WorldWideScience

Sample records for random noise processes

  1. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  2. Removal of Stationary Sinusoidal Noise from Random Vibration Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian; Cap, Jerome S.

    2018-02-01

    In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.

  3. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  4. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  5. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We introduce a new class of Cox cluster processes called generalised shot-noise processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process which drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...... be random. Thereby a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and next on how to make simulation for GSNCPs. Particularly, results...... for first and second order moment measures, reduced Palm distributions, the -function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified for special important cases of GSNCPs, and we discuss the relation...

  6. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  7. GPR random noise reduction using BPD and EMD

    Science.gov (United States)

    Ostoori, Roya; Goudarzi, Alireza; Oskooi, Behrooz

    2018-04-01

    Ground-penetrating radar (GPR) exploration is a new high-frequency technology that explores near-surface objects and structures accurately. The high-frequency antenna of the GPR system makes it a high-resolution method compared to other geophysical methods. The frequency range of recorded GPR is so wide that random noise recording is inevitable due to acquisition. This kind of noise comes from unknown sources and its correlation to the adjacent traces is nearly zero. This characteristic of random noise along with the higher accuracy of GPR system makes denoising very important for interpretable results. The main objective of this paper is to reduce GPR random noise based on pursuing denoising using empirical mode decomposition. Our results showed that empirical mode decomposition in combination with basis pursuit denoising (BPD) provides satisfactory outputs due to the sifting process compared to the time-domain implementation of the BPD method on both synthetic and real examples. Our results demonstrate that because of the high computational costs, the BPD-empirical mode decomposition technique should only be used for heavily noisy signals.

  8. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  9. The importance for speech intelligibility of random fluctuations in "steady" background noise.

    Science.gov (United States)

    Stone, Michael A; Füllgrabe, Christian; Mackinnon, Robert C; Moore, Brian C J

    2011-11-01

    Spectrally shaped steady noise is commonly used as a masker of speech. The effects of inherent random fluctuations in amplitude of such a noise are typically ignored. Here, the importance of these random fluctuations was assessed by comparing two cases. For one, speech was mixed with steady speech-shaped noise and N-channel tone vocoded, a process referred to as signal-domain mixing (SDM); this preserved the random fluctuations of the noise. For the second, the envelope of speech alone was extracted for each vocoder channel and a constant was added corresponding to the root-mean-square value of the noise envelope for that channel. This is referred to as envelope-domain mixing (EDM); it removed the random fluctuations of the noise. Sinusoidally modulated noise and a single talker were also used as backgrounds, with both SDM and EDM. Speech intelligibility was measured for N = 12, 19, and 30, with the target-to-background ratio fixed at -7 dB. For SDM, performance was best for the speech background and worst for the steady noise. For EDM, this pattern was reversed. Intelligibility with steady noise was consistently very poor for SDM, but near-ceiling for EDM, demonstrating that the random fluctuations in steady noise have a large effect.

  10. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Feasibility of Johnson Noise Thermometry based on Digital Signal Processing Techniques

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kim, Yang Mo

    2014-01-01

    This paper presents an implementation strategy of noise thermometry based on a digital signal processing technique and demonstrates its feasibilities. A key factor in its development is how to extract the small thermal noise signal from other noises, for example, random noise from amplifiers and continuous electromagnetic interference from the environment. The proposed system consists of two identical amplifiers and uses a cross correlation function to cancel the random noise of the amplifiers. Then, the external interference noises are eliminated by discriminating the difference in the peaks between the thermal signal and external noise. The gain of the amplifiers is estimated by injecting an already known pilot signal. The experimental simulation results of signal processing methods have demonstrated that the proposed approach is an effective method in eliminating an external noise signal and performing gain correction for development of the thermometry

  12. Digital signal processing for the Johnson noise thermometry: a time series analysis of the Johnson noise

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.

    2004-06-01

    In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully

  13. An effective approach to attenuate random noise based on compressive sensing and curvelet transform

    International Nuclear Information System (INIS)

    Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang

    2016-01-01

    Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)

  14. Analogies between colored Lévy noise and random channel approach to disordered kinetics

    Science.gov (United States)

    Vlad, Marcel O.; Velarde, Manuel G.; Ross, John

    2004-02-01

    We point out some interesting analogies between colored Lévy noise and the random channel approach to disordered kinetics. These analogies are due to the fact that the probability density of the Lévy noise source plays a similar role as the probability density of rate coefficients in disordered kinetics. Although the equations for the two approaches are not identical, the analogies can be used for deriving new, useful results for both problems. The random channel approach makes it possible to generalize the fractional Uhlenbeck-Ornstein processes (FUO) for space- and time-dependent colored noise. We describe the properties of colored noise in terms of characteristic functionals, which are evaluated by using a generalization of Huber's approach to complex relaxation [Phys. Rev. B 31, 6070 (1985)]. We start out by investigating the properties of symmetrical white noise and then define the Lévy colored noise in terms of a Langevin equation with a Lévy white noise source. We derive exact analytical expressions for the various characteristic functionals, which characterize the noise, and a functional fractional Fokker-Planck equation for the probability density functional of the noise at a given moment in time. Second, by making an analogy between the theory of colored noise and the random channel approach to disordered kinetics, we derive fractional equations for the evolution of the probability densities of the random rate coefficients in disordered kinetics. These equations serve as a basis for developing methods for the evaluation of the statistical properties of the random rate coefficients from experimental data. Special attention is paid to the analysis of systems for which the observed kinetic curves can be described by linear or nonlinear stretched exponential kinetics.

  15. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  16. Random noise characterization on the carrying capacities of a ...

    African Journals Online (AJOL)

    The process of the survival of species dependent on a limited resource in a polluted environment which isnot a new idea can be described by the technique of a mathematical modelling. We have utilised the technique of a numerical simulation to study the impact of environmental random noise on the carrying capacities of ...

  17. A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-01-01

    Full Text Available An Intensified Charge-Coupled Device (ICCD image is captured by the ICCD image sensor in extremely low-light conditions. Its noise has two distinctive characteristics. (a Different from the independent identically distributed (i.i.d. noise in natural image, the noise in the ICCD sensing image is spatially clustered, which induces unexpected structure information; (b The pattern of the clustered noise is formed randomly. In this paper, we propose a denoising scheme to remove the randomly clustered noise in the ICCD sensing image. First, we decompose the image into non-overlapped patches and classify them into flat patches and structure patches according to if real structure information is included. Then, two denoising algorithms are designed for them, respectively. For each flat patch, we simulate multiple similar patches for it in pseudo-time domain and remove its noise by averaging all the simulated patches, considering that the structure information induced by the noise varies randomly over time. For each structure patch, we design a structure-preserved sparse coding algorithm to reconstruct the real structure information. It reconstructs each patch by describing it as a weighted summation of its neighboring patches and incorporating the weights into the sparse representation of the current patch. Based on all the reconstructed patches, we generate a reconstructed image. After that, we repeat the whole process by changing relevant parameters, considering that blocking artifacts exist in a single reconstructed image. Finally, we obtain the reconstructed image by merging all the generated images into one. Experiments are conducted on an ICCD sensing image dataset, which verifies its subjective performance in removing the randomly clustered noise and preserving the real structure information in the ICCD sensing image.

  18. Random walk in dynamically disordered chains: Poisson white noise disorder

    International Nuclear Information System (INIS)

    Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.

    1989-01-01

    Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute

  19. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  20. Quantum-noise randomized ciphers

    International Nuclear Information System (INIS)

    Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami

    2006-01-01

    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as αη and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of αη and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how αη used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that αη is equivalent to a nonrandom stream cipher

  1. Effects of random noise in a dynamical model of love

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-07-15

    Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  2. Effects of random noise in a dynamical model of love

    International Nuclear Information System (INIS)

    Xu Yong; Gu Rencai; Zhang Huiqing

    2011-01-01

    Highlights: → We model the complexity and unpredictability of psychology as Gaussian white noise. → The stochastic system of love is considered including bifurcation and chaos. → We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  3. Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    R. Caballero-Águila

    2014-01-01

    Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.

  4. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2005-01-01

    We introduce a class of cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...

  5. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  6. The clustering of local maxima in random noise

    International Nuclear Information System (INIS)

    Coles, P.

    1989-01-01

    A mixture of analytic and numerical techniques is used to study the clustering properties of local maxima of random noise. Technical complexities restrict us to the case of 1D noise, but the results obtained should give a reasonably accurate picture of the behaviour of cosmological density peaks in noise defined on a 3D domain. We give estimates of the two-point correlation function of local maxima, for both Gaussian and non-Gaussian noise and show that previous approximations are not accurate. (author)

  7. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  8. Selected papers on noise and stochastic processes

    CERN Document Server

    1954-01-01

    Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

  9. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  10. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  11. The deterministic chaos and random noise in turbulent jet

    International Nuclear Information System (INIS)

    Yao, Tian-Liang; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng

    2014-01-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion

  12. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    International Nuclear Information System (INIS)

    Theodorsen, A; Garcia, O E; Rypdal, M

    2017-01-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)

  13. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  14. Process sensors characterization based on noise analysis technique and artificial intelligence

    International Nuclear Information System (INIS)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos

    2005-01-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  15. Process sensors characterization based on noise analysis technique and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br

    2005-07-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  16. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming

    2015-01-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  17. Seismic random noise attenuation using shearlet and total generalized variation

    Science.gov (United States)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  18. Random Valued Impulse Noise Removal Using Region Based Detection Approach

    Directory of Open Access Journals (Sweden)

    S. Banerjee

    2017-12-01

    Full Text Available Removal of random valued noisy pixel is extremely challenging when the noise density is above 50%. The existing filters are generally not capable of eliminating such noise when density is above 70%. In this paper a region wise density based detection algorithm for random valued impulse noise has been proposed. On the basis of the intensity values, the pixels of a particular window are sorted and then stored into four regions. The higher density based region is considered for stepwise detection of noisy pixels. As a result of this detection scheme a maximum of 75% of noisy pixels can be detected. For this purpose this paper proposes a unique noise removal algorithm. It was experimentally proved that the proposed algorithm not only performs exceptionally when it comes to visual qualitative judgment of standard images but also this filter combination outsmarts the existing algorithm in terms of MSE, PSNR and SSIM comparison even up to 70% noise density level.

  19. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  20. Realistic noise-tolerant randomness amplification using finite number of devices

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna

    2016-04-01

    Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.

  1. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  2. Auditory detection of an increment in the rate of a random process

    International Nuclear Information System (INIS)

    Brown, W.S.; Emmerich, D.S.

    1994-01-01

    Recent experiments have presented listeners with complex tonal stimuli consisting of components with values (i.e., intensities or frequencies) randomly sampled from probability distributions [e.g., R. A. Lutfi, J. Acoust. Soc. Am. 86, 934--944 (1989)]. In the present experiment, brief tones were presented at intervals corresponding to the intensity of a random process. Specifically, the intervals between tones were randomly selected from exponential probability functions. Listeners were asked to decide whether tones presented during a defined observation interval represented a ''noise'' process alone or the ''noise'' with a ''signal'' process added to it. The number of tones occurring in any observation interval is a Poisson variable; receiver operating characteristics (ROCs) arising from Poisson processes have been considered by Egan [Signal Detection Theory and ROC Analysis (Academic, New York, 1975)]. Several sets of noise and signal intensities and observation interval durations were selected which were expected to yield equivalent performance. Rating ROCs were generated based on subjects' responses in a single-interval, yes--no task. The performance levels achieved by listeners and the effects of intensity and duration are compared to those predicted for an ideal observer

  3. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  4. On the joint statistics of stable random processes

    International Nuclear Information System (INIS)

    Hopcraft, K I; Jakeman, E

    2011-01-01

    A utilitarian continuous bi-variate random process whose first-order probability density function is a stable random variable is constructed. Results paralleling some of those familiar from the theory of Gaussian noise are derived. In addition to the joint-probability density for the process, these include fractional moments and structure functions. Although the correlation functions for stable processes other than Gaussian do not exist, we show that there is coherence between values adopted by the process at different times, which identifies a characteristic evolution with time. The distribution of the derivative of the process, and the joint-density function of the value of the process and its derivative measured at the same time are evaluated. These enable properties to be calculated analytically such as level crossing statistics and those related to the random telegraph wave. When the stable process is fractal, the proportion of time it spends at zero is finite and some properties of this quantity are evaluated, an optical interpretation for which is provided. (paper)

  5. Effect of drain current on appearance probability and amplitude of random telegraph noise in low-noise CMOS image sensors

    Science.gov (United States)

    Ichino, Shinya; Mawaki, Takezo; Teramoto, Akinobu; Kuroda, Rihito; Park, Hyeonwoo; Wakashima, Shunichi; Goto, Tetsuya; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Random telegraph noise (RTN), which occurs in in-pixel source follower (SF) transistors, has become one of the most critical problems in high-sensitivity CMOS image sensors (CIS) because it is a limiting factor of dark random noise. In this paper, the behaviors of RTN toward changes in SF drain current conditions were analyzed using a low-noise array test circuit measurement system with a floor noise of 35 µV rms. In addition to statistical analysis by measuring a large number of transistors (18048 transistors), we also analyzed the behaviors of RTN parameters such as amplitude and time constants in the individual transistors. It is demonstrated that the appearance probability of RTN becomes small under a small drain current condition, although large-amplitude RTN tends to appear in a very small number of cells.

  6. Adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics

    OpenAIRE

    M. O. Partala; S. Ya. Zhuk

    2007-01-01

    On the base of mixed Markoff process in discrete time optimal and quasioptimal algorithms is designed for adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics.

  7. Catastrophe Insurance Modeled by Shot-Noise Processes

    Directory of Open Access Journals (Sweden)

    Thorsten Schmidt

    2014-02-01

    Full Text Available Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot is followed by a decline (noise. This constitutes a useful model for insurance claims in many circumstances; claims due to natural disasters or self-exciting processes exhibit similar features. We give a general account of shot-noise processes with time-inhomogeneous drivers inspired by recent results in credit risk. Moreover, we derive a number of useful results for modeling and pricing with shot-noise processes. Besides this, we obtain some highly tractable examples and constitute a useful modeling tool for dynamic claims processes. The results can in particular be used for pricing Catastrophe Bonds (CAT bonds, a traded risk-linked security. Additionally, current results regarding the estimation of shot-noise processes are reviewed.

  8. Occupational Noise Reduction in CNC Striping Process

    Science.gov (United States)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  9. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  10. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Memmolo, P; Finizio, A; Ferraro, P; Javidi, B

    2013-03-01

    Holographic imaging may become severely degraded by a mixture of speckle and incoherent additive noise. Bayesian approaches reduce the incoherent noise, but prior information is needed on the noise statistics. With no prior knowledge, one-shot reduction of noise is a highly desirable goal, as the recording process is simplified and made faster. Indeed, neither multiple acquisitions nor a complex setup are needed. So far, this result has been achieved at the cost of a deterministic resolution loss. Here we propose a fast non-Bayesian denoising method that avoids this trade-off by means of a numerical synthesis of a moving diffuser. In this way, only one single hologram is required as multiple uncorrelated reconstructions are provided by random complementary resampling masks. Experiments show a significant incoherent noise reduction, close to the theoretical improvement bound, resulting in image-contrast improvement. At the same time, we preserve the resolution of the unprocessed image.

  11. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    International Nuclear Information System (INIS)

    Cole, Z.; Roos, P.A.; Berg, T.; Kaylor, B.; Merkel, K.D.; Babbitt, W.R.; Reibel, R.R.

    2007-01-01

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier

  12. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Z. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)]. E-mail: cole@s2corporation.com; Roos, P.A. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Berg, T. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Kaylor, B. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Merkel, K.D. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Reibel, R.R. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)

    2007-11-15

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier.

  13. Suppression of thermal noise in a non-Markovian random velocity field

    International Nuclear Information System (INIS)

    Ueda, Masahiko

    2016-01-01

    We study the diffusion of Brownian particles in a Gaussian random velocity field with short memory. By extending the derivation of an effective Fokker–Planck equation for the Lanvegin equation with weakly colored noise to a random velocity-field problem, we find that the effect of thermal noise on particles is suppressed by the existence of memory. We also find that the renormalization effect for the relative diffusion of two particles is stronger than that for single-particle diffusion. The results are compared with those of molecular dynamics simulations. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  14. Solution-Processed Carbon Nanotube True Random Number Generator.

    Science.gov (United States)

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  15. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  16. Random Number Simulations Reveal How Random Noise Affects the Measurements and Graphical Portrayals of Self-Assessed Competency

    Directory of Open Access Journals (Sweden)

    Edward Nuhfer

    2016-01-01

    Full Text Available Self-assessment measures of competency are blends of an authentic self-assessment signal that researchers seek to measure and random disorder or "noise" that accompanies that signal. In this study, we use random number simulations to explore how random noise affects critical aspects of self-assessment investigations: reliability, correlation, critical sample size, and the graphical representations of self-assessment data. We show that graphical conventions common in the self-assessment literature introduce artifacts that invite misinterpretation. Troublesome conventions include: (y minus x vs. (x scatterplots; (y minus x vs. (x column graphs aggregated as quantiles; line charts that display data aggregated as quantiles; and some histograms. Graphical conventions that generate minimal artifacts include scatterplots with a best-fit line that depict (y vs. (x measures (self-assessed competence vs. measured competence plotted by individual participant scores, and (y vs. (x scatterplots of collective average measures of all participants plotted item-by-item. This last graphic convention attenuates noise and improves the definition of the signal. To provide relevant comparisons across varied graphical conventions, we use a single dataset derived from paired measures of 1154 participants' self-assessed competence and demonstrated competence in science literacy. Our results show that different numerical approaches employed in investigating and describing self-assessment accuracy are not equally valid. By modeling this dataset with random numbers, we show how recognizing the varied expressions of randomness in self-assessment data can improve the validity of numeracy-based descriptions of self-assessment.

  17. Effect of multiplicative noise on stationary stochastic process

    Science.gov (United States)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  18. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are init...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  19. Random noise suppression of seismic data using non-local Bayes algorithm

    Science.gov (United States)

    Chang, De-Kuan; Yang, Wu-Yang; Wang, Yi-Hui; Yang, Qing; Wei, Xin-Jian; Feng, Xiao-Ying

    2018-02-01

    For random noise suppression of seismic data, we present a non-local Bayes (NL-Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

  20. Complex diffusion process for noise reduction

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Barari, A.

    2014-01-01

    equations (PDEs) in image restoration and de-noising prompted many researchers to search for an improvement in the technique. In this paper, a new method is presented for signal de-noising, based on PDEs and Schrodinger equations, named as complex diffusion process (CDP). This method assumes that variations...... for signal de-noising. To evaluate the performance of the proposed method, a number of experiments have been performed using Sinusoid, multi-component and FM signals cluttered with noise. The results indicate that the proposed method outperforms the approaches for signal de-noising known in prior art....

  1. Auditory intensity processing: Effect of MRI background noise.

    Science.gov (United States)

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Noise suppression via generalized-Markovian processes

    Science.gov (United States)

    Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo

    2017-11-01

    It is by now well established that noise itself can be useful for performing quantum information processing tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum channel by counteracting its detrimental effects with another form of noise. In particular, we consider the effect of adding on top of a purely Markovian (Lindblad) dynamics, a more general form of dissipation, which we refer to as generalized-Markovian noise. This noise has an associated memory kernel and the resulting dynamics are described by an integrodifferential equation. The overall dynamics are characterized by decay rates which depend not only on the original dissipative time scales but also on the new integral kernel. We find that one can engineer this kernel such that the overall rate of decay is lowered by the addition of this noise term. We illustrate this technique for the case where the bare noise is described by a dephasing Pauli channel. We analytically solve this model and show that one can effectively double (or even triple) the length of the channel, while achieving the same fidelity, entanglement, and error threshold. We numerically verify this scheme can also be used to protect against thermal Markovian noise (at nonzero temperature), which models spontaneous emission and excitation processes. A physical interpretation of this scheme is discussed, whereby the added generalized-Markovian noise causes the system to become periodically decoupled from the background Markovian noise.

  3. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    Science.gov (United States)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  4. Recursive Estimation for Dynamical Systems with Different Delay Rates Sensor Network and Autocorrelated Process Noises

    Directory of Open Access Journals (Sweden)

    Jianxin Feng

    2014-01-01

    Full Text Available The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property is described by the covariances between different time instants. The system model under consideration is subject to multiplicative noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution. By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.

  5. A method of signal transmission path analysis for multivariate random processes

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1984-04-01

    A method for noise analysis called ''STP (signal transmission path) analysis'' is presentd as a tool to identify noise sources and their propagation paths in multivariate random proceses. Basic idea of the analysis is to identify, via time series analysis, effective network for the signal power transmission among variables in the system and to make use of its information to the noise analysis. In the present paper, we accomplish this through two steps of signal processings; first, we estimate, using noise power contribution analysis, variables which have large contribution to the power spectrum of interest, and then evaluate the STPs for each pair of variables to identify STPs which play significant role for the generated noise to transmit to the variable under evaluation. The latter part of the analysis is executed through comparison of partial coherence function and newly introduced partial noise power contribution function. This paper presents the procedure of the STP analysis and demonstrates, using simulation data as well as Borssele PWR noise data, its effectiveness for investigation of noise generation and propagation mechanisms. (author)

  6. Precomputing Process Noise Covariance for Onboard Sequential Filters

    Science.gov (United States)

    Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell

    2017-01-01

    Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis studies is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.

  7. Studies in astronomical time series analysis: Modeling random processes in the time domain

    Science.gov (United States)

    Scargle, J. D.

    1979-01-01

    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  8. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  9. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  10. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  11. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  12. Interdependent processing and encoding of speech and concurrent background noise.

    Science.gov (United States)

    Cooper, Angela; Brouwer, Susanne; Bradlow, Ann R

    2015-05-01

    Speech processing can often take place in adverse listening conditions that involve the mixing of speech and background noise. In this study, we investigated processing dependencies between background noise and indexical speech features, using a speeded classification paradigm (Garner, 1974; Exp. 1), and whether background noise is encoded and represented in memory for spoken words in a continuous recognition memory paradigm (Exp. 2). Whether or not the noise spectrally overlapped with the speech signal was also manipulated. The results of Experiment 1 indicated that background noise and indexical features of speech (gender, talker identity) cannot be completely segregated during processing, even when the two auditory streams are spectrally nonoverlapping. Perceptual interference was asymmetric, whereby irrelevant indexical feature variation in the speech signal slowed noise classification to a greater extent than irrelevant noise variation slowed speech classification. This asymmetry may stem from the fact that speech features have greater functional relevance to listeners, and are thus more difficult to selectively ignore than background noise. Experiment 2 revealed that a recognition cost for words embedded in different types of background noise on the first and second occurrences only emerged when the noise and the speech signal were spectrally overlapping. Together, these data suggest integral processing of speech and background noise, modulated by the level of processing and the spectral separation of the speech and noise.

  13. Reduction of Musical Noise in Spectral Subtraction Method Using Subframe Phase Randomization

    Energy Technology Data Exchange (ETDEWEB)

    Seok, J.W.; Bae, K.S. [Kyungpook National University, Taegu (Korea)

    1999-06-01

    The Subframe phase randomization method is applied to the spectral subtraction method to reduce the musical noise in nonvoicing region after speech enhancement. The musical noise in the spectral subtraction method is the result of the narrowband tonal components that appearing somewhat periodically in the spectrogram of unvoiced and silence regions. Thus each synthesis frame in nonvoicing region is divided into several subframes to broaden the narrowband spectrum, and then phases of silence and unvoiced regions are randomized to eliminate the tonal components in the spectrum while keeping the shape of the amplitude spectrum. Performance assessments based on visual inspection of spectrogram, objective measure, and informal subjective listening tests demonstrate the superiority of the proposed algorithm. (author). 7 refs., 5 figs.

  14. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  15. Random sampling of evolution time space and Fourier transform processing

    International Nuclear Information System (INIS)

    Kazimierczuk, Krzysztof; Zawadzka, Anna; Kozminski, Wiktor; Zhukov, Igor

    2006-01-01

    Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15 N-edited NOESY-HSQC spectra of 13 C 15 N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time

  16. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    Science.gov (United States)

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  17. Background Noise Degrades Central Auditory Processing in Toddlers.

