WorldWideScience

Sample records for random networks small-world

  1. Functional brain networks: random, "small world" or deterministic?

    Science.gov (United States)

    Blinowska, Katarzyna J; Kaminski, Maciej

    2013-01-01

    Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several publications based on bivariate estimators of relations between EEG channels authors reported random or "small world" structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links, show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing. In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds exchange the information by weaker connections.

  2. Functional brain networks: random, "small world" or deterministic?

    Directory of Open Access Journals (Sweden)

    Katarzyna J Blinowska

    Full Text Available Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several publications based on bivariate estimators of relations between EEG channels authors reported random or "small world" structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links, show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing. In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds exchange the information by weaker connections.

  3. Comparison of Synchronization in Small World and Random Networks

    Science.gov (United States)

    Bernard, Tess; Miller, Bruce

    2008-10-01

    There are many models that simulate neuron firing in the brain. These range from the basic integrate-and-fire method to the complex Hodgkin-Huxley model. Eugene Izhikevich (2003) employed the principles of nonlinear dynamics, specifically bifurcation theory, to develop a model that is both simple and powerful, which can be described as an integrate-and-reset model. By changing only a few parameters, this model can simulate all the known types of cortical neuron firing patterns. Using it, we studied the properties of two different types of neural networks. In the first, originally used by Izhikevich, the synaptic connection strengths between the neurons are determined randomly, and each neuron is connected to all of the other neurons in the network. The second is a small world network modeled after the one employed by Alex Roxin, et al. (2004), but expanded to include inhibition. This geometry is an idealized representation of the nervous system. In our investigation we compared the onset of synchronization in each network, as well as its stability in the presence of external currents. We also considered the relevance of these results to real world phenomena such as seizures.

  4. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  5. Properties of a new small-world network with spatially biased random shortcuts

    Science.gov (United States)

    Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko

    2017-11-01

    This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.

  6. The ubiquity of small-world networks.

    Science.gov (United States)

    Telesford, Qawi K; Joyce, Karen E; Hayasaka, Satoru; Burdette, Jonathan H; Laurienti, Paul J

    2011-01-01

    Small-world networks, according to Watts and Strogatz, are a class of networks that are "highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs." These characteristics result in networks with unique properties of regional specialization with efficient information transfer. Social networks are intuitive examples of this organization, in which cliques or clusters of friends being interconnected but each person is really only five or six people away from anyone else. Although this qualitative definition has prevailed in network science theory, in application, the standard quantitative application is to compare path length (a surrogate measure of distributed processing) and clustering (a surrogate measure of regional specialization) to an equivalent random network. It is demonstrated here that comparing network clustering to that of a random network can result in aberrant findings and that networks once thought to exhibit small-world properties may not. We propose a new small-world metric, ω (omega), which compares network clustering to an equivalent lattice network and path length to a random network, as Watts and Strogatz originally described. Example networks are presented that would be interpreted as small-world when clustering is compared to a random network but are not small-world according to ω. These findings have important implications in network science because small-world networks have unique topological properties, and it is critical to accurately distinguish them from networks without simultaneous high clustering and short path length.

  7. Naming games in two-dimensional and small-world-connected random geometric networks.

    Science.gov (United States)

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  8. Correlation of Eigenvector Centrality to Other Centrality Measures : Random, Small-World and Real-World Networks

    OpenAIRE

    Xiaojia He; Natarajan Meghanathan

    2016-01-01

    In this paper, we thoroughly investigate correlations of eigenvector centrality to five centrality measures, including degree centrality, betweenness centrality, clustering coefficient centrality, closeness centrality, and farness centrality, of various types of network (random network, small world network, and real-world network). For each network, we compute those six centrality measures, from which the correlation coefficient is determined. Our analysis suggests that the degree centrali...

  9. Collective dynamics of `small-world' networks

    Science.gov (United States)

    Watts, Duncan J.; Strogatz, Steven H.

    1998-06-01

    Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays,, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks `rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them `small-world' networks, by analogy with the small-world phenomenon, (popularly known as six degrees of separation). The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

  10. Naming games in two-dimensional and small-world-connected random geometric networks

    Science.gov (United States)

    Lu, Qiming; Korniss, G.; Szymanski, B. K.

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli , J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a “small-world”-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  11. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  12. Small-world networks in neuronal populations: a computational perspective.

    Science.gov (United States)

    Zippo, Antonio G; Gelsomino, Giuliana; Van Duin, Pieter; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E M

    2013-08-01

    The analysis of the brain in terms of integrated neural networks may offer insights on the reciprocal relation between structure and information processing. Even with inherent technical limits, many studies acknowledge neuron spatial arrangements and communication modes as key factors. In this perspective, we investigated the functional organization of neuronal networks by explicitly assuming a specific functional topology, the small-world network. We developed two different computational approaches. Firstly, we asked whether neuronal populations actually express small-world properties during a definite task, such as a learning task. For this purpose we developed the Inductive Conceptual Network (ICN), which is a hierarchical bio-inspired spiking network, capable of learning invariant patterns by using variable-order Markov models implemented in its nodes. As a result, we actually observed small-world topologies during learning in the ICN. Speculating that the expression of small-world networks is not solely related to learning tasks, we then built a de facto network assuming that the information processing in the brain may occur through functional small-world topologies. In this de facto network, synchronous spikes reflected functional small-world network dependencies. In order to verify the consistency of the assumption, we tested the null-hypothesis by replacing the small-world networks with random networks. As a result, only small world networks exhibited functional biomimetic characteristics such as timing and rate codes, conventional coding strategies and neuronal avalanches, which are cascades of bursting activities with a power-law distribution. Our results suggest that small-world functional configurations are liable to underpin brain information processing at neuronal level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Can recurrence networks show small-world property?

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rinku, E-mail: rinku.jacob.vallanat@gmail.com [Department of Physics, The Cochin College, Cochin, 682002 (India); Harikrishnan, K.P., E-mail: kp_hk2002@yahoo.co.in [Department of Physics, The Cochin College, Cochin, 682002 (India); Misra, R., E-mail: rmisra@iucaa.in [Inter University Centre for Astronomy and Astrophysics, Pune, 411007 (India); Ambika, G., E-mail: g.ambika@iiserpune.ac.in [Indian Institute of Science Education and Research, Pune, 411008 (India)

    2016-08-12

    Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.

  14. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  15. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  16. Mandala Networks: ultra-small-world and highly sparse graphs

    Science.gov (United States)

    Sampaio Filho, Cesar I. N.; Moreira, André A.; Andrade, Roberto F. S.; Herrmann, Hans J.; Andrade, José S.

    2015-03-01

    The increasing demands in security and reliability of infrastructures call for the optimal design of their embedded complex networks topologies. The following question then arises: what is the optimal layout to fulfill best all the demands? Here we present a general solution for this problem with scale-free networks, like the Internet and airline networks. Precisely, we disclose a way to systematically construct networks which are robust against random failures. Furthermore, as the size of the network increases, its shortest path becomes asymptotically invariant and the density of links goes to zero, making it ultra-small world and highly sparse, respectively. The first property is ideal for communication and navigation purposes, while the second is interesting economically. Finally, we show that some simple changes on the original network formulation can lead to an improved topology against malicious attacks.

  17. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    Science.gov (United States)

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  18. Network marketing on a small-world network

    Science.gov (United States)

    Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.

    2006-02-01

    We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.

  19. Network 'small-world-ness': a quantitative method for determining canonical network equivalence.

    Directory of Open Access Journals (Sweden)

    Mark D Humphries

    Full Text Available BACKGROUND: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges. This semi-quantitative definition leads to a categorical distinction ('small/not-small' rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model--the Watts-Strogatz (WS model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. METHODOLOGY/PRINCIPAL FINDINGS: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S>1--an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. CONCLUSIONS/SIGNIFICANCE: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.

  20. Local Interactions and the Emergence of a Twitter Small-World Network

    CERN Document Server

    Ch'ng, Eugene

    2015-01-01

    The small-world phenomenon is found in many self-organising systems. Systems configured in small-world networks spread information more easily than in random or regular lattice-type networks. Whilst it is a known fact that small-world networks have short average path length and high clustering coefficient in self-organising systems, the ego centralities that maintain the cohesiveness of small-world network have not been formally defined. Here we show that instantaneous events such as the release of news items via Twitter, coupled with active community arguments related to the news item form a particular type of small-world network. Analysis of the centralities in the network reveals that community arguments maintain the small-world network whilst actively maintaining the cohesiveness and boundary of the group. The results demonstrate how an active Twitter community unconsciously forms a small-world network whilst interacting locally with a bordering community. Over time, such local interactions brought about ...

  1. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  3. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  4. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  5. Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks

    Directory of Open Access Journals (Sweden)

    Ying Duan

    2017-01-01

    Full Text Available Scale-free network and small-world network are the most impacting discoveries in the complex networks theories and have already been successfully proved to be highly effective in improving topology structures of wireless sensor networks. However, currently both theories are not jointly applied to have further improvements in the generation of WSN topologies. Therefore, this paper proposes a cluster-structured evolution model of WSNs considering the characteristics of both networks. With introduction of energy sensitivity and maximum limitation of degrees that a cluster head could have, the performance of our model can be ensured. In order to give an overall assessment of lifting effects of shortcuts, four placement schemes of shortcuts are analyzed. The characteristics of small-world network and scale-free network of our model are proved via theoretical derivation and simulations. Besides, we find that, by introducing shortcuts into scale-free wireless sensor network, the performance of the network can be improved concerning energy-saving and invulnerability, and we discover that the schemes constructing shortcuts between cluster heads and the sink node have better promoted effects than the scheme building shortcuts between pairs of cluster heads, and the schemes based on the preferential principle are superior to the schemes based on the random principle.

  6. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  7. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  8. Infection dynamics on spatial small-world network models

    Science.gov (United States)

    Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario

    2017-11-01

    The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.

  9. Fractional diffusion on circulant networks: emergence of a dynamical small world

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2015-07-01

    In this paper, we study fractional random walks on networks defined from the equivalent of the fractional diffusion equation in graphs. We explore this process analytically in circulant networks; in particular, interacting cycles and limit cases such as a ring and a complete graph. From the spectra and the eigenvectors of the Laplacian matrix, we deduce explicit results for different quantities that characterize this dynamical process. We obtain analytical expressions for the fractional transition matrix, the fractional degrees and the average probability of return of the random walker. Also, we discuss the Kemeny constant, which gives the average number of steps necessary to reach any site of the network. Throughout this work, we analyze the mechanisms behind fractional transport on circulant networks and how this long-range process dynamically induces the small-world property in different structures.

  10. A family of small-world network models built by complete graph and iteration-function

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2018-02-01

    Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also

  11. Dynamics in small worlds of tree topologies of wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Baihai; Fan, Zhun

    2012-01-01

    rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks......Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...

  12. Immunizations on small worlds of tree-based wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo

    2012-01-01

    The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization......, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world...

  13. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  14. Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks

    Science.gov (United States)

    Lehmann, Jörg; Bernasconi, Jakob

    2017-03-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d -dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  15. Predicting Hierarchical Structure in Small World Social Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2009-01-01

    Typisk analytisk foranstaltninger i grafteori gerne grad centralitet, betweenness og nærhed centralities er meget almindelige og har lang tradition for deres vellykkede brug. Men modellering af skjult, terrorister eller kriminelle netværk gennem sociale grafer ikke rigtig give den hierarkiske...... udnyttet til at forudsige den kommandostruktur af nettet. Nøgleord: Social Networks Analyse, Bayes Teorem, entropi, hierarkisk struktur....

  16. Small-worldness and modularity of the resting-state functional brain network decrease with aging.

    Science.gov (United States)

    Onoda, Keiichi; Yamaguchi, Shuhei

    2013-11-27

    The human brain is a complex network that is known to be affected by normal aging. Graph-based analysis has been used to estimate functional brain network efficiency and effects of normal aging on small-worldness have been reported. This relationship is further investigated here along with network modularity, a statistic reflecting how well a network is organized into modules of densely interconnected nodes. Modularity has previously been observed to vary as a function of working memory capacity, therefore we hypothesized that both small-worldness and modularity would show age-related declines. We found that both small-worldness and modularity were negatively correlated with increasing age but that this decline was relatively slow. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Extraction of network topology from multi-electrode recordings: Is there a small-world effect?

    Directory of Open Access Journals (Sweden)

    Felipe eGerhard

    2011-02-01

    Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

  18. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  19. A Multilayer Feed Forward Small-World Neural Network Controller and Its Application on Electrohydraulic Actuation System

    Directory of Open Access Journals (Sweden)

    Xiaohu Li

    2013-01-01

    Full Text Available Being difficult to attain the precise mathematical models, traditional control methods such as proportional integral (PI and proportional integral differentiation (PID cannot meet the demands for real time and robustness when applied in some nonlinear systems. The neural network controller is a good replacement to overcome these shortcomings. However, the performance of neural network controller is directly determined by neural network model. In this paper, a new neural network model is constructed with a structure topology between the regular and random connection modes based on complex network, which simulates the brain neural network as far as possible, to design a better neural network controller. Then, a new controller is designed under small-world neural network model and is investigated in both linear and nonlinear systems control. The simulation results show that the new controller basing on small-world network model can improve the control precision by 30% in the case of system with random disturbance. Besides the good performance of the new controller in tracking square wave signals, which is demonstrated by the experiment results of direct drive electro-hydraulic actuation position control system, it works well on anti-interference performance.

  20. Interictal to Ictal Phase Transition in a Small-World Network

    Science.gov (United States)

    Nemzer, Louis; Cravens, Gary; Worth, Robert

    Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.

  1. Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity.

