on frequency, line length (line phase shifters) and stub length. Provision is made for the coupling resistance/plasma position feedback to accommodate the fast changes in antenna loading. The first coupling, tuning and heating results are reported in 0{pi}0{pi}, 0000 and 00{pi}{pi} phasing. A new antenna model is described, which was developed to simulate the measured antenna loading in terms of plasma parameters and to provide a starting point for the real time automatic tuning. 5 refs., 4 figs.

  3. A random effect multiplicative heteroscedastic model for bacterial growth

    Directory of Open Access Journals (Sweden)

    Quinto Emiliano J


    Full Text Available Abstract Background Predictive microbiology develops mathematical models that can predict the growth rate of a microorganism population under a set of environmental conditions. Many primary growth models have been proposed. However, when primary models are applied to bacterial growth curves, the biological variability is reduced to a single curve defined by some kinetic parameters (lag time and growth rate, and sometimes the models give poor fits in some regions of the curve. The development of a prediction band (from a set of bacterial growth curves using non-parametric and bootstrap methods permits to overcome that problem and include the biological variability of the microorganism into the modelling process. Results Absorbance data from Listeria monocytogenes cultured at 22, 26, 38, and 42°C were selected under different environmental conditions of pH (4.5, 5.5, 6.5, and 7.4 and percentage of NaCl (2.5, 3.5, 4.5, and 5.5. Transformation of absorbance data to viable count data was carried out. A random effect multiplicative heteroscedastic model was considered to explain the dynamics of bacterial growth. The concept of a prediction band for microbial growth is proposed. The bootstrap method was used to obtain resamples from this model. An iterative procedure is proposed to overcome the computer intensive task of calculating simultaneous prediction intervals, along time, for bacterial growth. The bands were narrower below the inflection point (0-8 h at 22°C, and 0-5.5 h at 42°C, and wider to the right of it (from 9 h onwards at 22°C, and from 7 h onwards at 42°C. A wider band was observed at 42°C than at 22°C when the curves reach their upper asymptote. Similar bands have been obtained for 26 and 38°C. Conclusions The combination of nonparametric models and bootstrap techniques results in a good procedure to obtain reliable prediction bands in this context. Moreover, the new iterative algorithm proposed in this paper allows one to

  4. PhasePlot: A Software Program for Visualizing Phase Relations Computed Using Thermochemical Models and Databases (United States)

    Ghiorso, M. S.


    A new software program has been developed for Macintosh computers that permits the visualization of phase relations calculated from thermodynamic data-model collections. The data-model collections of MELTS (Ghiorso and Sack, 1995, CMP 119, 197-212), pMELTS (Ghiorso et al., 2002, G-cubed 3, 10.1029/2001GC000217) and the deep mantle database of Stixrude and Lithgow-Bertelloni (2011, GJI 184, 1180-1213) are currently implemented. The software allows users to enter a system bulk composition and a range of reference conditions and then calculate a grid of phase relations. These relations may be visualized in a variety of ways including phase diagrams, phase proportion plots, and contour diagrams of phase compositions and abundances. Results may be exported into Excel or similar spreadsheet applications. Flexibility in stipulating reference conditions permit the construction of temperature-pressure, temperature-volume, entropy-pressure, or entropy-volume display grids. Calculations on the grid are performed for fixed bulk composition or in open systems governed by user specified constraints on component chemical potentials (e.g., specified oxygen fugacity buffers). The calculation engine for the software is optimized for multi-core compute architectures and is very fast, allowing a typical grid of 64 points to be calculated in under 10 seconds on a dual-core laptop/iMac. The underlying computational thermodynamic algorithms have been optimized for speed and robust behavior. Taken together, both of these advances facilitate in classroom demonstrations and permit novice users to work with the program effectively, focusing on problem specification and interpretation of results rather than on manipulation and mechanics of computation - a key feature of an effective instructional tool. The emphasis in this software package is graphical visualization, which aids in better comprehension of complex phase relations in multicomponent systems. Anecdotal experience in using Phase

  5. A Two-phase mixture model of platelet aggregation. (United States)

    Du, Jian; Fogelson, Aaron L


    We present a two-phase model of platelet aggregation in coronary-artery-sized blood vessels. The model tracks the number densities of three platelet populations as well as the concentration of a platelet activating chemical. Through the formation of elastic bonds, activated platelets can cohere with one another to form a platelet thrombus. Bound platelets in a thrombus move in a velocity field different from that of the bulk fluid. Stresses produced by the elastic bonds act on the bound platelet material. Movement of the bound platelet material and that of the background fluid are coupled through an interphase drag and an incompressibility constraint. The relative motion between bound platelets and the background fluid permits intraclot transport of individual platelets and activating chemical, allows the bound platelet density to reach levels much higher than the platelet density in the bulk blood, and allows thrombus formation to occur on a physiological timescale, all of which were precluded by our earlier single phase model. Computational results from the two-phase model indicate that through complicated fluid-structure interactions, the platelet thrombus can develop significant spatial inhomogeneities and that the amount of intraclot flow may greatly affect the growth, density, and stability of a thrombus. © The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  6. Supporting Universal Prevention Programs: A Two-Phased Coaching Model (United States)

    Becker, Kimberly D.; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S.


    Schools are adopting evidence-based programs designed to enhance students’ emotional and behavioral competencies at increasing rates (Hemmeter, Snyder, & Artman, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter & Van Norman, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al., 2005; Stormont, Reinke, Newcomer, Darney, & Lewis, 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker, Bradshaw, Domitrovich, & Ialongo, 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS® curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs. PMID:23660973

  7. Conditional random field modelling of interactions between findings in mammography (United States)

    Kooi, Thijs; Mordang, Jan-Jurre; Karssemeijer, Nico


    Recent breakthroughs in training deep neural network architectures, in particular deep Convolutional Neural Networks (CNNs), made a big impact on vision research and are increasingly responsible for advances in Computer Aided Diagnosis (CAD). Since many natural scenes and medical images vary in size and are too large to feed to the networks as a whole, two stage systems are typically employed, where in the first stage, small regions of interest in the image are located and presented to the network as training and test data. These systems allow us to harness accurate region based annotations, making the problem easier to learn. However, information is processed purely locally and context is not taken into account. In this paper, we present preliminary work on the employment of a Conditional Random Field (CRF) that is trained on top the CNN to model contextual interactions such as the presence of other suspicious regions, for mammography CAD. The model can easily be extended to incorporate other sources of information, such as symmetry, temporal change and various patient covariates and is general in the sense that it can have application in other CAD problems.

  8. Thermodynamic Property Model of Wide-Fluid Phase Propane

    Directory of Open Access Journals (Sweden)

    I Made Astina


    Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.

  9. Process Modelling Support for the Conceptual Modelling Phase of a Simulation Project


    Heavey, Cathal; Ryan, John


    While many developments have taken place around supportingthe model coding task of simulation, there are few toolsavailable to assist in the conceptual modelling phase. Severalauthors have reported the advantages of using processmodelling tools in the early phases of a simulation project.This paper provides an overview of process modelling toolsin relation to their support for simulation, categorizing thetools into formal method and descriptive methods. A conclusionfrom this review is that no...

  10. Phase-field-crystal model for ordered crystals. (United States)

    Alster, Eli; Elder, K R; Hoyt, Jeffrey J; Voorhees, Peter W


    We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C_{11}. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.

  11. Phase transition of the Ising model on a fractal lattice. (United States)

    Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi


    The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.

  12. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail:; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)


    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  13. Matrix model of QCD: Edge localized glueballs and phase transitions (United States)

    Acharyya, Nirmalendu; Balachandran, A. P.


    In a matrix model of pure SU(2) Yang-Mills theory, boundaries emerge in the space of Mat3(R ) and the Hamiltonian requires boundary conditions. We show the existence of edge localized glueball states that can have negative energies. These edge levels can be lifted to positive energies if the gluons acquire a London-like mass. This suggests a new phase of QCD with an incompressible bulk.

  14. Phase-Field Formulation for Quantitative Modeling of Alloy Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Karma, Alain


    A phase-field formulation is introduced to simulate quantitatively microstructural pattern formation in alloys. The thin-interface limit of this formulation yields a much less stringent restriction on the choice of interface thickness than previous formulations and permits one to eliminate nonequilibrium effects at the interface. Dendrite growth simulations with vanishing solid diffusivity show that both the interface evolution and the solute profile in the solid are accurately modeled by this approach.

  15. Phase-Field Formulation for Quantitative Modeling of Alloy Solidification (United States)

    Karma, Alain


    A phase-field formulation is introduced to simulate quantitatively microstructural pattern formation in alloys. The thin-interface limit of this formulation yields a much less stringent restriction on the choice of interface thickness than previous formulations and permits one to eliminate nonequilibrium effects at the interface. Dendrite growth simulations with vanishing solid diffusivity show that both the interface evolution and the solute profile in the solid are accurately modeled by this approach.