    Science.gov (United States)

    Niemitalo-Haapola, Elina; Haapala, Sini; Jansson-Verkasalo, Eira; Kujala, Teija

    2015-01-01

    Noise, as an unwanted sound, has become one of modern society's environmental conundrums, and many children are exposed to higher noise levels than previously assumed. However, the effects of background noise on central auditory processing of toddlers, who are still acquiring language skills, have so far not been determined. The authors evaluated the effects of background noise on toddlers' speech-sound processing by recording event-related brain potentials. The hypothesis was that background noise modulates neural speech-sound encoding and degrades speech-sound discrimination. Obligatory P1 and N2 responses for standard syllables and the mismatch negativity (MMN) response for five different syllable deviants presented in a linguistic multifeature paradigm were recorded in silent and background noise conditions. The participants were 18 typically developing 22- to 26-month-old monolingual children with healthy ears. The results showed that the P1 amplitude was smaller and the N2 amplitude larger in the noisy conditions compared with the silent conditions. In the noisy condition, the MMN was absent for the intensity and vowel changes and diminished for the consonant, frequency, and vowel duration changes embedded in speech syllables. Furthermore, the frontal MMN component was attenuated in the noisy condition. However, noise had no effect on P1, N2, or MMN latencies. The results from this study suggest multiple effects of background noise on the central auditory processing of toddlers. It modulates the early stages of sound encoding and dampens neural discrimination vital for accurate speech perception. These results imply that speech processing of toddlers, who may spend long periods of daytime in noisy conditions, is vulnerable to background noise. In noisy conditions, toddlers' neural representations of some speech sounds might be weakened. Thus, special attention should be paid to acoustic conditions and background noise levels in children's daily environments

  18. Noise control, sound, and the vehicle design process

    Science.gov (United States)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  19. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    Science.gov (United States)

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by

  20. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  1. Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires

    DEFF Research Database (Denmark)

    Møller, Jesper; Diaz-Avalos, Carlos

    Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... dataset consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....

  2. Structured Spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires

    DEFF Research Database (Denmark)

    Møller, Jesper; Diaz-Avalos, Carlos

    2010-01-01

    Spatio-temporal Cox point process models with a multiplicative structure for the driving random intensity, incorporating covariate information into temporal and spatial components, and with a residual term modelled by a shot-noise process, are considered. Such models are flexible and tractable fo...... data set consisting of 2796 days and 5834 spatial locations of fires. The model is compared with a spatio-temporal log-Gaussian Cox point process model, and likelihood-based methods are discussed to some extent....

  3. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  4. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    International Nuclear Information System (INIS)

    Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao

    2016-01-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)

  5. Low-Noise CMOS Circuits for On-Chip Signal Processing in Focal-Plane Arrays

    Science.gov (United States)

    Pain, Bedabrata

    The performance of focal-plane arrays can be significantly enhanced through the use of on-chip signal processing. Novel, in-pixel, on-focal-plane, analog signal-processing circuits for high-performance imaging are presented in this thesis. The presence of a high background-radiation is a major impediment for infrared focal-plane array design. An in-pixel, background-suppression scheme, using dynamic analog current memory circuit, is described. The scheme also suppresses spatial noise that results from response non-uniformities of photo-detectors, leading to background limited infrared detector readout performance. Two new, low-power, compact, current memory circuits, optimized for operation at ultra-low current levels required in infrared-detection, are presented. The first one is a self-cascading current memory that increases the output impedance, and the second one is a novel, switch feed-through reducing current memory, implemented using error-current feedback. This circuit can operate with a residual absolute -error of less than 0.1%. The storage-time of the memory is long enough to also find applications in neural network circuits. In addition, a voltage-mode, accurate, low-offset, low-power, high-uniformity, random-access sample-and-hold cell, implemented using a CCD with feedback, is also presented for use in background-suppression and neural network applications. A new, low noise, ultra-low level signal readout technique, implemented by individually counting photo-electrons within the detection pixel, is presented. The output of each unit-cell is a digital word corresponding to the intensity of the photon flux, and the readout is noise free. This technique requires the use of unit-cell amplifiers that feature ultra-high-gain, low-power, self-biasing capability and noise in sub-electron levels. Both single-input and differential-input implementations of such amplifiers are investigated. A noise analysis technique is presented for analyzing sampled

  6. Extremal dynamics: A unifying physical explanation of fractals, 1/f noise, and activated processes

    International Nuclear Information System (INIS)

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1993-01-01

    The properties of physical systems whose observable properties depend upon random exceedances of critical parameters are quantitatively examined. Using extreme value theory, the dynamical behavior of this broad class of systems is derived. This class of systems can exhibit two characteristic signatures: generalized activation when far from equilibrium and noise with a characteristic power spectrum (including 1/f ) when in quasiequilibrium. Fractal structures can also arise from these systems. It is thus demonstrated that generalized activation, noise, and fractals, in some cases, are simply different manifestations of a single common dynamical principle, which is termed ''extremal dynamics.'' Examples of physical processes governed by extremal dynamics are discussed, including data loss of nonvolatile memories and dielectric breakdown

  7. Limitations of red noise in analysing Dansgaard-Oeschger events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2010-02-01

    Full Text Available During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1 process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.

  8. Timing of the Crab pulsar III. The slowing down and the nature of the random process

    International Nuclear Information System (INIS)

    Groth, E.J.

    1975-01-01

    The Crab pulsar arrival times are analyzed. The data are found to be consistent with a smooth slowing down with a braking index of 2.515+-0.005. Superposed on the smooth slowdown is a random process which has the same second moments as a random walk in the frequency. The strength of the random process is R 2 >=0.53 (+0.24, -0.12) x10 -22 Hz 2 s -1 , where R is the mean rate of steps and 2 > is the second moment of the step amplitude distribution. Neither the braking index nor the strength of the random process shows evidence of statistically significant time variations, although small fluctuations in the braking index and rather large fluctuations in the noise strength cannot be ruled out. There is a possibility that the random process contains a small component with the same second moments as a random walk in the phase. If so, a time scale of 3.5 days is indicated

  9. Probability, random variables, and random processes theory and signal processing applications

    CERN Document Server

    Shynk, John J

    2012-01-01

    Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several app

  10. Block matching 3D random noise filtering for absorption optical projection tomography

    International Nuclear Information System (INIS)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R; Gros, J; Sbarbati, A

    2010-01-01

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360 0 full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio increment of over 30 d

  11. Random-Resistor-Random-Temperature Kirchhoff-Law-Johnson-Noise (RRRT-KLJN Key Exchange

    Directory of Open Access Journals (Sweden)

    Kish Laszlo B.

    2016-03-01

    Full Text Available We introduce two new Kirchhoff-law-Johnson-noise (KLJN secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR- KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random Resistor Random Temperature (RRRT- KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at a non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.

  12. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  13. Modeling environmental noise exceedances using non-homogeneous Poisson processes.

    Science.gov (United States)

    Guarnaccia, Claudio; Quartieri, Joseph; Barrios, Juan M; Rodrigues, Eliane R

    2014-10-01

    In this work a non-homogeneous Poisson model is considered to study noise exposure. The Poisson process, counting the number of times that a sound level surpasses a threshold, is used to estimate the probability that a population is exposed to high levels of noise a certain number of times in a given time interval. The rate function of the Poisson process is assumed to be of a Weibull type. The presented model is applied to community noise data from Messina, Sicily (Italy). Four sets of data are used to estimate the parameters involved in the model. After the estimation and tuning are made, a way of estimating the probability that an environmental noise threshold is exceeded a certain number of times in a given time interval is presented. This estimation can be very useful in the study of noise exposure of a population and also to predict, given the current behavior of the data, the probability of occurrence of high levels of noise in the near future. One of the most important features of the model is that it implicitly takes into account different noise sources, which need to be treated separately when using usual models.

  14. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  15. Mismatch and noise in modern IC processes

    CERN Document Server

    Marshall, Andrew

    2009-01-01

    Component variability, mismatch, and various noise effects are major contributors to design limitations in most modern IC processes. Mismatch and Noise in Modern IC Processes examines these related effects and how they affect the building block circuits of modern integrated circuits, from the perspective of a circuit designer.Variability usually refers to a large scale variation that can occur on a wafer to wafer and lot to lot basis, and over long distances on a wafer. This phenomenon is well understood and the effects of variability are included in most integrated circuit design with the use

  16. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  17. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  18. Pervasive randomness in physics: an introduction to its modelling and spectral characterisation

    Science.gov (United States)

    Howard, Roy

    2017-10-01

    An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.

  19. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  20. Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.

    Science.gov (United States)

    Chuang, Jason; Ausloos, Emily C; Schwebach, Courtney A; Huang, Xin

    2016-12-01

    The perception of visual motion can be profoundly influenced by visual context. To gain insight into how the visual system represents motion speed, we investigated how a background stimulus that did not move in a net direction influenced the perceived speed of a center stimulus. Visual stimuli were two overlapping random-dot patterns. The center stimulus moved coherently in a fixed direction, whereas the background stimulus moved randomly. We found that human subjects perceived the speed of the center stimulus to be significantly faster than its veridical speed when the background contained motion noise. Interestingly, the perceived speed was tuned to the noise level of the background. When the speed of the center stimulus was low, the highest perceived speed was reached when the background had a low level of motion noise. As the center speed increased, the peak perceived speed was reached at a progressively higher background noise level. The effect of speed overestimation required the center stimulus to overlap with the background. Increasing the background size within a certain range enhanced the effect, suggesting spatial integration. The speed overestimation was significantly reduced or abolished when the center stimulus and the background stimulus had different colors, or when they were placed at different depths. When the center- and background-stimuli were perceptually separable, speed overestimation was correlated with perceptual similarity between the center- and background-stimuli. These results suggest that integration of motion energy from random motion noise has a significant impact on speed perception. Our findings put new constraints on models regarding the neural basis of speed perception. Copyright © 2016 the American Physiological Society.

  1. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  2. Separation of random telegraph sSignals from 1/f noise in MOSFETs under constant and switched bias conditions

    NARCIS (Netherlands)

    Kolhatkar, J.S.; Vandamme, L.K.J.; Salm, Cora; Wallinga, Hans

    2004-01-01

    The low-frequency noise power spectrum of small dimension MOSFETs is dominated by Lorentzians arising from random telegraph signals (RTS). The low-frequency noise is observed to decrease when the devices are periodically switched 'off'. The technique of determining the statistical lifetimes and

  3. Networks of ·/G/∞ queues with shot-noise-driven arrival intensities

    NARCIS (Netherlands)

    Koops, D.T.; Boxma, O.J.; Mandjes, M.R.H.

    2017-01-01

    We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random

  4. Shot-noise-weighted processes : a new family of spatial point processes

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette); I.S. Molchanov (Ilya)

    1995-01-01

    textabstractThe paper suggests a new family of of spatial point processes distributions. They are defined by means of densities with respect to the Poisson point process within a bounded set. These densities are given in terms of a functional of the shot-noise process with a given influence

  5. The Effects of Syntactic Complexity on Processing Sentences in Noise

    Science.gov (United States)

    Carroll, Rebecca; Ruigendijk, Esther

    2013-01-01

    This paper discusses the influence of stationary (non-fluctuating) noise on processing and understanding of sentences, which vary in their syntactic complexity (with the factors canonicity, embedding, ambiguity). It presents data from two RT-studies with 44 participants testing processing of German sentences in silence and in noise. Results show a…

  6. Industrial noise level study in a wheat processing factory in ilorin, nigeria

    Science.gov (United States)

    Ibrahim, I.; Ajao, K. R.; Aremu, S. A.

    2016-05-01

    An industrial process such as wheat processing generates significant noise which can cause adverse effects on workers and the general public. This study assessed the noise level at a wheat processing mill in Ilorin, Nigeria. A portable digital sound level meter HD600 manufactured by Extech Inc., USA was used to determine the noise level around various machines, sections and offices in the factory at pre-determined distances. Subjective assessment was also mode using a World Health Organization (WHO) standard questionnaire to obtain information regarding noise ratings, effect of noise on personnel and noise preventive measures. The result of the study shows that the highest noise of 99.4 dBA was recorded at a pressure blower when compared to other machines. WHO Class-4 hearing protector is recommended for workers on the shop floor and room acoustics should be upgraded to absorb some sounds transmitted to offices.

  7. Selective modulation of nociceptive processing due to noise distraction.

    Science.gov (United States)

    Boyle, Yvonne; El-Deredy, Wael; Martínez Montes, Eduardo; Bentley, Deborah E; Jones, Anthony K P

    2008-09-15

    This study investigates the effects of noise distraction on the different components and sources of laser-evoked potentials (LEPs) whilst attending to either the spatial component (localisation performance task) or the affective component (unpleasantness rating task) of pain. LEPs elicited by CO2 laser stimulation of the right forearm were recorded from 64 electrodes in 18 consenting healthy volunteers. Subjects reported either pain location or unpleasantness, in the presence and absence of distraction by continuous 85 dBa white noise. Distributed sources of the LEP peaks were identified using Low Resolution Electromagnetic Tomography (LORETA). Pain unpleasantness ratings and P2 (430 ms) peak amplitude were significantly reduced by distraction during the unpleasantness task, whereas the localisation ability and the corresponding N1/N2 (310 ms) peak amplitude remained unchanged. Noise distraction (at 310 ms) reduced activation in the anterior cingulate cortex (ACC) and precuneus during attention to localisation and unpleasantness, respectively. This suggests a complimentary role for these two areas in the control of attention to pain. In contrast, activation of the occipital pole and SII were enhanced by noise during the localisation and unpleasantness task, respectively, suggesting that the presence of noise was associated with increased spatial attentional load. This study has shown selective modulation of affective pain processing by noise distraction, indicated by a reduction in the unpleasantness ratings and P2 peak amplitude and associated activity within the medial pain system. These results show that processing of the affective component of pain can be differentially modulated by top-down processes, providing a potential mechanism for therapeutic intervention.

  8. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2015-07-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured "signal" as well as "noise." Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. Copyright © 2015. Published by Elsevier Inc.

  9. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  10. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  11. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  12. Generalized randomly amplified linear system driven by Gaussian noises: Extreme heavy tail and algebraic correlation decay in plasma turbulence

    International Nuclear Information System (INIS)

    Steinbrecher, Gyoergy; Weyssow, B.

    2004-01-01

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained

  13. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  14. Impact of Noise and Noise Reduction on Processing Effort: A Pupillometry Study

    DEFF Research Database (Denmark)

    Wendt, Dorothea; Hietkamp, Renskje K; Lunner, Thomas

    2017-01-01

    of noise (intelligibility level) and different NR schemes on effort were evaluated by measuring the pupil dilation of listeners. In 2 different experiments, performance accuracy and peak pupil dilation (PPD) were measured in 24 listeners with hearing impairment while they performed a speech recognition...... task. The listeners were tested at 2 different signal to noise ratios corresponding to either the individual 50% correct (L50) or the 95% correct (L95) performance level in a 4-talker babble condition with and without the use of a NR scheme. In experiment 1, the PPD differed in response to both changes...... in the speech intelligibility level (L50 versus L95) and NR scheme. The PPD increased with decreasing intelligibility, indicating higher processing effort under the L50 condition compared with the L95 condition. Moreover, the PPD decreased when the NR scheme was applied, suggesting that the processing effort...

  15. Accelerated numerical processing of electronically recorded holograms with reduced speckle noise.

    Science.gov (United States)

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2013-09-01

    The numerical reconstruction of digitally recorded holograms suffers from speckle noise. An accelerated method that uses general-purpose computing in graphics processing units to reduce that noise is shown. The proposed methodology utilizes parallelized algorithms to record, reconstruct, and superimpose multiple uncorrelated holograms of a static scene. For the best tradeoff between reduction of the speckle noise and processing time, the method records, reconstructs, and superimposes six holograms of 1024 × 1024 pixels in 68 ms; for this case, the methodology reduces the speckle noise by 58% compared with that exhibited by a single hologram. The fully parallelized method running on a commodity graphics processing unit is one order of magnitude faster than the same technique implemented on a regular CPU using its multithreading capabilities. Experimental results are shown to validate the proposal.

  16. Non-stationary least-squares complex decomposition for microseismic noise attenuation

    Science.gov (United States)

    Chen, Yangkang

    2018-06-01

    Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.

  17. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-01-01

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  18. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Maezawa, Masaaki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Urano, Chiharu [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 3, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563 (Japan)

    2015-11-15

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  19. Evaluation of domain randomness in periodically poled lithium niobate by diffraction noise measurement.

    Science.gov (United States)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2013-12-16

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

  20. Long-term exposure to noise impairs cortical sound processing and attention control.

    Science.gov (United States)

    Kujala, Teija; Shtyrov, Yury; Winkler, Istvan; Saher, Marieke; Tervaniemi, Mari; Sallinen, Mikael; Teder-Sälejärvi, Wolfgang; Alho, Kimmo; Reinikainen, Kalevi; Näätänen, Risto

    2004-11-01

    Long-term exposure to noise impairs human health, causing pathological changes in the inner ear as well as other anatomical and physiological deficits. Numerous individuals are daily exposed to excessive noise. However, there is a lack of systematic research on the effects of noise on cortical function. Here we report data showing that long-term exposure to noise has a persistent effect on central auditory processing and leads to concurrent behavioral deficits. We found that speech-sound discrimination was impaired in noise-exposed individuals, as indicated by behavioral responses and the mismatch negativity brain response. Furthermore, irrelevant sounds increased the distractibility of the noise-exposed subjects, which was shown by increased interference in task performance and aberrant brain responses. These results demonstrate that long-term exposure to noise has long-lasting detrimental effects on central auditory processing and attention control.

  1. Image processing on the image with pixel noise bits removed

    Science.gov (United States)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  2. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Distribution of the Interval between Events of a Cox Process with Shot Noise Intensity

    Directory of Open Access Journals (Sweden)

    Angelos Dassios

    2008-01-01

    Full Text Available Applying piecewise deterministic Markov processes theory, the probability generating function of a Cox process, incorporating with shot noise process as the claim intensity, is obtained. We also derive the Laplace transform of the distribution of the shot noise process at claim jump times, using stationary assumption of the shot noise process at any times. Based on this Laplace transform and from the probability generating function of a Cox process with shot noise intensity, we obtain the distribution of the interval of a Cox process with shot noise intensity for insurance claims and its moments, that is, mean and variance.

  4. Why nature needs 1/f noise

    International Nuclear Information System (INIS)

    Kuzovlev, Yu E

    2015-01-01

    While ubiquitous at all levels of organization in nature, including in nanotechnology, low-frequency 1/f noise is not yet understood. A possible reason is the unjustified application of probability theory concepts, primarily that of independence, to random physical phenomena. We show that in the framework of statistical mechanics, no medium can impart a definite diffusivity and mobility to a particle that performs random walk through it, which gives rise to flicker fluctuations in these properties. A universal source of 1/f noise in many-particle systems in this example is a dependence of the time behavior of any particular relaxation or transport process on the details of the initial microstate of the system as a whole. (methodological notes)

  5. Affectively salient meaning in random noise: a task sensitive to psychosis liability.

    Science.gov (United States)

    Galdos, Mariana; Simons, Claudia; Fernandez-Rivas, Aranzazu; Wichers, Marieke; Peralta, Concepción; Lataster, Tineke; Amer, Guillermo; Myin-Germeys, Inez; Allardyce, Judith; Gonzalez-Torres, Miguel Angel; van Os, Jim

    2011-11-01

    Stable differences in the tendency to attribute meaning and emotional value to experience may represent an indicator of liability to psychosis. A brief task was developed assessing variation in detecting affectively meaningful speech (speech illusion) in neutral random signals (white noise) and the degree to which this was associated with psychometric and familial vulnerability for psychosis. Thirty patients, 28 of their siblings, and 307 controls participated. The rate of speech illusion was compared between cases and controls. In controls, the association between speech illusion and interview-based positive schizotypy was assessed. The hypothesis of a dose-response increase in rate of speech illusion across increasing levels of familial vulnerability for psychosis (controls, siblings of patients, and patients) was examined. Patients were more likely to display speech illusions than controls (odds ratio [OR] = 4.0, 95% confidence interval [CI] = 1.4-11.7), also after controlling for neurocognitive variables (OR = 3.8, 95% CI = 1.04-14.1). The case-control difference was more accentuated for speech illusion perceived as affectively salient (positively or negatively appraised) than for neutrally appraised speech illusions. Speech illusion in the controls was strongly associated with positive schizotypy but not with negative schizotypy. In addition, the rate of speech illusion increased with increasing level of familial risk for psychotic disorder. The data suggest that the white noise task may be sensitive to psychometric and familial vulnerability for psychosis associated with alterations in top-down processing and/or salience attribution.

  6. Accurate estimation of camera shot noise in the real-time

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  7. Stability of a nonlinear second order equation under parametric bounded noise excitation

    International Nuclear Information System (INIS)

    Wiebe, Richard; Xie, Wei-Chau

    2016-01-01

    The motivation for the following work is a structural column under dynamic axial loads with both deterministic (harmonic transmitted forces from the surrounding structure) and random (wind and/or earthquake) loading components. The bounded noise used herein is a sinusoid with an argument composed of a random (Wiener) process deviation about a mean frequency. By this approach, a noise parameter may be used to investigate the behavior through the spectrum from simple harmonic forcing, to a bounded random process with very little harmonic content. The stability of both the trivial and non-trivial stationary solutions of an axially-loaded column (which is modeled as a second order nonlinear equation) under parametric bounded noise excitation is investigated by use of Lyapunov exponents. Specifically the effect of noise magnitude, amplitude of the forcing, and damping on stability of a column is investigated. First order averaging is employed to obtain analytical approximations of the Lyapunov exponents of the trivial solution. For the non-trivial stationary solution however, the Lyapunov exponents are obtained via Monte Carlo simulation as the stability equations become analytically intractable. (paper)

  8. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    International Nuclear Information System (INIS)

    Okura, Yuki; Futamase, Toshifumi

    2013-01-01

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of ν ∼ 11.7.

  9. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  10. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    International Nuclear Information System (INIS)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.; Kumar, Prem; Yuen, Horace P.

    2005-01-01

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered

  11. High level white noise generator

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Blalock, T.V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application

  12. High level white noise generator

    Science.gov (United States)

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  13. Measurement time and statistics for a noise thermometer with a synthetic-noise reference

    Science.gov (United States)

    White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.

    2008-08-01

    This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.

  14. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise.

    Science.gov (United States)

    Kumar, U Ajith; Ameenudin, Syed; Sangamanatha, A V

    2012-01-01

    Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13), 41 50 ( = 13), 41-50 (n = 9), and 51-60 (n = 6) years and their non-noise-exposed counterparts (n = 30 in each age group). Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.

  15. Temporal and speech processing skills in normal hearing individuals exposed to occupational noise

    Directory of Open Access Journals (Sweden)

    U Ajith Kumar

    2012-01-01

    Full Text Available Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13, 41 50 ( = 13, 41-50 (n = 9, and 51-60 (n = 6 years and their non-noise-exposed counterparts (n = 30 in each age group. Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.

  16. The diversity and unity of reactor noise theory

    International Nuclear Information System (INIS)

    Kuang, Zhifeng

    2001-01-01

    The study of reactor noise theory concerns questions about cause and effect relationships, and the utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and the various practical purposes. The neutron noise in zero-energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor the reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that the useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Paper II gives a numerical evaluation of these formulae. An assessment of the

  17. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    International Nuclear Information System (INIS)

    Arenas, Zochil González; Barci, Daniel G

    2012-01-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward–Takahashi identities. (paper)

  18. Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes

    Science.gov (United States)

    González Arenas, Zochil; Barci, Daniel G.

    2012-12-01

    Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.

  19. Assessment of the impulse noise attenuation by earplugs in metalworking processes

    Directory of Open Access Journals (Sweden)

    Rafał Młyński

    2014-04-01

    Full Text Available Background: The aim of the study was to answer the question of whether earplugs provide sufficient protection in the exposure to impulse noise generated during metalworking processes. Material and Methods: The noise generated by die forging hammer and punching machine was characterized. Using an acoustic test fixture, noise parameters (LCpeak, LAmax under 24 earplugs, foam, winged and no-roll, were measured. Octave band method was used to calculate values of LAeq under earplugs. Results: It was found that in the case of punching machine the exposure limit value of A-weighted noise exposure level, normalized to an 8-h working day (LEX,8h = 94.8 dB of noise present at the workstation, was exceeded, while in the case of die forging hammer both the exposure limit value of this parameter (LEX,8h = 108.3 dB and the exposure limit value of peak sound pressure level (LCpeak = 148.9 dB were exceeded. The assessment of noise parameters (LCpeak, LAmax, LAeq under earplugs revealed that the noise attenuation can be insufficient, sufficient, or too high. Conclusions: Earplugs can be suitable hearing protection devices in metalworking processes. Of the 24 earplugs included in this study, 9 provided appropriate noise attenuation in the case of tested die forging hammer and 10 in the case of tested punching machine. Med Pr 2014;65(2:197–207

  20. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  1. Optimization of valve opening process for the suppression of impulse exhaust noise

    Science.gov (United States)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  2. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  3. Strong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Hongtao Yang

    2018-01-01

    Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.