    Science.gov (United States)

    Kim, Sang-Yoon; Lim, Woochang

    2018-01-01

    We consider the Watts-Strogatz small-world network (SWN) consisting of subthreshold neurons which exhibit noise-induced spikings. This neuronal network has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). In previous works without STDP, stochastic spike synchronization (SSS) between noise-induced spikings of subthreshold neurons was found to occur in a range of intermediate noise intensities. Here, we investigate the effect of additive STDP on the SSS by varying the noise intensity. Occurrence of a "Matthew" effect in synaptic plasticity is found due to a positive feedback process. As a result, good synchronization gets better via long-term potentiation of synaptic strengths, while bad synchronization gets worse via long-term depression. Emergences of long-term potentiation and long-term depression of synaptic strengths are intensively investigated via microscopic studies based on the pair-correlations between the pre- and the post-synaptic IISRs (instantaneous individual spike rates) as well as the distributions of time delays between the pre- and the post-synaptic spike times. Furthermore, the effects of multiplicative STDP (which depends on states) on the SSS are studied and discussed in comparison with the case of additive STDP (independent of states). These effects of STDP on the SSS in the SWN are also compared with those in the regular lattice and the random graph. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Disturbed small-world networks and neurocognitive function in frontal lobe low-grade glioma patients.

    Directory of Open Access Journals (Sweden)

    Qingling Huang

    Full Text Available BACKGROUND: Brain tumor patients often associated with losses of the small-world configuration and neurocognitive functions before operations. However, few studies were performed on the impairments of frontal lobe low-grade gliomas (LGG after tumor resection using small-world network features. METHODOLOGY/PRINCIPAL FINDINGS: To detect differences in the whole brain topology among LGG patients before and after operation, a combined study of neurocognitive assessment and graph theoretical network analysis of fMRI data was performed. We collected resting-state fMRI data of 12 carefully selected frontal lobe LGG patients before and after operation. We calculated the topological properties of brain functional networks in the 12 LGG, and compared with 12 healthy controls (HCs. We also applied Montreal Cognitive Assessment (MoCA in a subset of patients (n = 12, including before and after operation groups and HCs (n = 12. The resulting functional connectivity matrices were constructed for all 12 patients, and binary network analysis was performed. In the range of 0.05 ≤ Kcos t ≤ 0.35, the functional networks in preoperative LGG and postoperative one both fitted the definition of small-worldness. We proposed Knet = 0.20 as small-world network interval, and the results showed that the topological properties were found to be disrupted in the two LGG groups, meanwhile the global efficiency increased and the local efficiency decreased. Lnet in the two LGG groups both were longer than HCs. Cnet in the LGG groups were smaller than HCs. Compared with the Hcs, MoCA in the two LGG groups were lower than HCs with significant difference, and the disturbed networks in the LGG were negatively related to worse MoCA scores. CONCLUSIONS: Disturbed small-worldness preperty in the two LGG groups was found and widely spread in the strength and spatial organization of brain networks, and the alterated small-world network may be responsible for cognitive

  3. Small-World and Scale-Free Network Models for IoT Systems

    Directory of Open Access Journals (Sweden)

    Insoo Sohn

    2017-01-01

    Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.

  4. Impaired small-world network efficiency and dynamic functional distribution in patients with cirrhosis.

    Directory of Open Access Journals (Sweden)

    Tun-Wei Hsu

    Full Text Available Hepatic encephalopathy (HE is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a 'small-world' network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI. Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions

  5. Small-world network effects on innovation: evidences from nanotechnology patenting

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuan [University of Maryland, Robert H. Smith School of Business (United States); Guan, JianCheng, E-mail: guanjianch@ucas.ac.cn [University of Chinese Academy of Sciences, School of Economics and Management (China)

    2016-11-15

    This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.

  6. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  7. Abnormal reorganization of functional cortical small-world networks in focal hand dystonia.

    Directory of Open Access Journals (Sweden)

    Seung-Hyun Jin

    Full Text Available We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD patients using graph theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at rest and during a simple sequential finger tapping task. Mutual information (MI values of wavelet coefficients were estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs, G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks. Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at rest have high regional efficiency at supplementary motor cortex (SMA compared with healthy volunteers; however, it is diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task.

  8. A small-world network derived from the deterministic uniform recursive tree by line graph operation

    Science.gov (United States)

    Hou, Pengfeng; Zhao, Haixing; Mao, Yaping; Wang, Zhao

    2016-03-01

    The deterministic uniform recursive tree ({DURT}) is one of the deterministic versions of the uniform recursive tree ({URT}). Zhang et al (2008 Eur. Phys. J. B 63 507-13) studied the properties of DURT, including its topological characteristics and spectral properties. Although DURT shows a logarithmic scaling with the size of the network, DURT is not a small-world network since its clustering coefficient is zero. Lu et al (2012 Physica A 391 87-92) proposed a deterministic small-world network by adding some edges with a simple rule in each DURT iteration. In this paper, we intoduce a method for constructing a new deterministic small-world network by the line graph operation in each DURT iteration. The line graph operation brings about cliques at each node of the previous given graph, and the resulting line graph possesses larger clustering coefficients. On the other hand, this operation can decrease the diameter at almost one, then giving the analytic solutions to several topological characteristics of the model proposed. Supported by The Ministry of Science and Technology 973 project (No. 2010C B334708); National Science Foundation of China (Nos. 61164005, 11161037, 11101232, 11461054, 11551001); The Ministry of education scholars and innovation team support plan of Yangtze River (No. IRT1068); Qinghai Province Nature Science Foundation Project (Nos. 2012-Z-943, 2014-ZJ-907).

  9. Effects of time delay on the stochastic resonance in small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-03-01

    The effects of time delay on stochastic resonance in small-world neuronal networks are investigated. Without delay, an intermediate intensity of additive noise is able to optimize the temporal response of the neural system to the subthreshold periodic signal imposed on all neurons constituting the network. The time delay in the coupling process can either enhance or destroy stochastic resonance of neuronal activity in the small-world network. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of weak external forcing. It is found that the delay-induced multiple stochastic resonances are most efficient when the forcing frequency is close to the global-resonance frequency of each individual neuron. Furthermore, the impact of time delay on stochastic resonance is largely independent of the small-world topology, except for resonance peaks. Considering that information transmission delays are inevitable in intra- and inter-neuronal communication, the presented results could have important implications for the weak signal detection and information propagation in neural systems.

  10. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  11. Small-world bias of correlation networks: From brain to climate

    Science.gov (United States)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  12. Small-world bias of correlation networks: From brain to climate.

    Science.gov (United States)

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan

    2017-03-01

    Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.

  13. Small Worlds and Board Interlocking in Brazil: A Longitudinal Study of Corporate Networks, 1997-2007

    Directory of Open Access Journals (Sweden)

    Wesley Mendes-da-Silva

    2011-12-01

    Full Text Available Social Network Analysis (SNA is an emerging research field in finance, above all in Brazil. This work is pioneering in that it is supported by reference to different areas of knowledge: social network analysis and corporate governance, for dealing with a similarly emerging topic in finance; interlocking boards, the purpose being to check the validity of the small-world model in the Brazilian capital market, and the existence of associations between the positioning of the firm in the network of corporate relationships and its worth. To do so official data relating to more than 400 companies listed in Brazil between 1997 and 2007 were used. The main results obtained suggest that the configuration of the networks of relationships between board members and companies reflects the small-world model. Furthermore, there seems to be a significant relationship between the firm’s centrality and its worth, described according to an “inverted U” curve, which suggests the existence of optimum values of social prominence in the corporate network.

  14. Laplacian spectra of a class of small-world networks and their applications

    Science.gov (United States)

    Liu, Hongxiao; Dolgushev, Maxim; Qi, Yi; Zhang, Zhongzhi

    2015-03-01

    One of the most crucial domains of interdisciplinary research is the relationship between the dynamics and structural characteristics. In this paper, we introduce a family of small-world networks, parameterized through a variable d controlling the scale of graph completeness or of network clustering. We study the Laplacian eigenvalues of these networks, which are determined through analytic recursive equations. This allows us to analyze the spectra in depth and to determine the corresponding spectral dimension. Based on these results, we consider the networks in the framework of generalized Gaussian structures, whose physical behavior is exemplified on the relaxation dynamics and on the fluorescence depolarization under quasiresonant energy transfer. Although the networks have the same number of nodes (beads) and edges (springs) as the dual Sierpinski gaskets, they display rather different dynamic behavior.

  15. The conundrum of functional brain networks: small-world efficiency or fractal modularity

    Directory of Open Access Journals (Sweden)

    Lazaros eGallos

    2012-05-01

    Full Text Available The human brain has been studied at multiple scales, from neurons, circuits,areas with well defined anatomical and functional boundaries, to large-scalefunctional networks which mediate coherent cognition. In a recent work,we addressed the problem of the hierarchical organization in the brainthrough network analysis. Our analysis identified functional brainmodules of fractal structure that were inter-connected in a small-worldtopology. Here, we provide more details on the use ofnetwork science tools to elaborate on this behavior.We indicate the importance of using percolation theory to highlightthe modular character of the functional brain network.These modules present a fractal, self-similar topology, identified throughfractal network methods.When we lower the threshold of correlations to include weaker ties,the network as a whole assumes a small-world character.These weak ties are organized precisely as predicted by theory maximizing information transfer withminimal wiring costs.

  16. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    Science.gov (United States)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  17. Spatially constrained adaptive rewiring in cortical networks creates spatially modular small world architectures.

    Science.gov (United States)

    Jarman, Nicholas; Trengove, Chris; Steur, Erik; Tyukin, Ivan; van Leeuwen, Cees

    2014-12-01

    A modular small-world topology in functional and anatomical networks of the cortex is eminently suitable as an information processing architecture. This structure was shown in model studies to arise adaptively; it emerges through rewiring of network connections according to patterns of synchrony in ongoing oscillatory neural activity. However, in order to improve the applicability of such models to the cortex, spatial characteristics of cortical connectivity need to be respected, which were previously neglected. For this purpose we consider networks endowed with a metric by embedding them into a physical space. We provide an adaptive rewiring model with a spatial distance function and a corresponding spatially local rewiring bias. The spatially constrained adaptive rewiring principle is able to steer the evolving network topology to small world status, even more consistently so than without spatial constraints. Locally biased adaptive rewiring results in a spatial layout of the connectivity structure, in which topologically segregated modules correspond to spatially segregated regions, and these regions are linked by long-range connections. The principle of locally biased adaptive rewiring, thus, may explain both the topological connectivity structure and spatial distribution of connections between neuronal units in a large-scale cortical architecture.

  18. Mean field dynamics of graphs I: Evolution of probabilistic cellular automata for random and small-world graphs

    CERN Document Server

    Waldorp, Lourens J

    2016-01-01

    It was recently shown how graphs can be used to provide descriptions of psychopathologies, where symptoms of, say, depression, affect each other and certain configurations determine whether someone could fall into a sudden depression. To analyse changes over time and characterise possible future behaviour is rather difficult for large graphs. We describe the dynamics of networks using one-dimensional discrete time dynamical systems theory obtained from a mean field approach to (elementary) probabilistic cellular automata (PCA). Often the mean field approach is used on a regular graph (a grid or torus) where each node has the same number of edges and the same probability of becoming active. We show that we can use variations of the mean field of the grid to describe the dynamics of the PCA on a random and small-world graph. Bifurcation diagrams for the mean field of the grid, random, and small-world graphs indicate possible phase transitions for certain parameter settings. Extensive simulations indicate for di...

  19. Transmission and control of an emerging influenza pandemic in a small-world airline network.

    Science.gov (United States)

    Hsu, Chaug-Ing; Shih, Hsien-Hung

    2010-01-01

    The avian influenza virus H5N1 and the 2009 swine flu H1N1 are potentially serious pandemic threats to human health, and air travel readily facilitates the spread of infectious diseases. However, past studies have not yet incorporated the effects of air travel on the transmission of influenza in the construction of mathematical epidemic models. Therefore, this paper focused on the human-to-human transmission of influenza, and investigated the effects of air travel activities on an influenza pandemic in a small-world network. These activities of air travel include passengers' consolidation, conveyance and distribution in airports and flights. Dynamic transmission models were developed to assess the expected burdens of the pandemic, with and without control measures. This study also investigated how the small-world properties of an air transportation network facilitate the spread of influenza around the globe. The results show that, as soon as the influenza is spread to the top 50 global airports, the transmission is greatly accelerated. Under the constraint of limited resources, a strategy that first applies control measures to the top 50 airports after day 13 and then soon afterwards to all other airports may result in remarkable containment effectiveness. As the infectiousness of the disease increases, it will expand the scale of the pandemic, and move the start time of the pandemic ahead.

  20. Majority-vote model with a bimodal distribution of noises in small-world networks

    Science.gov (United States)

    Vilela, André L. M.; de Souza, Adauto J. F.

    2017-12-01

    We consider a generalized version of the majority-vote model in small-world networks. In our model, each site of the network has noise q = 0 and q ≠ 0 with probability f and 1 - f, respectively. The connections of the two-dimensional square lattice are rewired with probability p. We performed Monte Carlo simulations to characterize the order-disorder phase transition of the system. Through finite-size scaling analysis, we calculated the critical noise value qc and the standard critical exponents β / ν, γ / ν, 1 / ν. Our results suggest that these exponents are different from those of the isotropic majority-vote model. We concluded that the zero noise fraction f when combined with the rewiring probability p drive the system to a different universality class from that of the isotropic majority-vote model.