  16. Modelling and simulation of phase equilibrium in dynamic systems

    Directory of Open Access Journals (Sweden)

    T. Dahl


    Full Text Available The article reports an investigation on how to efficiently describe phase equilibrium in dynamic systems, and how to solve the resulting equations numerically. An overview of possible solution strategies is given. Different thermodynamic models are briefly reviewed, and important algorithms like PT flash are described. A flash tank with a mixture of propane and propylene is simulated to illustrate some different solution strategies.

  17. Rat models of acute inflammation: a randomized controlled study on the effects of homeopathic remedies

    Directory of Open Access Journals (Sweden)

    Menniti-Ippolito Francesca


    Full Text Available Abstract Background One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties. The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema, using two treatment administration routes (sub-plantar injection and oral administration. Methods In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement procedure. In a second phase, some of the remedies (in the same and in different dilutions were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170–180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30, saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. Results In the first phase

  18. Critical Behavior of the Annealed Ising Model on Random Regular Graphs (United States)

    Can, Van Hao


    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  19. Estimating a DIF decomposition model using a random-weights linear logistic test model approach. (United States)

    Paek, Insu; Fukuhara, Hirotaka


    A differential item functioning (DIF) decomposition model separates a testlet item DIF into two sources: item-specific differential functioning and testlet-specific differential functioning. This article provides an alternative model-building framework and estimation approach for a DIF decomposition model that was proposed by Beretvas and Walker (2012). Although their model is formulated under multilevel modeling with the restricted pseudolikelihood estimation method, our approach illustrates DIF decomposition modeling that is directly built upon the random-weights linear logistic test model framework with the marginal maximum likelihood estimation method. In addition to demonstrating our approach's performance, we provide detailed information on how to implement this new DIF decomposition model using an item response theory software program; using DIF decomposition may be challenging for practitioners, yet practical information on how to implement it has previously been unavailable in the measurement literature.

  20. Phase-Field Model of Mode III Dynamic Fracture (United States)

    Karma, Alain; Kessler, David A.; Levine, Herbert


    We introduce a phenomenological continuum model for the mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short-scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.

  1. Plasticity and dislocation dynamics in a phase field crystal model. (United States)

    Chan, Pak Yuen; Tsekenis, Georgios; Dantzig, Jonathan; Dahmen, Karin A; Goldenfeld, Nigel


    The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal model. In the model, dislocations are naturally created, without any ad hoc creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions.

  2. In-phase and quadrature imbalance modeling, estimation, and compensation

    CERN Document Server

    Li, Yabo


    This book provides a unified IQ imbalance model and systematically reviews the existing estimation and compensation schemes. It covers the different assumptions and approaches that lead to many models of IQ imbalance. In wireless communication systems, the In-phase and Quadrature (IQ) modulator and demodulator are usually used as transmitter (TX) and receiver (RX), respectively. For Digital-to-Analog Converter (DAC) and Analog-to-Digital Converter (ADC) limited systems, such as multi-giga-hertz bandwidth millimeter-wave systems, using analog modulator and demodulator is still a low power and l

  3. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)


    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  4. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion (United States)

    Boyer, D.; Romo-Cruz, J. C. R.


    Motivated by studies on the recurrent properties of animal and human mobility, we introduce a path-dependent random-walk model with long-range memory for which not only the mean-square displacement (MSD) but also the propagator can be obtained exactly in the asymptotic limit. The model consists of a random walker on a lattice, which, at a constant rate, stochastically relocates at a site occupied at some earlier time. This time in the past is chosen randomly according to a memory kernel, whose temporal decay can be varied via an exponent parameter. In the weakly non-Markovian regime, memory reduces the diffusion coefficient from the bare value. When the mean backward jump in time diverges, the diffusion coefficient vanishes and a transition to an anomalous subdiffusive regime occurs. Paradoxically, at the transition, the process is an anticorrelated Lévy flight. Although in the subdiffusive regime the model exhibits some features of the continuous time random walk with infinite mean waiting time, it belongs to another universality class. If memory is very long-ranged, a second transition takes place to a regime characterized by a logarithmic growth of the MSD with time. In this case the process is asymptotically Gaussian and effectively described as a scaled Brownian motion with a diffusion coefficient decaying as 1 /t .

  5. Phase-field-crystal model for fcc ordering (United States)

    Wu, Kuo-An; Adland, Ari; Karma, Alain


    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to ⟨111⟩ and ⟨200⟩ reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2 . We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  6. Traffic model with an absorbing-state phase transition (United States)

    Iannini, M. L. L.; Dickman, Ronald


    We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in speed occurs with probability p , independent of the headway, as long as the current speed is greater than zero.) In the modified model the free-flow state (with all vehicles traveling at the maximum speed, vmax) is absorbing for densities ρ smaller than a critical value ρc=1 /(vmax+2 ) . The phase diagram in the ρ -p plane is reentrant: for densities in the range ρc ,<<ρ <ρc , both small and large values of p favor free flow, while for intermediate values, a nonzero fraction of vehicles have speeds phase transition in the original model. Our results suggest an unexpected connection between traffic models and stochastic sandpiles.

  7. Ashkin-Teller model and diverse opinion phase transitions on multiplex networks. (United States)

    Jang, S; Lee, J S; Hwang, S; Kahng, B


    Multiplex networks (MNs) have become a platform of recent research in network sciences because networks in many real-world systems interact and function together. One of the main scientific issues in MNs is how the interdependence changes the emerging patterns or phase transitions. Until now, studies of such an issue have concentrated on cluster-breakdown phenomena, aiming to understand the resilience of the system under random failures of edges. These studies have revealed that various phase transition (PT) types emerge in MNs. However, such studies are rather limited to percolation-related problems, i.e., the limit q→1 of the q-state Potts model. Thus, a systematic study of opinion formation in social networks with the effect of interdependence between different social communities, which may be seen as the study of the emerging pattern of the Ising model on MNs, is needed. Here we study a well-known spin model called the Ashkin-Teller (AT) model in scale-free networks. The AT model can be regarded as a model for interacting systems between two species of Ising spins placed on respective layers in double-layer networks. Our study shows that, depending on the interlayer coupling strength and a network topology, unconventional PT patterns can also emerge in interaction-based phenomena: continuous, discontinuous, successive, and mixed-order PTs and a continuous PT not satisfying the scaling relation. The origins of such rich PT patterns are elucidated in the framework of Landau-Ginzburg theory.

  8. Force Limited Random Vibration Test of TESS Camera Mass Model (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.


    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  9. Bioengineered Temporomandibular Joint Disk Implants: Study Protocol for a Two-Phase Exploratory Randomized Preclinical Pilot Trial in 18 Black Merino Sheep (TEMPOJIMS) (United States)

    Monje, Florencio Gil; González-García, Raúl; Little, Christopher B; Mónico, Lisete; Pinho, Mário; Santos, Fábio Abade; Carrapiço, Belmira; Gonçalves, Sandra Cavaco; Morouço, Pedro; Alves, Nuno; Moura, Carla; Wang, Yadong; Jeffries, Eric; Gao, Jin; Sousa, Rita; Neto, Lia Lucas; Caldeira, Daniel; Salvado, Francisco


    Background Preclinical trials are essential to test efficacious options to substitute the temporomandibular joint (TMJ) disk. The contemporary absence of an ideal treatment for patients with severe TMJ disorders can be related to difficulties concerning the appropriate study design to conduct preclinical trials in the TMJ field. These difficulties can be associated with the use of heterogeneous animal models, the use of the contralateral TMJ as control, the absence of rigorous randomized controlled preclinical trials with blinded outcomes assessors, and difficulties involving multidisciplinary teams. Objective This study aims to develop a new, reproducible, and effective study design for preclinical research in the TMJ domain, obtaining rigorous data related to (1) identify the impact of bilateral discectomy in black Merino sheep, (2) identify the impact of bilateral discopexy in black Merino sheep, and (3) identify the impact of three different bioengineering TMJ discs in black Merino sheep. Methods A two-phase exploratory randomized controlled preclinical trial with blinded outcomes is proposed. In the first phase, nine sheep are randomized into three different surgical bilateral procedures: bilateral discectomy, bilateral discopexy, and sham surgery. In the second phase, nine sheep are randomized to bilaterally test three different TMJ bioengineering disk implants. The primary outcome is the histological gradation of TMJ. Secondary outcomes are imaging changes, absolute masticatory time, ruminant time per cycle, ruminant kinetics, ruminant area, and sheep weight. Results Previous preclinical studies in this field have used the contralateral unoperated side as a control, different animal models ranging from mice to a canine model, with nonrandomized, nonblinded and uncontrolled study designs and limited outcomes measures. The main goal of this exploratory preclinical protocol is to set a new standard for future preclinical trials in oromaxillofacial surgery

  10. Comparison between amniotomy, oxytocin or both for augmentation of labor in prolonged latent phase: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Shalev Eliezer


    Full Text Available Abstract Background A prolonged latent phase is independently associated with an increased incidence of subsequent labor abnormalities. We aimed to compare between oxytocin augmentation, amniotomy and a combination of both on the duration of labor among women with a prolonged latent phase. Methods Women with a singleton fetus in cephalic presentation who have a prolonged latent phase, were randomly allocated to amniotomy (group 1, oxytocin (group 2 or both (group 3. A group of women who progressed spontaneously without intervention composed the control group (group 4. The primary outcome was the duration of time from initiation of augmentation until delivery. Results A total of 213 women were consented and randomized to group 1 (70 women, group 2 (72 women and group 3 (71 women. Group 4 was composed from additional 70 women. A mean reduction of 120 minutes in labor duration was observed among group 3 compared to group 1 (p = 0.08 and 180 minutes compared to group 2 and 4 (p = 0.001. Women in group 3 had a shorter length of time from augmentation until the beginning of the active phase and a shorter first stage of labor than group 1 (p = 0.03, group 2 (p = 0.001 and group 4 (p = 0.001. Satisfaction was greater among group 3 and 4. Mode of delivery and neonatal outcome were comparable between the groups. Conclusion Labor augmentation by combined amniotomy and oxytocin among women with a prolonged latent phase at term seems superior compared to either of them alone.