  4. Blind signal processing algorithms under DC biased Gaussian noise

    Science.gov (United States)

    Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.

  5. Kalman Filtering for Discrete Stochastic Systems with Multiplicative Noises and Random Two-Step Sensor Delays

    Directory of Open Access Journals (Sweden)

    Dongyan Chen

    2015-01-01

    Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.

  6. Multivariate Product-Shot-noise Cox Point Process Models

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Mateu, Jorge

    We introduce a new multivariate product-shot-noise Cox process which is useful for model- ing multi-species spatial point patterns with clustering intra-specific interactions and neutral, negative or positive inter-specific interactions. The auto and cross pair correlation functions of the process...... can be obtained in closed analytical forms and approximate simulation of the process is straightforward. We use the proposed process to model interactions within and among five tree species in the Barro Colorado Island plot....

  7. Investigation of Noises in GPS Time Series: Case Study on Epn Weekly Solutions

    Science.gov (United States)

    Klos, Anna; Bogusz, Janusz; Figurski, Mariusz; Kosek, Wieslaw; Gruszczynski, Maciej

    2014-05-01

    The noises in GPS time series are stated to be described the best by the combination of white (Gaussian) and power-law processes. They are mainly the effect of mismodelled satellite orbits, Earth orientation parameters, atmospheric effects, antennae phase centre effects, or of monument instability. Due to the fact, that velocities of permanent stations define the kinematic reference frame, they have to fulfil the requirement of being stable at 0.1 mm/yr. The previously performed researches showed, that the wrong assumption of noise model leads to the underestimation of velocities and their uncertainties from 2 up to even 11, especially in the Up direction. This presentation focuses on more than 200 EPN (EUREF Permanent Network) stations from the area of Europe with various monument types (concrete pillars, buildings, metal masts, with or without domes, placed on the ground or on the rock) and coordinates of weekly changes (GPS weeks 0834-1459). The topocentric components (North, East, Up) in ITRF2005 which come from the EPN Re-Processing made by the Military University of Technology Local Analysis Centre (MUT LAC) were processed with Maximum Likelihood Estimation (MLE) using CATS software. We have assumed the existence of few combinations of noise models (these are: white, flicker and random walk noise with integer spectral indices and power-law noise models with fractional spectral indices) and investigated which of them EPN weekly time series are likely to follow. The results show, that noises in GPS time series are described the best by the combination of white and flicker noise model. It is strictly related to the so-called common mode error (CME) that is spatially correlated error being one of the dominant error source in GPS solutions. We have assumed CME as spatially uniform, what was a good approximation for stations located hundreds of kilometres one to another. Its removal with spatial filtering reduces the amplitudes of white and flicker noise by a

  8. Robust random telegraph conductivity noise in single crystals of the ferromagnetic insulating manganite La0.86Ca0.14MnO3

    Science.gov (United States)

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.

    2017-03-01

    Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.

  9. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  10. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    Science.gov (United States)

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  11. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  12. Random noise can help to improve synchronization of excimer laser pulses.

    Science.gov (United States)

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  13. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2013-11-01

    Full Text Available The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes, we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  14. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  15. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Ayuobi, Tawfiqullah; Rosli, Norhayati [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  16. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    Science.gov (United States)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  17. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    International Nuclear Information System (INIS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-01-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process

  18. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    Science.gov (United States)

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-09-26

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  19. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Directory of Open Access Journals (Sweden)

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  20. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  1. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  2. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    Science.gov (United States)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  3. Autonomous data acquisition system for Paks NPP process noise signals

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Czibok, T.; Dezso, Z.; Horvath, Cs.

    2005-01-01

    A prototype of a new concept noise diagnostics data acquisition system has been developed recently to renew the aged present system. This new system is capable of collecting the whole available noise signal set simultaneously. Signal plugging and data acquisition are performed by autonomous systems (installed at each reactor unit) that are controlled through the standard plant network from a central computer installed at a suitable location. Experts can use this central unit to process and archive data series downloaded from the reactor units. This central unit also provides selected noise diagnostics information for other departments. The paper describes the hardware and software architecture of the new system in detail, emphasising the potential benefits of the new approach. (author)

  4. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  5. Effects of noise, nonlinear processing, and linear filtering on perceived music quality.

    Science.gov (United States)

    Arehart, Kathryn H; Kates, James M; Anderson, Melinda C

    2011-03-01

    The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.

  6. White Gaussian Noise - Models for Engineers

    Science.gov (United States)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  7. Noise and fluctuations an introduction

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor.The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and ""shot-noise,"" Part two explores correlation, frequency

  8. Auditory Processing in Noise: A Preschool Biomarker for Literacy.

    Science.gov (United States)

    White-Schwoch, Travis; Woodruff Carr, Kali; Thompson, Elaine C; Anderson, Samira; Nicol, Trent; Bradlow, Ann R; Zecker, Steven G; Kraus, Nina

    2015-07-01

    Learning to read is a fundamental developmental milestone, and achieving reading competency has lifelong consequences. Although literacy development proceeds smoothly for many children, a subset struggle with this learning process, creating a need to identify reliable biomarkers of a child's future literacy that could facilitate early diagnosis and access to crucial early interventions. Neural markers of reading skills have been identified in school-aged children and adults; many pertain to the precision of information processing in noise, but it is unknown whether these markers are present in pre-reading children. Here, in a series of experiments in 112 children (ages 3-14 y), we show brain-behavior relationships between the integrity of the neural coding of speech in noise and phonology. We harness these findings into a predictive model of preliteracy, revealing that a 30-min neurophysiological assessment predicts performance on multiple pre-reading tests and, one year later, predicts preschoolers' performance across multiple domains of emergent literacy. This same neural coding model predicts literacy and diagnosis of a learning disability in school-aged children. These findings offer new insight into the biological constraints on preliteracy during early childhood, suggesting that neural processing of consonants in noise is fundamental for language and reading development. Pragmatically, these findings open doors to early identification of children at risk for language learning problems; this early identification may in turn facilitate access to early interventions that could prevent a life spent struggling to read.

  9. Langevin equation with multiplicative white noise: Transformation of diffusion processes into the Wiener process in different prescriptions

    International Nuclear Information System (INIS)

    Kwok, Sau Fa

    2012-01-01

    A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.

  10. SPDEs with α-Stable Lévy Noise: A Random Field Approach

    Directory of Open Access Journals (Sweden)

    Raluca M. Balan

    2014-01-01

    Full Text Available This paper is dedicated to the study of a nonlinear SPDE on a bounded domain in Rd, with zero initial conditions and Dirichlet boundary, driven by an α-stable Lévy noise Z with α∈(0,2, α≠1, and possibly nonsymmetric tails. To give a meaning to the concept of solution, we develop a theory of stochastic integration with respect to this noise. The idea is to first solve the equation with “truncated” noise (obtained by removing from Z the jumps which exceed a fixed value K, yielding a solution uK, and then show that the solutions uL,L>K coincide on the event t≤τK, for some stopping times τK converging to infinity. A similar idea was used in the setting of Hilbert-space valued processes. A major step is to show that the stochastic integral with respect to ZK satisfies a pth moment inequality. This inequality plays the same role as the Burkholder-Davis-Gundy inequality in the theory of integration with respect to continuous martingales.

  11. Complexity in White Noise Analysis

    Science.gov (United States)

    Hida, Takeyuki

    We restrict our attention to random complex systems and discuss degree their degree of complexity based on a white noise. The white noise is realized as the time derivative of a Brownian motion B(t), and denoted by Ḃ(t). The collection {Ḃ(t)}, is a system of idealized elementary variables and at the same time the system is a stochastic representation of the time t, in other words it is time-oriented. Having expressed the given evolutional random phenomena in question in terms of the Ḃ(t), we introduce the notion of spectral multiplicity, which describes how much the phenomena are complex. The multiplicity is the number of cyclic subspaces that are spanned by the given random phenomena. Each cyclic subspace has further structure. Typical property is multiple Markov property, although this property appears only particular cases. As a related property, in fact as a characteristic of a complex system, one can speak of the time reversibility and irreversibility of certain random phenomena in terms of the white noise. We expect an irreversible random complex system may be decomposed into reversible systems.

  12. Biological impact of preschool music classes on processing speech in noise.

    Science.gov (United States)

    Strait, Dana L; Parbery-Clark, Alexandra; O'Connell, Samantha; Kraus, Nina

    2013-10-01

    Musicians have increased resilience to the effects of noise on speech perception and its neural underpinnings. We do not know, however, how early in life these enhancements arise. We compared auditory brainstem responses to speech in noise in 32 preschool children, half of whom were engaged in music training. Thirteen children returned for testing one year later, permitting the first longitudinal assessment of subcortical auditory function with music training. Results indicate emerging neural enhancements in musically trained preschoolers for processing speech in noise. Longitudinal outcomes reveal that children enrolled in music classes experience further increased neural resilience to background noise following one year of continued training compared to nonmusician peers. Together, these data reveal enhanced development of neural mechanisms undergirding speech-in-noise perception in preschoolers undergoing music training and may indicate a biological impact of music training on auditory function during early childhood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Identification of different processes in magnetization dynamics of API steels using magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Pérez-Benítez, J A; Espina-Hernández, J H; Le Man, Tu; Caleyo, F; Hallen, J M

    2015-01-01

    This work presents a method to identify processes in magnetization dynamics using the angular dependence of the magnetic Barkhausen noise. The analysis reveals that three different processes of the magnetization dynamics could be identified using the angular dependence of the magnetic Barkhausen noise energy. The first process is the reversed domain nucleation which is related to the magneto-crystalline energy of the material, and the second and third ones are associated with 180° and 90° domain walls motions, respectively. Additionally, two transition regions were identified and they are located between the regions associated with the aforementioned processes. The causes involving these processes are analyzed and a method for establishing their location in the Barkhausen noise signal with respect to the applied magnetic field intensity is proposed. (paper)

  14. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    Science.gov (United States)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  15. Low-frequency excess flux noise in superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Sebastian; Ferring, Anna; Fleischmann, Andreas; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2016-07-01

    Low-frequency noise is a rather universal phenomenon and appears in physical, chemical, biological or even economical systems. However, there is often very little known about the underlying processes leading to its occurrence. In particular, the origin of low-frequency excess flux noise in superconducting devices has been an unresolved puzzle for many decades. Its existence limits, for example, the coherence time of superconducting quantum bits or makes high-precision measurements of low-frequency signals using SQUIDs rather challenging. Recent experiments suggest that low-frequency excess flux noise in Josephson junction based devices might be caused by the random reversal of interacting spins in surface layer oxides and in the superconductor-substrate interface. Even if it turns out to be generally correct, the underlying physical processes, i.e. the origin of these spins, their physical nature as well as the interaction mechanisms, have not been resolved so far. In this contribution we discuss recent measurements of low-frequency SQUID noise which we performed to investigate the origin of low-frequency excess flux noise in superconducting devices. Within this context we give an overview of our measurement techniques and link our data with present theoretical models and literature data.

  16. Noise-sustained fluctuations in stochastic dynamics with a delay.

    Science.gov (United States)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-04-01

    Delayed responses to external drivers are ubiquitous in environmental, social, and biological processes. Delays may induce oscillations, Hopf bifurcations, and instabilities in deterministic systems even in the absence of nonlinearities. Despite recent advances in the study of delayed stochastic differential equations, the interaction of random drivers with delays remains poorly understood. In particular, it is unclear whether noise-induced behaviors may emerge from these interactions. Here we show that noise may enhance and sustain transient periodic oscillations inherent to deterministic delayed systems. We investigate the conditions conducive to the emergence and disappearance of these dynamics in a linear system in the presence of both additive and multiplicative noise.

  17. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  18. Data acquisition and processing system for reactor noise analysis

    International Nuclear Information System (INIS)

    Costa Oliveira, J.; Morais Da Veiga, C.; Forjaz Trigueiros, D.; Pombo Duarte, J.

    1975-01-01

    A data acquisition and processing system for reactor noise analysis by time correlation methods is described, consisting in one to four data feeding channels (transducer, associated electronics and V/f converter), a sampling unit, a landline transmission system and a PDP 15 computer. This system is being applied to study the kinetic parameters of the 'Reactor Portugues de Investigacao', a swimming-pool 1MW reactor. The main features that make such a data acquisition and processing system a useful tool to perform noise analysis are: the improved characteristics of analog-to-digital converters employed to quantize the signals; the use of an on-line computer which allows a great accumulation and a rapid treatment of data together with an easy check of the correctness of the experiments; and the adoption of the time cross-correlation technique using two-detectors which by-pass the limitation of low efficiency detectors. (author)

  19. A signal theoretic introduction to random processes

    CERN Document Server

    Howard, Roy M

    2015-01-01

    A fresh introduction to random processes utilizing signal theory By incorporating a signal theory basis, A Signal Theoretic Introduction to Random Processes presents a unique introduction to random processes with an emphasis on the important random phenomena encountered in the electronic and communications engineering field. The strong mathematical and signal theory basis provides clarity and precision in the statement of results. The book also features:  A coherent account of the mathematical fundamentals and signal theory that underpin the presented material Unique, in-depth coverage of

  20. The equivalent internal orientation and position noise for contour integration.

    Science.gov (United States)

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  1. Application of noise analysis to investigate core degradation process during PHEBUS-FPT1 test

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1997-01-01

    Noise analysis has been performed for measurement data obtained during PHEBUS-FPT1 test. The purpose of the study is to evaluate the applicability of the noise analysis to the following problems: To get more knowledge about the physical processes going on during severe core conditions; To better understand the core melting process; To establish appropriate on-line shut-down data. Results of the study indicate that the noise analysis is quite promising as a tool for investigating physical processes during the experiment. Compared with conventional approach of evaluating the signal's mean value behaviour, the noise analysis can provide additional, more detailed information: It was found that the neutron flux signal is subjected to additional reactivity perturbations in conjunction with fuel melting and relocation. This can easily be detected by applying noise analysis for the neutron flux signal. It has been demonstrated that the method developed in the present study can provide more accurate estimates of the onset of fuel relocation than using temperature signals from thermocouples in the thermal shroud. Moreover, the result suggests a potential of the present method for tracking the whole process of relocation. The result of the data analysis suggests a possibility of sensor diagnostics which may be important for confirming the quality and reliability of the recorded data. Based on the results achieved it is believed that the combined use of noise analysis and thermocouple signals will provide reliable shut-down criteria for the experiment. 8 refs

  2. Effects of noise and audiovisual cues on speech processing in adults with and without ADHD.

    Science.gov (United States)

    Michalek, Anne M P; Watson, Silvana M; Ash, Ivan; Ringleb, Stacie; Raymer, Anastasia

    2014-03-01

    This study examined the interplay among internal (e.g. attention, working memory abilities) and external (e.g. background noise, visual information) factors in individuals with and without ADHD. A 2 × 2 × 6 mixed design with correlational analyses was used to compare participant results on a standardized listening in noise sentence repetition task (QuickSin; Killion et al, 2004 ), presented in an auditory and an audiovisual condition as signal-to-noise ratio (SNR) varied from 25-0 dB and to determine individual differences in working memory capacity and short-term recall. Thirty-eight young adults without ADHD and twenty-five young adults with ADHD. Diagnosis, modality, and signal-to-noise ratio all affected the ability to process speech in noise. The interaction between the diagnosis of ADHD, the presence of visual cues, and the level of noise had an effect on a person's ability to process speech in noise. conclusion: Young adults with ADHD benefited less from visual information during noise than young adults without ADHD, an effect influenced by working memory abilities.

  3. Equilibrium and shot noise in mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  4. Noise Equally Degrades Central Auditory Processing in 2- and 4-Year-Old Children.

    Science.gov (United States)

    Niemitalo-Haapola, Elina; Haapala, Sini; Kujala, Teija; Raappana, Antti; Kujala, Tiia; Jansson-Verkasalo, Eira

    2017-08-16

    The aim of this study was to investigate developmental and noise-induced changes in central auditory processing indexed by event-related potentials in typically developing children. P1, N2, and N4 responses as well as mismatch negativities (MMNs) were recorded for standard syllables and consonants, frequency, intensity, vowel, and vowel duration changes in silent and noisy conditions in the same 14 children at the ages of 2 and 4 years. The P1 and N2 latencies decreased and the N2, N4, and MMN amplitudes increased with development of the children. The amplitude changes were strongest at frontal electrodes. At both ages, background noise decreased the P1 amplitude, increased the N2 amplitude, and shortened the N4 latency. The noise-induced amplitude changes of P1, N2, and N4 were strongest frontally. Furthermore, background noise degraded the MMN. At both ages, MMN was significantly elicited only by the consonant change, and at the age of 4 years, also by the vowel duration change during noise. Developmental changes indexing maturation of central auditory processing were found from every response studied. Noise degraded sound encoding and echoic memory and impaired auditory discrimination at both ages. The older children were as vulnerable to the impact of noise as the younger children. https://doi.org/10.23641/asha.5233939.

  5. Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen

    2007-01-01

    A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process

  6. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  7. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  8. The Analysis and Suppression of the spike noise in vibrator record

    Science.gov (United States)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and

  9. The Signal Importance of Noise

    Science.gov (United States)

    Macy, Michael; Tsvetkova, Milena

    2015-01-01

    Noise is widely regarded as a residual category--the unexplained variance in a linear model or the random disturbance of a predictable pattern. Accordingly, formal models often impose the simplifying assumption that the world is noise-free and social dynamics are deterministic. Where noise is assigned causal importance, it is often assumed to be a…

  10. A Campbell random process

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1993-02-01

    The Campbell process is a stationary random process which can have various correlation functions, according to the choice of an elementary response function. The statistical properties of this process are presented. A numerical algorithm and a subroutine for generating such a process is built up and tested, for the physically interesting case of a Campbell process with Gaussian correlations. The (non-Gaussian) probability distribution appears to be similar to the Gamma distribution

  11. Averaging, not internal noise, limits the development of coherent motion processing

    Directory of Open Access Journals (Sweden)

    Catherine Manning

    2014-10-01

    Full Text Available The development of motion processing is a critical part of visual development, allowing children to interact with moving objects and navigate within a dynamic environment. However, global motion processing, which requires pooling motion information across space, develops late, reaching adult-like levels only by mid-to-late childhood. The reasons underlying this protracted development are not yet fully understood. In this study, we sought to determine whether the development of motion coherence sensitivity is limited by internal noise (i.e., imprecision in estimating the directions of individual elements and/or global pooling across local estimates. To this end, we presented equivalent noise direction discrimination tasks and motion coherence tasks at both slow (1.5°/s and fast (6°/s speeds to children aged 5, 7, 9 and 11 years, and adults. We show that, as children get older, their levels of internal noise reduce, and they are able to average across more local motion estimates. Regression analyses indicated, however, that age-related improvements in coherent motion perception are driven solely by improvements in averaging and not by reductions in internal noise. Our results suggest that the development of coherent motion sensitivity is primarily limited by developmental changes within brain regions involved in integrating motion signals (e.g., MT/V5.

  12. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  13. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  14. Effect of noise on the development of induced sclerotic processes in the rat aorta.

    Science.gov (United States)

    Antov, G; Ivanovich, E; Kazakova, B; Goranova, L

    1985-01-01

    The authors studied the effect of 95 and 85 dB noise on the aortic wall of white rats fed for a period of 6 weeks an atherogenic diet (cholesterol + cholic acid + vitamin D2). Noise alone did not cause significant changes in the metabolism and structure of the aorta. The atherogenic diet alone caused segmental enlargement of the intercellular substance, disorganization of tissue elements, and destruction of smooth-muscle cells with marked activation of anaerobic processes, an increase in collagen content and a decrease in globular proteins and elastin. Simultaneous action of noise and of the atherogenic diet produced more pronounced biochemical and morphological alterations in the aortic wall than the diet alone. Noise not only contributes to the development of sclerotic processes but causes also complicated lesions of the aortic wall.

  15. Diffusion by extrinsic noise in the kicked Harper map

    International Nuclear Information System (INIS)

    Park, Gunyoung; Chang, C. S.

    2001-01-01

    A significantly improved analytic understanding of the extrinsically driven diffusion process is presented in a nonlinear dynamical system in which the phase space is divided into periodic two-dimensional tiles of regular motion, separated by a connected separatrix network (web) [previously studied by A. J. Lichtenberg and Blake P. Wood, Phys. Rev. Lett. >62, 2213 (1989)]. The system is represented by the usual 'kicked Harper map' with added extrinsic noise terms. Three different diffusion regimes are found depending upon the strength of the extrinsic perturbation l relative to the web and regular motions. When the extrinsic noise is dominant over the intrinsic stochasticity and the regular rotation motions in the tile, diffusion obeys the random phase scaling l 2 . When the extrinsic noise is dominant over the intrinsic stochasticity, but weaker than the regular rotation motion, the diffusion scales as lK 1/2 , where K is the strength of the intrinsic kick. These findings agree well with numerical simulation results. When the extrinsic noise process is weaker than the stochastic web process, we analytically reproduce the well-known numerical result: The web diffusion is reduced by the ratio of phase-space areas of intrinsic to extrinsic stochasticity

  16. Complex noise suppression using a sparse representation and 3D filtering of images

    Science.gov (United States)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  17. Noise reduction by support vector regression with a Ricker wavelet kernel

    International Nuclear Information System (INIS)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-01-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR

  18. Noise reduction by support vector regression with a Ricker wavelet kernel

    Science.gov (United States)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-06-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR.

  19. Noise Enhanced Stability

    International Nuclear Information System (INIS)

    Spagnolo, B.; Agudov, N.V.; Dubkov, A.A.

    2004-01-01

    The noise can stabilize a fluctuating or a periodically driven metastable state in such a way that the system remains in this state for a longer time than in the absence of white noise. This is the noise enhanced stability phenomenon, observed experimentally and numerically in different physical systems. After shortly reviewing all the physical systems where the phenomenon was observed, the theoretical approaches used to explain the effect are presented. Specifically the conditions to observe the effect in systems: (a) with periodical driving force, and (b) with random dichotomous driving force, are discussed. In case (b) we review the analytical results concerning the mean first passage time and the nonlinear relaxation time as a function of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise. (author)

  20. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  1. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    Science.gov (United States)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  2. The effect of hearing aid signal-processing schemes on acceptable noise levels: perception and prediction.

    Science.gov (United States)

    Wu, Yu-Hsiang; Stangl, Elizabeth

    2013-01-01

    The acceptable noise level (ANL) test determines the maximum noise level that an individual is willing to accept while listening to speech. The first objective of the present study was to systematically investigate the effect of wide dynamic range compression processing (WDRC), and its combined effect with digital noise reduction (DNR) and directional processing (DIR), on ANL. Because ANL represents the lowest signal-to-noise ratio (SNR) that a listener is willing to accept, the second objective was to examine whether the hearing aid output SNR could predict aided ANL across different combinations of hearing aid signal-processing schemes. Twenty-five adults with sensorineural hearing loss participated in the study. ANL was measured monaurally in two unaided and seven aided conditions, in which the status of the hearing aid processing schemes (enabled or disabled) and the location of noise (front or rear) were manipulated. The hearing aid output SNR was measured for each listener in each condition using a phase-inversion technique. The aided ANL was predicted by unaided ANL and hearing aid output SNR, under the assumption that the lowest acceptable SNR at the listener's eardrum is a constant across different ANL test conditions. Study results revealed that, on average, WDRC increased (worsened) ANL by 1.5 dB, while DNR and DIR decreased (improved) ANL by 1.1 and 2.8 dB, respectively. Because the effects of WDRC and DNR on ANL were opposite in direction but similar in magnitude, the ANL of linear/DNR-off was not significantly different from that of WDRC/DNR-on. The results further indicated that the pattern of ANL change across different aided conditions was consistent with the pattern of hearing aid output SNR change created by processing schemes. Compared with linear processing, WDRC creates a noisier sound image and makes listeners less willing to accept noise. However, this negative effect on noise acceptance can be offset by DNR, regardless of microphone mode

  3. Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers

    Science.gov (United States)

    Thompson, Elaine C.; Carr, Kali Woodruff; White-Schwoch, Travis; Otto-Meyer, Sebastian; Kraus, Nina

    2016-01-01

    From bustling classrooms to unruly lunchrooms, school settings are noisy. To learn effectively in the unwelcome company of numerous distractions, children must clearly perceive speech in noise. In older children and adults, speech-in-noise perception is supported by sensory and cognitive processes, but the correlates underlying this critical listening skill in young children (3–5 year olds) remain undetermined. Employing a longitudinal design (two evaluations separated by ~12 months), we followed a cohort of 59 preschoolers, ages 3.0–4.9, assessing word-in-noise perception, cognitive abilities (intelligence, short-term memory, attention), and neural responses to speech. Results reveal changes in word-in-noise perception parallel changes in processing of the fundamental frequency (F0), an acoustic cue known for playing a role central to speaker identification and auditory scene analysis. Four unique developmental trajectories (speech-in-noise perception groups) confirm this relationship, in that improvements and declines in word-in-noise perception couple with enhancements and diminishments of F0 encoding, respectively. Improvements in word-in-noise perception also pair with gains in attention. Word-in-noise perception does not relate to strength of neural harmonic representation or short-term memory. These findings reinforce previously-reported roles of F0 and attention in hearing speech in noise in older children and adults, and extend this relationship to preschool children. PMID:27864051

  4. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. III. Arbitrary power-law noise correlation function

    International Nuclear Information System (INIS)

    Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.