  1. Effects of distance-dependent delay on small-world neuronal networks.

    Science.gov (United States)

    Zhu, Jinjie; Chen, Zhen; Liu, Xianbin

    2016-04-01

    We study firing behaviors and the transitions among them in small-world noisy neuronal networks with electrical synapses and information transmission delay. Each neuron is modeled by a two-dimensional Rulkov map neuron. The distance between neurons, which is a main source of the time delay, is taken into consideration. Through spatiotemporal patterns and interspike intervals as well as the interburst intervals, the collective behaviors are revealed. It is found that the networks switch from resting state into intermittent firing state under Gaussian noise excitation. Initially, noise-induced firing behaviors are disturbed by small time delays. Periodic firing behaviors with irregular zigzag patterns emerge with an increase of the delay and become progressively regular after a critical value is exceeded. More interestingly, in accordance with regular patterns, the spiking frequency doubles compared with the former stage for the spiking neuronal network. A growth of frequency persists for a larger delay and a transition to antiphase synchronization is observed. Furthermore, it is proved that these transitions are generic also for the bursting neuronal network and the FitzHugh-Nagumo neuronal network. We show these transitions due to the increase of time delay are robust to the noise strength, coupling strength, network size, and rewiring probability.

  2. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme. PMID:25202723

  3. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Directory of Open Access Journals (Sweden)

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  4. An evolutionary inspection game with labour unions on small-world networks

    Science.gov (United States)

    Kamal, Salahuddin M.; Al-Hadeethi, Yas; Abolaban, Fouad A.; Al-Marzouki, Fahd M.; Perc, Matjaž

    2015-03-01

    We study an evolutionary inspection game where agents can chose between working and shirking. The evolutionary process is staged on a small-world network, through which agents compare their incomes and, based on the outcome, decide which strategy to adopt. Moreover, we introduce union members that have certain privileges, of which the extent depends on the bargaining power of the union. We determine how the union affects the overall performance of the firm that employs the agents, and what are its influences on the employees. We find that, depending on its bargaining power, the union has significant leverage to deteriorate the productivity of a firm, and consequently also to lower the long-run benefits of the employees.

  5. Disrupted small-world brain networks in moderate Alzheimer's disease: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaohu Zhao

    Full Text Available The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD. However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI of carefully selected moderate AD patients and normal controls (NCs. Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.

  6. Emergence of small-world anatomical networks in self-organizing clustered neuronal cultures.

    Directory of Open Access Journals (Sweden)

    Daniel de Santos-Sierra

    Full Text Available In vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. At all the different stages of the culture's development, identification of neurons' and neurites' location by means of a dedicated software allows to ultimately extract an adjacency matrix from each image of the culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main network's characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graph's micro- and meso-scale properties emerge. Finally, we identify the main physical processes ruling the culture's morphological transformations, and embed them into a simplified growth model qualitatively reproducing the overall set of experimental observations.

  7. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The dynamic consequences of cooperation and competition in small-world networks.

    Directory of Open Access Journals (Sweden)

    Iván Y Fernández-Rosales

    Full Text Available We present a study of the social dynamics among cooperative and competitive actors interacting on a complex network that has a small-world topology. In this model, the state of each actor depends on its previous state in time, its inertia to change, and the influence of its neighboring actors. Using numerical simulations, we determine how the distribution of final states of the actors and measures of the distances between the values of the actors at local and global levels, depend on the number of cooperative to competitive actors and the connectivity of the actors in the network. We find that similar numbers of cooperative and competitive actors yield the lowest values for the local and global measures of the distances between the values of the actors. On the other hand, when the number of either cooperative or competitive actors dominate the system, then the divergence is largest between the values of the actors. Our findings make new testable predictions on how the dynamics of a conflict depends on the strategies chosen by groups of actors and also have implications for the evolution of behaviors.

  9. Phase Transition for the Maki-Thompson Rumour Model on a Small-World Network

    Science.gov (United States)

    Agliari, Elena; Pachon, Angelica; Rodriguez, Pablo M.; Tavani, Flavia

    2017-11-01

    We consider the Maki-Thompson model for the stochastic propagation of a rumour within a population. In this model the population is made up of "spreaders", "ignorants" and "stiflers"; any spreader attempts to pass the rumour to the other individuals via pair-wise interactions and in case the other individual is an ignorant, it becomes a spreader, while in the other two cases the initiating spreader turns into a stifler. In a finite population the process will eventually reach an equilibrium situation where individuals are either stiflers or ignorants. We extend the original hypothesis of homogenously mixed population by allowing for a small-world network embedding the model, in such a way that interactions occur only between nearest-neighbours. This structure is realized starting from a k-regular ring and by inserting, in the average, c additional links in such a way that k and c are tuneable parameters for the population architecture. We prove that this system exhibits a transition between regimes of localization (where the final number of stiflers is at most logarithmic in the population size) and propagation (where the final number of stiflers grows algebraically with the population size) at a finite value of the network parameter c. A quantitative estimate for the critical value of c is obtained via extensive numerical simulations.

  10. Continuous Forest Fire Propagation in a Local Small World Network Model

    CERN Document Server

    Aguayo, F; Clerc, J -P; Porterie, B

    2013-01-01

    This paper presents the development of a new continuous forest fire model implemented as a weighted local small-world network approach. This new approach was designed to simulate fire patterns in real, heterogeneous landscapes. The wildland fire spread is simulated on a square lattice in which each cell represents an area of the land's surface. The interaction between burning and non-burning cells, in the present work induced by flame radiation, may be extended well beyond nearest neighbors. It depends on local conditions of topography and vegetation types. An approach based on a solid flame model is used to predict the radiative heat flux from the flame generated by the burning of each site towards its neighbors. The weighting procedure takes into account the self-degradation of the tree and the ignition processes of a combustible cell through time. The model is tested on a field presenting a range of slopes and with data collected from a real wildfire scenario. The critical behavior of the spreading process...

  11. Navigation in small-world networks: a scale-free continuum model

    NARCIS (Netherlands)

    Franceschetti, M.; Meester, R.W.J.

    2006-01-01

    The small-world phenomenon, the principle that we are all linked by a short chain of intermediate acquaintances, has been investigated in mathematics and social sciences. It has been shown to be pervasive both in nature and in engineering systems like the World Wide Web. Work of Jon Kleinberg has

  12. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  13. It's a small world after all: contrasting hierarchical and edge networks in a simulated intelligence analysis task.

    Science.gov (United States)

    Stanton, Neville A; Walker, Guy H; Sorensen, Linda J

    2012-01-01

    This article presents the rationale behind an important enhancement to a socio-technical model of organisations and teams derived from military research. It combines this with empirical results which take advantage of these enhancements. In Part 1, a new theoretical legacy for the model is developed based on Ergonomics theories and insights. This allows team communications data to be plotted into the model and for it to demonstrate discriminate validity between alternative team structures. Part 2 presents multinational data from the Experimental Laboratory for Investigating Collaboration, Information-sharing, and Trust (ELICIT) community. It was surprising to see that teams in both traditional hierarchical command and control and networked 'peer-to-peer' organisations operate in broadly the same area of the model, a region occupied by networks of communication exhibiting 'small world' properties. Small world networks may be of considerable importance for the Ergonomics analysis of team organisation and performance. This article is themed around macro and systems Ergonomics, and examines the effects of command and control structures. Despite some differences in behaviour and measures of agility, when given the freedom to do so, participants organised themselves into a small world network. This network type has important and interesting implications for the Ergonomics design of teams and organisations.

  14. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  15. Emergence of synchronization induced by the interplay between two prisoner's dilemma games with volunteering in small-world networks.

    Science.gov (United States)

    Chen, Yong; Qin, Shao-Meng; Yu, Lianchun; Zhang, Shengli

    2008-03-01

    We studied synchronization between prisoner's dilemma games with voluntary participation in two Newman-Watts small-world networks. It was found that there are three kinds of synchronization: partial phase synchronization, total phase synchronization, and complete synchronization, for varied coupling factors. Besides, two games can reach complete synchronization for the large enough coupling factor. We also discussed the effect of the coupling factor on the amplitude of oscillation of cooperator density.

  16. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  17. The relations between network-operation and topological-property in a scale-free and small-world network with community structure

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2017-10-01

    It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.

  18. A Small Morris-Lecar Neuron Network Gets Close to Critical Only in the Small-World Regimen

    Directory of Open Access Journals (Sweden)

    Juan Luis Cabrera

    2013-01-01

    Full Text Available Spontaneous emergence of neuronal activity avalanches characterized by power-law distributions is known to occur in different types of nervous tissues suggesting that nervous systems may operate at a critical regime. Here, we explore the possible relation of this dynamical state with the underlying topology in a small-size network of interconnected Morris-Lecar neurons. Studying numerically different topological configurations, we find that, very close to the efficient small-world situation, the system self-organizes near to a critical branching process with observable distributions in the proximity of a power law with exponents similar to those reported in the experimental literature. Therefore, we conclude that the observed scaling is intimately related only with the small-world topology.

  19. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics

    Science.gov (United States)

    Liu, Yan; Liu, Li-Guang; Wang, Hang

    2012-06-01

    The small-world network model represented by a set of evolution equations with time delay is used to investigate the nonlinear dynamics of networks, and the nature of instability phenomena in traffic, namely, congestion and bursting in the networks, are studied and explained from bifurcation analysis. Then, the governing equation in the vector field is further reduced into a map, and the ensuing period-doubling bifurcation, sequence of period-doubling bifurcation and period-3 are studied intuitively. The existence of chaos is verified numerically. In particular, the influences of time delay on the nonlinear dynamics are presented. The results show that there are a rich variety of nonlinear dynamics related to the intermittency of the traffic flows in the system, and the results can gain a fundamental understanding of the instability in the networks, and the time delay can be used as a key parameter in the control of the systems.

  20. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  1. Disrupted small world networks in patients without overt hepatic encephalopathy: A resting state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhang, Liping [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Qiang [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhao, Tie Zhu [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China)

    2014-10-15

    Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE.

  2. The small world of osteocytes: connectomics of the lacuno-canalicular network in bone

    Science.gov (United States)

    Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter

    2017-07-01

    Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.

  3. A small world of citations? The influence of collaboration networks on citation practices.

    Directory of Open Access Journals (Sweden)

    Matthew L Wallace

    Full Text Available This paper examines the proximity of authors to those they cite using degrees of separation in a co-author network, essentially using collaboration networks to expand on the notion of self-citations. While the proportion of direct self-citations (including co-authors of both citing and cited papers is relatively constant in time and across specialties in the natural sciences (10% of references and the social sciences (20%, the same cannot be said for citations to authors who are members of the co-author network. Differences between fields and trends over time lie not only in the degree of co-authorship which defines the large-scale topology of the collaboration network, but also in the referencing practices within a given discipline, computed by defining a propensity to cite at a given distance within the collaboration network. Overall, there is little tendency to cite those nearby in the collaboration network, excluding direct self-citations. These results are interpreted in terms of small-scale structure, field-specific citation practices, and the value of local co-author networks for the production of knowledge and for the accumulation of symbolic capital. Given the various levels of integration between co-authors, our findings shed light on the question of the availability of 'arm's length' expert reviewers of grant applications and manuscripts.

  4. Effects of autapse and ion channel block on the collective firing activity of Newman-Watts small-world neuronal networks

    Science.gov (United States)

    Uzun, Rukiye; Yilmaz, Ergin; Ozer, Mahmut

    2017-11-01

    An autapse is a special kind of synapse established between the axon and dendrites of the same neuron. In the present study, we have investigated the cooperative effects of autapse and ion channel block on the collective firing regularity of Newman-Watts small-world networks of stochastic Hodgkin-Huxley neurons. We obtain autaptic time delay induced multi-coherence resonance (MCR) phenomenon in the absence of ion channel block. When the ion channel block is considered, we find that this autaptic delay induced MCR phenomenon enhances with the increasing of potassium channel block, whereas it weakens with the increasing of sodium channel block at weak and intermediate autaptic conductance regimes. However, at strong autaptic conductance regime neither sodium nor potassium channel block have a significant effect on the collective firing regularity of the network. Besides, we investigate the effects of the coupling strength, the network randomness and the cell size on the regularity. We obtain an optimal coupling strength value and an optimal cell size leading to a more prominent MCR effect. We also show that the MCR phenomenon increases with the increasing of network randomness in potassium channel block, but it needs to a minimum network randomness for its appearing in case of sodium channel block.

  5. Altered small-world efficiency of brain functional networks in acupuncture at ST36: a functional MRI study.

    Science.gov (United States)

    Liu, Bo; Chen, Jun; Wang, Jinhui; Liu, Xian; Duan, Xiaohui; Shang, Xiaojing; Long, Yu; Chen, Zhiguang; Li, Xiaofang; Huang, Yan; He, Yong

    2012-01-01

    Acupuncture in humans can produce clinical effects via the central nervous system. However, the neural substrates of acupuncture's effects remain largely unknown. We utilized functional MRI to investigate the topological efficiency of brain functional networks in eighteen healthy young adults who were scanned before and after acupuncture at the ST36 acupoints (ACUP) and its sham point (SHAM). Whole-brain functional networks were constructed by thresholding temporal correlations matrices of ninety brain regions, followed by a graph theory-based analysis. We showed that brain functional networks exhibited small-world attributes (high local and global efficiency) regardless of the order of acupuncture and stimulus points, a finding compatible with previous studies of brain functional networks. Furthermore, the brain networks had increased local efficiency after ACUP stimulation but there were no significant differences after SHAM, indicating a specificity of acupuncture point in coordinating local information flow over the whole brain. Moreover, significant (Pacupuncture point were detected on nodal degree of the left hippocampus (higher nodal degree at ACUP as compared to SHAM). Using an uncorrected Pacupuncture modulates topological organization of whole-brain functional brain networks and the modulation has point specificity. These findings provide new insights into neuronal mechanism of acupuncture from the perspective of functional integration. Further studies would be interesting to apply network analysis approaches to study the effects of acupuncture treatments on brain disorders.