  11. Is there a spin-glass phase in the random temperature Ising ferromagnet?

    Energy Technology Data Exchange (ETDEWEB)

    Tarjus, Gilles; Dotsenko, Victor [Laboratoire de Physique Theorique des Liquides, UMR 7600, Universite Paris VI, Paris (France)


    In this paper we study the phase diagram of the disordered Ising ferromagnet. Within the framework of the Gaussian variational approximation it is shown that in systems with a finite value of the disorder in dimensions D=4 and D<4 the paramagnetic and ferromagnetic phases are separated by a spin-glass phase. The transition from paramagnetic to spin-glass state is continuous (second order), whereas the transition between spin-glass and ferromagnetic states is discontinuous (first order). It is also shown that within the considered approximation there is no replica symmetry breaking in the spin-glass phase. The validity of the Gaussian variational approximation for the present problem is discussed, and we provide a tentative physical interpretation of the results. (author)

  12. Orlistat in clozapine- or olanzapine-treated patients with overweight or obesity: a 16-week open-label extension phase and both phases of a randomized controlled trial. (United States)

    Tchoukhine, Evgueni; Takala, Pirjo; Hakko, Helinä; Raidma, Mirjam; Putkonen, Hanna; Räsänen, Pirkko; Terevnikov, Viacheslav; Stenberg, Jan-Henry; Eronen, Markku; Joffe, Grigori


    To explore long-term effects of orlistat in adult clozapine- or olanzapine-treated patients with DSM-IV-diagnosed schizophrenia and overweight or obesity who tolerate orlistat. Orlistat or placebo was added to clozapine or olanzapine in stable doses in a 16-week randomized controlled trial. Open-label orlistat was added to the antipsychotics during a 16-week extension phase for those completing the double-blind phase. No low-calorie diet or participation in behavioral programs was required. Body weight (primary outcome) and some metabolic parameters were measured prospectively. Analyses were performed for those completing both phases (ie, population differing from that reported earlier). The study was conducted from 2004 through 2005. During the open-label phase, the 44 patients experienced mean ± SD body weight loss of -1.29 ± 3.04 kg, P = .007. During both phases, men (but not women) showed a weight loss of -2.39 ± 5.45 kg, P = .023. Some subgroups showed desirable changes in several metabolic parameters. Prolonged (32 weeks) orlistat treatment yielded no additional benefits as compared to short (16 weeks) treatment. In clozapine- or olanzapine-treated overweight or obese patients able to take orlistat on a long-term basis, the drug, with no concomitant hypocaloric diet or behavioral interventions, caused moderate weight loss only in men. However, some metabolic benefits may be achieved independently of weight changes. In patients who do not respond to orlistat within the first 16 weeks, continuation treatment may provide no additional benefits. Identifier: ISRCTN65731856. © Copyright 2011 Physicians Postgraduate Press, Inc.

  13. Mendelian Randomization versus Path Models: Making Causal Inferences in Genetic Epidemiology. (United States)

    Ziegler, Andreas; Mwambi, Henry; König, Inke R


    The term Mendelian randomization is popular in the current literature. The first aim of this work is to describe the idea of Mendelian randomization studies and the assumptions required for drawing valid conclusions. The second aim is to contrast Mendelian randomization and path modeling when different 'omics' levels are considered jointly. We define Mendelian randomization as introduced by Katan in 1986, and review its crucial assumptions. We introduce path models as the relevant additional component to the current use of Mendelian randomization studies in 'omics'. Real data examples for the association between lipid levels and coronary artery disease illustrate the use of path models. Numerous assumptions underlie Mendelian randomization, and they are difficult to be fulfilled in applications. Path models are suitable for investigating causality, and they should not be mixed up with the term Mendelian randomization. In many applications, path modeling would be the appropriate analysis in addition to a simple Mendelian randomization analysis. Mendelian randomization and path models use different concepts for causal inference. Path modeling but not simple Mendelian randomization analysis is well suited to study causality with different levels of 'omics' data. 2015 S. Karger AG, Basel.

  14. Two phase flow models in DxUNSp code platform

    Directory of Open Access Journals (Sweden)

    Catalin NAE


    Full Text Available The aim of this work is to find an efficient implementation for a two phase flow model in an existing URANS CFD code platform (DxUNSp, initially based on unsteady URANS equations with a k- turbulence model and various other extensions, ranging from a broad selection of wall laws up to a very efficient LES model. This code has the capability for development for nonreacting/reacting multifluid flows for research applications and is under continuous progress. It is intend to present mainly three aspects of this implementation for unstructured mesh based solvers, for high Reynolds compressible flows: the importance of the 5/7 equation model, performance with respect to a basic test cases and implementation details of the proposed schemes. From a numerical point of view, we propose a new approximation schemes of this system based on the VFRoe-ncv.

  15. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models...... of maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...... filter applications: random walk model could give online prediction of breeding values. Hence without waiting for whole lactation records, genetic evaluation could be made when the daily or monthly data is available...

  16. Floquet topological semimetal phases of an extended kicked Harper model (United States)

    Bomantara, Raditya Weda; Raghava, Gudapati Naresh; Zhou, Longwen; Gong, Jiangbin


    Recent discoveries on topological characterization of gapless systems have attracted interest in both theoretical studies and experimental realizations. Examples of such gapless topological phases are Weyl semimetals, which exhibit three-dimensional (3D) Dirac cones (Weyl points), and nodal line semimetals, which are characterized by line nodes (two bands touching along a line). Inspired by our previous discoveries that the kicked Harper model exhibits many fascinating features of Floquet topological phases, in this paper we consider a generalization of the model, where two additional periodic system parameters are introduced into the Hamiltonian to serve as artificial dimensions, so as to simulate a 3 D periodically driven system. We observe that by increasing the hopping strength and the kicking strength of the system, many new Floquet band touching points at Floquet quasienergies 0 and π will start to appear. Some of them are Weyl points, while the others form line nodes in the parameter space. By taking open boundary conditions along the physical dimension, edge states analogous to Fermi arcs in static Weyl semimetal systems are observed. Finally, by designing an adiabatic pumping scheme, the chirality of the Floquet-band Weyl points and the π Berry phase around Floquet-band line nodes can be manifested.

  17. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis (United States)

    Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise


    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better


    Directory of Open Access Journals (Sweden)

    M. Ahmadlou


    Full Text Available The importance of spatial accuracy of land use/cover change maps necessitates the use of high performance models. To reach this goal, calibrating machine learning (ML approaches to model land use/cover conversions have received increasing interest among the scholars. This originates from the strength of these techniques as they powerfully account for the complex relationships underlying urban dynamics. Compared to other ML techniques, random forest has rarely been used for modeling urban growth. This paper, drawing on information from the multi-temporal Landsat satellite images of 1985, 2000 and 2015, calibrates a random forest regression (RFR model to quantify the variable importance and simulation of urban change spatial patterns. The results and performance of RFR model were evaluated using two complementary tools, relative operating characteristics (ROC and total operating characteristics (TOC, by overlaying the map of observed change and the modeled suitability map for land use change (error map. The suitability map produced by RFR model showed 82.48% area under curve for the ROC model which indicates a very good performance and highlights its appropriateness for simulating urban growth.

  19. Using the Lunar Phases Concept Inventory to Investigate College Students' Pre-instructional Mental Models of Lunar Phases (United States)

    Lindell, Rebecca S.; Sommer, Steven R.


    The Lunar Phases Concept Inventory (LPCI) is a twenty-item multiple-choice inventory developed to aid instructors in assessing the mental models their students utilize when answering questions concerning phases of the moon. Based upon an in-depth qualitative investigation of students' understanding of lunar phases, the LPCI was designed to take advantage of the innovative model analysis theory to probe the different dimensions of students' mental models of lunar phases. As part of a national field test, pre-instructional LPCI data was collected for over 750 students from multiple post-secondary institutions across the United States and Canada. Application of model analysis theory to this data set allowed researchers to probe the different mental models of lunar phases students across the country utilize prior to instruction. Results of this analysis display strikingly similar results for the different institutions, suggesting a potential underlying cognitive framework.