    1988-01-01

    The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index

  5. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  6. Elements of random walk and diffusion processes

    CERN Document Server

    Ibe, Oliver C

    2013-01-01

    Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic

  7. The physics of randomness and regularities for languages (lifetimes, family trees, and the second languages); in terms of random matrices

    OpenAIRE

    Tuncay, Caglar

    2007-01-01

    The physics of randomness and regularities for languages (mother tongues) and their lifetimes and family trees and for the second languages are studied in terms of two opposite processes; random multiplicative noise [1], and fragmentation [2], where the original model is given in the matrix format. We start with a random initial world, and come out with the regularities, which mimic various empirical data [3] for the present languages.

  8. Two-step estimation procedures for inhomogeneous shot-noise Cox processes

    DEFF Research Database (Denmark)

    Prokesová, Michaela; Dvorák, Jirí; Jensen, Eva B. Vedel

    In the present paper we develop several two-step estimation procedures for inhomogeneous shot-noise Cox processes. The intensity function is parametrized by the inhomogeneity parameters while the pair-correlation function is parametrized by the interaction parameters. The suggested procedures...

  9. Processing data base information having nonwhite noise

    Science.gov (United States)

    Gross, Kenneth C.; Morreale, Patricia

    1995-01-01

    A method and system for processing a set of data from an industrial process and/or a sensor. The method and system can include processing data from either real or calculated data related to an industrial process variable. One of the data sets can be an artificial signal data set generated by an autoregressive moving average technique. After obtaining two data sets associated with one physical variable, a difference function data set is obtained by determining the arithmetic difference between the two pairs of data sets over time. A frequency domain transformation is made of the difference function data set to obtain Fourier modes describing a composite function data set. A residual function data set is obtained by subtracting the composite function data set from the difference function data set and the residual function data set (free of nonwhite noise) is analyzed by a statistical probability ratio test to provide a validated data base.

  10. Computer generation of random deviates

    International Nuclear Information System (INIS)

    Cormack, John

    1991-01-01

    The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs

  11. Clustering of noise-induced oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Fomin, A I; Postnov, D E

    2001-01-01

    The subject of our study is clustering in a population of excitable systems driven by Gaussian white noise and with randomly distributed coupling strength. The cluster state is frequency-locked state in which all functional units run at the same noise-induced frequency. Cooperative dynamics...

  12. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  13. Classroom Noise and Teachers' Voice Production

    Science.gov (United States)

    Rantala, Leena M.; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva

    2015-01-01

    Purpose: The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Method: Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks…

  14. Introduction to noise-resilient computing

    CERN Document Server

    Yanushkevich, Svetlana N; Tangim, Golam

    2013-01-01

    Noise abatement is the key problem of small-scaled circuit design. New computational paradigms are needed -- as these circuits shrink, they become very vulnerable to noise and soft errors. In this lecture, we present a probabilistic computation framework for improving the resiliency of logic gates and circuits under random conditions induced by voltage or current fluctuation. Among many probabilistic techniques for modeling such devices, only a few models satisfy the requirements of efficient hardware implementation -- specifically, Boltzman machines and Markov Random Field (MRF) models. These

  15. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  16. Experimental Results on the Level Crossing Intervals of the Phase of Sine Wave Plus Noise

    Science.gov (United States)

    Youssef, Neji; Munakata, Tsutomu; Mimaki, Tadashi

    1993-03-01

    Experimental study was made on the level crossing intervals of a phase process of a sine wave plus narrow-band Gaussian noise. Since successive level crossings of phase do not necessarily occur alternately in the upward and downward direction due to the phase jump beyond 2π, the usual definitions of the probability densities of the level crossing intervals for continuous random processes are not applicable in the case of the phase process. Therefore, the probability densities of level crossing intervals of phase process are newly defined. Measurements of these densities were performed for noise having lowpass spectra of Gaussian and 7th order Butterworth types. Results are given for various values of the signal-to-noise power ratio and of the crossing level, and compared with corresponding approximation developed under the assumption of quasi-independence. The validity of the assumption depends on the spectrum shape of the noise.

  17. Noise-based Stego-ECC

    Directory of Open Access Journals (Sweden)

    Rahardjo Budi

    2014-03-01

    Full Text Available A novel method of inserting noise into stream of ciphered text is proposed. The goal of inserting noise is to increase the level of uncertainty, thus making it harder for an attacker to detect data and noise. This form of steganography is implemented using Elliptic Curve Cryptography (ECC. The process of embedding the noise to the message in the encryption process and removing the noise from the message in the decryption process is proposed in this work by modifying ElGamal to allow auto detection of data and noise.

  18. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2007-04-15

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  19. Noise Diagnostics of Stationary and Non-Stationary Reactor Processes

    International Nuclear Information System (INIS)

    Sunde, Carl

    2007-01-01

    This thesis concerns the application of noise diagnostics on different problems in the area of reactor physics involving both stationary and non-stationary core processes. Five different problems are treated, divided into three different parts. The first problem treated in the first part is the classification of two-phase flow regimes from neutron radiographic and visible light images with a neuro-wavelet algorithm. The algorithm consists of wavelet pre-processing and of an artificial neural network. The result indicates that the wavelet pre-processing is improving the training of the neural network. Next, detector tubes which are suspected of impacting on nearby fuel-assemblies in a boiling water reactor (BWR) are identified by both a classical spectral method and wavelet-based methods. It was found that there is good agreement between the different methods as well as with visual inspections of detector tube and fuel assembly damage made during the outage at the plant. The third problem addresses the determination of the decay ratio of a BWR from the auto-correlation function (ACF). Here wavelets are used, with some success, both for de-trending and de-nosing of the ACF and also for direct estimation of the decay ratio from the ACF. The second part deals with the analysis of beam-mode and shell-mode core-barrel vibrations in pressurised water reactors (PWRs). The beam-mode vibrations are analysed by using parameters of the vibration peaks, in spectra from ex core detectors. A trend analysis of the peak amplitude shows that the peak amplitude is changing during the fuel cycle. When it comes to the analysis of the shell-mode vibration, 1-D analytical and numerical calculations are performed in order to calculate the neutron noise induced in the core. The two calculations are in agreement and show that a large local noise component is present in the core which could be used to classify the shell-mode vibrations. However, a measurement made in the PWR Ringhals-3 shows

  20. Neural correlates of top-down processing in emotion perception: an ERP study of emotional faces in white noise versus noise-alone stimuli.

    Science.gov (United States)

    Lee, Kyu-Yong; Lee, Tae-Ho; Yoon, So-Jeong; Cho, Yang Seok; Choi, June-Seek; Kim, Hyun Taek

    2010-06-14

    In the present study, we investigated the neural correlates underlying the perception of emotion in response to facial stimuli in order to elucidate the extent to which emotional perception is affected by the top-down process. Subjects performed a forced, two-choice emotion discrimination task towards ambiguous visual stimuli consisted of emotional faces embedded in different levels of visual white noise, including white noise-alone stimuli. ERP recordings and behavioral responses were analyzed according to the four response categories: hit, miss, false alarm and correct rejection. We observed enlarged EPN and LPP amplitudes when subjects reported seeing fearful faces and a typical emotional EPN response in the white noise-alone conditions when fearful faces were not presented. The two components of the ERP data which imply the characteristic modulation reflecting emotional processing showed the type of emotion each individual subjectively perceived. The results suggest that top-down modulations might be indispensable for emotional perception, which consists of two distinct stages of stimulus processing in the brain. (c) 2010 Elsevier B.V. All rights reserved.

  1. Doing the Impossible: A Note on Induction and the Experience of Randomness.

    Science.gov (United States)

    Lopes, Lola L.

    1982-01-01

    The process of induction is formulated as a problem in detecting nonrandomness, or pattern, against a background of randomness, or noise. Experimental and philosophical approaches to human conceptions of randomness are contrasted. The relation between induction and the experience of randomness is discussed in terms of signal-detection theory.…

  2. Croatian Experience in Road Traffic Noise Management - Concrete Noise Barriers

    Directory of Open Access Journals (Sweden)

    Ahac Saša

    2014-07-01

    Full Text Available The paper gives an overview of concrete noise barrier application in several EU countries and in Croatia. It describes a process of introducing different noise protection solutions on Croatian market in the phase of intensive motorway construction in recent years. Namely, an extensive motorway network has been constructed in Croatia in the last 10 years. Following the process of motorway construction, noise protection walls have also been erected. Usage of different building materials and installation processes as well as variations in building expenditures has led to a comparative analysis of several types of noise protection solutions (expanded clay, wood fibre including a new eco-innovative product RUCONBAR, which incorporates rubber granules from recycled waste tyres to form a porous noise absorptive layer.

  3. Evolutionary Game Dynamics in a Fitness-Dependent Wright-Fisher Process with Noise

    International Nuclear Information System (INIS)

    Quan Ji; Wang Xianjia

    2011-01-01

    Evolutionary game dynamics in finite size populations can be described by a fitness-dependent Wright-Fisher process. We consider symmetric 2x2 games in a well-mixed population. In our model, two parameters to describe the level of player's rationality and noise intensity in environment are introduced. In contrast with the fixation probability method that used in a noiseless case, the introducing of the noise intensity parameter makes the process an ergodic Markov process and based on the limit distribution of the process, we can analysis the evolutionary stable strategy (ESS) of the games. We illustrate the effects of the two parameters on the ESS of games using the Prisoner's dilemma games (PDG) and the snowdrift games (SG). We also compare the ESS of our model with that of the replicator dynamics in infinite size populations. The results are determined by simulation experiments. (general)

  4. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  5. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-01

    the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial

  6. Quantum I/f noise in infrared detectors and scanning tunneling microscopes

    Science.gov (United States)

    Truong, Amanda Marie

    Noise is, by definition, any random and persistent disturbance, which interferes with the clarity of a signal. Modern electronic devices are designed to limit noise, and in most cases the classical forms of noise have been eliminated or greatly reduced through careful design. However, there is a fundamental, quite unavoidable type of noise, called quantum l/f noise, which occurs at low frequencies and is a fundamental consequence of the discrete nature of the charge carriers themselves. This quantum l/f noise is present in any physical cross section or process rate, such as carrier mobility, diffusion rates and scattering processes. Although quantum l/f noise has been observed for nearly a century, there has been much debate over its origin and formulation. But as modern electronic devices require greater levels of performance and detection, the l/f noise phenomenon has moved to the forefront, becoming the subject of intense research. Here, for the first time, the quantum l/f fluctuations present in both the dark current of the Quantum Well Intersubband Photodetector and the tunneling current of the Scanning Tunneling Microscope are investigated. Using the quantum l/f theory, the quantum l/f noise occurring in each of these devices is formulated. The theoretical noise results are then compared with the experimental findings of various authors with very good agreement. This important work provides a foundation for understanding quantum l/f noise and its causes in the QWIP and STM devices, and could ultimately lead to improved technology and noise reduction in these devices and others.

  7. Errors due to random noise in velocity measurement using incoherent-scatter radar

    Directory of Open Access Journals (Sweden)

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  8. An image-processing method to detect sub-optical features based on understanding noise in intensity measurements.

    Science.gov (United States)

    Bhatia, Tripta

    2018-02-01

    Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.

  9. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    Science.gov (United States)

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  10. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.

    Science.gov (United States)

    Chao, Calvin Yi-Ping; Tu, Honyih; Wu, Thomas Meng-Hsiu; Chou, Kuo-Yu; Yeh, Shang-Fu; Yin, Chin; Lee, Chih-Lin

    2017-11-23

    A study of the random telegraph noise (RTN) of a 1.1 μm pitch, 8.3 Mpixel CMOS image sensor (CIS) fabricated in a 45 nm backside-illumination (BSI) technology is presented in this paper. A noise decomposition scheme is used to pinpoint the noise source. The long tail of the random noise (RN) distribution is directly linked to the RTN from the pixel source follower (SF). The full 8.3 Mpixels are classified into four categories according to the observed RTN histogram peaks. A theoretical formula describing the RTN as a function of the time difference between the two phases of the correlated double sampling (CDS) is derived and validated by measured data. An on-chip time constant extraction method is developed and applied to the RTN analysis. The effects of readout circuit bandwidth on the settling ratios of the RTN histograms are investigated and successfully accounted for in a simulation using a RTN behavior model.

  11. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  12. Stochastic resonance and noise delayed extinction in a model of two competing species

    Science.gov (United States)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  13. Dynamics of two competing species in the presence of Lévy noise sources

    Science.gov (United States)

    La Cognata, A.; Valenti, D.; Dubkov, A. A.; Spagnolo, B.

    2010-07-01

    We consider a Lotka-Volterra system of two competing species subject to multiplicative α -stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive α -stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analyzing the role of the Lévy noise sources.

  14. Examination of the suitability of noise thermometry for precise in situ calibration of thermocouples in technical processes

    International Nuclear Information System (INIS)

    Fechner, H.

    1988-12-01

    The aim was to determine the achievable accuracy of the noise thermometer developed at the KFA in the range from 0 to 1000 0 C under laboratory conditions. Precision noise temperature measurements at fixed temperature points (triple point of water, freezing point of zinc and silver) were carried out. The fixed point technique and the conventional precision resistance thermometry, which is required to operate the fixed points, were established in accordance with the requirements of accurate (and thus longer lasting) noise temperature measurements. The analysis of all possible sources of error ensured that all systematic or random errors were in the range of a few 10 -5 . The further developed KFA noise thermometers, which can be used under industrial conditions, achieve under laboratory conditions a measuring error of about ±2.5 10 -4 - relative to the thermodynamic temperature scale - in the temperature range from 273.16 K (0.01 0 C) to 1234.894 K (961.744 0 C). Assuming that the individual measured values display a normal distribution, the noise measurements at the zinc and silver point are combined to a mean value, it becomes apparent that the average noise temperatures only deviate by +2 10 -5 (zinc) or +4 10 -5 (silver) from the respective thermodynamic temperature. (orig./HP) [de

  15. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment

    Directory of Open Access Journals (Sweden)

    Alm PA

    2013-06-01

    Full Text Available Per A Alm, Karolina DreimanisDepartment of Neuroscience, Uppsala University, Uppsala, SwedenObjectives: Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS. A novel technique is transcranial random noise stimulation (tRNS, which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects.Methods: The study was divided into three phases: (1 a double-blind 100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 µA, at intervals ranging from daily to fortnightly.crossover study, with four subjects; (2 a double-blind extended case study with one responder; and (3 open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly.Results: One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006. Unexpectedly, this effect was shown to occur also for very weak (100 µA, P = 0.048 and brief (0.5 minutes, P = 0.028 stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months.Discussion: The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects.Keywords: neuropathic pain, central pain, transcranial direct current stimulation, motor cortex stimulation, random noise stimulation

  16. Noise-induced chaos and basin erosion in softening Duffing oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2005-01-01

    It is common for many dynamical systems to have two or more attractors coexist and in such cases the basin boundary is fractal. The purpose of this paper is to study the noise-induced chaos and discuss the effect of noises on erosion of safe basin in the softening Duffing oscillator. The Melnikov approach is used to obtain the necessary condition for the rising of chaos, and the largest Lyapunov exponent is computed to identify the chaotic nature of the sample time series from the system. According to the Melnikov condition, the safe basins are simulated for both the deterministic and the stochastic cases of the system. It is shown that the external Gaussian white noise excitation is robust for inducing the chaos, while the external bounded noise is weak. Moreover, the erosion of the safe basin can be aggravated by both the Gaussian white and the bounded noise excitations, and fractal boundary can appear when the system is only excited by the random processes, which means noise-induced chaotic response is induced

  17. Long-Term Impairment of Sound Processing in the Auditory Midbrain by Daily Short-Term Exposure to Moderate Noise

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2017-01-01

    Full Text Available Most citizen people are exposed daily to environmental noise at moderate levels with a short duration. The aim of the present study was to determine the effects of daily short-term exposure to moderate noise on sound level processing in the auditory midbrain. Sound processing properties of auditory midbrain neurons were recorded in anesthetized mice exposed to moderate noise (80 dB SPL, 2 h/d for 6 weeks and were compared with those from age-matched controls. Neurons in exposed mice had a higher minimum threshold and maximum response intensity, a longer first spike latency, and a higher slope and narrower dynamic range for rate level function. However, these observed changes were greater in neurons with the best frequency within the noise exposure frequency range compared with those outside the frequency range. These sound processing properties also remained abnormal after a 12-week period of recovery in a quiet laboratory environment after completion of noise exposure. In conclusion, even daily short-term exposure to moderate noise can cause long-term impairment of sound level processing in a frequency-specific manner in auditory midbrain neurons.

  18. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    Science.gov (United States)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  19. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    International Nuclear Information System (INIS)

    Mainprize, James G.; Yaffe, Martin J.

    2010-01-01

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  20. Failing to get the gist of what's being said: background noise impairs higher-order cognitive processing.

    Science.gov (United States)

    Marsh, John E; Ljung, Robert; Nöstl, Anatole; Threadgold, Emma; Campbell, Tom A

    2015-01-01

    A dynamic interplay is known to exist between auditory processing and human cognition. For example, prior investigations of speech-in-noise have revealed there is more to learning than just listening: Even if all words within a spoken list are correctly heard in noise, later memory for those words is typically impoverished. These investigations supported a view that there is a "gap" between the intelligibility of speech and memory for that speech. Here, the notion was that this gap between speech intelligibility and memorability is a function of the extent to which the spoken message seizes limited immediate memory resources (e.g., Kjellberg et al., 2008). Accordingly, the more difficult the processing of the spoken message, the less resources are available for elaboration, storage, and recall of that spoken material. However, it was not previously known how increasing that difficulty affected the memory processing of semantically rich spoken material. This investigation showed that noise impairs higher levels of cognitive analysis. A variant of the Deese-Roediger-McDermott procedure that encourages semantic elaborative processes was deployed. On each trial, participants listened to a 36-item list comprising 12 words blocked by each of 3 different themes. Each of those 12 words (e.g., bed, tired, snore…) was associated with a "critical" lure theme word that was not presented (e.g., sleep). Word lists were either presented without noise or at a signal-to-noise ratio of 5 decibels upon an A-weighting. Noise reduced false recall of the critical words, and decreased the semantic clustering of recall. Theoretical and practical implications are discussed.

  1. On the maximal noise for stochastic and QCD travelling waves

    International Nuclear Information System (INIS)

    Peschanski, Robi

    2008-01-01

    Using the relation of a set of nonlinear Langevin equations to reaction-diffusion processes, we note the existence of a maximal strength of the noise for the stochastic travelling wave solutions of these equations. Its determination is obtained using the field-theoretical analysis of branching-annihilation random walks near the directed percolation transition. We study its consequence for the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. For the related Langevin equation modeling the quantum chromodynamic nonlinear evolution of gluon density with rapidity, the physical maximal-noise limit may appear before the directed percolation transition, due to a shift in the travelling-wave speed. In this regime, an exact solution is known from a coalescence process. Universality and other open problems and applications are discussed in the outlook

  2. Dynamics and bifurcations of random circle diffeomorphisms

    NARCIS (Netherlands)

    Zmarrou, H.; Homburg, A.J.

    2008-01-01

    We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting

  3. Microwave noise detection of a quantum dot with stub impedance matching

    OpenAIRE

    Hasler, Thomas

    2016-01-01

    Noise is defined as random fluctuations of a signal in time. The fundamental requirement for noise is some sort of randomness. Noise is well-known and infamous to every experimentalist - whether he is working in the field of electronics, optics, acoustics or anywhere else - since such fluctuations are inherent and unavoidable in many systems. For most of us, the word noise has a negative connotation. It is considered to be an unwanted disturbance superposed on a useful signal, which tend...

  4. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    Science.gov (United States)

    Zhang, Hong; Pei, Yun

    2016-08-12

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.

  5. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Novel low-temperature processing of low noise SDDs with on-detector electronics

    International Nuclear Information System (INIS)

    Sonsky, J.; Koornneef, R.; Huizenga, J.; Hollander, R.W.; Nanver, L.K.; Scholtes, T.; Roozeboom, F.; Eijk, C.W.E. van

    2004-01-01

    We have developed a fabrication process (SMART700 deg. process) for monolithic integration of p-channel JFETs and silicon detectors. Processing steps of the SMART700 deg. do not exceed 700 deg. C. The integrated p-JFET has a minimum gate length of 1 μm. A relatively large width can be chosen to achieve a reasonable transconductance, while the JFET capacitance still matches the small capacitance of a detector. The feedback capacitor was also realized on-chip as a double-metal capacitor. In this paper we describe DC and noise characteristics of a silicon drift detector (SDD) with a p-JFET (W/L=100/1) and a feedback capacitor integrated in the read-out anode (smart-SDD). The device has a transconductance of 1-3 mS, a top gate capacitance of ∼140 fF and a low leakage current ( 2 at room temperature). The smart-SDD with an active area of 3.8 mm 2 has reached an energy resolution of ∼50 rms electrons at a temperature of 213 K. This relatively poor energy resolution is due to generation-recombination noise caused by defects produced by a deep n-implantation. Rapid thermal annealing (RTA) and excimer laser annealing (ELA) techniques are experimented to remove the implantation damage. The noise of p-JFETs annealed with RTA and ELA is also presented

  7. Exploring conservative islands using correlated and uncorrelated noise

    Science.gov (United States)

    da Silva, Rafael M.; Manchein, Cesar; Beims, Marcus W.

    2018-02-01

    In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present. The random variable which simulates noise assumes three distributions, namely equally distributed, normal or Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics (RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov exponent is reminiscent of the regular islands.

  8. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  9. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  10. Maximizing noise energy for noise-masking studies.

    Science.gov (United States)

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  11. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    Science.gov (United States)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  12. Lévy based Cox point processes

    DEFF Research Database (Denmark)

    Hellmund, Gunnar; Prokesová, Michaela; Jensen, Eva Bjørn Vedel

    2008-01-01

    In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs......) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities...

  13. Scattering analysis of point processes and random measures

    International Nuclear Information System (INIS)

    Hanisch, K.H.

    1984-01-01

    In the present paper scattering analysis of point processes and random measures is studied. Known formulae which connect the scattering intensity with the pair distribution function of the studied structures are proved in a rigorous manner with tools of the theory of point processes and random measures. For some special fibre processes the scattering intensity is computed. For a class of random measures, namely for 'grain-germ-models', a new formula is proved which yields the pair distribution function of the 'grain-germ-model' in terms of the pair distribution function of the underlying point process (the 'germs') and of the mean structure factor and the mean squared structure factor of the particles (the 'grains'). (author)

  14. Estimation of Spectral Exponent Parameter of 1/f Process in Additive White Background Noise

    Directory of Open Access Journals (Sweden)

    Semih Ergintav

    2007-01-01

    Full Text Available An extension to the wavelet-based method for the estimation of the spectral exponent, γ, in a 1/fγ process and in the presence of additive white noise is proposed. The approach is based on eliminating the effect of white noise by a simple difference operation constructed on the wavelet spectrum. The γ parameter is estimated as the slope of a linear function. It is shown by simulations that the proposed method gives reliable results. Global positioning system (GPS time-series noise is analyzed and the results provide experimental verification of the proposed method.

  15. Training in Using Earplugs or Using Earplugs with a Higher than Necessary Noise Reduction Rating? A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    M Salmani Nodoushan

    2014-09-01

    Full Text Available Background: Noise-induced hearing loss (NIHL is one of the most common occupational diseases and the second most common cause of workers' claims for occupational injuries. Objective: Due to high prevalence of NIHL and several reports of improper use of hearing protective devices (HPDs, we conducted this study to compare the effect of face-to-face training in effective use of earplugs with appropriate NRR to overprotection of workers by using earplugs with higher than necessary noise reduction rating (NRR. Methods: In a randomized clinical trial, 150 workers referred to occupational medicine clinic were randomly allocated to three arms—a group wearing earplugs with an NRR of 25 with no training in appropriate use of the device; a group wearing earplugs with an NRR of 25 with training; another group wearing earplugs with an NRR of 30, with no training. Hearing threshold was measured in the study groups by real ear attenuation at threshold (REAT method. This trial is registered with Australian New Zealand clinical trials Registry, number ACTRN00363175. Results: The mean±SD age of the participants was 28±5 (range: 19–39 years. 42% of participants were female. The mean noise attenuation in the group with training was 13.88 dB, significantly higher than those observed in other groups. The highest attenuation was observed in high frequencies (4, 6, and 8 kHz in the group with training. Conclusion: Training in appropriate use of earplugs significantly affects the efficacy of earplugs—even more than using an earplug with higher NRR.