  6. Small-world bias of correlation networks: From brain to climate

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, J.; Paluš, Milan

    2017-01-01

    Roč. 27, č. 3 (2017), č. článku 035812. ISSN 1054-1500 R&D Projects: GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : statistical properties * networks * brain * time series analysis * computer modeling Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.283, year: 2016

  7. Altered small-world efficiency of brain functional networks in acupuncture at ST36: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available BACKGROUND: Acupuncture in humans can produce clinical effects via the central nervous system. However, the neural substrates of acupuncture's effects remain largely unknown. RESULTS: We utilized functional MRI to investigate the topological efficiency of brain functional networks in eighteen healthy young adults who were scanned before and after acupuncture at the ST36 acupoints (ACUP and its sham point (SHAM. Whole-brain functional networks were constructed by thresholding temporal correlations matrices of ninety brain regions, followed by a graph theory-based analysis. We showed that brain functional networks exhibited small-world attributes (high local and global efficiency regardless of the order of acupuncture and stimulus points, a finding compatible with previous studies of brain functional networks. Furthermore, the brain networks had increased local efficiency after ACUP stimulation but there were no significant differences after SHAM, indicating a specificity of acupuncture point in coordinating local information flow over the whole brain. Moreover, significant (P<0.05, corrected by false discovery rate approach effects of only acupuncture point were detected on nodal degree of the left hippocampus (higher nodal degree at ACUP as compared to SHAM. Using an uncorrected P<0.05, point-related effects were also observed in the anterior cingulate cortex, frontal and occipital regions while stimulation-related effects in various brain regions of frontal, parietal and occipital cortex regions. In addition, we found that several limbic and subcortical brain regions exhibited point- and stimulation-related alterations in their regional homogeneity (P<0.05, uncorrected. CONCLUSIONS: Our results suggest that acupuncture modulates topological organization of whole-brain functional brain networks and the modulation has point specificity. These findings provide new insights into neuronal mechanism of acupuncture from the perspective of functional

  8. Small Worlds and Cultural Polarization

    NARCIS (Netherlands)

    Flache, Andreas; Macy, Michael W.

    2011-01-01

    Building on Granovetter's theory of the "strength of weak ties,'' research on "small-world'' networks suggests that bridges between clusters in a social network (long-range ties) promote cultural diffusion, homogeneity, and integration. We show that this macro-level implication of network structure

  9. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  10. Brain-machine interface control of a manipulator using small-world neural network and shared control strategy.

    Science.gov (United States)

    Li, Ting; Hong, Jun; Zhang, Jinhua; Guo, Feng

    2014-03-15

    The improvement of the resolution of brain signal and the ability to control external device has been the most important goal in BMI research field. This paper describes a non-invasive brain-actuated manipulator experiment, which defined a paradigm for the motion control of a serial manipulator based on motor imagery and shared control. The techniques of component selection, spatial filtering and classification of motor imagery were involved. Small-world neural network (SWNN) was used to classify five brain states. To verify the effectiveness of the proposed classifier, we replace the SWNN classifier by a radial basis function (RBF) networks neural network, a standard multi-layered feed-forward backpropagation network (SMN) and a multi-SVM classifier, with the same features for the classification. The results also indicate that the proposed classifier achieves a 3.83% improvement over the best results of other classifiers. We proposed a shared control method consisting of two control patterns to expand the control of BMI from the software angle. The job of path building for reaching the 'end' point was designated as an assessment task. We recorded all paths contributed by subjects and picked up relevant parameters as evaluation coefficients. With the assistance of two control patterns and series of machine learning algorithms, the proposed BMI originally achieved the motion control of a manipulator in the whole workspace. According to experimental results, we confirmed the feasibility of the proposed BMI method for 3D motion control of a manipulator using EEG during motor imagery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Trust Propagation in Small Worlds

    DEFF Research Database (Denmark)

    Gray, Elizabeth; Seigneur, Jean-Marc; Chen, Yong

    2003-01-01

    do not scale well. We aim to develop trust-based security mechanisms using small world concepts to optimise formation and propagation of trust amongst entities in these vast networks. In this regard, we surmise that in a very large mobile ad hoc network, trust, risk, and recommendations can...... be propagated through relatively short paths connecting entities. Our work describes the design of trust-formation and risk-assessment systems, as well as that of an entity recognition scheme, within the context of the small world network topology....

  12. Empirical Analysis on Evolution and Small World Effect of Chinese Enterprise-Enterprise Patent Cooperation Network: From the Perspective of Open Innovation

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-10-01

    Full Text Available The patent cooperation network which enterprises join is a very important network platform for enterprises’ open innovation. However, very limited work has been done to empirically investigate the dynamic change process of the network in China. To address this issue, this paper analyzes dynamic change process of cooperation network of enterprises and the small-world effect of the biggest subgroup according to the data of 36731 items of cooperative patents between enterprises from 1985 to 2010 published by the State Intellectual Property Office of China. A conclusion can be drawn from the analysis results that the biggest subgroup has the characteristics of small-world effect, but the overall network structure also has some defects, which limit the development of open innovation. For the first time, suggestions on open innovation strategies are put forward to provide theoretical reference for both the government and enterprises.

  13. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI.

    Science.gov (United States)

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Nie, Si; Gong, Hong-Han; Zhang, Wei; Zeng, Xian-Jun; Long, Ping; Peng, De-Chang

    2017-01-01

    Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder that can damage cognitive function. However, the functional network organization remains poorly understood. The aim of this study was to investigate the topological properties of OSA patients using a graph theoretical analysis. A total of 30 male patients with untreated severe OSA and 25 male education- and age-matched good sleepers (GSs) underwent functional magnetic resonance imaging (MRI) examinations. Clinical and cognitive evaluations were conducted by an experienced psychologist. GRETNA (a toolbox for topological analysis of imaging connectomics) was used to construct the brain functional network and calculate the small-world properties (γ, λ, σ, Eglob, and Eloc). Relationships between these small-world properties and clinical and neuropsychological assessments were investigated in OSA patients. The networks of both OSA patients and GSs exhibited efficient small-world topology over the sparsity range of 0.05-0.40. Compared with GSs, the OSA group had significantly decreased γ, but significantly increased λ and σ. The OSA group's brain network showed significantly decreased Eglob (Pworld properties may be the mechanism of cognitive impairment in OSA patients. In addition, σ, γ, and λ could be used as a quantitative physiological index for auxiliary clinical diagnoses.

  14. Cluster-size entropy in the Axelrod model of social influence: small-world networks and mass media.

    Science.gov (United States)

    Gandica, Y; Charmell, A; Villegas-Febres, J; Bonalde, I

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy S(c), which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the S(c)(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait q(c) and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  15. Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media

    Science.gov (United States)

    Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.

    2011-10-01

    We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.

  16. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity.

    Directory of Open Access Journals (Sweden)

    Ernesto J Sanz-Arigita

    Full Text Available BACKGROUND: Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data. METHODOLOGY/PRINCIPAL FINDINGS: 18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient and global (path length network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions. CONCLUSIONS/SIGNIFICANCE: We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information

  17. Loss of 'small-world' networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity.

    Science.gov (United States)

    Sanz-Arigita, Ernesto J; Schoonheim, Menno M; Damoiseaux, Jessica S; Rombouts, Serge A R B; Maris, Erik; Barkhof, Frederik; Scheltens, Philip; Stam, Cornelis J

    2010-11-01

    Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data. 18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions. We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease.

  18. Classes of real-world 'small-world' networks: From the neural network of C. Elegans to the web of human sexual contacts

    Science.gov (United States)

    Nunes Amaral, Luis A.

    2002-03-01

    We study the statistical properties of a variety of diverse real-world networks including the neural network of C. Elegans, food webs for seven distinct environments, transportation and technological networks, and a number of distinct social networks [1-5]. We present evidence of the occurrence of three classes of small-world networks [2]: (a) scale-free networks, characterized by a vertex connectivity distribution that decays as a power law; (b) broad-scale networks, characterized by a connectivity distribution that has a power-law regime followed by a sharp cut-off; (c) single-scale networks, characterized by a connectivity distribution with a fast decaying tail. Moreover, we note for the classes of broad-scale and single-scale networks that there are constraints limiting the addition of new links. Our results suggest that the nature of such constraints may be the controlling factor for the emergence of different classes of networks. [See http://polymer.bu.edu/ amaral/Networks.html for details and htpp://polymer.bu.edu/ amaral/Professional.html for access to PDF files of articles.] 1. M. Barthélémy, L. A. N. Amaral, Phys. Rev. Lett. 82, 3180-3183 (1999). 2. L. A. N. Amaral, A. Scala, M. Barthélémy, H. E. Stanley, Proc. Nat. Acad. Sci. USA 97, 11149-11152 (2000). 3. F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, Nature 411, 907-908 (2001). 4. J. Camacho, R. Guimera, L.A.N. Amaral, Phys. Rev. E RC (to appear). 5. S. Mossa, M. Barthelemy, H.E. Stanley, L.A.N. Amaral (submitted).

  19. Cluster size entropy in the Axelrod model of social influence: small-world networks and mass media

    CERN Document Server

    Gandica, Yérali; Villegas-Febres, J; Bonalde, I

    2011-01-01

    We study the Axelrod's cultural adaptation model using the concept of cluster size entropy, $S_{c}$ that gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is unambiguously given by the maximum of the $S_{c}(q)$ distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first- or second-order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait $q_c$ and the number $F$ of cultural features in regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a new partially ordered phase whose largest cultural cluster is not aligned with the external fiel...

  20. Characterizing acupuncture de qi in mild cognitive impairment: relations with small-world efficiency of functional brain networks.

    Science.gov (United States)

    Bai, Lijun; Zhang, Ming; Chen, Shangjie; Ai, Lin; Xu, Maosheng; Wang, Dan; Wang, Fei; Liu, Lihua; Wang, Fang; Lao, Lixing

    2013-01-01

    As an intermediate state between normal aging and dementia, mild cognitive impairment (MCI) became a hot topic and early treatments can improve disease prognosis. Acupuncture is shown to have possible effect in improving its cognitive defect. However, the underlying neural mechanism of acupuncture and relations between De Qi and different needling depths are still elusive. The present study aimed to explore how acupuncture can exert effect on the reorganization of MCI and to what extent needling depths, associating with De Qi sensations, can influence the acupuncture effects for MCI treatment. Our results presented that MCI patients exhibited losses of small-world attributes indicated by longer characteristic path lengths and larger clustering coefficients, compared with healthy controls. In addition, acupuncture with deep needling can induce much stronger and a wide range of De Qi sensations both in intensity and prevalence. Acupuncture with deep needling showed modulatory effect to compensate the losses of small-world attributes existed in MCI patients while acupuncture with superficial needling did not. Furthermore, acupuncture with deep needling enhanced the nodal centrality primarily in the abnormal regions of MCI including the hippocampus, postcentral cortex as well as anterior cingulate cortex. This study provides evidence to understand neural mechanism underlying acupuncture and the key role of De Qi for MCI treatment.

  1. Characterizing Acupuncture De Qi in Mild Cognitive Impairment: Relations with Small-World Efficiency of Functional Brain Networks

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available As an intermediate state between normal aging and dementia, mild cognitive impairment (MCI became a hot topic and early treatments can improve disease prognosis. Acupuncture is shown to have possible effect in improving its cognitive defect. However, the underlying neural mechanism of acupuncture and relations between De Qi and different needling depths are still elusive. The present study aimed to explore how acupuncture can exert effect on the reorganization of MCI and to what extent needling depths, associating with De Qi sensations, can influence the acupuncture effects for MCI treatment. Our results presented that MCI patients exhibited losses of small-world attributes indicated by longer characteristic path lengths and larger clustering coefficients, compared with healthy controls. In addition, acupuncture with deep needling can induce much stronger and a wide range of De Qi sensations both in intensity and prevalence. Acupuncture with deep needling showed modulatory effect to compensate the losses of small-world attributes existed in MCI patients while acupuncture with superficial needling did not. Furthermore, acupuncture with deep needling enhanced the nodal centrality primarily in the abnormal regions of MCI including the hippocampus, postcentral cortex as well as anterior cingulate cortex. This study provides evidence to understand neural mechanism underlying acupuncture and the key role of De Qi for MCI treatment.

  2. EEG characteristics in "eyes-open" versus "eyes-closed" conditions: Small-world network architecture in healthy aging and age-related brain degeneration.