  20. Dynamical phase separation using a microfluidic device: experiments and modeling (United States)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team


    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  1. A traffic model with an absorbing-state phase transition

    CERN Document Server

    Iannini, M L L


    We consider a modified Nagel-Schreckenberg (NS) model in which drivers do not decelerate if their speed is smaller than the headway (number of empty sites to the car ahead). (In the original NS model, such a reduction in speed occurs with probability $p$, independent of the headway, as long as the current speed is greater than zero.) In the modified model the free-flow state (with all vehicles traveling at the maximum speed, $v_{max}$) is {\\it absorbing} for densities $\\rho$ smaller than a critical value $\\rho_c = 1/(v_{max} + 2)$. The phase diagram in the $\\rho - p$ plane is reentrant: for densities in the range $\\rho_{c,<} < \\rho < \\rho_c$, both small and large values of $p$ favor free flow, while for intermediate values, a nonzero fraction of vehicles have speeds $< v_{max}$. In addition to representing a more realistic description of driving behavior, this change leads to a better understanding of the phase transition in the original model. Our results suggest an unexpected connection between ...

  2. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai


    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  3. Dissipative phase transition in the open quantum Rabi model (United States)

    Hwang, Myung-Joong; Rabl, Peter; Plenio, Martin B.


    We demonstrate that the open quantum Rabi model (QRM) exhibits a second-order dissipative phase transition (DPT) and propose a method to observe this transition with trapped ions. The interplay between the ultrastrong qubit-oscillator coupling and the oscillator damping brings the system into a steady state with a diverging number of excitations, in which a DPT is allowed to occur even with a finite number of system components. The universality class of the open QRM, modified from the closed QRM by a Markovian bath, is identified by finding critical exponents and scaling functions using the Keldysh functional integral approach. We propose to realize the open QRM with two trapped ions where the coherent coupling and the rate of dissipation can be individually controlled and adjusted over a wide range. Thanks to this controllability, our work opens a possibility to investigate potentially rich dynamics associated with a dissipative phase transition.

  4. Phase Characterization of Cucumber Growth: A Chemical Gel Model

    Directory of Open Access Journals (Sweden)

    Bo Li


    Full Text Available Cucumber grows with complex phenomena by changing its volume and shape, which is not fully investigated and challenges agriculture and food safety industry. In order to understand the mechanism and to characterize the growth process, the cucumber is modeled as a hydrogel in swelling and its development is studied in both preharvest and postharvest stages. Based on thermodynamics, constitutive equations, incorporating biological quantities, are established. The growth behavior of cucumber follows the classic theory of continuous or discontinuous phase transition. The mechanism of bulged tail in cucumber is interpreted by phase coexistence and characterized by critical conditions. Conclusions are given for advances in food engineering and novel fabrication techniques in mechanical biology.

  5. Parenteral nutrition at the palliative phase of advanced cancer: the ALIM-K study protocol for a randomized controlled trial. (United States)

    Pazart, Lionel; Cretin, Elodie; Grodard, Ghislain; Cornet, Cecile; Mathieu-Nicot, Florence; Bonnetain, Franck; Mercier, Mariette; Cuynet, Patrice; Bouleuc, Carole; Aubry, Regis


    Malnutrition is a common complication in patients at the palliative stage of cancer. During the curative phase of cancer, optimal enteral or parenteral nutrition intake can reduce morbidity and mortality, and improve quality of life. When the main goal of treatment becomes palliative, introduction of artificial nutrition is controversial. Although scientific societies do not recommend the introduction of artificial nutrition in all cases of malnutrition, especially in hypophagic patients if their life expectancy is shorter than 2 months, considerable differences in the use of parenteral nutrition in nonsurgical oncology practice are noted around the world. One explanation is a paucity of well-conducted randomized controlled trials in these situations, and consequently, the risk/benefit ratio of parenteral nutrition and its impact on quality of life in palliative care remains uncertain. The ALIM-K study is a French national multicenter randomized controlled trial designed to evaluate the effectiveness of parenteral nutrition, versus an exclusive oral-feeding supply, on the quality of life of malnourished patients who have a functional digestive tube and who are at the palliative phase of advanced cancer with a life expectancy of more than 2 months. This article presents the methodologic options chosen for our study, and in particular, the choice of the Zelen method of randomization, the definition of the main end point (quality of life), the choice of comparator (oral feeding), and the inclusion criteria (life expectancy of more than 2 months), which are all critical points in building a randomized controlled trial in the setting of palliative care. This study was registered with the clinical trials database on May 27, 2014, under the number NCT02151214.

  6. Empirical forward scattering phase functions from 0.08 to 16 deg. for randomly shaped terrigenous 1-21 microm sediment grains. (United States)

    Agrawal, Y C; Mikkelsen, Ole A


    We present in-water forward scattering phase functions covering the angle range 0.08 to 16 degrees for 19 narrow-sized dispersions of randomly shaped sediment grains. These dispersions cover particle size range from 1 to 20 microns. These phase functions offer a realistic alternative to Mie theory. Qualitatively, (i) the magnitude of phase functions at the smallest angles for equal size spheres and randomly shaped particles are nearly equal; (ii) the oscillations predicted by Mie theory for spheres disappear for random shaped grains, and (iii) the tendency of phase functions of large spheres to merge at large angles is also seen with randomly shaped grains. The data are also provided in tabulated form.

  7. Switching patients with acromegaly from octreotide to pasireotide improves biochemical control: Crossover extension to a randomized, double-blind, Phase III study

    NARCIS (Netherlands)

    M.D. Bronstein (Marcello); Fleseriu, M. (Maria); S.J.C.M.M. Neggers (Bas); A. Colao (Annamaria); Sheppard, M. (Michael); Gu, F. (Feng); Shen, C.-C. (Chiung-Chyi); M.R. Gadelha (Mônica R.); Farrall, A.J. (Andrew J.); Reséndiz, K.H. (Karina Hermosillo); Ruffin, M. (Matthieu); Chen, Y. (YinMiao); P.U. Freda (Pamela)


    markdownabstractBackground Many patients with acromegaly do not achieve biochemical control with first-generation somatostatin analogues. A large, multicenter, randomized, Phase III core study demonstrated that pasireotide LAR had significantly superior efficacy over octreotide LAR. This analysis

  8. W-Band Millimeter-Wave Vector Signal Generation Based on Precoding-Assisted Random Photonic Frequency Tripling Scheme Enabled by Phase Modulator

    National Research Council Canada - National Science Library

    Li, Xinying; Xu, Yuming; Xiao, Jiangnan; Yu, Jianjun


    We propose W-band photonic millimeter-wave (mm-wave) vector signal generation employing a precoding-assisted random frequency tripling scheme enabled by a single phase modulator cascaded with a wavelength selective switch (WSS...

  9. Generalized optimal design for two-arm, randomized phase II clinical trials with endpoints from the exponential dispersion family. (United States)

    Jiang, Wei; Mahnken, Jonathan D; He, Jianghua; Mayo, Matthew S


    For two-arm randomized phase II clinical trials, previous literature proposed an optimal design that minimizes the total sample sizes subject to multiple constraints on the standard errors of the estimated event rates and their difference. The original design is limited to trials with dichotomous endpoints. This paper extends the original approach to be applicable to phase II clinical trials with endpoints from the exponential dispersion family distributions. The proposed optimal design minimizes the total sample sizes needed to provide estimates of population means of both arms and their difference with pre-specified precision. Its applications on data from specific distribution families are discussed under multiple design considerations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Phase-field-crystal models and mechanical equilibrium. (United States)

    Heinonen, V; Achim, C V; Elder, K R; Buyukdagli, S; Ala-Nissila, T


    Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.

  11. A kinetic model for the burst phase of processive cellulases

    DEFF Research Database (Denmark)

    Præstgaard, Eigil; Olsen, Jens Elmerdahl; Murphy, Leigh


    Cellobiohydrolases (exocellulases) hydrolyze cellulose processively, i.e. by sequential cleaving of soluble sugars from one end of a cellulose strand. Their activity generally shows an initial burst, followed by a pronounced slowdown, even when substrate is abundant and product accumulation...... is negligible. Here, we propose an explicit kinetic model for this behavior, which uses classical burst phase theory as the starting point. The model is tested against calorimetric measurements of the activity of the cellobiohydrolase Cel7A from Trichoderma reesei on amorphous cellulose. A simple version...... of the model, which can be solved analytically, shows that the burst and slowdown can be explained by the relative rates of the sequential reactions in the hydrolysis process and the occurrence of obstacles for the processive movement along the cellulose strand. More specifically, the maximum enzyme activity...


    Directory of Open Access Journals (Sweden)

    Martin Lames


    Full Text Available Model building in game sports should maintain the constitutive feature of this group of sports, the dynamic interaction process between the two parties. For single net/wall games relative phase is suggested to describe the positional interaction between the two players. 30 baseline rallies in tennis were examined and relative phase was calculated by Hilbert transform from the two time-series of lateral displacement and trajectory in the court respectively. Results showed that relative phase indicates some aspects of the tactical interaction in tennis. At a more abstract level the interaction between two teams in handball was studied by examining the relationship of the two scoring processes. Each process can be conceived as a random walk. Moving averages of the scoring probabilities indicate something like a momentary strength. A moving correlation (length = 20 ball possessions describes the momentary relationship between the teams' strength. Evidence was found that this correlation is heavily time-dependent, in almost every single game among the 40 examined ones we found phases with a significant positive as well as significant negative relationship. This underlines the importance of a dynamic view on the interaction in these games.