  16. Impact of Noise and Working Memory on Speech Processing in Adults with and without ADHD

    Science.gov (United States)

    Michalek, Anne M. P.

    2012-01-01

    Auditory processing of speech is influenced by internal (i.e., attention, working memory) and external factors (i.e., background noise, visual information). This study examined the interplay among these factors in individuals with and without ADHD. All participants completed a listening in noise task, two working memory capacity tasks, and two…

  17. Surprisingly rational: probability theory plus noise explains biases in judgment.

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2014-07-01

    The systematic biases seen in people's probability judgments are typically taken as evidence that people do not use the rules of probability theory when reasoning about probability but instead use heuristics, which sometimes yield reasonable judgments and sometimes yield systematic biases. This view has had a major impact in economics, law, medicine, and other fields; indeed, the idea that people cannot reason with probabilities has become a truism. We present a simple alternative to this view, where people reason about probability according to probability theory but are subject to random variation or noise in the reasoning process. In this account the effect of noise is canceled for some probabilistic expressions. Analyzing data from 2 experiments, we find that, for these expressions, people's probability judgments are strikingly close to those required by probability theory. For other expressions, this account produces systematic deviations in probability estimates. These deviations explain 4 reliable biases in human probabilistic reasoning (conservatism, subadditivity, conjunction, and disjunction fallacies). These results suggest that people's probability judgments embody the rules of probability theory and that biases in those judgments are due to the effects of random noise. (c) 2014 APA, all rights reserved.

  18. IMPLEMENTATION OF THE EU NOISE DIRECTIVE IN PROCESS OF URBAN PLANNING IN POLAND

    Directory of Open Access Journals (Sweden)

    J. Kwiecień

    2013-05-01

    The main aim of this article is to introduce the influence of acoustic climate on the urban space planning in Poland through the implementation of the provisions of Directive 2002/49/WE of the European Parliament and the Council of Europe from 25 June 2002. Moreover, in the stages of an LLUP implementations have been suggested the use of a Strategic Noise Map, being a tool for assisting the process of environmental noise level assessment in Poland.

  19. Noise-assisted data processing with empirical mode decomposition in biomedical signals.

    Science.gov (United States)

    Karagiannis, Alexandros; Constantinou, Philip

    2011-01-01

    In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.

  20. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia.

    Science.gov (United States)

    Abdul Wahab, Noor Alaudin; Zakaria, Mohd Normani; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Wahab, Suzaily

    2017-11-01

    The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.

  1. Noise Tomography and Adaptive Illumination in Noise Radar

    Science.gov (United States)

    2015-10-01

    transform of scatu , defined in (2.15), in y–direction can be written as 2 ( , , ) ( , ) 2 j dn n scat n y scat n y k EU k x d k e O k k j...and J. A. Henning , "Radar penetration imaging using ultra- wideband (UWB) random noise waveforms," IEE Proceedings-Radar Sonar and Navigation, vol

  2. A Computerized Approach to Trickle-Process, Random Assignment.

    Science.gov (United States)

    Braucht, G. Nicholas; Reichardt, Charles S.

    1993-01-01

    Procedures for implementing random assignment with trickle processing and ways they can be corrupted are described. A computerized method for implementing random assignment with trickle processing is presented as a desirable alternative in many situations and a way of protecting against threats to assignment validity. (SLD)

  3. Fundamentals of applied probability and random processes

    CERN Document Server

    Ibe, Oliver

    2014-01-01

    The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability t

  4. Gaussian white noise excited elasto-Plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Randrup-thomsen, Søren

    1996-01-01

    this restriction the obtained Slepian model results fit well with the results obtained by direct response simulations. Also it is observed that the restriction gets less importance for decreasing intensity of the white noise excitation. Keywords: Random vibrations, Slepian models, MDOF elasto-plastic oscillator......The Slepian model process method has turned out to be a powerful tool to obtain accurate approximations to the long run probability distributions of the plastic displacements of a one degree of freedom linear elastic-ideal plastic oscillator (EPO) subject to stationary Gaussian white noise...

  5. A random matrix approach to VARMA processes

    International Nuclear Information System (INIS)

    Burda, Zdzislaw; Jarosz, Andrzej; Nowak, Maciej A; Snarska, Malgorzata

    2010-01-01

    We apply random matrix theory to derive the spectral density of large sample covariance matrices generated by multivariate VMA(q), VAR(q) and VARMA(q 1 , q 2 ) processes. In particular, we consider a limit where the number of random variables N and the number of consecutive time measurements T are large but the ratio N/T is fixed. In this regime, the underlying random matrices are asymptotically equivalent to free random variables (FRV). We apply the FRV calculus to calculate the eigenvalue density of the sample covariance for several VARMA-type processes. We explicitly solve the VARMA(1, 1) case and demonstrate perfect agreement between the analytical result and the spectra obtained by Monte Carlo simulations. The proposed method is purely algebraic and can be easily generalized to q 1 >1 and q 2 >1.

  6. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    EDOARDO MILOTTI

    walks with spatially correlated white noise: the time- dependence of the distance of pairs of random walkers. ... Dedicated to the memory of the late Professor Charusita Chakravarty. also quite well-known that the two-sided noise .... due to the individual noise components, we find that in the present context the value of ξ2 is.

  7. Efficiency of transport in periodic potentials: dichotomous noise contra deterministic force

    Science.gov (United States)

    Spiechowicz, J.; Łuczka, J.; Machura, L.

    2016-05-01

    We study the transport of an inertial Brownian particle moving in a symmetric and periodic one-dimensional potential, and subjected to both a symmetric, unbiased external harmonic force as well as biased dichotomic noise η (t) also known as a random telegraph signal or a two state continuous-time Markov process. In doing so, we concentrate on the previously reported regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative biased noise η (t) in the form of generalized white Poissonian noise can induce anomalous transport processes similar to those generated by a deterministic constant force F= but significantly more effective than F, i.e. the particle moves much faster, the velocity fluctuations are noticeably reduced and the transport efficiency is enhanced several times. Here, we confirm this result for the case of dichotomous fluctuations which, in contrast to white Poissonian noise, can assume positive as well as negative values and examine the role of thermal noise in the observed phenomenon. We focus our attention on the impact of bidirectionality of dichotomous fluctuations and reveal that the effect of nonequilibrium noise enhanced efficiency is still detectable. This result may explain transport phenomena occurring in strongly fluctuating environments of both physical and biological origin. Our predictions can be corroborated experimentally by use of a setup that consists of a resistively and capacitively shunted Josephson junction.

  8. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  9. Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance

    CSIR Research Space (South Africa)

    Sastrawan, J

    2016-08-01

    Full Text Available (2016) Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance J. Sastrawan,1 C. Jones,1 I. Akhalwaya,2 H. Uys,2 and M. J. Biercuk1,* 1ARC Centre for Engineered Quantum Systems, School of Physics...) that probes and is locked to the atomic transition. The LO frequencymay evolve randomly in time due to intrinsic noise processes in the underlying hardware [10,11], leading to time-varying deviations of the LO frequency from that of the stable atomic reference...

  10. Failing to Get the Gist of What’s Being Said: Background Noise Impairs Higher Order Cognitive Processing

    Directory of Open Access Journals (Sweden)

    John Everett Marsh

    2015-05-01

    Full Text Available A dynamic interplay is known to exist between auditory processing and human cognition. For example, prior investigations of speech-in-noise have revealed there is more to learning than just listening: Even if all words within a spoken list correctly heard in noise, later memory for those words is typically impoverished. At such low signal-to-noise ratios when listeners could identify words, those participants could not necessarily remember those words. These investigations supported a view that there is a gap between the intelligibility of speech and memory for that speech. Here, the notion was that this gap between speech intelligibility and memorability is a function of the extent to which the spoken message seizes limited immediate memory resources (e.g., Kjellberg, Ljung, & Hallman, 2008. Accordingly, the more difficult the processing of the spoken message, the less resources are available for elaboration, storage, and recall of that spoken material. However, it was not previously known how increasing that difficulty affected the memory processing of semantically rich spoken material. This investigation showed that noise impairs higher levels of cognitive analysis. A variant of the Deese-Roediger-McDermott procedure that encourages semantic elaborative processes was deployed. On each trial, participants listened to a 36-item list comprising 12 words blocked by each of 3 different themes. Each of those 12 words (e.g., bed, tired, snore… was associated with a critical lure theme word that was not presented (e.g., sleep. Word lists were either presented without noise or at a signal-to-noise ratio of 5 decibels upon an A-weighting. Noise reduced false recall of the critical words, and decreased the semantic clustering of recall. Theoretical and practical implications are discussed.

  11. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1992-01-01

    In the direct white noise theory of nonlinear filtering, the state process is still modeled as a Markov process satisfying an Ito stochastic differential equation, while a finitely additive white noise is used to model the observation noise. In the present work, this asymmetry is removed by modeling

  12. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1994-01-01

    In the existing `direct¿ white noise theory of nonlinear filtering, the state process is still modelled as a Markov process satisfying an Itô stochastic differential equation, while a `finitely additive¿ white noise is used to model the observation noise. We remove this asymmetry by modelling the

  13. Absolute negative mobility induced by white Poissonian noise

    International Nuclear Information System (INIS)

    Spiechowicz, J; Łuczka, J; Hänggi, P

    2013-01-01

    We study the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and a biased Poissonian white shot noise (of non-zero average F) which is composed of a random sequence of δ-shaped pulses with random amplitudes. Upon varying the parameters of the white shot noise, one can conveniently manipulate the transport direction and the overall nonlinear response behavior. We find that within tailored parameter regimes the response is opposite to the applied average bias F of such white shot noise. This particular transport characteristic thus mimics that of a nonlinear absolute negative mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to the statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by the use of a setup that consists of a single resistively and capacitively shunted Josephson junction device. (paper)

  14. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....

  15. Digital random-number generator

    Science.gov (United States)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  16. Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited

    Directory of Open Access Journals (Sweden)

    Silvia Grigolon

    2016-04-01

    Full Text Available The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL, a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.

  17. Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback

    Science.gov (United States)

    Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain

    2017-10-01

    A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.

  18. MMRW-BOOKS, Legacy books on slowing down, thermalization, particle transport theory, random processes in reactors

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2007-01-01

    Description: Prof. M.M..R Williams has now released three of his legacy books for free distribution: 1 - M.M.R. Williams: The Slowing Down and Thermalization of Neutrons, North-Holland Publishing Company - Amsterdam, 582 pages, 1966. Content: Part I - The Thermal Energy Region: 1. Introduction and Historical Review, 2. The Scattering Kernel, 3. Neutron Thermalization in an Infinite Homogeneous Medium, 4. Neutron Thermalization in Finite Media, 5. The Spatial Dependence of the Energy Spectrum, 6. Reactor Cell Calculations, 7. Synthetic Scattering Kernels. Part II - The Slowing Down Region: 8. Scattering Kernels in the Slowing Down Region, 9. Neutron Slowing Down in an Infinite Homogeneous Medium, 10.Neutron Slowing Down and Diffusion. 2 - M.M.R. Williams: Mathematical Methods in Particle Transport Theory, Butterworths, London, 430 pages, 1971. Content: 1 The General Problem of Particle Transport, 2 The Boltzmann Equation for Gas Atoms and Neutrons, 3 Boundary Conditions, 4 Scattering Kernels, 5 Some Basic Problems in Neutron Transport and Rarefied Gas Dynamics, 6 The Integral Form of the Transport Equation in Plane, Spherical and Cylindrical Geometries, 7 Exact Solutions of Model Problems, 8 Eigenvalue Problems in Transport Theory, 9 Collision Probability Methods, 10 Variational Methods, 11 Polynomial Approximations. 3 - M.M.R. Williams: Random Processes in Nuclear Reactors, Pergamon Press Oxford New York Toronto Sydney, 243 pages, 1974. Content: 1. Historical Survey and General Discussion, 2. Introductory Mathematical Treatment, 3. Applications of the General Theory, 4. Practical Applications of the Probability Distribution, 5. The Langevin Technique, 6. Point Model Power Reactor Noise, 7. The Spatial Variation of Reactor Noise, 8. Random Phenomena in Heterogeneous Reactor Systems, 9. Associated Fluctuation Problems, Appendix: Noise Equivalent Sources. Note to the user: Prof. M.M.R Williams owns the copyright of these books and he authorises the OECD/NEA Data Bank

  19. Ruin Probabilities and Aggregrate Claims Distributions for Shot Noise Cox Processes

    DEFF Research Database (Denmark)

    Albrecher, H.; Asmussen, Søren

    claim size is investigated under these assumptions. For both light-tailed and heavy-tailed claim size distributions, asymptotic estimates for infinite-time and finite-time ruin probabilities are derived. Moreover, we discuss an extension of the model to an adaptive premium rule that is dynamically......We consider a risk process Rt where the claim arrival process is a superposition of a homogeneous Poisson process and a Cox process with a Poisson shot noise intensity process, capturing the effect of sudden increases of the claim intensity due to external events. The distribution of the aggregate...... adjusted according to past claims experience....

  20. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  1. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  2. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.

    Science.gov (United States)

    Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker

    2013-07-01

    It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.

  3. Effects of noise and working memory capacity on memory processing of speech for hearing-aid users

    OpenAIRE

    Ng, Hoi Ning, Elaine; Rudner, Mary; Lunner, Thomas; Syskind Perdersen, Michael; Rönnberg, Jerker

    2013-01-01

    Objectives: It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. Design: A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and ...

  4. Moment Lyapunov Exponent and Stochastic Stability of Binary Airfoil under Combined Harmonic and Non-Gaussian Colored Noise Excitations

    Science.gov (United States)

    Hu, D. L.; Liu, X. B.

    Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.

  5. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  6. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  7. Noise minimization in eukaryotic gene expression

    International Nuclear Information System (INIS)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-01

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection

  8. Discrete random signal processing and filtering primer with Matlab

    CERN Document Server

    Poularikas, Alexander D

    2013-01-01

    Engineers in all fields will appreciate a practical guide that combines several new effective MATLAB® problem-solving approaches and the very latest in discrete random signal processing and filtering.Numerous Useful Examples, Problems, and Solutions - An Extensive and Powerful ReviewWritten for practicing engineers seeking to strengthen their practical grasp of random signal processing, Discrete Random Signal Processing and Filtering Primer with MATLAB provides the opportunity to doubly enhance their skills. The author, a leading expert in the field of electrical and computer engineering, offe

  9. Suppression of the four-wave-mixing background noise in a quantum memory retrieval process by channel blocking

    Science.gov (United States)

    Zhang, Kai; Guo, Jinxian; Chen, L. Q.; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping

    2014-09-01

    In a quantum memory scheme with the Raman process, the read process encounters noise from four-wave mixing (FWM), which can destroy the nonclassical properties of the generated quantum fields. Here we demonstrate experimentally that the noise from FWM can be greatly suppressed by simply reducing the FWM transition channels with a circularly polarized read beam while at the same time retaining relatively high retrieval efficiency.

  10. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2005-01-01

    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  11. Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise.

    Science.gov (United States)

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F

    2009-09-01

    A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.

  12. Looking for the Signal: A guide to iterative noise and artefact removal in X-ray tomographic reconstructions of porous geomaterials

    Science.gov (United States)

    Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2017-07-01

    X-ray micro- and nanotomography has evolved into a quantitative analysis tool rather than a mere qualitative visualization technique for the study of porous natural materials. Tomographic reconstructions are subject to noise that has to be handled by image filters prior to quantitative analysis. Typically, denoising filters are designed to handle random noise, such as Gaussian or Poisson noise. In tomographic reconstructions, noise has been projected from Radon space to Euclidean space, i.e. post reconstruction noise cannot be expected to be random but to be correlated. Reconstruction artefacts, such as streak or ring artefacts, aggravate the filtering process so algorithms performing well with random noise are not guaranteed to provide satisfactory results for X-ray tomography reconstructions. With sufficient image resolution, the crystalline origin of most geomaterials results in tomography images of objects that are untextured. We developed a denoising framework for these kinds of samples that combines a noise level estimate with iterative nonlocal means denoising. This allows splitting the denoising task into several weak denoising subtasks where the later filtering steps provide a controlled level of texture removal. We describe a hands-on explanation for the use of this iterative denoising approach and the validity and quality of the image enhancement filter was evaluated in a benchmarking experiment with noise footprints of a varying level of correlation and residual artefacts. They were extracted from real tomography reconstructions. We found that our denoising solutions were superior to other denoising algorithms, over a broad range of contrast-to-noise ratios on artificial piecewise constant signals.

  13. Active noise cancellation of low frequency noise propagating in a duct

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: With regard to the wide range of frequencies of different noise sources, having optimized circumstances in the duct, microphone location on the duct body or even the distance of the speakers may be important in signal processing, noise sampling and anti noise production.

  14. Surveillance of instruments by noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Random fluctuations of neutron flux, temperature, and pressure in a reactor provide multifrequency excitation of the corresponding instrumentation chains. Mathematical descriptors suitable for characterizing the output, or noise, of the instrumentation are reviewed with a view toward using such noise in detecting instrument faults. Demonstrations of the feasibility of this approach in a number of reactors provide illustrative examples. Comparisons with traditional surveillance testing are made, and a number of advantages and some disadvantages of using noise analysis as a supplementary technique are pointed out

  15. A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Olin K Silander

    2012-01-01

    Full Text Available Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as "phenotypic noise." In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alone.

  16. Impact of background noise and sentence complexity on cognitive processing demands

    DEFF Research Database (Denmark)

    Wendt, Dorothea; Dau, Torsten; Hjortkjær, Jens

    2015-01-01

    Speech comprehension in adverse listening conditions requires cognitive processingdemands. Processing demands can increase with acoustically degraded speech but also depend on linguistic aspects of the speech signal, such as syntactic complexity. In the present study, pupil dilations were recorded...... in 19 normal-hearing participants while processing sentences that were either syntactically simple or complex and presented in either high- or low-level background noise. Furthermore, the participants were asked to rate the subjectively perceived difficulty of sentence comprehension. The results showed...

  17. Impact of background noise and sentence complexity on cognitive processing effort

    DEFF Research Database (Denmark)

    Wendt, Dorothea; Dau, Torsten; Hjortkjær, Jens

    2015-01-01

    Speech comprehension in adverse listening conditions requires cognitive pro- cessing demands. Processing demands can increase with acoustically degraded speech but also depend on linguistic aspects of the speech signal, such as syntactic complexity. In the present study, pupil dilations were...... recorded in 19 normal-hearing participants while processing sentences that were either syntactically simple or complex and presented in either high- or low-level background noise. Furthermore, the participants were asked to rate the sub- jectively perceived difficulty of sentence comprehension. The results...

  18. Statistical and heuristic image noise extraction (SHINE): a new method for processing Poisson noise in scintigraphic images

    International Nuclear Information System (INIS)

    Hannequin, Pascal; Mas, Jacky

    2002-01-01

    Poisson noise is one of the factors degrading scintigraphic images, especially at low count level, due to the statistical nature of photon detection. We have developed an original procedure, named statistical and heuristic image noise extraction (SHINE), to reduce the Poisson noise contained in the scintigraphic images, preserving the resolution, the contrast and the texture. The SHINE procedure consists in dividing the image into 4 x 4 blocks and performing a correspondence analysis on these blocks. Each block is then reconstructed using its own significant factors which are selected using an original statistical variance test. The SHINE procedure has been validated using a line numerical phantom and a hot spots and cold spots real phantom. The reference images are the noise-free simulated images for the numerical phantom and an extremely high counts image for the real phantom. The SHINE procedure has then been applied to the Jaszczak phantom and clinical data including planar bone scintigraphy, planar Sestamibi scintigraphy and Tl-201 myocardial SPECT. The SHINE procedure reduces the mean normalized error between the noisy images and the corresponding reference images. This reduction is constant and does not change with the count level. The SNR in a SHINE processed image is close to that of the corresponding raw image with twice the number of counts. The visual results with the Jaszczak phantom SPECT have shown that SHINE preserves the contrast and the resolution of the slices well. Clinical examples have shown no visual difference between the SHINE images and the corresponding raw images obtained with twice the acquisition duration. SHINE is an entirely automatic procedure which enables halving the acquisition time or the injected dose in scintigraphic acquisitions. It can be applied to all scintigraphic images, including PET data, and to all low-count photon images

  19. The difference in noise property between the Autler—Townes splitting medium and the electromagnetically induced transparent medium

    International Nuclear Information System (INIS)

    Li Zhong-Hua; Li Yuan; Dou Ya-Fang; Zhang Jun-Xiang

    2012-01-01

    The quantum noise of squeezed probe light passing through an atomic system with different electromagnetically induced transparency and Autler—Townes splitting effects is investigated theoretically. It is found that the optimal squeezing preservation of the outgoing probe beam occurs in the strong-coupling-field regime rather than in the weak-coupling-field regime. In the weak-coupling-field regime, which was recently recognized as the electromagnetically induced transparency regime (Abi-Salloum T Y 2010 Phys. Rev. A 81 053836), the output amplitude noise is affected mainly by the atomic noise originating from the random decay process of atoms. While in the strong-coupling-field regime, defined as the Autler—Townes splitting regime, the output amplitude noise is affected mainly by the phase-to-amplitude conversion noise. This is useful in improving the quality of the experiment for efficient quantum memory, and hence has an application in quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure

    Science.gov (United States)

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured “signal” as well as “noise.” Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. PMID:25862264

  1. Microscopic origin of read current noise in TaO_x-based resistive switching memory by ultra-low temperature measurement

    International Nuclear Information System (INIS)

    Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru

    2016-01-01

    TaO_x-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO_x-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO_x RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO_x RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  2. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to .... municative [19] or social [20], deviate from the random ..... He has shown that the spatial effects become.

  3. Scaling law of resistance fluctuations in stationary random resistor networks

    Science.gov (United States)

    Pennetta; Trefan; Reggiani

    2000-12-11

    In a random resistor network we consider the simultaneous evolution of two competing random processes consisting in breaking and recovering the elementary resistors with probabilities W(D) and W(R). The condition W(R)>W(D)/(1+W(D)) leads to a stationary state, while in the opposite case, the broken resistor fraction reaches the percolation threshold p(c). We study the resistance noise of this system under stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations is found to follow a scaling law |p-p(c)|(-kappa(0)) with kappa(0) = 5.5. The proposed model relates quantitatively the defectiveness of a disordered media with its electrical and excess-noise characteristics.

  4. Distinguishing deterministic and noise components in ELM time series

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Kuzovkov, V.N

    2004-01-01

    Full text: One of the main problems in the preliminary data analysis is distinguishing the deterministic and noise components in the experimental signals. For example, in plasma physics the question arises analyzing edge localized modes (ELMs): is observed ELM behavior governed by a complicate deterministic chaos or just by random processes. We have developed methodology based on financial engineering principles, which allows us to distinguish deterministic and noise components. We extended the linear auto regression method (AR) by including the non-linearity (NAR method). As a starting point we have chosen the nonlinearity in the polynomial form, however, the NAR method can be extended to any other type of non-linear functions. The best polynomial model describing the experimental ELM time series was selected using Bayesian Information Criterion (BIC). With this method we have analyzed type I ELM behavior in a subset of ASDEX Upgrade shots. Obtained results indicate that a linear AR model can describe the ELM behavior. In turn, it means that type I ELM behavior is of a relaxation or random type

  5. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  6. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  7. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  8. Role of the noise on the transient dynamics of an ecosystem of interacting species

    Science.gov (United States)

    Spagnolo, B.; La Barbera, A.

    2002-11-01

    We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.

  9. Seeing the talker's face supports executive processing of speech in steady state noise.

    Science.gov (United States)

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary

    2013-01-01

    Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.

  10. Analyzing processing effort during sentence comprehension in quiet and in noise: Evidence from eye-fixations and pupil size

    DEFF Research Database (Denmark)

    Wendt, Dorothea; Brand, Thomas; Kollmeier, Birger

    2014-01-01

    structures . Here, we compare both methods, i.e. p rocessing speed and pupil size , as indicator s for the required effort when processing sentences that differ in their level of syntactic complexity . Furthermore, an interaction of background noise and syntactic complexity is exanimated by analyzing...... processing effort for sentence s presented in quiet and in noise. Moreover, it is investigated whether both measure s provide similar or complementary information about sentence processing and the required effort....