    Science.gov (United States)

    Miraglia, Francesca; Vecchio, Fabrizio; Bramanti, Placido; Rossini, Paolo Maria

    2016-02-01

    Applying graph theory, we investigated how cortical sources small worldness (SW) of resting EEG in eyes-closed/open (EC/EO) differs in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) subjects with respect to normal elderly (Nold). EEG was recorded in 30 Nold, 30 aMCI, and 30 AD during EC and EO. Undirected and weighted cortical brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity was used to weight the network. In Nold, in EO condition, the brain network is characterized by more SW (higher SW) in alpha bands and less SW (lower SW) in beta2 and gamma bands. In aMCI, SW has the same trend, except for delta and theta bands where the network shows less small worldness. AD shows a similar trend of Nold, but with less fluctuations between EO/EC conditions. Furthermore, in both conditions, aMCI SW architecture presents midway properties between AD and Nold. At low frequencies (delta e theta bands) in EC, aMCI group presents network's architecture similar to Nold, while in EO aMCI, SW is superimposable to AD ones. In resting state condition, aMCI small-world architecture presents midway topological properties between AD subjects and healthy controls, confirming the hypothesis that aMCI is an intermediate step along the disease progression. We proposed the application of graph theory to EEG in reactivity to EO in order to find a marker of diagnosis that - in association with other techniques of neuroimaging - could be sensitive to the progression of MCI or conversion into AD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Functional centrality of amygdala, striatum and hypothalamus in a "small-world" network underlying joy: an fMRI study with music.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros

    2014-07-01

    Current knowledge about small-world networks underlying emotions is sparse, and confined to functional magnetic resonance imaging (fMRI) studies using resting-state paradigms. This fMRI study applied Eigenvector Centrality Mapping (ECM) and functional connectivity analysis to reveal neural small-world networks underlying joy and fear. Joy and fear were evoked using music, presented in 4-min blocks. Results show that the superficial amygdala (SF), laterobasal amygdala (LB), striatum, and hypothalamus function as computational hubs during joy. Out of these computational hubs, the amygdala nuclei showed the highest centrality values. The SF showed functional connectivity during joy with the mediodorsal thalamus (MD) and nucleus accumbens (Nac), suggesting that SF, MD, and Nac modulate approach behavior in response to positive social signals such as joyful music. The striatum was functionally connected during joy with the LB, as well as with premotor cortex, areas 1 and 7a, hippocampus, insula and cingulate cortex, showing that sensorimotor, attentional, and emotional processes converge in the striatum during music perception. The hypothalamus showed functional connectivity during joy with hippocampus and MD, suggesting that hypothalamic endocrine activity is modulated by hippocampal and thalamic activity during sustained periods of music-evoked emotion. Our study indicates high centrality of the amygdala nuclei groups within a functional network underlying joy, suggesting that these nuclei play a central role for the modulation of emotion-specific activity within this network.

  4. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)

    M.Wróbel

    2008-06-01

    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  5. Altered Small-World Efficiency of Brain Functional Networks in Acupuncture at ST36: A Functional MRI Study

    OpenAIRE

    Bo Liu; Jun Chen; Jinhui Wang; Xian Liu; Xiaohui Duan; Xiaojing Shang; Yu Long; Zhiguang Chen; Xiaofang Li; Yan Huang; Yong He

    2012-01-01

    BACKGROUND: Acupuncture in humans can produce clinical effects via the central nervous system. However, the neural substrates of acupuncture's effects remain largely unknown. RESULTS: We utilized functional MRI to investigate the topological efficiency of brain functional networks in eighteen healthy young adults who were scanned before and after acupuncture at the ST36 acupoints (ACUP) and its sham point (SHAM). Whole-brain functional networks were constructed by thresholding temporal correl...

  6. Loss of 'Small-World' Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity

    NARCIS (Netherlands)

    Sanz-Arigita, E.J.; Schoonheim, M.M.; Damoiseaux, J.S.; Rombouts, S.A.R.B.; Maris, E.; Barkhof, F.; Scheltens, P.; Stam, C.J.

    2010-01-01

    Background: Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data.

  7. How the Statistical Validation of Functional Connectivity Patterns Can Prevent Erroneous Definition of Small-World Properties of a Brain Connectivity Network

    Directory of Open Access Journals (Sweden)

    J. Toppi

    2012-01-01

    Full Text Available The application of Graph Theory to the brain connectivity patterns obtained from the analysis of neuroelectrical signals has provided an important step to the interpretation and statistical analysis of such functional networks. The properties of a network are derived from the adjacency matrix describing a connectivity pattern obtained by one of the available functional connectivity methods. However, no common procedure is currently applied for extracting the adjacency matrix from a connectivity pattern. To understand how the topographical properties of a network inferred by means of graph indices can be affected by this procedure, we compared one of the methods extensively used in Neuroscience applications (i.e. fixing the edge density with an approach based on the statistical validation of achieved connectivity patterns. The comparison was performed on the basis of simulated data and of signals acquired on a polystyrene head used as a phantom. The results showed (i the importance of the assessing process in discarding the occurrence of spurious links and in the definition of the real topographical properties of the network, and (ii a dependence of the small world properties obtained for the phantom networks from the spatial correlation of the neighboring electrodes.

  8. Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    OpenAIRE

    Varoquaux, Gaël; Gramfort, Alexandre; Poline, Jean Baptiste; Thirion, Bertrand

    2012-01-01

    International audience; Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-wor...

  9. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  10. Disrupted Small World Topology and Modular Organization of Functional Networks in Late Life Depression with and without Amnestic Mild Cognitive Impairment

    Science.gov (United States)

    Li, Wenjun; Ward, B. Douglas; Liu, Xiaolin; Chen, Gang; Jones, Jennifer L; Antuono, Piero G.; Li, Shi-Jiang; Goveas, Joseph S.

    2015-01-01

    Background The topological architecture of the whole-brain functional networks in those with and without late-life depression (LLD) and amnestic mild cognitive impairment (aMCI) are unknown. Aims To investigate the differences in the small-world measures and the modular community structure of the functional networks between patients with LLD and aMCI when occurring alone or in combination and cognitively healthy nondepressed controls. Methods Seventy-nine elderly participants [LLD (n = 23), aMCI (n = 18), comorbid LLD and aMCI (n = 13), and controls (n = 25)] completed neuropsychiatric assessments. Graph theoretical methods were employed on resting-state functional connectivity magnetic resonance imaging data. Results LLD and aMCI comorbidity was associated with the greatest disruptions in functional integration measures (decreased global efficiency and increased path length); both LLD groups showed abnormal functional segregation (reduced local efficiency). The modular network organization was most variable in the comorbid group, followed by LLD-only patients. Decreased mean global, local and nodal efficiency metrics were associated with greater depressive symptom severity but not memory performance. Conclusions Consider the whole brain as a complex network may provide unique insights on the neurobiological underpinnings of LLD with and without cognitive impairment. PMID:25433036

  11. Functional disorganization of small-world brain networks in mild Alzheimer's Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE).

    Science.gov (United States)

    Frantzidis, Christos A; Vivas, Ana B; Tsolaki, Anthoula; Klados, Manousos A; Tsolaki, Magda; Bamidis, Panagiotis D

    2014-01-01

    Previous neuroscientific findings have linked Alzheimer's Disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  12. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  13. Impact of Bounded Noise and Rewiring on the Formation and Instability of Spiral Waves in a Small-World Network of Hodgkin-Huxley Neurons.

    Science.gov (United States)

    Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun

    2017-01-01

    Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.

  14. Enhanced brain small-worldness after sleep deprivation: a compensatory effect.

    Science.gov (United States)

    Liu, Huan; Li, Hong; Wang, Yulin; Lei, Xu

    2014-10-01

    Sleep deprivation has a variable impact on extrinsic activities during multiple cognitive tasks, especially on mood and emotion processing. There is also a trait-like individual vulnerability or compensatory effect in cognition. Previous studies have elucidated the altered functional connectivity after sleep deprivation. However, it remains unclear whether the small-world properties of resting-state network are sensitive to sleep deprivation. A small-world network is a type of graph that combines a high local connectivity as well as a few long-range connections, which ensures a higher information-processing efficiency at a low cost. The complex network of the brain can be described as a small-world network, in which a node is a brain region and an edge is present when there is a functional correlation between two nodes. Here, we investigated the topological properties of the human brain networks of 22 healthy subjects under sufficient sleep and sleep-deprived conditions. Specifically, small-worldness is utilized to quantify the small-world property, by comparing the clustering coefficient and path length of a given network to an equivalent random network with same degree distribution. After sufficient sleep, the brain networks showed the property of small-worldness. Compared with the resting state under sufficient sleep, the small-world property was significantly enhanced in the sleep deprivation condition, suggesting a possible compensatory adaptation of the human brain. Specifically, the altered measurements were correlated with the neuroticism of subjects, indicating that individuals with low-levels of neuroticism are more resilient to sleep deprivation. © 2014 European Sleep Research Society.

  15. The Tectonics of Small Worlds

    Science.gov (United States)

    Buczkowski, D. L.; Wyrick, D. Y.

    2015-05-01

    Understanding small world tectonics may help us predict small rocky exoplanet geodynamics. Vesta has an intermediate style of tectonic deformation, with impact-formed fractures (asteroidal), but also large graben and magmatic structures (planetary).

  16. Statistical complexity is maximized in a small-world brain.

    Directory of Open Access Journals (Sweden)

    Teck Liang Tan

    Full Text Available In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.

  17. Statistical complexity is maximized in a small-world brain.

    Science.gov (United States)

    Tan, Teck Liang; Cheong, Siew Ann

    2017-01-01

    In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.

  18. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  19. Topology of technology graphs: small world patterns in electronic circuits.

    Science.gov (United States)

    Cancho, R F; Janssen, C; Solé, R V

    2001-10-01

    Recent theoretical studies and extensive data analyses have revealed a common feature displayed by biological, social, and technological networks: the presence of small world patterns. Here we analyze this problem by using several graphs obtained from one of the most common technological systems: electronic circuits. It is shown that both analogic and digital circuits exhibit small world behavior. We conjecture that the small world pattern arises from the compact design in which many elements share a small, close physical neighborhood plus the fact that the system must define a single connected component (which requires shortcuts connecting different integrated clusters). The degree distributions displayed are consistent with a conjecture concerning the sharp cutoffs associated to the presence of costly connections [Amaral et al., Proc. Natl. Acad. Sci. USA 97, 11 149 (2000)], thus providing a limit case for the classes of universality of small world patterns from real, artificial networks. The consequences for circuit design are outlined.

  20. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics

  1. A class of vertex-edge-growth small-world network models having scale-free, self-similar and hierarchical characters

    Science.gov (United States)

    Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui

    2018-02-01

    The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 elements.

  2. Gossip in Random Networks

    Science.gov (United States)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  3. Quantifying randomness in real networks

    Science.gov (United States)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  4. Subjective Expected Utility Theory with "Small Worlds"

    DEFF Research Database (Denmark)

    Gyntelberg, Jacob; Hansen, Frank

    We model the notion of a "small world" as a context dependent state space embedded into the "grand world". For each situation the decision maker creates a "small world" reflecting the events perceived to be relevant for the act under consideration. The "grand world" is represented by an event space...

  5. The rise and fall of small worlds : Exploring the dynamics of social structure

    NARCIS (Netherlands)

    Gulati, R.; Sytch, M.; Tatarynowicz, A.

    2012-01-01

    This paper explores the interplay between social structure and economic action by examining some of the evolutionary dynamics of an emergent network that coalesces into a small-world system. The study highlights the small-world system's evolutionary dynamics at both the macro level of the network

  6. Growing random networks with fitness

    OpenAIRE

    Ergun, G.; Rodgers, GJ

    2001-01-01

    Three models of growing random networks with fitness dependent growth rates are analysed using the rate equations for the distribution of their connectivities. In the first model (A), a network is built by connecting incoming nodes to nodes of connectivity $k$ and random additive fitness $\\eta$, with rate $(k-1)+ \\eta $. For $\\eta >0$ we find the connectivity distribution is power law with exponent $\\gamma=+2$. In the second model (B), the network is built by connecting nodes to nodes of conn...

  7. Asymmetric evolving random networks

    Science.gov (United States)

    Coulomb, S.; Bauer, M.

    2003-10-01

    We generalize the Poissonian evolving random graph model of M. Bauer and D. Bernard (2003), to deal with arbitrary degree distributions. The motivation comes from biological networks, which are well-known to exhibit non Poissonian degree distributions. A node is added at each time step and is connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical asymmetry between incoming and outgoing edges. The law for the number of new edges at each time step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit. Although (by construction) the incoming degree distributions depend on this law, this is not the case for most qualitative features concerning the size distribution of connected components, as long as the law has a finite variance. As the variance grows above 1/4, the average being < 1/2, a giant component emerges, which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to give a refined description of the system.

  8. On the agreement between small-world-like OFC model and real earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Douglas S.R., E-mail: douglas.ferreira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Paracambi, RJ (Brazil); Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Papa, Andrés R.R., E-mail: papa@on.br [Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Instituto de Física, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Menezes, Ronaldo, E-mail: rmenezes@cs.fit.edu [BioComplex Laboratory, Computer Sciences, Florida Institute of Technology, Melbourne (United States)

    2015-03-20

    In this article we implemented simulations of the OFC model for earthquakes for two different topologies: regular and small-world, where in the latter the links are randomly rewired with probability p. In both topologies, we have studied the distribution of time intervals between consecutive earthquakes and the border effects present in each one. In addition, we also have characterized the influence that the probability p produces in certain characteristics of the lattice and in the intensity of border effects. From the two topologies, networks of consecutive epicenters were constructed, that allowed us to analyze the distribution of connectivities of each one. In our results distributions arise belonging to a family of non-traditional distributions functions, which agrees with previous studies using data from actual earthquakes. Our results reinforce the idea that the Earth is in a critical self-organized state and furthermore point towards temporal and spatial correlations between earthquakes in different places. - Highlights: • OFC model simulations for regular and small-world topologies. • For small-world topology distributions agree remarkably well with actual earthquakes. • Reinforce the idea of a critical self-organized state for the Earth's crust. • Point towards temporal and spatial correlations between far earthquakes in far places.

  9. Stability and dynamical properties of material flow systems on random networks

    Science.gov (United States)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  10. Long-range navigation on complex networks using Lévy random walks

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2012-11-01

    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by Lévy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the Lévy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the Lévy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: Lévy navigation strategies and dynamics on complex networks.

  11. On the relation between the small world structure and scientific activities.

    Science.gov (United States)

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications.