  13. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel (United States)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John


    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  14. Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line. (United States)

    Papakonstantinou, T; Malakis, A


    We study the ±J three-dimensional (3D) Ising model with a spatially uniaxial anisotropic bond randomness on the simple cubic lattice. The ±J random exchange is applied on the xy planes, whereas, in the z direction, only a ferromagnetic exchange is used. After sketching the phase diagram and comparing it with the corresponding isotropic case, the system is studied at the ferromagnetic-paramagnetic transition line using parallel tempering and a convenient concentration of antiferromagnetic bonds (p(z)=0;p(xy)=0.176). The numerical data clearly point out a second-order ferromagnetic-paramagnetic phase transition belonging in the same universality class with the 3D random Ising model. The smooth finite-size behavior of the effective exponents, describing the peaks of the logarithmic derivatives of the order parameter, provides an accurate estimate of the critical exponent 1/ν=1.463(3), and a collapse analysis of magnetization data gives an estimate of β/ν=0.516(7). These results are in agreement with previous papers and, in particular, with those of the isotropic ±J three-dimensional Ising model at the ferromagnetic-paramagnetic transition line, indicating the irrelevance of the introduced anisotropy.

  15. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))


    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  16. Multiple-image authentication with a cascaded multilevel architecture based on amplitude field random sampling and phase information multiplexing. (United States)

    Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi


    A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.

  17. Vernakalant hydrochloride for rapid conversion of atrial fibrillation - A phase 3, randomized, placebo-controlled trial

    DEFF Research Database (Denmark)

    Roy, D.; Pratt, C.M.; Torp-Pedersen, C.


    .6%; P complete atrioventricular block, and cardiogenic shock) occurred in 3 patients. Conclusion - Vernakalant......Background - The present study assessed the efficacy and safety of vernakalant hydrochloride ( RSD1235), a novel compound, for the conversion of atrial fibrillation ( AF). Methods and Results - Patients were randomized in a 2: 1 ratio to receive vernakalant or placebo and were stratified by AF...... was conversion of AF to sinus rhythm for at least 1 minute within 90 minutes of the start of drug infusion in the short-duration AF group. A total of 336 patients were randomized and received treatment (short duration, n = 220; long duration, n = 116). Of the 145 vernakalant patients, 75 (51.7%) in the short...

  18. Phase I Randomized Safety Study of Twice Daily Dosing of Acidform Vaginal Gel: Candidate Antimicrobial Contraceptive


    Keller, Marla J.; Carpenter, Colleen A.; Yungtai Lo; Einstein, Mark H.; Congzhou Liu; David N Fredricks; Herold, Betsy C.


    Background Acidform gel, an acid-buffering product that inactivates spermatozoa, may be an effective topical non-hormonal contraceptive. This study was designed to evaluate the safety of vaginal dosing and effects of Acidform on mucosal immune mediators, antimicrobial properties of genital secretions, and vaginal microbiota. Methods Thirty-six sexually abstinent U.S. women were randomized to apply Acidform or hydroxyethylcellulose (HEC) placebo gel twice daily for 14 consecutive days. Safety ...

  19. Phase-space diffusion in turbulent plasmas: The random acceleration problem revisited

    DEFF Research Database (Denmark)

    Pécseli, H.L.; Trulsen, J.


    Phase-space diffusion of test particles in turbulent plasmas is studied by an approach based on a conditional statistical analysis of fluctuating electrostatic fields. Analytical relations between relevant conditional averages and higher-order correlations, , and trip...

  20. Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. (United States)

    Uc, Ergun Y; Doerschug, Kevin C; Magnotta, Vincent; Dawson, Jeffrey D; Thomsen, Teri R; Kline, Joel N; Rizzo, Matthew; Newman, Sara R; Mehta, Sonya; Grabowski, Thomas J; Bruss, Joel; Blanchette, Derek R; Anderson, Steven W; Voss, Michelle W; Kramer, Arthur F; Darling, Warren G


    To (1) investigate effects of aerobic walking on motor function, cognition, and quality of life in Parkinson disease (PD), and (2) compare safety, tolerability, and fitness benefits of different forms of exercise intervention: continuous/moderate intensity vs interval/alternating between low and vigorous intensity, and individual/neighborhood vs group/facility setting. Initial design was a 6-month, 2 × 2 randomized trial of different exercise regimens in independently ambulatory patients with PD. All arms were required to exercise 3 times per week, 45 minutes per session. Randomization to group/facility setting was not feasible because of logistical factors. Over the first 2 years, we randomized 43 participants to continuous or interval training. Because preliminary analyses suggested higher musculoskeletal adverse events in the interval group and lack of difference between training methods in improving fitness, the next 17 participants were allocated only to continuous training. Eighty-one percent of 60 participants completed the study with a mean attendance of 83.3% (95% confidence interval: 77.5%-89.0%), exercising at 46.8% (44.0%-49.7%) of their heart rate reserve. There were no serious adverse events. Across all completers, we observed improvements in maximum oxygen consumption, gait speed, Unified Parkinson's Disease Rating Scale sections I and III scores (particularly axial functions and rigidity), fatigue, depression, quality of life (e.g., psychological outlook), and flanker task scores (p exercise program improves aerobic fitness, motor function, fatigue, mood, and cognition. © 2014 American Academy of Neurology.

  1. Phase diagram of the lattice SU(2) Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, C., E-mail: bonati@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy); Cossu, G., E-mail: cossu@post.kek.j [Scuola Normale Superiore and INFN, Pisa (Italy); D' Elia, M., E-mail: Massimo.Delia@ge.infn.i [Dipartimento di Fisica and INFN, Genova (Italy); Di Giacomo, A., E-mail: digiaco@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy)


    We perform a detailed study of the phase diagram of the lattice Higgs SU(2) model with fixed Higgs field length. Consistently with previsions based on the Fradkin-Shenker theorem we find a first order transition line with an endpoint whose position we determined. The diagram also shows cross-over lines: the cross-over corresponding to the pure SU(2) bulk is also present at nonzero coupling with the Higgs field and merges with the one that continues the line of first order transition beyond the critical endpoint. At high temperature the first order line becomes a crossover, whose position moves by varying the temperature.

  2. Phase Diagram of the Two-Chain Hubbard Model (United States)

    Park, Youngho; Liang, Shoudan; Lee, T. K.


    We have calculated the charge gap and spin gap for the two-chain Hubbard model as a function of the on-site Coulomb interaction and the interchain hopping amplitude. We used the density matrix renormalization group method and developed a method to calculate separately the gaps numerically for the symmetric and antisymmetric modes with respect to the exchange of the chain indices. We have found very different behaviors for the weak and strong interaction cases. Our calculated phase diagram is compared to the one obtained by Balents and Fisher using the weak coupling renormalization group technique.

  3. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo


    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  4. Effects of surfactin on membrane models displaying lipid phase separation. (United States)

    Deleu, Magali; Lorent, Joseph; Lins, Laurence; Brasseur, Robert; Braun, Nathalie; El Kirat, Karim; Nylander, Tommy; Dufrêne, Yves F; Mingeot-Leclercq, Marie-Paule


    Surfactin, a bacterial amphiphilic lipopeptide is attracting more and more attention in view of its bioactive properties which are in relation with its ability to interact with lipids of biological membranes. In this work, we investigated the effect of surfactin on membrane structure using model of membranes, vesicles as well as supported bilayers, presenting coexistence of fluid-disordered (DOPC) and gel (DPPC) phases. A range of complementary methods was used including AFM, ellipsometry, dynamic light scattering, fluorescence measurements of Laurdan, DPH, calcein release, and octadecylrhodamine B dequenching. Our findings demonstrated that surfactin concentration is critical for its effect on the membrane. The results suggest that the presence of rigid domains can play an essential role in the first step of surfactin insertion and that surfactin interacts both with the membrane polar heads and the acyl chain region. A mechanism for the surfactin lipid membrane interaction, consisting of three sequential structural and morphological changes, is proposed. At concentrations below the CMC, surfactin inserted at the boundary between gel and fluid lipid domains, inhibited phase separation and stiffened the bilayer without global morphological change of liposomes. At concentrations close to CMC, surfactin solubilized the fluid phospholipid phase and increased order in the remainder of the lipid bilayer. At higher surfactin concentrations, both the fluid and the rigid bilayer structures were dissolved into mixed micelles and other structures presenting a wide size distribution. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Final model independent result of DAMA/LIBRA-phase1

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; D' Angelo, A.; Prosperi, D. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy, IHEP, Beijing (China); Incicchitti, A. [INFN, sez. Roma, Rome (Italy); Montecchia, F. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy, IHEP, Beijing (China); University of Jing Gangshan, Jiangxi (China)


    The results obtained with the total exposure of 1.04 ton x yr collected by DAMA/LIBRA-phase1 deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. during 7 annual cycles (i.e. adding a further 0.17 ton x yr exposure) are presented. The DAMA/LIBRA-phase1 data give evidence for the presence of Dark Matter (DM) particles in the galactic halo, on the basis of the exploited model independent DM annual modulation signature by using highly radio-pure NaI(Tl) target, at 7.5{sigma} C.L. Including also the first generation DAMA/NaI experiment (cumulative exposure 1.33 ton x yr, corresponding to 14 annual cycles), the C.L. is 9.3{sigma} and the modulation amplitude of the single-hit events in the (2-6) keV energy interval is: (0.0112{+-}0.0012) cpd/kg/keV; the measured phase is (144{+-}7) days and the measured period is (0.998{+-}0.002) yr, values well in agreement with those expected for DM particles. No systematic or side reaction able to mimic the exploited DM signature has been found or suggested by anyone over more than a decade. (orig.)