  11. Level sets and extrema of random processes and fields

    CERN Document Server

    Azais, Jean-Marc

    2009-01-01

    A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics a...

  12. Microscopic origin of read current noise in TaO{sub x}-based resistive switching memory by ultra-low temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-04-11

    TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  13. Principal component analysis of 1/fα noise

    International Nuclear Information System (INIS)

    Gao, J.B.; Cao Yinhe; Lee, J.-M.

    2003-01-01

    Principal component analysis (PCA) is a popular data analysis method. One of the motivations for using PCA in practice is to reduce the dimension of the original data by projecting the raw data onto a few dominant eigenvectors with large variance (energy). Due to the ubiquity of 1/f α noise in science and engineering, in this Letter we study the prototypical stochastic model for 1/f α processes--the fractional Brownian motion (fBm) processes using PCA, and find that the eigenvalues from PCA of fBm processes follow a power-law, with the exponent being the key parameter defining the fBm processes. We also study random-walk-type processes constructed from DNA sequences, and find that the eigenvalue spectrum from PCA of those random-walk processes also follow power-law relations, with the exponent characterizing the correlation structures of the DNA sequence. In fact, it is observed that PCA can automatically remove linear trends induced by patchiness in the DNA sequence, hence, PCA has a similar capability to the detrended fluctuation analysis. Implications of the power-law distributed eigenvalue spectrum are discussed

  14. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  15. Scaling behaviour of randomly alternating surface growth processes

    International Nuclear Information System (INIS)

    Raychaudhuri, Subhadip; Shapir, Yonathan

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depend on the timing of the applications. The analytical results are supported by numerical simulations of various pairs of primary processes and with different distribution functions. Self-affine surfaces grown by two randomly alternating processes are common in nature (e.g., due to randomly changing weather conditions) and in man-made devices such as rechargeable batteries

  16. Failing to Get the Gist of What’s Being Said: Background Noise Impairs Higher Order Cognitive Processing

    OpenAIRE

    John Everett Marsh; John Everett Marsh; Robert eLjung; Anatole eNöstl; Emma eThreadgold; Tom A Campbell

    2015-01-01

    A dynamic interplay is known to exist between auditory processing and human cognition. For example, prior investigations of speech-in-noise have revealed there is more to learning than just listening: Even if all words within a spoken list correctly heard in noise, later memory for those words is typically impoverished. At such low signal-to-noise ratios when listeners could identify words, those participants could not necessarily remember those words. These investigations supported a view th...

  17. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    Science.gov (United States)

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  18. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm

    Directory of Open Access Journals (Sweden)

    Yung-Yue Chen

    2018-05-01

    Full Text Available Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H2 estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  19. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  20. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.

  1. Analysis of Noise Mechanisms in Cell-Size Control.

    Science.gov (United States)

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and

  2. On the stochastic pendulum with Ornstein-Uhlenbeck noise

    International Nuclear Information System (INIS)

    Mallick, Kirone; Marcq, Philippe

    2004-01-01

    We study a frictionless pendulum subject to multiplicative random noise. Because of destructive interference between the angular displacement of the system and the noise term, the energy fluctuations are reduced when the noise has a non-zero correlation time. We derive the long time behaviour of the pendulum in the case of Ornstein-Uhlenbeck noise by a recursive adiabatic elimination procedure. An analytical expression for the asymptotic probability distribution function of the energy is obtained and the results agree with numerical simulations. Lastly, we compare our method with other approximation schemes

  3. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance.

    Science.gov (United States)

    Elmenhorst, Eva-Maria; Pennig, Sibylle; Rolny, Vinzent; Quehl, Julia; Mueller, Uwe; Maaß, Hartmut; Basner, Mathias

    2012-05-01

    Traffic noise is interfering during day- and nighttime causing distress and adverse physiological reactions in large parts of the population. Railway noise proved less annoying than aircraft noise in surveys which were the bases for a so called 5 dB railway bonus regarding noise protection in many European countries. The present field study investigated railway noise-induced awakenings during sleep, nighttime annoyance and the impact on performance the following day. Comparing these results with those from a field study on aircraft noise allowed for a ranking of traffic modes concerning physiological and psychological reactions. 33 participants (mean age 36.2 years ± 10.3 (SD); 22 females) living alongside railway tracks around Cologne/Bonn (Germany) were polysomnographically investigated. These data were pooled with data from a field study on aircraft noise (61 subjects) directly comparing the effects of railway and aircraft noise in one random subject effects logistic regression model. Annoyance was rated in the morning evaluating the previous night. Probability of sleep stage changes to wake/S1 from railway noise increased significantly from 6.5% at 35 dB(A) to 20.5% at 80 dB(A) LAFmax. Rise time of noise events had a significant impact on awakening probability. Nocturnal railway noise led to significantly higher awakening probabilities than aircraft noise, partly explained by the different rise times, whereas the order was inversed for annoyance. Freight train noise compared to passenger train noise proved to have the most impact on awakening probability. Nocturnal railway noise had no effect on psychomotor vigilance. Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of our study. During nighttime a bonus for railway noise seems not appropriate. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Noise in ecosystems: a short review.

    Science.gov (United States)

    Spagnolo, B; Valenti, D; Fiasconaro, A

    2004-06-01

    Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.

  5. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Science.gov (United States)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  6. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    International Nuclear Information System (INIS)

    Carbonell, F.; Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-01-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations

  7. Noise-Induced Riddling in Chaotic Systems

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1996-01-01

    Recent works have considered the situation of riddling where, when a chaotic attractor lying in an invariant subspace is transversely stable, the basin of the attractor can be riddled with holes that belong to the basin of another attractor. We show that riddling can be induced by arbitrarily small random noise even if the attractor is transversely unstable, and we obtain universal scaling laws for noise-induced riddling. Our results imply that the phenomenon of riddling can be more prevalent than expected before, as noise is practically inevitable in dynamical systems. copyright 1996 The American Physical Society

  8. Poultry Plant Noise Control

    Science.gov (United States)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  9. Noise-induced effects in population dynamics

    Science.gov (United States)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  10. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  11. Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction.

    Science.gov (United States)

    Ricketts, Todd A; Hornsby, Benjamin W Y

    2005-05-01

    This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.

  12. Information processing biases in spider phobia: application of the Stroop and "White Noise" Paradigm.

    Science.gov (United States)

    Olatunji, Bunmi O; Sawchuk, Craig N; Lee, Thomas C; Lohr, Jeffrey M; Tolin, David F

    2008-06-01

    The present study examines attentional and implicit memory biases in spider phobic and nonphobic participants. The results showed that spider phobics demonstrated increased interference for neutral, negative, and spider-relevant words on a computerized Stroop task. However, no group differences emerged when adjusting for differences in color-naming speed. Prior exposure to a dead spider did result in higher overall Stroop interference in spider phobics and this appeared to be mostly pronounced for spider-relevant words. Implicit memory bias for threat was examined with a noise judgment task. Participants first heard neutral and spider-relevant sentences and implicit memory for these sentences was evaluated by having participants rate the volume of noise accompanying the presentation of old sentences intermixed with new sentences. An implicit memory bias is indicated if participants rate noise accompanying old sentences as less loud than noise accompanying new sentences. No evidence was found for an implicit memory bias in spider phobics. These findings are discussed in relation to the role of information processing biases in spider phobia.

  13. Noise and signal processing in a microstrip detector with a time variant readout system

    International Nuclear Information System (INIS)

    Cattaneo, P.W.

    1995-01-01

    This paper treats the noise and signal processing by a time variant filter in a microstrip detector. In particular, the noise sources in the detector-electronics chain and the signal losses that cause a substantial decrease of the original signal are thoroughly analyzed. This work has been motivated by the analysis of the data of the microstrip detectors designed for the ALEPH minivertex detector. Hence, even if the discussion will be kept as general as possible, concrete examples will be presented referring to the specific ALEPH design. (orig.)

  14. MMSE Estimator for Children’s Speech with Car and Weather Noise

    Science.gov (United States)

    Sayuthi, V.

    2018-04-01

    Previous research mentioned that most people need and use vehicles for various purposes, in this recent time and future, as a means of traveling. Many ways can be done in a vehicle, such as for enjoying entertainment, and doing work, so vehicles not just only as a means of traveling. In this study, we will examine the children’s speech from a girl in the vehicle that affected by noise disturbances from the sound source of car noise and the weather sound noise around it, in this case, the rainy weather noise. Vehicle sounds may be from car engine or car air conditioner. The minimum mean square error (MMSE) estimator is used as an attempt to obtain or detect the children’s clear speech by representing simulation research as random process signal that factored by the autocorrelation of both the child’s voice and the disturbance noise signal. This MMSE estimator can be considered as wiener filter as the clear sound are reconstructed again. We expected that the results of this study can help as the basis for development of entertainment or communication technology for passengers of vehicles in the future, particularly using MMSE estimators.

  15. Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Blasone, Massimo; Bernardini, Alex E.

    2018-03-01

    The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation—which includes pseudovectorlike and tensorlike field interactions—the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.

  16. Communication system with adaptive noise suppression

    Science.gov (United States)

    Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)

    2007-01-01

    A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.

  17. The effects of music, white noise, and ambient noise on sedation and anxiety in patients under spinal anesthesia during surgery.

    Science.gov (United States)

    Ilkkaya, Nazan Koylu; Ustun, Faik Emre; Sener, Elif Bengi; Kaya, Cengiz; Ustun, Yasemin Burcu; Koksal, Ersin; Kocamanoglu, Ismail Serhat; Ozkan, Fatih

    2014-10-01

    To compare effects of music, white noise, and ambient (background) noise on patient anxiety and sedation. Open, parallel, and randomized controlled trial. Seventy-five patients aged 18 to 60 years who were scheduled for surgical procedures under spinal anesthesia were randomly assigned to ambient noise (Group O), white noise (Group B), or music groups (Group M). We evaluated patients' anxiety and sedation levels via the Observer's Assessment of Alertness/Sedation (OAA/S) scale and the State-Trait Anxiety Inventory (STAI) questionnaire. At 5 minutes before surgery, the STAI-State Anxiety Inventory (SA) value was significantly lower in Group M than the other groups. At 30-minute recovery, Group M showed significantly lower STAI-SA values than the other groups. Patient satisfaction was highest in Group M. OAA/S values were not significantly different between groups during any period (P > .05). We suggest that patient-selected music reduces perioperative anxiety and contributes to patient satisfaction during the perioperative period. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  18. ''1/f noise'' in music: Music from 1/f noise

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of about 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.

  19. Multichannel monolithic front-end system design. Part II. Microwave bipolar-JFET process for low-noise charge-sensitive preamplifiers

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Reutovich, S.I.; Solomashenko, N.F.

    1996-01-01

    For pt. I see ibid., vol.378, p.564-569, 1996. New monolithic low-noise process has been developed for simultaneous fabrication of high-speed low-noise 4-terminal and 3-terminal pJFETs and microwave low-noise npn BJTs. A new ion-implanted 4-terminal structure of JFET having 300 MHz cut-off frequency is designed. The process provides direct contact to a top gate and independent access to the top and bottom gates. Application of p-channel implant makes it possible to optimize the JFET pinch-off voltage without deterioration of bipolar transistor characteristics: f T ≥3 GHz, current gain β≥150, R bb' ≤15-40 Ω. (orig.)

  20. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  1. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  2. The influence of CT image noise on proton range calculation in radiotherapy planning

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Paige, Sandra L

    2010-01-01

    The purpose of this note is to evaluate the relationship between the stochastic errors in CT numbers and the standard deviation of the computed proton beam range in radiotherapy planning. The stochastic voxel-to-voxel variation in CT numbers called 'noise,' may be due to signal registration, processing and numerical image reconstruction technique. Noise in CT images may cause a deviation in the computed proton range from the physical proton range, even assuming that the error due to CT number-stopping power calibration is removed. To obtain the probability density function (PDF) of the computed proton range, we have used the continuing slowing down approximation (CSDA) and the uncorrelated white Gaussian noise along the proton path. The model of white noise was accepted because for the slice-based fan-beam CT scanner; the power-spectrum properties apply only to the axial (x, y) domain and the noise is uncorrelated in the z domain. However, the possible influence of the noise power spectrum on the standard deviation of the range should be investigated in the future. A random number generator was utilized for noise simulation and this procedure was iteratively repeated to obtain convergence of range PDF, which approached a Gaussian distribution. We showed that the standard deviation of the range, σ, increases linearly with the initial proton energy, computational grid size and standard deviation of the voxel values. The 95% confidence interval width of the range PDF, which is defined as 4σ, may reach 0.6 cm for the initial proton energy of 200 MeV, computational grid 0.25 cm and 5% standard deviation of CT voxel values. Our results show that the range uncertainty due to random errors in CT numbers may be significant and comparable to the uncertainties due to calibration of CT numbers. (note)

  3. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  4. Underwater noise modelling for environmental impact assessment

    International Nuclear Information System (INIS)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-01-01

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  5. MOSFET LF noise under Large Signal Excitation: Measurement, Modelling and Application

    NARCIS (Netherlands)

    van der Wel, A.P.

    2005-01-01

    Regarding LF noise in MOSFETs, it is noted that the MOSFET is a surface channel device. Both n and p-channel devices exhibit similar low frequency (LF) noise behaviour that can be explained by a carrier number fluctuation model (section 3.5). LF noise in MOSFETs is predominantly caused by Random

  6. Estimation of Poisson noise in spatial domain

    Science.gov (United States)

    Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana

    2017-09-01

    This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.

  7. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  8. Noise generator for tinnitus treatment based on look-up tables

    Science.gov (United States)

    Uriz, Alejandro J.; Agüero, Pablo; Tulli, Juan C.; Castiñeira Moreira, Jorge; González, Esteban; Hidalgo, Roberto; Casadei, Manuel

    2016-04-01

    Treatment of tinnitus by means of masking sounds allows to obtain a significant improve of the quality of life of the individual that suffer that condition. In view of that, it is possible to develop noise synthesizers based on random number generators in digital signal processors (DSP), which are used in almost any digital hearing aid devices. DSP architecture have limitations to implement a pseudo random number generator, due to it, the noise statistics can be not as good as expectations. In this paper, a technique to generate additive white gaussian noise (AWGN) or other types of filtered noise using coefficients stored in program memory of the DSP is proposed. Also, an implementation of the technique is carried out on a dsPIC from Microchip®. Objective experiments and experimental measurements are performed to analyze the proposed technique.

  9. Time response measurements of pressure sensors using pink noise technique

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Santos, Roberto Carlos dos

    2009-01-01

    This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)

  10. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    Spatial correlations of the noise are usually ruled out, and the paths traced by the random walkers are statistically independent. In this study, I consider instead noise which is white in time and has a Gaussian correlation in space, and by means of numerical simulation, I show how the spatial correlation determines the time ...

  11. Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise

    International Nuclear Information System (INIS)

    Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.

    2006-01-01

    The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data

  12. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  13. Seeing the talker’s face supports executive processing of speech in steady state noise

    Directory of Open Access Journals (Sweden)

    Sushmit eMishra

    2013-11-01

    Full Text Available Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT, Mishra et al., 2013 along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity. Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.

  14. Seeing the talker’s face supports executive processing of speech in steady state noise

    Science.gov (United States)

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary

    2013-01-01

    Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills. PMID:24324411

  15. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  16. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  17. 32 CFR 989.32 - Noise.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Noise. 989.32 Section 989.32 National Defense... ANALYSIS PROCESS (EIAP) § 989.32 Noise. Aircraft noise data files used for analysis during EIAP will be... System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  18. The benefits of noise and nonlinearity: Extracting energy from random vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Gammaitoni, Luca, E-mail: luca.gammaitoni@pg.infn.it [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy); Neri, Igor; Vocca, Helios [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy)

    2010-10-05

    Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.

  19. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    Science.gov (United States)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  20. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  1. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    Science.gov (United States)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal

  2. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  3. Decision-Based Marginal Total Variation Diffusion for Impulsive Noise Removal in Color Images

    Directory of Open Access Journals (Sweden)

    Hongyao Deng

    2017-01-01

    Full Text Available Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation L1 method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed in this paper that overcomes this limitation that is based on the following facts: (i each channel in a color image is contaminated independently, and contaminative components are independent and identically distributed; (ii in a natural image the gradients of different components of a pixel are similar to one another. This method divides components into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted, noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness.

  4. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  5. A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source

    Science.gov (United States)

    Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.

    2003-09-01

    Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.

  6. Stochastic process variation in deep-submicron CMOS circuits and algorithms

    CERN Document Server

    Zjajo, Amir

    2014-01-01

    One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and ne...

  7. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  8. Concurrent Codes: A Holographic-Type Encoding Robust against Noise and Loss.

    Directory of Open Access Journals (Sweden)

    David M Benton

    Full Text Available Concurrent coding is an encoding scheme with 'holographic' type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated.

  9. Correlated Levy Noise in Linear Dynamical Systems

    International Nuclear Information System (INIS)

    Srokowski, T.

    2011-01-01

    Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)

  10. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  11. Speech Processing to Improve the Perception of Speech in Background Noise for Children With Auditory Processing Disorder and Typically Developing Peers.

    Science.gov (United States)

    Flanagan, Sheila; Zorilă, Tudor-Cătălin; Stylianou, Yannis; Moore, Brian C J

    2018-01-01

    Auditory processing disorder (APD) may be diagnosed when a child has listening difficulties but has normal audiometric thresholds. For adults with normal hearing and with mild-to-moderate hearing impairment, an algorithm called spectral shaping with dynamic range compression (SSDRC) has been shown to increase the intelligibility of speech when background noise is added after the processing. Here, we assessed the effect of such processing using 8 children with APD and 10 age-matched control children. The loudness of the processed and unprocessed sentences was matched using a loudness model. The task was to repeat back sentences produced by a female speaker when presented with either speech-shaped noise (SSN) or a male competing speaker (CS) at two signal-to-background ratios (SBRs). Speech identification was significantly better with SSDRC processing than without, for both groups. The benefit of SSDRC processing was greater for the SSN than for the CS background. For the SSN, scores were similar for the two groups at both SBRs. For the CS, the APD group performed significantly more poorly than the control group. The overall improvement produced by SSDRC processing could be useful for enhancing communication in a classroom where the teacher's voice is broadcast using a wireless system.

  12. Probability, random processes, and ergodic properties

    CERN Document Server

    Gray, Robert M

    1988-01-01

    This book has been written for several reasons, not all of which are academic. This material was for many years the first half of a book in progress on information and ergodic theory. The intent was and is to provide a reasonably self-contained advanced treatment of measure theory, prob ability theory, and the theory of discrete time random processes with an emphasis on general alphabets and on ergodic and stationary properties of random processes that might be neither ergodic nor stationary. The intended audience was mathematically inc1ined engineering graduate students and visiting scholars who had not had formal courses in measure theoretic probability . Much of the material is familiar stuff for mathematicians, but many of the topics and results have not previously appeared in books. The original project grew too large and the first part contained much that would likely bore mathematicians and dis courage them from the second part. Hence I finally followed the suggestion to separate the material and split...

  13. Discriminality of statistically independent Gaussian noise tokens and random tone-burst complexes

    NARCIS (Netherlands)

    Goossens, T.L.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.; Kollmeier, B.; Klump, G.; Hohmann, V.; Langemann, U.; Mauermann, M.; Uppenkamp, S.; Verhey, J.

    2007-01-01

    Hanna (1984) has shown that noise tokens with a duration of 400 ms are harder to discriminate than noise tokens of 100 ms. This is remarkable because a 400-ms stimulus potentially contains four times as much information for judging dissimilarity than the 100-ms stimulus. Apparently, the ability to

  14. The incidence of the different sources of noise on the uncertainty in radiochromic film dosimetry using single channel and multichannel methods

    Science.gov (United States)

    González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    2017-11-01

    The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.

  15. Random noise effects in pulse-mode digital multilayer neural networks.

    Science.gov (United States)

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  16. Selection of noise parameters for Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Ka-Veng Yuen; Ka-In Hoi; Kai-Meng Mok

    2007-01-01

    The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likklihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation.

  17. An application of reactor noise techniques to neutron transport problems in a random medium

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1989-01-01

    Neutron transport problems in a random medium are considered by defining a joint Markov process describing the fluctuations of one neutron population and the random changes in the medium. Backward Chapman-Kolmogorov equations are derived which yield an adjoint transport equation for the average neutron density. It is shown that this average density also satisfied the direct transport equation as given by the phenomenological model. (author)

  18. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    Science.gov (United States)

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  19. Signal to noise ratio (SNR) and image uniformity: an estimate of performance of magnetic resonance imaging (MRI) system

    International Nuclear Information System (INIS)

    Narayan, P.; Suri, S.; Choudhary, S.R.

    2001-01-01

    In most general definition, noise in an image, is any variation that represents a deviation from truth. Noise sources in MRI can be systematic or random and statistical in nature. Data processing algorithms that smooth and enhance the edges by non-linear intensity assignments among other factors can affect the distribution of statistical noise. The SNR and image uniformity depends on the various parameters of NMR imaging system (viz. General system calibration, Gain coil tuning, AF shielding, coil loading, image processing and scan parameters like TE, TR, interslice distance, slice thickness, pixel size and matrix size). A study on SNR and image uniformity have been performed using standard head AF coil with different TR and the estimates of their variation are presented. A comparison between different techniques has also been evaluated using standard protocol of the Siemens Magnetom Vision Plus MRI system

  20. Chaos Noise on Phase of Van Der Pol Oscillator

    Directory of Open Access Journals (Sweden)

    Xian He Huang

    2010-12-01

    Full Text Available Phase noise is the most important parameter in many oscillators. In this paper, based on nonlinear stochastic differential equation for phase noise analysis approach is proposed. And then discusses and compares the influence of two different sources of noise in the Van Der Pol oscillator adopted this method. One source of noise is a white noise process, which is a genuinely stochastic process; the other source of noise is actually a deterministic system, which exhibits chaotic behavior in some regions. The behavior of the oscillator under different conditions is investigated numerically. It is shown that the phase noise of the oscillator is affected more by noise arising from chaos than by noise arising from the genuine stochastic process at the same noise intensity.

  1. Renewal theory for perturbed random walks and similar processes

    CERN Document Server

    Iksanov, Alexander

    2016-01-01

    This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters fou...

  2. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    Science.gov (United States)

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  3. Estimation of MIMO channel capacity from phase-noise impaired measurements

    DEFF Research Database (Denmark)

    Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri

    2008-01-01

    Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown t...... matrix. It is shown by means of Monte Carlo simulations assuming a measurementbased phase noise model, that the MIMO channel capacity can be estimated accurately for signal to noise ratios up to about 35 dB......Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown...... that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that consecutive...

  4. Melnikov processes and chaos in randomly perturbed dynamical systems

    Science.gov (United States)

    Yagasaki, Kazuyuki

    2018-07-01

    We consider a wide class of randomly perturbed systems subjected to stationary Gaussian processes and show that chaotic orbits exist almost surely under some nondegenerate condition, no matter how small the random forcing terms are. This result is very contrasting to the deterministic forcing case, in which chaotic orbits exist only if the influence of the forcing terms overcomes that of the other terms in the perturbations. To obtain the result, we extend Melnikov’s method and prove that the corresponding Melnikov functions, which we call the Melnikov processes, have infinitely many zeros, so that infinitely many transverse homoclinic orbits exist. In addition, a theorem on the existence and smoothness of stable and unstable manifolds is given and the Smale–Birkhoff homoclinic theorem is extended in an appropriate form for randomly perturbed systems. We illustrate our theory for the Duffing oscillator subjected to the Ornstein–Uhlenbeck process parametrically.

  5. Quantum optics in multiple scattering random media

    DEFF Research Database (Denmark)

    Lodahl, Peter; Lagendijk, Ad

    2005-01-01

    Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent......-tions that should be readily attainable experimentally is devised. Figure 1. Inverse total transmission of shot noise (left) and technical noise (right) as a function of the thickness of the ran-dom medium. The experimental data are well explained by theory (curves). [1] J. Tworzydlo and C.W.J. Beenakker, Phys. Rev...