  12. The small-world effect is a modern phenomenon

    CERN Document Server

    Marvel, Seth A; Doering, Charles R; Lusseau, David; Newman, M E J

    2013-01-01

    The "small-world effect" is the observation that one can find a short chain of acquaintances, often of no more than a handful of individuals, connecting almost any two people on the planet. It is often expressed in the language of networks, where it is equivalent to the statement that most pairs of individuals are connected by a short path through the acquaintance network. Although the small-world effect is well-established empirically for contemporary social networks, we argue here that it is a relatively recent phenomenon, arising only in the last few hundred years: for most of mankind's tenure on Earth the social world was large, with most pairs of individuals connected by relatively long chains of acquaintances, if at all. Our conclusions are based on observations about the spread of diseases, which travel over contact networks between individuals and whose dynamics can give us clues to the structure of those networks even when direct network measurements are not available. As an example we consider the s...

  13. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  14. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  15. Microscopic Spin Model for the STOCK Market with Attractor Bubbling on Regular and Small-World Lattices

    Science.gov (United States)

    Krawiecki, A.

    A multi-agent spin model for changes of prices in the stock market based on the Ising-like cellular automaton with interactions between traders randomly varying in time is investigated by means of Monte Carlo simulations. The structure of interactions has topology of a small-world network obtained from regular two-dimensional square lattices with various coordination numbers by randomly cutting and rewiring edges. Simulations of the model on regular lattices do not yield time series of logarithmic price returns with statistical properties comparable with the empirical ones. In contrast, in the case of networks with a certain degree of randomness for a wide range of parameters the time series of the logarithmic price returns exhibit intermittent bursting typical of volatility clustering. Also the tails of distributions of returns obey a power scaling law with exponents comparable to those obtained from the empirical data.

  16. On the relation between the small world structure and scientific activities.

    Directory of Open Access Journals (Sweden)

    Ashkan Ebadi

    Full Text Available The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications.

  17. Organization of growing random networks

    Energy Technology Data Exchange (ETDEWEB)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  18. Random Network Coding over Composite Fields

    DEFF Research Database (Denmark)

    Geil, Olav; Lucani Rötter, Daniel Enrique

    2017-01-01

    Random network coding is a method that achieves multicast capacity asymptotically for general networks [1, 7]. In this approach, vertices in the network randomly and linearly combine incoming information in a distributed manner before forwarding it through their outgoing edges. To ensure success...

  19. Handbook of Large-Scale Random Networks

    CERN Document Server

    Bollobas, Bela; Miklos, Dezso

    2008-01-01

    Covers various aspects of large-scale networks, including mathematical foundations and rigorous results of random graph theory, modeling and computational aspects of large-scale networks, as well as areas in physics, biology, neuroscience, sociology and technical areas

  20. Importance of randomness in biological networks: A random matrix ...

    Indian Academy of Sciences (India)

    2015-01-29

    Jan 29, 2015 ... We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate ...

  1. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  2. Statistical properties of random clique networks

    Science.gov (United States)

    Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song

    2017-10-01

    In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

  3. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  4. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  5. Strong Ties in a Small World

    NARCIS (Netherlands)

    M.J. van der Leij (Marco); S. Goyal (Sanjeev)

    2006-01-01

    textabstractIn this paper we test the celebrated `Strength of weak ties' theory of Granovetter (1973). We test two hypotheses on the network structure in a data set of collaborating economists. While we find support for the hypothesis of transitivity of strong ties, we reject the hypothesis that

  6. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  7. Thermodynamics of Random Reaction Networks

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  8. Random walk centrality for temporal networks

    Science.gov (United States)

    Rocha, Luis E. C.; Masuda, Naoki

    2014-06-01

    Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included.

  9. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... analysis based on net theoretic measures has developed into a major field, .... with the value of the scaling index γ falling between 2 and 3. To compute the network measures, we first construct an ensemble of synthetic networks, both random and ... higher k values are present to maintain the same γ. In both.

  10. Exploring complex networks through random walks.

    Science.gov (United States)

    Costa, Luciano da Fontoura; Travieso, Gonzalo

    2007-01-01

    Most real complex networks--such as protein interactions, social contacts, and the Internet--are only partially known and available to us. While the process of exploring such networks in many cases resembles a random walk, it becomes a key issue to investigate and characterize how effectively the nodes and edges of such networks can be covered by different strategies. At the same time, it is critically important to infer how well can topological measurements such as the average node degree and average clustering coefficient be estimated during such network explorations. The present article addresses these problems by considering random, Barabási-Albert (BA), and geographical network models with varying connectivity explored by three types of random walks: traditional, preferential to untracked edges, and preferential to unvisited nodes. A series of relevant results are obtained, including the fact that networks of the three studied models with the same size and average node degree allow similar node and edge coverage efficiency, the identification of linear scaling with the size of the network of the random walk step at which a given percentage of the nodes/edges is covered, and the critical result that the estimation of the averaged node degree and clustering coefficient by random walks on BA networks often leads to heavily biased results. Many are the theoretical and practical implications of such results.

  11. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  12. Exploring biological network structure with clustered random networks.

    Science.gov (United States)

    Bansal, Shweta; Khandelwal, Shashank; Meyers, Lauren Ancel

    2009-12-09

    Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions) and the extent of clustering (the tendency for a set of three nodes to be interconnected) are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks) provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics.Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in unraveling the functional consequences of the structural

  13. On the dynamics of random neuronal networks

    OpenAIRE

    Robert, Philippe; Touboul, Jonathan D.

    2014-01-01

    We study the mean-field limit and stationary distributions of a pulse-coupled network modeling the dynamics of a large neuronal assemblies. Our model takes into account explicitly the intrinsic randomness of firing times, contrasting with the classical integrate-and-fire model. The ergodicity properties of the Markov process associated to finite networks are investigated. We derive the limit in distribution of the sample path of the state of a neuron of the network when its size gets large. T...

  14. Bipartite quantum states and random complex networks

    Science.gov (United States)

    Garnerone, Silvano; Giorda, Paolo; Zanardi, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy \\bar S while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling \\bar {S} \\sim c log n +g_{ {e}} where both the prefactor c and the sub-leading O(1) term ge are characteristic of the different classes of complex networks. In particular, ge encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties.

  15. Dynamic regimes of random fuzzy logic networks

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Dominik M; Theis, Fabian J, E-mail: dominik.wittmann@helmholtz-muenchen.de [Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg (Germany); Centre for Mathematical Sciences, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany)

    2011-01-15

    Random multistate networks, generalizations of the Boolean Kauffman networks, are generic models for complex systems of interacting agents. Depending on their mean connectivity, these networks exhibit ordered as well as chaotic behavior with a critical boundary separating both regimes. Typically, the nodes of these networks are assigned single discrete states. Here, we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership (DOM) functions specifying the degree to which the nodes are in each of their discrete states. This allows our models to deal with imprecision and uncertainties. Compatible update rules are constructed by expressing the update rules of the multistate network in terms of Boolean operators and generalizing them to fuzzy logic (FL) operators. The standard choice for these generalizations is the Goedel FL, where AND and OR are replaced by the minimum and maximum of two DOMs, respectively. In mean-field approximations we are able to analytically describe the percolation and asymptotic distribution of DOMs in random Goedel FL networks. This allows us to characterize the different dynamic regimes of random multistate networks in terms of FL. In a low-dimensional example, we provide explicit computations and validate our mean-field results by showing that they agree well with network simulations.

  16. Dawn of small worlds dwarf planets, asteroids, comets

    CERN Document Server

    Moltenbrey, Michael

    2016-01-01

    This book gives a detailed introduction to the thousands and thousands of smaller bodies in the solar system. Written for interested laymen, amateur astronomers and students it describes the nature and origin of asteroids, dwarf planets and comets, and gives detailed information about their role in the solar system. The author nicely reviews the history of small-world-exploration and describes past, current and future space craft missions studying small worlds, and presents their results. Readers will learn that small solar system worlds have a dramatically different nature and appearance than the planets. Even though research activity on small worlds has increased in the recent past many of their properties are still in the dark and need further research.

  17. Random walk centrality in interconnected multilayer networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  18. Small Worlds Week: Raising Curiosity and Contributing to STEM

    Science.gov (United States)

    Ng, C.; Mayo, L.; Stephenson, B. E.; Keck, A.; Cline, T. D.; Lewis, E. M.

    2015-12-01

    Dwarf planets, comets, asteroids, and icy moons took center stage in the years 2014-2015 as multiple spacecraft (New Horizons, Dawn, Rosetta, Cassini) and ground-based observing campaigns observed these small and yet amazing celestial bodies. Just prior to the historic New Horizons encounter with the Pluto system, NASA celebrated Small Worlds Week (July 6-10) as a fully online program to highlight small worlds mission discoveries. Small Worlds Week leveraged the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  19. Random graph models for dynamic networks

    Science.gov (United States)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  20. Accessibility and delay in random temporal networks

    Science.gov (United States)

    Tajbakhsh, Shahriar Etemadi; Coon, Justin P.; Simmons, David E.

    2017-09-01

    In a wide range of complex networks, the links between the nodes are temporal and may sporadically appear and disappear. This temporality is fundamental to analyzing the formation of paths within such networks. Moreover, the presence of the links between the nodes is a random process induced by nature in many real-world networks. In this paper, we study random temporal networks at a microscopic level and formulate the probability of accessibility from a node i to a node j after a certain number of discrete time units T . While solving the original problem is computationally intractable, we provide an upper and two lower bounds on this probability for a very general case with arbitrary time-varying probabilities of the links' existence. Moreover, for a special case where the links have identical probabilities across the network at each time slot, we obtain the exact probability of accessibility between any two nodes. Finally, we discuss scenarios where the information regarding the presence and absence of links is initially available in the form of time duration (of presence or absence intervals) continuous probability distributions rather than discrete probabilities over time slots. We provide a method for transforming such distributions to discrete probabilities, which enables us to apply the given bounds in this paper to a broader range of problem settings.

  1. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Among all biological networks studied here, the undirected structure of neuronal networks not only possesses the small-world property but the same is also expressed remarkably to a higher degree compared to any randomly generated network which possesses the same degree sequence. A relatively high percentage of ...

  2. Features of Random Metal Nanowire Networks with

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  3. Epidemic Spreading in Random Rectangular Networks

    CERN Document Server

    Estrada, Ernesto; Moreno, Yamir

    2015-01-01

    Recently, Estrada and Sheerin (Phys. Rev. E 91, 042805 (2015)) developed the random rectangular graph (RRG) model to account for the spatial distribution of nodes in a network allowing the variation of the shape of the unit square commonly used in random geometric graphs (RGGs). Here, we consider an epidemics dynamics taking place on the nodes and edges of an RRG and we derive analytically a lower bound for the epidemic threshold for a Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model on these networks. Using extensive numerical simulations of the SIS dynamics we show that the lower bound found is very tight. We conclude that the elongation of the area in which the nodes are distributed makes the network more resilient to the propagation of an epidemics due to the fact that the epidemic threshold increases with the elongation of the rectangle. On the other hand, using the "classical" RGG for modeling epidemics on non-squared cities generates a larger error due to the effects...

  4. Holographic coherent states from random tensor networks

    Science.gov (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang

    2017-08-01

    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  5. Marginalization in Random Nonlinear Neural Networks

    Science.gov (United States)

    Vasudeva Raju, Rajkumar; Pitkow, Xaq

    2015-03-01

    Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.

  6. Reduced small world brain connectivity in probands with a family history of epilepsy.

    Science.gov (United States)

    Bharath, R D; Chaitanya, G; Panda, R; Raghavendra, K; Sinha, S; Sahoo, A; Gohel, S; Biswal, B B; Satishchandra, P

    2016-12-01

    The role of inheritance in ascertaining susceptibility to epilepsy is well established, although the pathogenetic mechanisms are still not very clear. Interviewing for a positive family history is a popular epidemiological tool in the understanding of this susceptibility. Our aim was to visualize and localize network abnormalities that could be associated with a positive family history in a group of patients with hot water epilepsy (HWE) using resting-state functional magnetic resonance imaging (rsfMRI). Graph theory analysis of rsfMRI (clustering coefficient γ; path length λ; small worldness σ) in probands with a positive family history of epilepsy (FHE+, 25) were compared with probands without FHE (FHE-, 33). Whether a closer biological relationship was associated with a higher likelihood of network abnormalities was also ascertained. A positive family history of epilepsy had decreased γ, increased λ and decreased σ in bilateral temporofrontal regions compared to FHE- (false discovery rate corrected P ≤ 0.0062). These changes were more pronounced in probands having first degree relatives and siblings with epilepsy. Probands with multiple types of epilepsy in the family showed decreased σ in comparison to only HWE in the family. Graph theory analysis of the rsfMRI can be used to understand the neurobiology of diseases like genetic susceptibility in HWE. Reduced small worldness, proportional to the degree of relationship, is consistent with the current understanding that disease severity is higher in closer biological relations. © 2016 EAN.

  7. Application of Random Matrix Theory to Complex Networks

    Science.gov (United States)

    Rai, Aparna; Jalan, Sarika

    The present article provides an overview of recent developments in spectral analysis of complex networks under random matrix theory framework. Adjacency matrix of unweighted networks, reviewed here, differ drastically from a random matrix, as former have only binary entries. Remarkably, short range correlations in corresponding eigenvalues of such matrices exhibit Gaussian orthogonal statistics of RMT and thus bring them into the universality class. Spectral rigidity of spectra provides measure of randomness in underlying networks. We will consider several examples of model networks vastly studied in last two decades. To the end we would provide potential of RMT framework and obtained results to understand and predict behavior of complex systems with underlying network structure.