  6. Phase Transition Couplings in the Higgsed Monopole Model

    CERN Document Server

    Laperashvili, L V


    Using a one-loop approximation for the effective potential in the Higgs model of electrodynamics for a charged scalar field, we argue for the existence of a triple point for the renormalized (running) values of the selfinteraction beta-function as a typical quantity we estimate that the one-loop approximation is valid with accuracy of deviations not more than 30% in the region of the parameters: $0.2 \\stackrel{<}{\\sim}{\\large \\alpha, \\tilde{\\alpha}} corresponds to the above-mentioned region of $\\alpha, \\tilde \\alpha$. Under the point of view that the Higgs particle is a monopole with a magnetic charge g, the obtained electric fine structure constant turns out to be to the $\\alpha_{crit}^{lat}\\approx{0.20}$ which in a U(1) lattice gauge theory corresponds to the phase transition between the "Coulomb" and confinement phases. Such a result is very encouraging for the idea of an approximate "universality" (regularization independence) of gauge couplings at the phase transition point. This idea was suggested by...

  7. A Random Matrix Approach for Quantifying Model-Form Uncertainties in Turbulence Modeling

    CERN Document Server

    Xiao, Heng; Ghanem, Roger G


    With the ever-increasing use of Reynolds-Averaged Navier--Stokes (RANS) simulations in mission-critical applications, the quantification of model-form uncertainty in RANS models has attracted attention in the turbulence modeling community. Recently, a physics-based, nonparametric approach for quantifying model-form uncertainty in RANS simulations has been proposed, where Reynolds stresses are projected to physically meaningful dimensions and perturbations are introduced only in the physically realizable limits. However, a challenge associated with this approach is to assess the amount of information introduced in the prior distribution and to avoid imposing unwarranted constraints. In this work we propose a random matrix approach for quantifying model-form uncertainties in RANS simulations with the realizability of the Reynolds stress guaranteed. Furthermore, the maximum entropy principle is used to identify the probability distribution that satisfies the constraints from available information but without int...


    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi


    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established.

  9. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope. (United States)

    Quan, Wei; Lv, Lin; Liu, Baiqi


    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  10. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Wei; Lv, Lin, E-mail:; Liu, Baiqi [School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191 (China)


    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  11. Random regression models in the evaluation of the growth curve of Simbrasil beef cattle

    NARCIS (Netherlands)

    Mota, M.; Marques, F.A.; Lopes, P.S.; Hidalgo, A.M.


    Random regression models were used to estimate the types and orders of random effects of (co)variance functions in the description of the growth trajectory of the Simbrasil cattle breed. Records for 7049 animals totaling 18,677 individual weighings were submitted to 15 models from the third to the

  12. Technology diffusion in hospitals : A log odds random effects regression model

    NARCIS (Netherlands)

    Blank, J.L.T.; Valdmanis, V.G.


    This study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to describe the

  13. Technology diffusion in hospitals: A log odds random effects regression model

    NARCIS (Netherlands)

    J.L.T. Blank (Jos); V.G. Valdmanis (Vivian G.)


    textabstractThis study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to

  14. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology (United States)

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...


    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.


    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  16. The gated integration technique for the accurate measurement of the autocorrelation function of speckle intensities scattered from random phase screens (United States)

    Zhang, Ningyu; Cheng, Chuanfu; Teng, Shuyun; Chen, Xiaoyi; Xu, Zhizhan


    A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, m. The average analog of the m samplings output by the Boxcar enhances the signal-to-noise ratio by √{m}, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/√{m}. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique.

  17. A phase-synchronization and random-matrix based approach to multichannel time-series analysis with application to epilepsy (United States)

    Osorio, Ivan; Lai, Ying-Cheng


    We present a general method to analyze multichannel time series that are becoming increasingly common in many areas of science and engineering. Of particular interest is the degree of synchrony among various channels, motivated by the recognition that characterization of synchrony in a system consisting of many interacting components can provide insights into its fundamental dynamics. Often such a system is complex, high-dimensional, nonlinear, nonstationary, and noisy, rendering unlikely complete synchronization in which the dynamical variables from individual components approach each other asymptotically. Nonetheless, a weaker type of synchrony that lasts for a finite amount of time, namely, phase synchronization, can be expected. Our idea is to calculate the average phase-synchronization times from all available pairs of channels and then to construct a matrix. Due to nonlinearity and stochasticity, the matrix is effectively random. Moreover, since the diagonal elements of the matrix can be arbitrarily large, the matrix can be singular. To overcome this difficulty, we develop a random-matrix based criterion for proper choosing of the diagonal matrix elements. Monitoring of the eigenvalues and the determinant provides a powerful way to assess changes in synchrony. The method is tested using a prototype nonstationary noisy dynamical system, electroencephalogram (scalp) data from absence seizures for which enhanced cortico-thalamic synchrony is presumed, and electrocorticogram (intracranial) data from subjects having partial seizures with secondary generalization for which enhanced local synchrony is similarly presumed.

  18. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media. (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco


    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  19. "HEATPAC" - a phase II randomized study of concurrent thermochemoradiotherapy versus chemoradiotherapy alone in locally advanced pancreatic cancer. (United States)

    Datta, Niloy Ranjan; Pestalozzi, Bernhard; Clavien, Pierre-Alain; Siebenhüner, Alexander; Puric, Emsad; Khan, Shaka; Mamot, Christoph; Riesterer, Oliver; Knuchel, Jürg; Reiner, Cäcilia Sophie; Bodis, Stephan


    Pancreatic cancer has a dismal prognosis with 5-year overall survival rate of around 5%. Although surgery is still the best option in operable cases, majority of the patients who present in locally advanced stages are deemed inoperable. Novel approaches are therefore needed for the management of around 80% of these inoperable locally advanced pancreatic cancers (LAPC). Hyperthermia (39-43 °C) is a potent radiosensitizer and further enhances the action of gemcitabine, also a known radiosensitizer. Thus through triple sensitization, a combination of hyperthermia, radiotherapy and gemcitabine could be expected to improve the therapeutic outcomes in LAPC. This phase II randomized trial, HEATPAC in unresectable LAPC, explores the feasibility and efficacy of concurrent thermochemoradiotherapy (HTCTRT) over chemoradiotherapy (CTRT) alone with pre- and post-intervention FOLFIRINOX at standard dosage and schedule. Following 4 cycles of neoadjuvant FOLFIRINOX, patients with no metastasis and absence of gross peritoneal carcinomatosis would be randomized to either (a) control arm: concurrent CTRT with gemcitabine (400 mg/m2, weekly ×6) or (b) study arm: locoregional hyperthermia (weekly ×6 during radiotherapy) with concurrent CTRT (same as in control arm). All patients would receive simultaneous-integrated boost intensity-modulated radiation therapy to doses of 56Gy and 50.4Gy to the gross and clinical target volumes respectively delivered in 28 fractions over 5.5 weeks. Deep locoregional hyperthermia would be administered weekly and monitored with real-time intraduodenal multisensor thermometry probe. A temperature of 40-43 °C for 60 min would be aimed for each hyperthermia session. On completion of CTRT/HTCTRT, patients of both groups would receive an additional 8 cycles of FOLFIRINOX. The expected 1-year baseline overall survival with CTRT alone is considered as 40%. With HTCTRT, a survival advantage of +20% is expected. Considering α = 0.05 and β = 0

  20. Phase-field model of dendritic sidebranching with thermal noise

    Energy Technology Data Exchange (ETDEWEB)

    Karma, A. [Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115 (United States); Rappel, W. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States)


    We investigate dendritic sidebranching during crystal growth in an undercooled melt by simulation of a phase-field model which incorporates thermal noise of microscopic origin. As a nontrivial quantitative test of this model, we first show that the simulated fluctuation spectrum of a one-dimensional interface in thermal equilibrium agrees with the exact sharp-interface spectrum up to an irrelevant short-wavelength cutoff comparable to the interface thickness. Simulations of dendritic growth are then carried out in two dimensions to compute sidebranching characteristics (root-mean-square amplitude and sidebranch spacing) as a function of distance behind the tip. These quantities are compared quantitatively to the predictions of the existing linear WKB theory of noise amplification. The extension of this study to three dimensions remains needed to determine the origin of noise in experiments. {copyright} {ital 1999} {ital The American Physical Society}

  1. The Impact of Consumer Phase Models in Microbial Risk Analysis

    DEFF Research Database (Denmark)

    Nauta, Maarten; Christensen, Bjarke Bak


    In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited......, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose-response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk...... reductions are less different for scenarios modeling the implementation of control measures. For control measures affecting the Campylobacter  prevalence, the relative risk is proportional irrespective of the CPM used. However, for control measures affecting the concentration the CPMs show some difference...