  6. Noise Attenuation Estimation for Maximum Length Sequences in Deconvolution Process of Auditory Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Xian Peng

    2017-01-01

    Full Text Available The use of maximum length sequence (m-sequence has been found beneficial for recovering both linear and nonlinear components at rapid stimulation. Since m-sequence is fully characterized by a primitive polynomial of different orders, the selection of polynomial order can be problematic in practice. Usually, the m-sequence is repetitively delivered in a looped fashion. Ensemble averaging is carried out as the first step and followed by the cross-correlation analysis to deconvolve linear/nonlinear responses. According to the classical noise reduction property based on additive noise model, theoretical equations have been derived in measuring noise attenuation ratios (NARs after the averaging and correlation processes in the present study. A computer simulation experiment was conducted to test the derived equations, and a nonlinear deconvolution experiment was also conducted using order 7 and 9 m-sequences to address this issue with real data. Both theoretical and experimental results show that the NAR is essentially independent of the m-sequence order and is decided by the total length of valid data, as well as stimulation rate. The present study offers a guideline for m-sequence selections, which can be used to estimate required recording time and signal-to-noise ratio in designing m-sequence experiments.

  7. Interaction of image noise, spatial resolution, and low contrast fine detail preservation in digital image processing

    Science.gov (United States)

    Artmann, Uwe; Wueller, Dietmar

    2009-01-01

    We present a method to improve the validity of noise and resolution measurements on digital cameras. If non-linear adaptive noise reduction is part of the signal processing in the camera, the measurement results for image noise and spatial resolution can be good, while the image quality is low due to the loss of fine details and a watercolor like appearance of the image. To improve the correlation between objective measurement and subjective image quality we propose to supplement the standard test methods with an additional measurement of the texture preserving capabilities of the camera. The proposed method uses a test target showing white Gaussian noise. The camera under test reproduces this target and the image is analyzed. We propose to use the kurtosis of the derivative of the image as a metric for the texture preservation of the camera. Kurtosis is a statistical measure for the closeness of a distribution compared to the Gaussian distribution. It can be shown, that the distribution of digital values in the derivative of the image showing the chart becomes the more leptokurtic (increased kurtosis) the stronger the noise reduction has an impact on the image.

  8. Failing to get the gist of what's being said: background noise impairs higher-order cognitive processing

    OpenAIRE

    Marsh, John E.; Ljung, Robert; N?stl, Anatole; Threadgold, Emma; Campbell, Tom A.

    2015-01-01

    A dynamic interplay is known to exist between auditory processing and human cognition. For example, prior investigations of speech-in-noise have revealed there is more to learning than just listening: Even if all words within a spoken list are correctly heard in noise, later memory for those words is typically impoverished. These investigations supported a view that there is a "gap" between the intelligibility of speech and memory for that speech. Here, the notion was that this gap between sp...

  9. Cooperation evolution in random multiplicative environments

    Science.gov (United States)

    Yaari, G.; Solomon, S.

    2010-02-01

    Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.

  10. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  11. Evaluation of noise levels in manufacturing sectors in Thika district ...

    African Journals Online (AJOL)

    Noise is considered as any unwanted sound that may adversely affect the health and wellbeing of individuals or populations exposed. This study assessed the magnitude of occupational noise exposures to workers in different manufacturing sectors in Thika District‐Kenya. Systematic random sampling was used to select 8 ...

  12. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  13. The Spread of a Noise Field in a Dispersive Medium

    Directory of Open Access Journals (Sweden)

    Cohen Leon

    2010-01-01

    Full Text Available We discuss the production of induced noise by a pulse and the propagation of the noise in a dispersive medium. We present a simple model where the noise is the sum of pulses and where the mean of each pulse is random. We obtain explicit expressions for the standard deviation of the spatial noise as a function of time. We also formulate the problem in terms of a time-frequency phase space approach and in particular we use the Wigner distribution to define the spatial/spatial-frequency distribution.

  14. Image reconstruction under non-Gaussian noise

    DEFF Research Database (Denmark)

    Sciacchitano, Federica

    During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... to the ill-posedness of the problem, the simple inversion of the degradation model does not give any good reconstructions. Therefore, to deal with the ill-posedness it is necessary to use some prior information on the solution or the model and the Bayesian approach. Additive Gaussian noise has been......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...

  15. SUPERFLUID VORTEX UNPINNING AS A COHERENT NOISE PROCESS, AND THE SCALE INVARIANCE OF PULSAR GLITCHES

    International Nuclear Information System (INIS)

    Melatos, A.; Warszawski, L.

    2009-01-01

    The scale-invariant glitch statistics observed in individual pulsars (exponential waiting-time and power-law size distributions) are consistent with a critical self-organization process, wherein superfluid vortices pin metastably in macroscopic domains and unpin collectively via nearest-neighbor avalanches. Macroscopic inhomogeneity emerges naturally if pinning occurs at crustal faults. If, instead, pinning occurs at lattice sites and defects, which are macroscopically homogeneous, we show that an alternative, noncritical self-organization process operates, termed coherent noise, wherein the global Magnus force acts uniformly on vortices trapped in a range of pinning potentials and undergoing thermal creep. It is found that vortices again unpin collectively, but not via nearest-neighbor avalanches, and that, counterintuitively, the resulting glitch sizes are scale invariant, in accord with observational data. A mean-field analytic theory of the coherent noise process, supported by Monte Carlo simulations, yields a power-law size distribution, between the smallest and largest glitch, with exponent a in the range -2 ≤ a ≤ 0. When the theory is fitted to data from the nine most active pulsars, including the two quasi-periodic glitchers PSR J0537-6910 and PSR J0835-4510, it directly constrains the distribution of pinning potentials in the star, leading to two conclusions: (1) the potentials are broadly distributed, with the mean comparable to the standard deviation; and (2) the mean potential decreases with characteristic age. Fitting the theory to the data also constrains the pinned vortex fraction and the rate of thermal creep. An observational test is proposed to discriminate between nearest-neighbor avalanches and coherent noise: the latter process predicts a statistical excess of large glitches ('aftershocks') following a large glitch, whereas the former process does not. Its discriminatory power is discussed under various microphysical scenarios.

  16. On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes

    NARCIS (Netherlands)

    Goossens, T.L.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    2008-01-01

    This study investigated factors that influence a listeners' ability to discriminate Gaussian-noise stimuli in a same-different discrimination paradigm. The first experiment showed that discrimination ability increased with bandwidth for noise durations up to 100 ms. Duration had a nonmonotonic

  17. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  18. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  19. Efficacy and mode of action of a noise-sensor light alarm to decrease noise in the pediatric intensive care unit: a prospective, randomized study.

    Science.gov (United States)

    Jousselme, Chloé; Vialet, Renaud; Jouve, Elisabeth; Lagier, Pierre; Martin, Claude; Michel, Fabrice

    2011-03-01

    To determine whether a sound-activated light-alarm device could reduce the noise in the central area of our pediatric intensive care unit and to determine whether this reduction was significant enough to decrease the noise that could be perceived by a patient located in a nearby room. The secondary objective was to determine the mode of action of the device. In a 16-bed pediatric and neonatal intensive care unit, a large and clearly noticeable sound-activated light device was set in the noisiest part of the central area of our unit, and noise measurements were made in the central area and in a nearby room. In a prospective, quasi-experimental design, sound levels were compared across three different situations--no device present, device present and turned on, and device present but turned off--and noise level measurements were made over a total of 18 days. None. Setting a sound-activated light device on or off. When the device was present, the noise was about 2 dB lower in the central area and in a nearby room, but there was no difference in noise level with the device turned on vs. turned off. The noise decrease in the central area was of limited importance but was translated in a nearby room. The sound-activated light device did not directly decrease noise when turned on, but repetition of the visual signal throughout the day raised staff awareness of noise levels over time.

  20. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  1. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC) Brain Potential Changes

    OpenAIRE

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-01-01

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental ...

  2. Suitable or optimal noise benefits in signal detection

    International Nuclear Information System (INIS)

    Liu, Shujun; Yang, Ting; Tang, Mingchun; Wang, Pin; Zhang, Xinzheng

    2016-01-01

    Highlights: • Six intervals of additive noises divided according to the two constraints. • Derivation of the suitable additive noise to meet the two constraints. • Formulation of the suitable noise for improvability or nonimprovability. • Optimal noises to minimize P FA , maximize P D and maximize the overall improvement. - Abstract: We present an effective way to generate the suitable or the optimal additive noises which can achieve the three goals of the noise enhanced detectability, i.e., the maximum detection probability (P D ), the minimum false alarm probability (P FA ) and the maximum overall improvement of P D and P FA , without increasing P FA and decreasing P D in a binary hypothesis testing problem. The mechanism of our method is that we divide the discrete vectors into six intervals and choose the useful or partial useful vectors from these intervals to form the additive noise according to different requirements. The form of the optimal noise is derived and proven as a randomization of no more than two discrete vectors in our way. Moreover, how to choose suitable and optimal noises from the six intervals are given. Finally, numerous examples are presented to illustrate the theoretical analysis, where the background noises are Gaussian, symmetric and asymmetric Gaussian mixture noise, respectively.

  3. Updating working memory in aircraft noise and speech noise causes different fMRI activations.

    Science.gov (United States)

    Saetrevik, Bjørn; Sörqvist, Patrik

    2015-02-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  4. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  5. Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2018-01-01

    We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.

  6. Money creation process in a random redistribution model

    Science.gov (United States)

    Chen, Siyan; Wang, Yougui; Li, Keqiang; Wu, Jinshan

    2014-01-01

    In this paper, the dynamical process of money creation in a random exchange model with debt is investigated. The money creation kinetics are analyzed by both the money-transfer matrix method and the diffusion method. From both approaches, we attain the same conclusion: the source of money creation in the case of random exchange is the agents with neither money nor debt. These analytical results are demonstrated by computer simulations.

  7. Entanglement probabilities of polymers: a white noise functional approach

    International Nuclear Information System (INIS)

    Bernido, Christopher C; Carpio-Bernido, M Victoria

    2003-01-01

    The entanglement probabilities for a highly flexible polymer to wind n times around a straight polymer are evaluated using white noise analysis. To introduce the white noise functional approach, the one-dimensional random walk problem is taken as an example. The polymer entanglement scenario, viewed as a random walk on a plane, is then treated and the entanglement probabilities are obtained for a magnetic flux confined along the straight polymer, and a case where an entangled polymer is subjected to the potential V = f-dot(s)θ. In the absence of the magnetic flux and the potential V, the entanglement probabilities reduce to a result obtained by Wiegel

  8. Presenting and processing information in background noise: A combined speaker-listener perspective.

    Science.gov (United States)

    Bockstael, Annelies; Samyn, Laurie; Corthals, Paul; Botteldooren, Dick

    2018-01-01

    Transferring information orally in background noise is challenging, for both speaker and listener. Successful transfer depends on complex interaction between characteristics related to listener, speaker, task, background noise, and context. To fully assess the underlying real-life mechanisms, experimental design has to mimic this complex reality. In the current study, the effects of different types of background noise have been studied in an ecologically valid test design. Documentary-style information had to be presented by the speaker and simultaneously acquired by the listener in four conditions: quiet, unintelligible multitalker babble, fluctuating city street noise, and little varying highway noise. For both speaker and listener, the primary task was to focus on the content that had to be transferred. In addition, for the speakers, the occurrence of hesitation phenomena was assessed. The listener had to perform an additional secondary task to address listening effort. For the listener the condition with the most eventful background noise, i.e., fluctuating city street noise, appeared to be the most difficult with markedly longer duration of the secondary task. In the same fluctuating background noise, speech appeared to be less disfluent, suggesting a higher level of concentration from the speaker's side.

  9. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  10. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    Science.gov (United States)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  11. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  12. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  13. Noise-induced chaos in a quadratically nonlinear oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2006-01-01

    The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system

  14. A molecular noise generator

    International Nuclear Information System (INIS)

    Lu Ting; Ferry, Michael; Hasty, Jeff; Weiss, Ron

    2008-01-01

    Recent studies have demonstrated that intracellular variations in the rate of gene expression are of fundamental importance to cellular function and development. While such 'noise' is often considered detrimental in the context of perturbing genetic systems, it can be beneficial in processes such as species diversification and facilitation of evolution. A major difficulty in exploring such effects is that the magnitude and spectral properties of the induced variations arise from some intrinsic cellular process that is difficult to manipulate. Here, we present two designs of a molecular noise generator that allow for the flexible modulation of the noise profile of a target gene. The first design uses a dual-signal mechanism that enables independent tuning of the mean and variability of an output protein. This is achieved through the combinatorial control of two signals that regulate transcription and translation separately. We then extend the design to allow for DNA copy-number regulation, which leads to a wider tuning spectrum for the output molecule. To gain a deeper understanding of the circuit's functionality in a realistic environment, we introduce variability in the input signals in order to ascertain the degree of noise induced by the control process itself. We conclude by illustrating potential applications of the noise generator, demonstrating how it could be used to ascertain the robust or fragile properties of a genetic circuit

  15. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Weingarten, J.

    2007-09-01

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  16. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  17. Estimate of water inleakage into sodium in the steam generator of an atomic electric power plant that is stable with respect to industrial noise

    International Nuclear Information System (INIS)

    Veselova, G.P.; Egorov, A.F.; Kulabukhov, Yu.S.; Yugai, V.A.

    1992-01-01

    A characteristic feature of acoustic leakage detection systems is that they operate under conditions of high-level industrial noise, which cannot be eliminated by simple means at the measurement stage. The development of algorithms which would yield estimates stable with regard to noise constitutes a pressing problem. There exists another feature of acoustic systems for leakage detection based on statistical methods -- the necessity of processing prolonged implementations of random processes to obtain a satisfactory statistical accuracy. It would be of interest to devise estimates involving small error over a small implementation length, which would reduce the time of leakage detection. The aim of this work was to develop methods of obtaining noiseproof, rapid estimates. Discussions are included on providing an estimate insensitive to additive noise and on obtaining estimates insensitive to multiplicative noise. 2 refs., 4 figs

  18. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  19. Mapping of Natural Radionuclides using Noise Adjusted Singular Value Decomposition, NASVD

    DEFF Research Database (Denmark)

    Aage, Helle Karina

    2006-01-01

    Mapping of natural radionuclides from airborne gamma spectrometry suffer from random ”noise” in the spectra due to short measurement times. This is partly compensated for by using large volume detectors to improve the counting statistics. One method of further improving the quality of the measured...... spectra is to remove from the spectra a large fraction of this random noise using a special variant of Singular Value Decomposition: Noise Adjusted Singular Value Decomposition. In 1997-1999 the natural radionuclides on the Danish Island of Bornholm were mapped using a combination of the standard 3...

  20. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  1. Characteristics of quantum open systems: free random variables approach

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Papp, G.; Brickmann, J.

    1998-01-01

    Random Matrix Theory provides an interesting tool for modelling a number of phenomena where noises (fluctuations) play a prominent role. Various applications range from the theory of mesoscopic systems in nuclear and atomic physics to biophysical models, like Hopfield-type models of neural networks and protein folding. Random Matrix Theory is also used to study dissipative systems with broken time-reversal invariance providing a setup for analysis of dynamic processes in condensed, disordered media. In the paper we use the Random Matrix Theory (RMT) within the formalism of Free Random Variables (alias Blue's functions), which allows to characterize spectral properties of non-Hermitean ''Hamiltonians''. The relevance of using the Blue's function method is discussed in connection with application of non-Hermitean operators in various problems of physical chemistry. (author)

  2. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  3. An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    International Nuclear Information System (INIS)

    Gao Peijun; Min Hao; Oh, N J

    2009-01-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative g m -cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply. (semiconductor integrated circuits)

  4. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder.

    Science.gov (United States)

    Park, Woon Ju; Schauder, Kimberly B; Zhang, Ruyuan; Bennetto, Loisa; Tadin, Duje

    2017-12-14

    An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.

  5. Reactor noise diagnostics based on multivariate autoregressive modeling: Application to LOFT [Loss-of-Fluid-Test] reactor process noise

    International Nuclear Information System (INIS)

    Gloeckler, O.; Upadhyaya, B.R.

    1987-01-01

    Multivariate noise analysis of power reactor operating signals is useful for plant diagnostics, for isolating process and sensor anomalies, and for automated plant monitoring. In order to develop a reliable procedure, the previously established techniques for empirical modeling of fluctuation signals in power reactors have been improved. Application of the complete algorithm to operational data from the Loss-of-Fluid-Test (LOFT) Reactor showed that earlier conjectures (based on physical modeling) regarding the perturbation sources in a Pressurized Water Reactor (PWR) affecting coolant temperature and neutron power fluctuations can be systematically explained. This advanced methodology has important implication regarding plant diagnostics, and system or sensor anomaly isolation. 6 refs., 24 figs

  6. The psychosis-like effects of Δ(9)-tetrahydrocannabinol are associated with increased cortical noise in healthy humans.

    Science.gov (United States)

    Cortes-Briones, Jose A; Cahill, John D; Skosnik, Patrick D; Mathalon, Daniel H; Williams, Ashley; Sewell, R Andrew; Roach, Brian J; Ford, Judith M; Ranganathan, Mohini; D'Souza, Deepak Cyril

    2015-12-01

    Drugs that induce psychosis may do so by increasing the level of task-irrelevant random neural activity or neural noise. Increased levels of neural noise have been demonstrated in psychotic disorders. We tested the hypothesis that neural noise could also be involved in the psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ(9)-THC), the principal active constituent of cannabis. Neural noise was indexed by measuring the level of randomness in the electroencephalogram during the prestimulus baseline period of an oddball task using Lempel-Ziv complexity, a nonlinear measure of signal randomness. The acute, dose-related effects of Δ(9)-THC on Lempel-Ziv complexity and signal power were studied in humans (n = 24) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, .015 and .03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Δ(9)-THC increased neural noise in a dose-related manner. Furthermore, there was a strong positive relationship between neural noise and the psychosis-like positive and disorganization symptoms induced by Δ(9)-THC, which was independent of total signal power. Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ(9)-THC reduced total signal power during both active drug conditions compared with placebo, but no relationship was detected between signal power and psychosis-like symptoms. At doses that produced psychosis-like effects, Δ(9)-THC increased neural noise in humans in a dose-dependent manner. Furthermore, increases in neural noise were related with increases in Δ(9)-THC-induced psychosis-like symptoms but not negative-like symptoms. These findings suggest that increases in neural noise may contribute to the psychotomimetic effects of Δ(9)-THC. Published by Elsevier Inc.

  7. Effect of noise in computed tomographic reconstructions on detectability

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1982-01-01

    The detectability of features in an image is ultimately limited by the random fluctuations in density or noise present in that image. The noise in CT reconstructions arising from the statistical fluctuations in the one-dimensional input projection measurements has an unusual character owing to the reconstruction procedure. Such CT image noise differs from the white noise normally found in images in its lack of low-frequency components. The noise power spectrum of CT reconstructions can be related to the effective density of x-ray quanta detected in the projection measurements, designated as NEQ (noise-equivalent quanta). The detectability of objects that are somewhat larger than the spatial resolution is directly related to NEQ. Since contrast resolution may be defined in terms of the ability to detect large, low-contrast objects, the measurement of a CT scanner's NEQ may be used to characterize its contrast sensitivity

  8. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    Science.gov (United States)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  9. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

    Science.gov (United States)

    Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.

    2018-04-01

    Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.

  10. Effects of randomness on chaos and order of coupled logistic maps

    International Nuclear Information System (INIS)

    Savi, Marcelo A.

    2007-01-01

    Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics

  11. Current development in data acquision and processing system for reactor noise analysis in PUSPATI

    International Nuclear Information System (INIS)

    Mohamad Amin Sharifuldin Salleh.

    1986-11-01

    A data acquisition and processing system for reactor noise analysis is described. It consists of four-channel isolation amplifier, a seven-channel DC amplifier, a four-channel analog to digital converter, analog filters, a microcomputer system and a plotter. This system is being applied to investigate the reactor dynamics of the PUSPATI TRIGA MK II reactor. (author)

  12. Eliminating thermal violin spikes from LIGO noise

    Energy Technology Data Exchange (ETDEWEB)

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  13. Eliminating thermal violin spikes from LIGO noise

    International Nuclear Information System (INIS)

    Santamore, D. H.; Levin, Yuri

    2001-01-01

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than ∼2 x 10 -13 cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors

  14. Predicting effects of impaired cochlear processing on consonant discrimination in stationary noise

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Dau, Torsten; Ghitza, Oded

    Cochlear hearing loss is typically associated with reduced sensitivity due to inner hair-cell (IHC) and outer hair-cell (OHC) dysfunction. OHC dysfunction also leads to supra-threshold deficits, such as reduced basilar-membrane (BM) compression as well as reduced frequency selectivity and temporal...... patterns from a Diagnostic Rhyme Test (DRT) were measured and analyzed in terms of acoustic-phonetic features. This was done for three listeners with cochlear hearing loss and at two signal-to-noise ratios. It is shown that the predicted errors patterns matched the measured patterns in most conditions......, such as the evaluation of hearing-instrument signal processing, where the effects of specific processing strategies can be simulated for individual hearing losses....

  15. Improved Noise Minimum Statistics Estimation Algorithm for Using in a Speech-Passing Noise-Rejecting Headset

    Directory of Open Access Journals (Sweden)

    Seyedtabaee Saeed

    2010-01-01

    Full Text Available This paper deals with configuration of an algorithm to be used in a speech-passing angle grinder noise-canceling headset. Angle grinder noise is annoying and interrupts ordinary oral communication. Meaning that, low SNR noisy condition is ahead. Since variation in angle grinder working condition changes noise statistics, the noise will be nonstationary with possible jumps in its power. Studies are conducted for picking an appropriate algorithm. A modified version of the well-known spectral subtraction shows superior performance against alternate methods. Noise estimation is calculated through a multi-band fast adapting scheme. The algorithm is adapted very quickly to the non-stationary noise environment while inflecting minimum musical noise and speech distortion on the processed signal. Objective and subjective measures illustrating the performance of the proposed method are introduced.

  16. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    International Nuclear Information System (INIS)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-01-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs

  17. Discriminality of statistically independent Gaussian noise tokens and random tone-burst complexes

    OpenAIRE

    Goossens, T.L.J.; Par, van de, S.L.J.D.E.; Kohlrausch, A.G.; Kollmeier, B.; Klump, G.; Hohmann, V.; Langemann, U.; Mauermann, M.; Uppenkamp, S.; Verhey, J.

    2007-01-01

    Hanna (1984) has shown that noise tokens with a duration of 400 ms are harder to discriminate than noise tokens of 100 ms. This is remarkable because a 400-ms stimulus potentially contains four times as much information for judging dissimilarity than the 100-ms stimulus. Apparently, the ability to use all information in a stimulus is impaired by some kind of limitation, e.g. a memory limitation (cf. Cowan 2000) or a limitation in the ability to allocate attentional resources (cf. Kidd and Wat...

  18. Nonlinear transformations of random processes

    CERN Document Server

    Deutsch, Ralph

    2017-01-01

    This concise treatment of nonlinear noise techniques encountered in system applications is suitable for advanced undergraduates and graduate students. It is also a valuable reference for systems analysts and communication engineers. 1962 edition.

  19. The Initial Regression Statistical Characteristics of Intervals Between Zeros of Random Processes

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2014-01-01

    Full Text Available The article substantiates the initial regression statistical characteristics of intervals between zeros of realizing random processes, studies their properties allowing the use these features in the autonomous information systems (AIS of near location (NL. Coefficients of the initial regression (CIR to minimize the residual sum of squares of multiple initial regression views are justified on the basis of vector representations associated with a random vector notion of analyzed signal parameters. It is shown that even with no covariance-based private CIR it is possible to predict one random variable through another with respect to the deterministic components. The paper studies dependences of CIR interval sizes between zeros of the narrowband stationary in wide-sense random process with its energy spectrum. Particular CIR for random processes with Gaussian and rectangular energy spectra are obtained. It is shown that the considered CIRs do not depend on the average frequency of spectra, are determined by the relative bandwidth of the energy spectra, and weakly depend on the type of spectrum. CIR properties enable its use as an informative parameter when implementing temporary regression methods of signal processing, invariant to the average rate and variance of the input implementations. We consider estimates of the average energy spectrum frequency of the random stationary process by calculating the length of the time interval corresponding to the specified number of intervals between zeros. It is shown that the relative variance in estimation of the average energy spectrum frequency of stationary random process with increasing relative bandwidth ceases to depend on the last process implementation in processing above ten intervals between zeros. The obtained results can be used in the AIS NL to solve the tasks of detection and signal recognition, when a decision is made in conditions of unknown mathematical expectations on a limited observation

  20. Bifurcation and chaos response of a cracked rotor with random disturbance

    Science.gov (United States)

    Leng, Xiaolei; Meng, Guang; Zhang, Tao; Fang, Tong

    2007-01-01

    The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one, and such affect is smaller as the undisturbed response is a periodic one.