  8. Smallest-Small-World Cellular Harmony Search for Optimization of Unconstrained Benchmark Problems

    Directory of Open Access Journals (Sweden)

    Sung Soo Im

    2013-01-01

    Full Text Available We presented a new hybrid method that combines cellular harmony search algorithms with the Smallest-Small-World theory. A harmony search (HS algorithm is based on musical performance processes that occur when a musician searches for a better state of harmony. Harmony search has successfully been applied to a wide variety of practical optimization problems. Most of the previous researches have sought to improve the performance of the HS algorithm by changing the pitch adjusting rate and harmony memory considering rate. However, there has been a lack of studies to improve the performance of the algorithm by the formation of population structures. Therefore, we proposed an improved HS algorithm that uses the cellular automata formation and the topological structure of Smallest-Small-World network. The improved HS algorithm has a high clustering coefficient and a short characteristic path length, having good exploration and exploitation efficiencies. Nine benchmark functions were applied to evaluate the performance of the proposed algorithm. Unlike the existing improved HS algorithm, the proposed algorithm is expected to have improved algorithmic efficiency from the formation of the population structure.

  9. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability ...

  10. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-02

    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  11. Scaling solutions for connectivity and conductivity of continuous random networks.

    Science.gov (United States)

    Galindo-Torres, S A; Molebatsi, T; Kong, X-Z; Scheuermann, A; Bringemeier, D; Li, L

    2015-10-01

    Connectivity and conductivity of two-dimensional fracture networks (FNs), as an important type of continuous random networks, are examined systematically through Monte Carlo simulations under a variety of conditions, including different power law distributions of the fracture lengths and domain sizes. The simulation results are analyzed using analogies of the percolation theory for discrete random networks. With a characteristic length scale and conductivity scale introduced, we show that the connectivity and conductivity of FNs can be well described by universal scaling solutions. These solutions shed light on previous observations of scale-dependent FN behavior and provide a powerful method for quantifying effective bulk properties of continuous random networks.

  12. Randomizing bipartite networks: the case of the World Trade Web

    CERN Document Server

    Saracco, Fabio; Gabrielli, Andrea; Squartini, Tiziano

    2015-01-01

    Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the W...

  13. A Model for Improving the Learning Curves of Artificial Neural Networks.

    Directory of Open Access Journals (Sweden)

    Roberto L S Monteiro

    Full Text Available In this article, the performance of a hybrid artificial neural network (i.e. scale-free and small-world was analyzed and its learning curve compared to three other topologies: random, scale-free and small-world, as well as to the chemotaxis neural network of the nematode Caenorhabditis Elegans. One hundred equivalent networks (same number of vertices and average degree for each topology were generated and each was trained for one thousand epochs. After comparing the mean learning curves of each network topology with the C. elegans neural network, we found that the networks that exhibited preferential attachment exhibited the best learning curves.

  14. Phase transitions for information diffusion in random clustered networks

    Science.gov (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin

    2016-09-01

    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  15. "Small World" architecture in brain connectivity and hippocampal volume in Alzheimer's disease: a study via graph theory from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Piludu, Francesca; Granata, Giuseppe; Romanello, Roberto; Caulo, Massimo; Onofrj, Valeria; Bramanti, Placido; Colosimo, Cesare; Rossini, Paolo Maria

    2017-04-01

    Brain imaging plays an important role in the study of Alzheimer's disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease's evolution. The aim of the present study was to evaluate a possible correlation between "Small World" characteristics of the brain connectivity architecture-as extracted from EEG recordings-and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources' activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.

  16. Application of random matrix theory to biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Luo Feng [Department of Computer Science, Clemson University, 100 McAdams Hall, Clemson, SC 29634 (United States); Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhong Jianxin [Department of Physics, Xiangtan University, Hunan 411105 (China) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhongjn@ornl.gov; Yang Yunfeng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Scheuermann, Richard H. [Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhou Jizhong [Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019 (United States) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhouj@ornl.gov

    2006-09-25

    We show that spectral fluctuation of interaction matrices of a yeast protein-protein interaction network and a yeast metabolic network follows the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the identification of functional modules.

  17. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  18. Performance of wireless sensor networks under random node failures

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Feng, Pan [Los Alamos National Laboratory

    2011-01-28

    Networks are essential to the function of a modern society and the consequence of damages to a network can be large. Assessing network performance of a damaged network is an important step in network recovery and network design. Connectivity, distance between nodes, and alternative routes are some of the key indicators to network performance. In this paper, random geometric graph (RGG) is used with two types of node failure, uniform failure and localized failure. Since the network performance are multi-facet and assessment can be time constrained, we introduce four measures, which can be computed in polynomial time, to estimate performance of damaged RGG. Simulation experiments are conducted to investigate the deterioration of networks through a period of time. With the empirical results, the performance measures are analyzed and compared to provide understanding of different failure scenarios in a RGG.

  19. Altered functional connectivity and small-world in mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Wei Liao

    Full Text Available BACKGROUND: The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE, using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. CONCLUSIONS/SIGNIFICANCE: We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.

  20. Softening in random networks of non-identical beams

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H.; Shephard, Mark S.; Picu, R. Catalin

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  1. Softening in Random Networks of Non-Identical Beams.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  2. Localization transition of biased random walks on random networks.

    Science.gov (United States)

    Sood, Vishal; Grassberger, Peter

    2007-08-31

    We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength bc exists such that most walks find the target within a finite time when b > bc. For b infinity before hitting the target. The phase transition at b=bc is a critical point in the sense that quantities such as the return probability P(t) show power laws, but finite-size behavior is complex and does not obey the usual finite-size scaling ansatz. By extending rigorous results for biased walks on Galton-Watson trees, we give the exact analytical value for bc and verify it by large scale simulations.

  3. Emergence of Scaling in Random Networks

    Science.gov (United States)

    Barabási, Albert-László; Albert, Réka

    1999-10-01

    Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

  4. Sequential defense against random and intentional attacks in complex networks

    Science.gov (United States)

    Chen, Pin-Yu; Cheng, Shin-Ming

    2015-02-01

    Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.

  5. Cascading failures in spatially-embedded random networks.

    Science.gov (United States)

    Asztalos, Andrea; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy

    2014-01-01

    Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.

  6. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially a...

  7. Robustness of Dengue Complex Network under Targeted versus Random Attack

    Directory of Open Access Journals (Sweden)

    Hafiz Abid Mahmood Malik

    2017-01-01

    Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.

  8. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  9. Maximal information transfer and behavior diversity in Random Threshold Networks.

    Science.gov (United States)

    Andrecut, M; Foster, D; Carteret, H; Kauffman, S A

    2009-07-01

    Random Threshold Networks (RTNs) are an idealized model of diluted, non-symmetric spin glasses, neural networks or gene regulatory networks. RTNs also serve as an interesting general example of any coordinated causal system. Here we study the conditions for maximal information transfer and behavior diversity in RTNs. These conditions are likely to play a major role in physical and biological systems, perhaps serving as important selective traits in biological systems. We show that the pairwise mutual information is maximized in dynamically critical networks. Also, we show that the correlated behavior diversity is maximized for slightly chaotic networks, close to the critical region. Importantly, critical networks maximize coordinated, diverse dynamical behavior across the network and across time: the information transmission between source and receiver nodes and the diversity of dynamical behaviors, when measured with a time delay between the source and receiver, are maximized for critical networks.

  10. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons.

    Science.gov (United States)

    Siri, Benoît; Quoy, Mathias; Delord, Bruno; Cessac, Bruno; Berry, Hugues

    2007-01-01

    The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the "edge of chaos" where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.

  11. Transition to Chaos in Random Neuronal Networks

    National Research Council Canada - National Science Library

    Jonathan Kadmon; Haim Sompolinsky

    2015-01-01

    .... Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e...

  12. Six Degrees of Information Seeking: Stanley Milgram and the Small World of the Library

    Science.gov (United States)

    James, Kathryn

    2006-01-01

    Stanley Milgram's 1967 "small world" social connectivity study is used to analyze information connectivity, or patron information-seeking behavior. The "small world" study, upon examination, offers a clear example of the failure of social connectivity. This failure is used to highlight the importance of the subjectivities of patron experience of…

  13. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Fitzek, Frank

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...

  14. Efficient sampling of complex network with modified random walk strategies

    Science.gov (United States)

    Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei

    2018-02-01

    We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.

  15. Random fracture networks: percolation, geometry and flow

    Science.gov (United States)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  16. Random walks on activity-driven networks with attractiveness

    Science.gov (United States)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  17. Random field Ising model and community structure in complex networks

    Science.gov (United States)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  18. Small-world Characteristics of EEG Patterns in Post-Anoxic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Martijn eBeudel

    2014-06-01

    Full Text Available Post-Anoxic Encephalopathy (PAE has a heterogenous outcome which is difficult to predict. At present, it is possible to predict poor outcome using somatosensory evoked potentials (SSEP in only a minority of the patients at an early stage. In addition, it remains difficult to predict good outcome at an early stage. Network architecture, as can be quantified with continuous electroencephalography (cEEG, may serve as a candidate measure for predicting neurological outcome. Here we explore whether cEEG monitoring can be used to detect the integrity of neural network architecture in patients with PAE after cardiac arrest. From 56 patients with PAE treated with mild therapeutic hypothermia (MTH, 19-channel cEEG data was recorded starting as soon as possible after cardiac arrest. Adjacency matrices of shared frequencies between 1 and 25 Hz of the EEG channels were obtained using Fourier transformations. Number of network nodes and connections, clustering coefficient (C, average path length (L and small-world index (SWI were derived. Outcome was quantified by the best Cerebral Performance Category (CPC-score within 6 months. Compared to non-survivors, survivors showed significantly more nodes and connections. L was significantly higher and C and SWI were significantly lower in the survivor group than in the non-survivor group. The number of nodes, connections and the L negatively correlated with the CPC-score. C and SWI correlated positively with the CPC-score. The combination of number of nodes, connections, C and L showed the most significant difference and correlation between survivors and non-survivors and CPC-score. Our data might implicate that non-survivors have insufficient distribution and differentiation of neural activity for regaining normal brain function. These network differences, already present during hypothermia, might be further developed as early prognostic markers. The predictive values are however still inferior to current practice

  19. Network rewiring dynamics with convergence towards a star network.

    Science.gov (United States)

    Whigham, P A; Dick, G; Parry, M

    2016-10-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz (Nature393, 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.

  20. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    indicating that a physical infrastructure needs to be put in place before nodes can communicate. Ad hoc and sensor ... edges, the communication paths of the wireless network can be represented by a graph. The representation of the ..... Pr (Gn ∈ P) → 1. Another definition of a threshold is from Friedgut & Kalal (1996). For a.

  1. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  2. Reconstruction of a random phase dynamics network from observations

    Science.gov (United States)

    Pikovsky, A.

    2018-01-01

    We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.

  3. Exploring community structure in biological networks with random graphs.

    Science.gov (United States)

    Sah, Pratha; Singh, Lisa O; Clauset, Aaron; Bansal, Shweta

    2014-06-25

    Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system's functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems.

  4. Listening to the noise: random fluctuations reveal gene network parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  5. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  6. Nonparametric resampling of random walks for spectral network clustering

    Science.gov (United States)

    Fallani, Fabrizio De Vico; Nicosia, Vincenzo; Latora, Vito; Chavez, Mario

    2014-01-01

    Parametric resampling schemes have been recently introduced in complex network analysis with the aim of assessing the statistical significance of graph clustering and the robustness of community partitions. We propose here a method to replicate structural features of complex networks based on the non-parametric resampling of the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through resampling can be used to improve the performance of standard spectral algorithms for community detection.

  7. Nonparametric resampling of random walks for spectral network clustering.

    Science.gov (United States)

    De Vico Fallani, Fabrizio; Nicosia, Vincenzo; Latora, Vito; Chavez, Mario

    2014-01-01

    Parametric resampling schemes have been recently introduced in complex network analysis with the aim of assessing the statistical significance of graph clustering and the robustness of community partitions. We propose here a method to replicate structural features of complex networks based on the non-parametric resampling of the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through resampling can be used to improve the performance of standard spectral algorithms for community detection.

  8. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  9. Maps of random walks on complex networks reveal community structure.

    Science.gov (United States)

    Rosvall, Martin; Bergstrom, Carl T

    2008-01-29

    To comprehend the multipartite organization of large-scale biological and social systems, we introduce an information theoretic approach that reveals community structure in weighted and directed networks. We use the probability flow of random walks on a network as a proxy for information flows in the real system and decompose the network into modules by compressing a description of the probability flow. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of >6,000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network-including physics, chemistry, molecular biology, and medicine-information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.

  10. On Distributed Computation in Noisy Random Planar Networks

    OpenAIRE

    Kanoria, Y.; Manjunath, D.

    2007-01-01

    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.

  11. Random Access with Physical-layer Network Coding

    NARCIS (Netherlands)

    Goseling, J.; Gastpar, M.C.; Weber, J.H.

    2013-01-01

    Leveraging recent progress in compute-and-forward we propose an approach to random access that is based on physical-layer network coding: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receiver can thus

  12. Navigation by anomalous random walks on complex networks.

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-23

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  13. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  14. The complex network reliability and influential nodes

    Science.gov (United States)

    Li, Kai; He, Yongfeng

    2017-08-01

    In order to study the complex network node important degree and reliability, considering semi-local centrality, betweenness centrality and PageRank algorithm, through the simulation method to gradually remove nodes and recalculate the importance in the random network, small world network and scale-free network. Study the relationship between the largest connected component and node removed proportion, the research results show that betweenness centrality and PageRank algorithm based on the global information network are more effective for evaluating the importance of nodes, and the reliability of the network is related to the network topology.

  15. Random Deep Belief Networks for Recognizing Emotions from Speech Signals.

    Science.gov (United States)

    Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  16. Finite plateau in spectral gap of polychromatic constrained random networks

    Science.gov (United States)

    Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.

    2017-12-01

    We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.