  2. Efficacy of dignity therapy on depression and anxiety in Portuguese terminally ill patients: a phase II randomized controlled trial. (United States)

    Julião, Miguel; Oliveira, Fátima; Nunes, Baltazar; Vaz Carneiro, António; Barbosa, António


    Dignity therapy is a brief psychotherapy developed for patients living with a life-limiting illness. To determine the influence of dignity therapy on depression and anxiety in inpatients with a terminal illness and experiencing a high level of distress in a palliative care unit. A nonblinded phase II randomized controlled trial of 80 patients who were randomly assigned to one of two groups: intervention group (dignity therapy+standard palliative care [SPC]) or control group (SPC alone). The main outcomes were depression and anxiety scores, as measured with the Hospital Anxiety and Depression Scale, and assessed at baseline (T1), day 4 (T2), day 15 (T3), and day 30 (T4) of follow-up. This study is registered with Of the final 80 participants, 41 were randomly assigned to SPC and 39 to dignity therapy. Baseline characteristics were similar between the two groups. Dignity therapy was associated with a decrease in depression scores (median, 95% confidence interval [CI]: -4.00, -6.00 to -2.00, pdepression and anxiety symptoms in end-of-life care. The therapeutic benefit of dignity therapy was sustained over a 30-day period. Having established its efficacy, future trials of dignity therapy may now begin, comparing it with other psychotherapeutic approaches within the context of terminal illness.

  3. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. (United States)

    Grode, Leander; Ganoza, Christian A; Brohm, Christiane; Weiner, January; Eisele, Bernd; Kaufmann, Stefan H E


    Current vaccination using Mycobacterium bovis bacillus Calmette-Guérin (BCG), fails to prevent pulmonary tuberculosis (TB). New vaccination strategies are essential for reducing the global incidence of TB. We assessed the safety and immunogenicity of VPM1002, a recombinant BCG vaccine candidate. EudraCT (2007-002789-37) and (NCT00749034). Healthy volunteers were enrolled in a phase 1 open-label, dose escalation randomized clinical trial, and received one intradermal dose of VPM1002 (Mycobacterium bovis BCG ΔureC::hly Hm(R)) or BCG. Immunogenicity was assessed by interferon-gamma (IFN-γ) production, cellular immune response markers by flow cytometry and serum antibodies against mycobacterial antigens. Eighty volunteers were randomized into two groups according to previous BCG vaccination and mycobacterial exposure (BCG-naïve, n=40 and BCG-immune, n=40). In each group, 30 individuals were vaccinated with VPM1002 (randomized to three escalating doses) and 10 with BCG. VPM1002 was safe and stimulated IFN-γ-producing and multifunctional T cells, as well as antibody-producing B cells in BCG-naïve and BCG-immune individuals. VPM1002 was safe and immunogenic for B-cell and T-cell responses and hence will be brought forward through the clinical trial pipeline. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Phase IV: randomized controlled trial to evaluate lot consistency of trivalent split influenza vaccines in healthy adults. (United States)

    Song, Joon Young; Cheong, Hee Jin; Lee, Jacob; Wie, Seong-Heon; Park, Kyung-Hwa; Kee, Sae Yoon; Jeong, Hye Won; Kim, Yeon-Sook; Noh, Ji Yun; Choi, Won Suk; Park, Dae Won; Sohn, Jang Wook; Kim, Woo Joo


    Influenza vaccines are the primary method for preventing influenza and its complications. Considering the increasing demand for influenza vaccines, vaccine manufacturers are required to establish large-scale production systems. This phase IV randomized trial was conducted to evaluate the lot consistency of trivalent split influenza vaccines regarding immunogenicity and safety. A total of 1,023 healthy adults aged 18-64 y were enrolled in the study. Subjects were randomly assigned in a 1:1 ratio to receive the GC FLU® Prefilled Syringe or the GC FLU® Injection, and they were further randomized to one of 3 lots of each vaccine in a 1:1:1 ratio. In both GC FLU® Injection and GC FLU® Prefilled Syringe groups, immune responses were equivalent between lots for each of the 3 vaccine strains on day 21. The 2-sided 95% CI of GMT ratios between pairs of lots were between 0.67 and 1.5, meeting the equivalence criteria. After vaccination, all 3 criteria of the European Medicines Agency were met in both GC FLU® Injection and GC FLU® Prefilled Syringe groups. The vaccines showed tolerable safety profiles without serious adverse events. The demonstration of lot consistency, robust immunogenic responses and favorable safety profiles support the reliability of mass-manufacturing systems for the GC FLU® Injection and GC FLU® Prefilled Syringe.

  5. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases (United States)

    Monthus, Cécile


    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  6. Thermodynamics of Phase Transitions and Bipolar Filamentary Switching in Resistive Random-Access Memory (United States)

    Karpov, V. G.; Niraula, D.; Karpov, I. V.; Kotlyar, R.


    We present a phenomenological theory of bipolar filamentary resistive random-access memory describing the commonly observed features of their current-voltage characteristics. Our approach follows the approach of a thermodynamic theory developed earlier for chalcogenide memory and threshold switches and largely independent of their microscopic details. It explains, without adjustable parameters, such features as the domains of filament formation and switching, voltage-independent current in set and current-independent voltage in reset regimes, the relation between the set and reset voltages, filament resistance independent of its length, etc. Furthermore, it expresses the observed features through the material and circuitry parameters, thus paving the way to device improvements.

  7. Prophylactic nimodipine treatment for cochlear and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter Phase III trial. (United States)

    Scheller, Christian; Wienke, Andreas; Tatagiba, Marcos; Gharabaghi, Alireza; Ramina, Kristofer F; Ganslandt, Oliver; Bischoff, Barbara; Zenk, Johannes; Engelhorn, Tobias; Matthies, Cordula; Westermaier, Thomas; Antoniadis, Gregor; Pedro, Maria Teresa; Rohde, Veit; von Eckardstein, Kajetan; Kretschmer, Thomas; Kornhuber, Malte; Steighardt, Jörg; Richter, Michael; Barker, Fred G; Strauss, Christian


    A pilot study of prophylactic nimodipine and hydroxyethyl starch treatment showed a beneficial effect on facial and cochlear nerve preservation following vestibular schwannoma (VS) surgery. A prospective Phase III trial was undertaken to confirm these results. An open-label, 2-arm, randomized parallel group and multicenter Phase III trial with blinded expert review was performed and included 112 patients who underwent VS surgery between January 2010 and February 2013 at 7 departments of neurosurgery to investigate the efficacy and safety of the prophylaxis. The surgery was performed after the patients were randomly assigned to one of 2 groups using online randomization. The treatment group (n = 56) received parenteral nimodipine (1-2 mg/hr) and hydroxyethyl starch (hematocrit 30%-35%) from the day before surgery until the 7th postoperative day. The control group (n = 56) was not treated prophylactically. Intent-to-treat analysis showed no statistically significant effects of the treatment on either preservation of facial nerve function (35 [67.3%] of 52 [treatment group] compared with 34 [72.3%] of 47 [control group]) (p = 0.745) or hearing preservation (11 [23.4%] of 47 [treatment group] compared with 15 [31.2%] of 48 [control group]) (p = 0.530) 12 months after surgery. Since tumor sizes were significantly larger in the treatment group than in the control group, logistic regression analysis was required. The risk for deterioration of facial nerve function was adjusted nearly the same in both groups (OR 1.07 [95% CI 0.34-3.43], p = 0.91). In contrast, the risk for postoperative hearing loss was adjusted 2 times lower in the treatment group compared with the control group (OR 0.49 [95% CI 0.18-1.30], p = 0.15). Apart from dose-dependent hypotension (p nimodipine can be recommended in VS surgery.