  1. On minimizing the influence of the noise tail of correlation functions in operational modal analysis

    DEFF Research Database (Denmark)

    Tarpø, Marius; Olsen, Peter; Amador, Sandro

    2017-01-01

    on the identification results (random errors) when the noise tail is included in the identification. On the other hand, if the correlation function is truncated too much, then important information is lost. In other to minimize this error, a suitable truncation based on manual inspection of the correlation function......In operational modal analysis (OMA) correlation functions are used by all classical time-domain modal identification techniques that uses the impulse response function (free decays) as primary data. However, the main difference between the impulse response and the correlation functions estimated...... from the operational responses is that the latter present a higher noise level. This is due to statistical errors in the estimation of the correlation function and it causes random noise in the end of the function and this is called the noise tail. This noise might have significant influence...

  2. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  3. SU-F-18C-15: Model-Based Multiscale Noise Reduction On Low Dose Cone Beam Projection

    International Nuclear Information System (INIS)

    Yao, W; Farr, J

    2014-01-01

    Purpose: To improve image quality of low dose cone beam CT for patient positioning in radiation therapy. Methods: In low dose cone beam CT (CBCT) imaging systems, Poisson process governs the randomness of photon fluence at x-ray source and the detector because of the independent binomial process of photon absorption in medium. On a CBCT projection, the variance of fluence consists of the variance of noiseless imaging structure and that of Poisson noise, which is proportional to the mean (noiseless) of the fluence at the detector. This requires multiscale filters to smoothen noise while keeping the structure information of the imaged object. We used a mathematical model of Poisson process to design multiscale filters and established the balance of noise correction and structure blurring. The algorithm was checked with low dose kilo-voltage CBCT projections acquired from a Varian OBI system. Results: From the investigation of low dose CBCT of a Catphan phantom and patients, it showed that our model-based multiscale technique could efficiently reduce noise and meanwhile keep the fine structure of the imaged object. After the image processing, the number of visible line pairs in Catphan phantom scanned with 4 ms pulse time was similar to that scanned with 32 ms, and soft tissue structure from simulated 4 ms patient head-and-neck images was also comparable with scanned 20 ms ones. Compared with fixed-scale technique, the image quality from multiscale one was improved. Conclusion: Use of projection-specific multiscale filters can reach better balance on noise reduction and structure information loss. The image quality of low dose CBCT can be improved by using multiscale filters

  4. Single-Trial Evoked Potential Estimating Based on Sparse Coding under Impulsive Noise Environment

    Directory of Open Access Journals (Sweden)

    Nannan Yu

    2018-01-01

    Full Text Available Estimating single-trial evoked potentials (EPs corrupted by the spontaneous electroencephalogram (EEG can be regarded as signal denoising problem. Sparse coding has significant success in signal denoising and EPs have been proven to have strong sparsity over an appropriate dictionary. In sparse coding, the noise generally is considered to be a Gaussian random process. However, some studies have shown that the background noise in EPs may present an impulsive characteristic which is far from Gaussian but suitable to be modeled by the α-stable distribution 1<α≤2. Consequently, the performances of general sparse coding will degrade or even fail. In view of this, we present a new sparse coding algorithm using p-norm optimization in single-trial EPs estimating. The algorithm can track the underlying EPs corrupted by α-stable distribution noise, trial-by-trial, without the need to estimate the α value. Simulations and experiments on human visual evoked potentials and event-related potentials are carried out to examine the performance of the proposed approach. Experimental results show that the proposed method is effective in estimating single-trial EPs under impulsive noise environment.

  5. External noise distinguishes attention mechanisms.

    Science.gov (United States)

    Lu, Z L; Dosher, B A

    1998-05-01

    We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.

  6. Quantum noise and stochastic reduction

    International Nuclear Information System (INIS)

    Brody, Dorje C; Hughston, Lane P

    2006-01-01

    In standard nonrelativistic quantum mechanics the expectation of the energy is a conserved quantity. It is possible to extend the dynamical law associated with the evolution of a quantum state consistently to include a nonlinear stochastic component, while respecting the conservation law. According to the dynamics thus obtained, referred to as the energy-based stochastic Schroedinger equation, an arbitrary initial state collapses spontaneously to one of the energy eigenstates, thus describing the phenomenon of quantum state reduction. In this paper, two such models are investigated: one that achieves state reduction in infinite time and the other in finite time. The properties of the associated energy expectation process and the energy variance process are worked out in detail. By use of a novel application of a nonlinear filtering method, closed-form solutions-algebraic in character and involving no integration-are obtained of both these models. In each case, the solution is expressed in terms of a random variable representing the terminal energy of the system and an independent noise process. With these solutions at hand it is possible to simulate explicitly the dynamics of the quantum states of complicated physical systems

  7. Noise performance of frequency modulation Kelvin force microscopy

    Directory of Open Access Journals (Sweden)

    Heinrich Diesinger

    2014-01-01

    Full Text Available Noise performance of a phase-locked loop (PLL based frequency modulation Kelvin force microscope (FM-KFM is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  8. The random phase transducer in ultrasonic NDT of coarse grain stainless steel

    International Nuclear Information System (INIS)

    Bordier, J.M.; Fink, M.; Le Brun, A.; Cohen-Tenoudji, F.

    1993-11-01

    Ultrasonic NDT of cast stainless steel is known to be difficult due to a huge loss of focussing of the ultrasonic beam, and to a high level speckle noise generated by the coarse grain structure. In this paper, we describe the principle of the ultrasonic random phase transducer. Experimental results are compared with those obtained with a standard spatial compound technique. We show that the random phase transducer is a good tool to characterize the multiple scattering process generated by these materials. (authors). 7 figs., 11 refs

  9. Noise sensitivity of portfolio selection in constant conditional correlation GARCH models

    Science.gov (United States)

    Varga-Haszonits, I.; Kondor, I.

    2007-11-01

    This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.

  10. A random-parametric reactor model with direct feedback and non-white noise

    International Nuclear Information System (INIS)

    Sako, O.; Taniguchi, A.; Kuroda, Y.

    1982-01-01

    The effects of multiplicative direct power feedback and non-white reactivity noise on the fluctuations of the neutron density are studied, based on the master equation using the cumulant expansion and the system-size expansion. The results obtained are the following: non-whiteness of reactivity noise reduces the variance of neutron density, as well as the level of the power spectral density. The nonlinear effect of power feedback gives rise to at least a pair of corner frequencies, in contrast to the single corner frequency in linearized case. (author)

  11. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  12. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  13. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  14. Structure and Randomness of Continuous-Time, Discrete-Event Processes

    Science.gov (United States)

    Marzen, Sarah E.; Crutchfield, James P.

    2017-10-01

    Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.

  15. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  16. An Improved Fast Compressive Tracking Algorithm Based on Online Random Forest Classifier

    Directory of Open Access Journals (Sweden)

    Xiong Jintao

    2016-01-01

    Full Text Available The fast compressive tracking (FCT algorithm is a simple and efficient algorithm, which is proposed in recent years. But, it is difficult to deal with the factors such as occlusion, appearance changes, pose variation, etc in processing. The reasons are that, Firstly, even if the naive Bayes classifier is fast in training, it is not robust concerning the noise. Secondly, the parameters are required to vary with the unique environment for accurate tracking. In this paper, we propose an improved fast compressive tracking algorithm based on online random forest (FCT-ORF for robust visual tracking. Firstly, we combine ideas with the adaptive compressive sensing theory regarding the weighted random projection to exploit both local and discriminative information of the object. The second reason is the online random forest classifier for online tracking which is demonstrated with more robust to the noise adaptively and high computational efficiency. The experimental results show that the algorithm we have proposed has a better performance in the field of occlusion, appearance changes, and pose variation than the fast compressive tracking algorithm’s contribution.

  17. 14. informal meeting on reactor noise

    International Nuclear Information System (INIS)

    1981-01-01

    The present booklet contains abstracts of papers from the 14th informal meeting on reactor noise held at St. Englmar in April 1981. The main topics dealt with are vibration and loose part monitoring, leak detection, noise theory and noise applications and in the final part data processing and pattern recognition techniques. (orig.)

  18. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  19. On the design of henon and logistic map-based random number generator

    Science.gov (United States)

    Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah

    2017-10-01

    The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.

  20. Provable quantum advantage in randomness processing

    OpenAIRE

    Dale, H; Jennings, D; Rudolph, T

    2015-01-01

    Quantum advantage is notoriously hard to find and even harder to prove. For example the class of functions computable with classical physics actually exactly coincides with the class computable quantum-mechanically. It is strongly believed, but not proven, that quantum computing provides exponential speed-up for a range of problems, such as factoring. Here we address a computational scenario of "randomness processing" in which quantum theory provably yields, not only resource reduction over c...

  1. Survey on Johnson noise thermometry for temperature instrumentation

    International Nuclear Information System (INIS)

    Hwang, I. K.; Kim, Y. K.; Kim, J. S.; Moon, B. S.

    2002-01-01

    Johnson Noise Thermometry is an drift-free temperature measurement method which is able to maintain the best accuracy without calibration for a long period. Resistance Temperature Detectors (RTDs) and Thermocouples used widely in power plants have the drift problem which causes a measurement error. Despite the advantage of Johnson Noise thermometry, it has not been used because it is very sensitive to electromagnetic noise and environment. It also requires more complicated signal processing methods. This paper presents the characteristics of Johnson Noise thermometry and various implementation method proposed over the past decades time period. The key factor in development of a noise thermometer is how to extract the tiny noise signal from the sensor and discriminate out the unnecessary noise interference from the environments. The new digital technology of fast signal processing skill will useful to challenge the existing problems fir commercialization of noise thermometry

  2. EFFECT OF POLARIMETRIC NOISE ON THE ESTIMATION OF TWIST AND MAGNETIC ENERGY OF FORCE-FREE FIELDS

    International Nuclear Information System (INIS)

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay; Joshi, Jayant

    2009-01-01

    The force-free parameter α, also known as helicity parameter or twist parameter, bears the same sign as the magnetic helicity under some restrictive conditions. The single global value of α for a whole active region gives the degree of twist per unit axial length. We investigate the effect of polarimetric noise on the calculation of global α value and magnetic energy of an analytical bipole. The analytical bipole has been generated using the force-free field approximation with a known value of constant α and magnetic energy. The magnetic parameters obtained from the analytical bipole are used to generate Stokes profiles from the Unno-Rachkovsky solutions for polarized radiative transfer equations. Then we add random noise of the order of 10 -3 of the continuum intensity (I c ) in these profiles to simulate the real profiles obtained by modern spectropolarimeters such as Hinode (SOT/SP), SVM (USO), ASP, DLSP, POLIS, and SOLIS etc. These noisy profiles are then inverted using a Milne-Eddington inversion code to retrieve the magnetic parameters. Hundred realizations of this process of adding random noise and polarimetric inversion is repeated to study the distribution of error in global α and magnetic energy values. The results show that (1) the sign of α is not influenced by polarimetric noise and very accurate values of global twist can be calculated, and (2) accurate estimation of magnetic energy with uncertainty as low as 0.5% is possible under the force-free condition.

  3. Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation processes

    Science.gov (United States)

    Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.

    2018-05-01

    The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.

  4. UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS

    Data.gov (United States)

    National Aeronautics and Space Administration — UNDERSTANDING SEVERE WEATHER PROCESSES THROUGH SPATIOTEMPORAL RELATIONAL RANDOM FORESTS AMY MCGOVERN, TIMOTHY SUPINIE, DAVID JOHN GAGNE II, NATHANIEL TROUTMAN,...

  5. Noise Pollution, Teachers' Edition.

    Science.gov (United States)

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  6. Equalization Enhanced Phase Noise in Coherent Optical Systems with Digital Pre- and Post-Processing

    Directory of Open Access Journals (Sweden)

    Aditya Kakkar

    2016-03-01

    Full Text Available We present an extensive study of equalization enhanced phase noise (EEPN in coherent optical system for all practical electronic dispersion compensation configurations. It is shown that there are only eight practicable all-electronic impairment mitigation configurations. The non-linear and time variant analysis reveals that the existence and the cause of EEPN depend on the digital signal processing (DSP schemes. There are three schemes that in principle do not cause EEPN. Analysis further reveals the statistical equivalence of the remaining five system configurations resulting in EEPN. In three of them, EEPN is due to phase noise of the transmitting laser, while in the remaining two, EEPN is caused by the local oscillator. We provide a simple look-up table for the system designer to make an informative decision regarding practicable configuration choice and design.

  7. Optimal redundant systems for works with random processing time

    International Nuclear Information System (INIS)

    Chen, M.; Nakagawa, T.

    2013-01-01

    This paper studies the optimal redundant policies for a manufacturing system processing jobs with random working times. The redundant units of the parallel systems and standby systems are subject to stochastic failures during the continuous production process. First, a job consisting of only one work is considered for both redundant systems and the expected cost functions are obtained. Next, each redundant system with a random number of units is assumed for a single work. The expected cost functions and the optimal expected numbers of units are derived for redundant systems. Subsequently, the production processes of N tandem works are introduced for parallel and standby systems, and the expected cost functions are also summarized. Finally, the number of works is estimated by a Poisson distribution for the parallel and standby systems. Numerical examples are given to demonstrate the optimization problems of redundant systems

  8. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  9. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    International Nuclear Information System (INIS)

    Oide, H.; Murase, T.; Otono, H.; Yamashita, S.

    2010-01-01

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  10. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    Energy Technology Data Exchange (ETDEWEB)

    Oide, H., E-mail: oide@icepp.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Murase, T.; Otono, H. [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Yamashita, S. [ICEPP, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan)

    2010-01-21

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  11. Slepian Simulations of Plastic Displacements of Randomly Excited Hysteretic Structures

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov

    2003-01-01

    The object of the study is a fast simulation method for generation and analysis of the plastic response of a randomly excited MDOF oscillatro with several potential elements with elasto-plastic constitutive behavior. The oscillator is statically determinate with linear damping. The external...... approximately as a stationary Gaussian process. This requires that the standard deviation of the stationary response is not too large as compared to the plastic yield limits. The Slepian model process for the behavior of the linear response is then simply the conditional mean (linear regression) of the process...... noise excited linear oscillator obtained from the elasto-plastic oscillator by totally removing the plastic domain. Thus the key to the applicability of the method is that the oscillator has a linear domain within which the response stays for a sufficiently long time to make the random response behave...

  12. Signs of noise-induced neural degeneration in humans

    DEFF Research Database (Denmark)

    Holtegaard, Pernille; Olsen, Steen Østergaard

    2015-01-01

    of background noise, while leaving the processing of low-level stimuli unaffected. The purpose of this study was to investigate if signs of such primary neural damage from noise-exposure could also be found in noiseexposed human individuals. It was investigated: (1) if noise-exposed listeners with hearing......Animal studies demonstrated that noise exposure causes a primary and selective loss of auditory-nerve fibres with low spontaneous firing rate. This neuronal impairment, if also present in humans, can be assumed to affect the processing of supra-threshold stimuli, especially in the presence...... thresholds within the “normal” range perform poorer, in terms of their speech recognition threshold in noise (SRTN), and (2) if auditory brainstem responses (ABR) reveal lower amplitude of wave I in the noise-exposed listeners. A test group of noise/music-exposed individuals and a control group were...

  13. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    Science.gov (United States)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  14. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

    Science.gov (United States)

    Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao

    2017-08-01

    The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

  15. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    Science.gov (United States)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  16. Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing

    Science.gov (United States)

    Su, Yung-Chao; Wu, Shin-Tza

    2017-09-01

    We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.

  17. Neutron fluctuations in a medium randomly varying in time

    International Nuclear Information System (INIS)

    Lenard, Pal; Imre, Pazsit

    2005-01-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  18. Neutron fluctuations in a medium randomly varying in time

    Energy Technology Data Exchange (ETDEWEB)

    Lenard, Pal [KFKI Atomic Energy Research Institute, Budapest (Hungary); Imre, Pazsit [Chalmers Univ. of Technology, Dept. of Nuclear Engineering, SE, Goteborg (Sweden)

    2005-07-01

    The master equation approach, which has traditionally been used for the calculation of neutron fluctuations in zero power systems with constant parameters, is extended to a case when the parameters of the system change randomly in time. We consider a forward type master equation for the probability distribution of the number of particles in a multiplying system whose properties jump randomly between two discrete states, both with and without an external source. The first two factorial moments are calculated, including the covariance. This model can be considered the unification of stochastic methods that were used either in a constant multiplying medium via the master equation technique, or in a fluctuating medium via the Langevin technique. In contrast to these methods, the one presented here can calculate the inherent noise in time-varying systems. The results obtained show a much richer characteristics of the zero power noise than that in constant systems. Even the concept of criticality has to be given a probabilistic interpretation. The asymptotic behaviour of the variance will be also qualitatively different from that in constant systems. The covariance of the neutron number in a subcritical system with a source, and the corresponding power spectrum, shows both the inherent and parametrically induced noise components. The results are relevant in medium power subcritical systems where the zero power noise is still significant, but they also have a bearing on all types of branching processes, such as evolution of biological systems, spreading of epidemics etc., which are set in a time-varying environment. (authors)

  19. GEKF, GUKF and GGPF based prediction of chaotic time-series with additive and multiplicative noises

    International Nuclear Information System (INIS)

    Wu Xuedong; Song Zhihuan

    2008-01-01

    On the assumption that random interruptions in the observation process are modelled by a sequence of independent Bernoulli random variables, this paper generalize the extended Kalman filtering (EKF), the unscented Kalman filtering (UKF) and the Gaussian particle filtering (GPF) to the case in which there is a positive probability that the observation in each time consists of noise alone and does not contain the chaotic signal (These generalized novel algorithms are referred to as GEKF, GUKF and GGPF correspondingly in this paper). Using weights and network output of neural networks to constitute state equation and observation equation for chaotic time-series prediction to obtain the linear system state transition equation with continuous update scheme in an online fashion, and the prediction results of chaotic time series represented by the predicted observation value, these proposed novel algorithms are applied to the prediction of Mackey–Glass time-series with additive and multiplicative noises. Simulation results prove that the GGPF provides a relatively better prediction performance in comparison with GEKF and GUKF. (general)

  20. Structure-borne noise at hotels

    Science.gov (United States)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  1. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    Science.gov (United States)

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  2. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  3. The Effects of Hearing Aid Directional Microphone and Noise Reduction Processing on Listening Effort in Older Adults with Hearing Loss.

    Science.gov (United States)

    Desjardins, Jamie L

    2016-01-01

    Older listeners with hearing loss may exert more cognitive resources to maintain a level of listening performance similar to that of younger listeners with normal hearing. Unfortunately, this increase in cognitive load, which is often conceptualized as increased listening effort, may come at the cost of cognitive processing resources that might otherwise be available for other tasks. The purpose of this study was to evaluate the independent and combined effects of a hearing aid directional microphone and a noise reduction (NR) algorithm on reducing the listening effort older listeners with hearing loss expend on a speech-in-noise task. Participants were fitted with study worn commercially available behind-the-ear hearing aids. Listening effort on a sentence recognition in noise task was measured using an objective auditory-visual dual-task paradigm. The primary task required participants to repeat sentences presented in quiet and in a four-talker babble. The secondary task was a digital visual pursuit rotor-tracking test, for which participants were instructed to use a computer mouse to track a moving target around an ellipse that was displayed on a computer screen. Each of the two tasks was presented separately and concurrently at a fixed overall speech recognition performance level of 50% correct with and without the directional microphone and/or the NR algorithm activated in the hearing aids. In addition, participants reported how effortful it was to listen to the sentences in quiet and in background noise in the different hearing aid listening conditions. Fifteen older listeners with mild sloping to severe sensorineural hearing loss participated in this study. Listening effort in background noise was significantly reduced with the directional microphones activated in the hearing aids. However, there was no significant change in listening effort with the hearing aid NR algorithm compared to no noise processing. Correlation analysis between objective and self

  4. Localization noise in deep subwavelength plasmonic devices

    Science.gov (United States)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  5. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  6. Nuisance Caused by Aircraft Noise in the Vicinity of Tehran International Airport

    Directory of Open Access Journals (Sweden)

    Stan Frost

    1999-03-01

    Full Text Available Noise measurement and social questionnaire surveys in three residential areas around Mehrabad International Airport (Tehran, Iran were based upon randomly selected dwellings in each area. A total of 193 individuals responded and many are annoyed and dissatisfied with aircraft noise and in consequence they would like to move. Aircraft noise is the strongest negative environmental factor affecting the residents in the vicinity of Mehrabad Airport and it could be a hazard for their health.

  7. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  8. A Comparison of seismic instrument noise coherence analysis techniques

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.

    2011-01-01

    The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.

  9. Noise-control needs in the developing energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Keast, D.N.

    1978-03-01

    The noise characteristics of existing energy conversion technologies, e.g., from obtaining and processing fossil fuels to power plants operations, and of developing energy technologies (wind, geothermal sources, solar energy or fusion systems) are discussed in terms of the effects of noise on humans, animals, structures, and equipment and methods for noise control. Regulations for noise control are described. Recommendations are made for further research on noise control and noise effects. (LCL)

  10. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Shuqiang Wang

    2014-01-01

    Full Text Available Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate Bayesian computation (ABC method based on sequential Monte Carlo (SMC to search for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif buffering noise while maintaining sensitivity to long-term changes in input signals. We discuss in detail a particular implementation in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of the reaction between nodes.

  11. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  12. Low-noise Collision Operators for Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2005-01-01

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers

  13. SOME OBSERVATIONS ON THE DESIGN OF NOISE BARRIERS

    Directory of Open Access Journals (Sweden)

    Arkadiusz BOCZKOWSKI

    2013-04-01

    Full Text Available The issue connected with effectiveness of noise barriers has been the subject of numerous considerations among acousticians. On the one hand, noise barriers are still the most popular and the most frequently used protection against traffic noise, on the other hand, however, the excessive number of noise barriers and the results of research focusing on effectiveness of the existing barriers make us reflect whether it is reasonable to use them. Very often low effectiveness of noise barriers is related to a badly conducted designing process. This article presents the basic mistakes made by noise barriers’ designers and the consequences thereof. Next, the paper describes the appropriate approach to the process of the noise barriers’ design which consists in the use of computer methods and conducting of a detailed analysis of the acoustic field’s distribution both behind the barrier and on the facades of the acoustically protected buildings.

  14. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  15. SLMRACE: a noise-free RACE implementation with reduced computational time

    Science.gov (United States)

    Chauvin, Juliet; Provenzi, Edoardo

    2017-05-01

    We present a faster and noise-free implementation of the RACE algorithm. RACE has mixed characteristics between the famous Retinex model of Land and McCann and the automatic color equalization (ACE) color-correction algorithm. The original random spray-based RACE implementation suffers from two main problems: its computational time and the presence of noise. Here, we will show that it is possible to adapt two techniques recently proposed by Banić et al. to the RACE framework in order to drastically decrease the computational time and noise generation. The implementation will be called smart-light-memory-RACE (SLMRACE).

  16. A One-Dimensional Wave Equation with White Noise Boundary Condition

    International Nuclear Information System (INIS)

    Kim, Jong Uhn

    2006-01-01

    We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations

  17. Apparent scale correlations in a random multifractal process

    DEFF Research Database (Denmark)

    Cleve, Jochen; Schmiegel, Jürgen; Greiner, Martin

    2008-01-01

    We discuss various properties of a homogeneous random multifractal process, which are related to the issue of scale correlations. By design, the process has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based on a coarse......-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several puzzling empirical details...

  18. Noise limitations in optical linear algebra processors.

    Science.gov (United States)

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  19. Effects of noise on a computational model for disease states of mood disorders

    Science.gov (United States)

    Tobias Huber, Martin; Krieg, Jürgen-Christian; Braun, Hans Albert; Moss, Frank

    2000-03-01

    Nonlinear dynamics are currently proposed to explain the progressive course of recurrent mood disorders starting with isolated episodes and ending with accelerated irregular (``chaotic") mood fluctuations. Such a low-dimensional disease model is attractive because of its principal accordance with biological disease models, i.e. the kindling and biological rhythms model. However, most natural systems are nonlinear and noisy and several studies in the neuro- and physical sciences have demonstrated interesting cooperative behaviors arising from interacting random and deterministic dynamics. Here, we consider the effects of noise on a recent neurodynamical model for the timecourse of affective disorders (Huber et al.: Biological Psychiatry 1999;46:256-262). We describe noise effects on temporal patterns and mean episode frequencies of various in computo disease states. Our simulations demonstrate that noise can cause unstructured randomness or can maximize periodic order. The frequency of episode occurence can increase with noise but it can also remain unaffected or even can decrease. We show further that noise can make visible bifurcations before they would normally occur under deterministic conditions and we quantify this behavior with a recently developed statistical method. All these effects depend critically on both, the dynamic state and the noise intensity. Implications for neurobiology and course of mood disorders are discussed.

  20. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.