  8. Randomized phase II study of TJ-54 (Yokukansan) for postoperative delirium in gastrointestinal and lung malignancy patients. (United States)

    Sugano, Nobuhiro; Aoyama, Toru; Sato, Tsutomu; Kamiya, Mariko; Amano, Shinya; Yamamoto, Naoto; Nagashima, Takuya; Ishikawa, Yoshihiro; Masudo, Katsuhiko; Taguri, Masataka; Yamanaka, Takeharu; Yamamoto, Yuji; Matsukawa, Hiroshi; Shiraisi, Ryuji; Oshima, Takashi; Yukawa, Norio; Rino, Yasushi; Masuda, Munetaka


    The present study evaluated the efficacy and safety of TJ-54 (Yokukansan; a traditional Japanese medicine) for the prevention and/or treatment of postoperative delirium in a randomized phase II trial of patients receiving surgery for gastrointestinal and lung malignancies. Patients ≥70 years of age who underwent surgery for gastrointestinal or lung malignancy were eligible for participation in the study. The 186 eligible patients were randomly assigned at a 1:1 ratio to receive TJ-54 or control during their peri-operative care (between 7 days prior to surgery and 4 days following surgery, except for the operation day). The signs and symptoms of delirium were assessed using the Diagnostic and Statistical Manual of Mental Disorders-IV by the investigator during the peri-operative period. A total of 186 eligible gastrointestinal or lung malignancy patients were analyzed (93, TJ-54; 93, control). There were no marked differences between the two randomized groups. The incidence of delirium was 6.5% (6 patients) in the TJ-54 group and 9.7% (9 patients) in the control group, with no significant difference (P=0.419). However, of the patients categorized with a mini-mental state examination (MMSE) score of ≤26, the incidence of postoperative delirium was 9.1% in the TJ-54 group and 26.9% in the control group [risk ratio, 0.338; 95% confidence interval (0.078-1.462), P=0.115]. Treatment with TJ-54 reduced the incidence of postoperative delirium compared with the control group. Although TJ-54 did not demonstrate any contribution to preventing or treating postoperative delirium in patients following surgery for gastrointestinal or lung malignancy, TJ-54 reduced the risk of postoperative delirium in the patients who were classified as MMSE ≤26. Further phase III studies with a larger sample size are required in order to clarify the effects of TJ-54 against postoperative delirium.

  9. Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic tumors (SABR-COMET: Study protocol for a randomized phase II trial

    Directory of Open Access Journals (Sweden)

    Palma David A


    Full Text Available Abstract Background Stereotactic ablative radiotherapy (SABR has emerged as a new treatment option for patients with oligometastatic disease. SABR delivers precise, high-dose, hypofractionated radiotherapy, and achieves excellent rates of local control. Survival outcomes for patients with oligometastatic disease treated with SABR appear promising, but conclusions are limited by patient selection, and the lack of adequate controls in most studies. The goal of this multicenter randomized phase II trial is to assess the impact of a comprehensive oligometastatic SABR treatment program on overall survival and quality of life in patients with up to 5 metastatic cancer lesions, compared to patients who receive standard of care treatment alone. Methods After stratification by the number of metastases (1-3 vs. 4-5, patients will be randomized between Arm 1: current standard of care treatment, and Arm 2: standard of care treatment + SABR to all sites of known disease. Patients will be randomized in a 1:2 ratio to Arm 1:Arm 2, respectively. For patients receiving SABR, radiotherapy dose and fractionation depends on the site of metastasis and the proximity to critical normal structures. This study aims to accrue a total of 99 patients within four years. The primary endpoint is overall survival, and secondary endpoints include quality of life, toxicity, progression-free survival, lesion control rate, and number of cycles of further chemotherapy/systemic therapy. Discussion This study will provide an assessment of the impact of SABR on clinical outcomes and quality of life, to determine if long-term survival can be achieved for selected patients with oligometastatic disease, and will inform the design of a possible phase III study. Trial registration identifier: NCT01446744


    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James


    benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The cases with two-phase flow at the turbine inlet will be pursued in future work.

  11. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip


    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  12. Bayes Estimation of Two-Phase Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Mayuri Pandya


    Full Text Available Let the regression model be Yi=β1Xi+εi, where εi are i. i. d. N (0,σ2 random errors with variance σ2>0 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after Xm by change in slope, regression parameter β2. The problem of study is when and where this change has started occurring. This is called change point inference problem. The estimators of m, β1,β2 are derived under asymmetric loss functions, namely, Linex loss & General Entropy loss functions. The effects of correct and wrong prior information on the Bayes estimates are studied.

  13. Thimble regularization at work: From toy models to chiral random matrix theories (United States)

    Di Renzo, F.; Eruzzi, G.


    We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex zero-dimensional ϕ4 theory. Although very simple, this toy model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: How many thimbles contribute to the solution? How can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very crude nature. The deviation of results from phase quenched ones highlights that in a certain region of parameter space there is a quite important sign problem. In view of this, the success of our thimble approach is quite a significant one.

  14. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.


    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  15. Regressor and random-effects dependencies in multilevel models

    NARCIS (Netherlands)

    Ebbes, P.; Bockenholt, U; Wedel, M.

    The objectives of this paper are (1) to review methods that can be used to test for different types of random effects and regressor dependencies, (2) to present results from Monte Carlo studies designed to investigate the performance of these methods, and (3) to discuss estimation methods that can

  16. Scale-free random graphs and Potts model

    Indian Academy of Sciences (India)

    We introduce a simple algorithm that constructs scale-free random graphs efficiently: each vertex has a prescribed weight − (0 < < 1) and an edge can connect vertices and with rate . Corresponding equilibrium ensemble is identified and the problem is solved by the → 1 limit of the -state Potts ...

  17. Random walk models of large-scale structure

    Indian Academy of Sciences (India)

    Abstract. This paper describes the insights gained from the excursion set approach, in which vari- ous questions about the phenomenology of large-scale structure formation can be mapped to problems associated with the first crossing distribution of appropriately defined barriers by random walks. Much of this is ...

  18. More evidence on additive antipsychotic effect of adjunctive mirtazapine in schizophrenia: an extension phase of a randomized controlled trial. (United States)

    Terevnikov, Viacheslav; Stenberg, Jan-Henry; Joffe, Marina; Tiihonen, Jari; Burkin, Mark; Tchoukhine, Evgueni; Joffe, Grigori


    Adjunctive mirtazapine improved negative symptoms of schizophrenia in several studies. Recently, we found an improvement also in positive symptoms when mirtazapine was added to first generation antipsychotics (FGAs) in a 6 week randomized controlled trial (RCT). The short duration of that trial was its limitation. This study aimed to explore whether longer treatment is worthwhile. Completers of the RCT (n = 39) received open-label add-on mirtazapine for additional 6 weeks. The Positive and Negative Syndrome Scale (PANSS) total score (primary outcome) and several other clinical parameters were measured prospectively. During the open-label phase, significant improvement was achieved in all parameters, with an effect size of 0.94 (CI 95% = 0.45-1.43) on the primary outcome and an impressive additive antipsychotic effect. Patients who received mirtazapine during both phases demonstrated greater improvement in positive symptoms (29.6% versus 21.2%, p = 0.027) than those who received mirtazapine during open-label extension phase only. These findings support our previous data on the additive antipsychotic effect of mirtazapine in FGAs-treated schizophrenia. Mirtazapine may be effective in other symptom domains, too. Longer duration of mirtazapine treatment may yield additional benefits. If these results will be confirmed in larger studies, add-on mirtazapine may become a feasible option in difficult-to-treat schizophrenia. Copyright 2010 John Wiley & Sons, Ltd.

  19. Second harmonic generation in gallium phosphide microdisks on silicon: from strict \\bar{4} to random quasi-phase matching (United States)

    Guillemé, P.; Dumeige, Y.; Stodolna, J.; Vallet, M.; Rohel, T.; Létoublon, A.; Cornet, C.; Ponchet, A.; Durand, O.; Léger, Y.


    The convergence of nonlinear optical devices and silicon photonics is a key milestone for the practical development of photonic integrated circuits. The associated technological issues often stem from material incompatibility. This is the case of second order nonlinear processes in monolithically integrated III-V semiconductor devices on silicon, where structural defects called antiphase domains strongly impact the optical properties of the material. We theoretically investigate the influence of antiphase domains on second harmonic generation in III-V whispering gallery mode microresonators on silicon and focus on the effects of the antiphase domains’ mean size (i.e. the correlation length of the distribution). We demonstrate that the domain distributions can have opposite effects depending on the nonlinear process under consideration: while antiphase domains negatively impact second harmonic generation under \\bar{4} quasi-phase matching conditions (independent of the correlation length), large conversion efficiencies can arise far from \\bar{4}-quasi-phase matching provided that the APD correlation length remains within an appropriate range, and is still compatible with the spontaneous emergence of such defects in the usual III-V on Si epilayers. Such a build-up can be explained by the occurrence of random quasi-phase matching in the system.

  20. Looking for phase transitions of strongly interacting matter applying new method on basic of Random Matrix Theory

    Energy Technology Data Exchange (ETDEWEB)

    Suleymanov, Mais [CIIT, Islamabad (Pakistan); Shahaliev, Ehtiram [HEPL, JINR, Dubna (Russian Federation)


    Over the last 25 years a lot of efforts have been made to search for new phases of strongly interacting matter. Heavy ion collisions are of great importance since they open a way to reproduce these phases in the Earth laboratory. But in this case the volume of information increases sharply as well as the background information. A method was introduced a method on the basic of Random Matrix Theory to study the fluctuations of neutron resonances in compound nuclei which doesn't depend on the background of measurements. To analyze the energetic levels of compound nuclei the function of distances between two energetic levels p(s{sub i}) is defined as the general distributions for probability of all kinds of ensembles. At values of the index of universality {nu}=0 it will change to Poisson type distributions pointing to absence of any correlations in the system and at the values of {nu}=1 it will change to Wigner type behavior directing to some correlation in the studying ensemble. We discuss that the experimental study of the behavior of p(s{sub i}) distribution for secondary particles could give a signal on the phase transitions.