  17. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  18. Navigation by anomalous random walks on complex networks

    CERN Document Server

    Weng, Tongfeng; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-01-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Levy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Levy walks and the underlying network structure. Interestingly, applying our framework to the famous PageRank search, we can explain why its damping factor empirically chosen to be around 0.85. The framework for analyzing anomalous random walks on complex networks offers a new us...

  19. Visual Tracking With Convolutional Random Vector Functional Link Network.

    Science.gov (United States)

    Zhang, Le; Suganthan, Ponnuthurai Nagaratnam

    2017-10-01

    Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely large auxiliary dataset such as ImageNet to pretrain the model. In order to address the discrepancy between the source domain (the auxiliary data) and the target domain (the object being tracked), they need to be finetuned during the tracking process. However, those methods suffer from sensitivity to the hyper-parameters such as learning rate, maximum number of epochs, size of mini-batch, and so on. Thus, it is worthy to investigate whether pretraining and fine tuning through conventional back-prop is essential for visual tracking. In this paper, we shed light on this line of research by proposing convolutional random vector functional link (CRVFL) neural network, which can be regarded as a marriage of the convolutional neural network and random vector functional link network, to simplify the visual tracking system. The parameters in the convolutional layer are randomly initialized and kept fixed. Only the parameters in the fully connected layer need to be learned. We further propose an elegant approach to update the tracker. In the widely used visual tracking benchmark, without any auxiliary data, a single CRVFL model achieves 79.0% with a threshold of 20 pixels for the precision plot. Moreover, an ensemble of CRVFL yields comparatively the best result of 86.3%.

  20. Delineating social network data anonymization via random edge perturbation

    KAUST Repository

    Xue, Mingqiang

    2012-01-01

    Social network data analysis raises concerns about the privacy of related entities or individuals. To address this issue, organizations can publish data after simply replacing the identities of individuals with pseudonyms, leaving the overall structure of the social network unchanged. However, it has been shown that attacks based on structural identification (e.g., a walk-based attack) enable an adversary to re-identify selected individuals in an anonymized network. In this paper we explore the capacity of techniques based on random edge perturbation to thwart such attacks. We theoretically establish that any kind of structural identification attack can effectively be prevented using random edge perturbation and show that, surprisingly, important properties of the whole network, as well as of subgraphs thereof, can be accurately calculated and hence data analysis tasks performed on the perturbed data, given that the legitimate data recipient knows the perturbation probability as well. Yet we also examine ways to enhance the walk-based attack, proposing a variant we call probabilistic attack. Nevertheless, we demonstrate that such probabilistic attacks can also be prevented under sufficient perturbation. Eventually, we conduct a thorough theoretical study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments with synthetic and real datasets confirm our expectations. © 2012 ACM.

  1. Probing the Extent of Randomness in Protein Interaction Networks

    Science.gov (United States)

    2008-07-11

    scale-free networks are born equal: the role of the seed graph in PPI network evolution. PLoS Comput Biol 3: e118. doi:10.1371/journal.pcbi.0030118. 57...from seeds [56]. In the degree-conserving degree-weighted (DCDW) model, each node is considered once, in a random order, and a set number of edges are...gene duplication in fungi . Nature 449: 54–61. 63. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein

  2. A Random Dot Product Model for Weighted Networks

    CERN Document Server

    DeFord, Daryl R

    2016-01-01

    This paper presents a generalization of the random dot product model for networks whose edge weights are drawn from a parametrized probability distribution. We focus on the case of integer weight edges and show that many previously studied models can be recovered as special cases of this generalization. Our model also determines a dimension--reducing embedding process that gives geometric interpretations of community structure and centrality. The dimension of the embedding has consequences for the derived community structure and we exhibit a stress function for determining appropriate dimensions. We use this approach to analyze a coauthorship network and voting data from the U.S. Senate.

  3. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  4. A Single Session of rTMS Enhances Small-Worldness in Writer's Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph.

    Science.gov (United States)

    Bharath, Rose D; Panda, Rajanikant; Reddam, Venkateswara Reddy; Bhaskar, M V; Gohel, Suril; Bhardwaj, Sujas; Prajapati, Arvind; Pal, Pramod Kumar

    2017-01-01

    Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS) induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI. Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1) and after (R2) a single session of rTMS in 14 patients with Writer's Cramp (WC). Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI). Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients. Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe. Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not "noise".

  5. Design and implementation of a random neural network routing engine.

    Science.gov (United States)

    Kocak, T; Seeber, J; Terzioglu, H

    2003-01-01

    Random neural network (RNN) is an analytically tractable spiked neural network model that has been implemented in software for a wide range of applications for over a decade. This paper presents the hardware implementation of the RNN model. Recently, cognitive packet networks (CPN) is proposed as an alternative packet network architecture where there is no routing table, instead the RNN based reinforcement learning is used to route packets. Particularly, we describe implementation details for the RNN based routing engine of a CPN network processor chip: the smart packet processor (SPP). The SPP is a dual port device that stores, modifies, and interprets the defining characteristics of multiple RNN models. In addition to hardware design improvements over the software implementation such as the dual access memory, output calculation step, and reduced output calculation module, this paper introduces a major modification to the reinforcement learning algorithm used in the original CPN specification such that the number of weight terms are reduced from 2n/sup 2/ to 2n. This not only yields significant memory savings, but it also simplifies the calculations for the steady state probabilities (neuron outputs in RNN). Simulations have been conducted to confirm the proper functionality for the isolated SPP design as well as for the multiple SPP's in a networked environment.

  6. Randomly evolving idiotypic networks: modular mean field theory.

    Science.gov (United States)

    Schmidtchen, Holger; Behn, Ulrich

    2012-07-01

    We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modular architectures, the building principles of which are known. The nodes of the network can be classified into groups of nodes, the modules, which share statistical properties. Each node experiences only the mean influence of the groups to which it is linked. Given the size of the groups and linking between them the statistical properties such as mean occupation, mean lifetime, and mean number of occupied neighbors are calculated for a variety of patterns and compared with simulations. For a pattern which consists of pairs of occupied nodes correlations are taken into account.

  7. Peer-Assisted Content Distribution with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg

    2014-01-01

    Peer-to-peer networks constitute a widely used, cost-effective and scalable technology to distribute bandwidth-intensive content. The technology forms a great platform to build distributed cloud storage without the need of a central provider. However, the majority of todays peer-to-peer systems...... require complex algorithms to schedule what parts of obtained content to forward to other peers. Random Linear Network Coding can greatly simplify these algorithm by removing the need for coordination between the distributing nodes. In this paper we propose and evaluate the structure of the BRONCO peer-to-peer....... Furthermore, we evaluate the performance of different parameters and suggest a suitable trade-off between CPU utilization and network overhead. Within the limitations of the used test environment, we have shown that networkc coding is usable in peer-assisted content distribution and we suggest further...

  8. Coevolution of quantum and classical strategies on evolving random networks.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available We study the coevolution of quantum and classical strategies on weighted and directed random networks in the realm of the prisoner's dilemma game. During the evolution, agents can break and rewire their links with the aim of maximizing payoffs, and they can also adjust the weights to indicate preferences, either positive or negative, towards their neighbors. The network structure itself is thus also subject to evolution. Importantly, the directionality of links does not affect the accumulation of payoffs nor the strategy transfers, but serves only to designate the owner of each particular link and with it the right to adjust the link as needed. We show that quantum strategies outperform classical strategies, and that the critical temptation to defect at which cooperative behavior can be maintained rises, if the network structure is updated frequently. Punishing neighbors by reducing the weights of their links also plays an important role in maintaining cooperation under adverse conditions. We find that the self-organization of the initially random network structure, driven by the evolutionary competition between quantum and classical strategies, leads to the spontaneous emergence of small average path length and a large clustering coefficient.

  9. Passive random walkers and riverlike networks on growing surfaces.

    Science.gov (United States)

    Chin, Chen-Shan

    2002-08-01

    Passive random walker dynamics is introduced on a growing surface. The walker is designed to drift upward or downward and then follow specific topological features, such as hill tops or valley bottoms, of the fluctuating surface. The passive random walker can thus be used to directly explore scaling properties of otherwise somewhat hidden topological features. For example, the walker allows us to directly measure the dynamical exponent of the underlying growth dynamics. We use the Kardar-Parisi-Zhang (KPZ) -type surface growth as an example. The world lines of a set of merging passive walkers show nontrivial coalescence behaviors and display the riverlike network structures of surface ridges in space-time. In other dynamics, such as Edwards-Wilkinson growth, this does not happen. The passive random walkers in KPZ-type surface growth are closely related to the shock waves in the noiseless Burgers equation. We also briefly discuss their relations to the passive scalar dynamics in turbulence.

  10. Robustness and information propagation in attractors of Random Boolean Networks.

    Science.gov (United States)

    Lloyd-Price, Jason; Gupta, Abhishekh; Ribeiro, Andre S

    2012-01-01

    Attractors represent the long-term behaviors of Random Boolean Networks. We study how the amount of information propagated between the nodes when on an attractor, as quantified by the average pairwise mutual information (I(A)), relates to the robustness of the attractor to perturbations (R(A)). We find that the dynamical regime of the network affects the relationship between I(A) and R(A). In the ordered and chaotic regimes, I(A) is anti-correlated with R(A), implying that attractors that are highly robust to perturbations have necessarily limited information propagation. Between order and chaos (for so-called "critical" networks) these quantities are uncorrelated. Finite size effects cause this behavior to be visible for a range of networks, from having a sensitivity of 1 to the point where I(A) is maximized. In this region, the two quantities are weakly correlated and attractors can be almost arbitrarily robust to perturbations without restricting the propagation of information in the network.

  11. Mechanical Behavior of Homogeneous and Composite Random Fiber Networks

    Science.gov (United States)

    Shahsavari, Ali

    Random fiber networks are present in many biological and non-biological materials such as paper, cytoskeleton, and tissue scaffolds. Mechanical behavior of networks is controlled by the mechanical properties of the constituent fibers and the architecture of the network. To characterize these two main factors, different parameters such as fiber density, fiber length, average segment length, nature of the cross-links at the fiber intersections, ratio of bending to axial behavior of fibers have been considered. Random fiber networks are usually modeled by representing each fiber as a Timoshenko or an Euler-Bernoulli beam and each cross-link as either a welded or rotating joint. In this dissertation, the effect of these modeling options on the dependence of the overall linear network modulus on microstructural parameters is studied. It is concluded that Timoshenko beams can be used for the whole range of density and fiber stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low densities. In the low density-low bending stiffness range, elastic strain energy is stored in the bending mode of the deformation, while in the other extreme range of parameters, the energy is stored predominantly in the axial and shear deformation modes. It is shown that both rotating and welded joint models give the same rules for scaling of the network modulus with different micromechanical parameters. The elastic modulus of sparsely cross-linked random fiber networks, i.e. networks in which the degree of cross-linking varies, is studied. The relationship between the micromechanical parameters - fiber density, fiber axial and bending stiffness, and degree of cross-linking - and the overall elastic modulus is presented in terms of a master curve. It is shown that the master plot with various degrees of cross-linking can be collapsed to a curve which is also valid for fully cross-linked networks. Random fiber networks in which fibers are bonded to each other are

  12. Avoiding the "It's a Small World" Effect: A Lesson Plan to Explore Diversity

    Science.gov (United States)

    Endacott, Jason L.; Bowles, Freddie A.

    2013-01-01

    Classroom instruction about other cultures all too often resembles the Disney version of "It's a Small World" with Fantasyland-like cultural stereotypes, ceremonial activities, and traditional dress that can lead to serious misunderstandings about the depth and complexity of global societies. Social studies instruction presents the…

  13. Big Policies and a Small World: An Analysis of Policy Problems and Solutions in Physical Education

    Science.gov (United States)

    Penney, Dawn

    2017-01-01

    This paper uses Ball's [1998. Big policies/small world: An introduction to international perspectives in education policy. "Comparative Education," 34(2), 119-130] policy analysis and Bernstein's [1990. "The structuring of pedagogic discourse. Volume IV class, codes and control". London: Routledge; 2000, "Pedagogy,…

  14. Oscillations and synchrony in a cortical neural network.

    Science.gov (United States)

    Qu, Jingyi; Wang, Rubin; Yan, Chuankui; Du, Ying

    2014-04-01

    In this paper, the oscillations and synchronization status of two different network connectivity patterns based on Izhikevich model are studied. One of the connectivity patterns is a randomly connected neuronal network, the other one is a small-world neuronal network. This Izhikevich model is a simple model which can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Detailed investigations reveal that by varying some key parameters, such as the connection weights of neurons, the external current injection, the noise of intensity and the neuron number, this neuronal network will exhibit various collective behaviors in randomly coupled neuronal network. In addition, we show that by changing the number of nearest neighbor and connection probability in small-world topology can also affect the collective dynamics of neuronal activity. These results may be instructive in understanding the collective dynamics of mammalian cortex.

  15. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    Full Text Available Abstract Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree

  16. First Passage Time for Random Walks in Heterogeneous Networks

    Science.gov (United States)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2012-08-01

    The first passage time (FPT) for random walks is a key indicator of how fast information diffuses in a given system. Despite the role of FPT as a fundamental feature in transport phenomena, its behavior, particularly in heterogeneous networks, is not yet fully understood. Here, we study, both analytically and numerically, the scaling behavior of the FPT distribution to a given target node, averaged over all starting nodes. We find that random walks arrive quickly at a local hub, and therefore, the FPT distribution shows a crossover with respect to time from fast decay behavior (induced from the attractive effect to the hub) to slow decay behavior (caused by the exploring of the entire system). Moreover, the mean FPT is independent of the degree of the target node in the case of compact exploration. These theoretical results justify the necessity of using a random jump protocol (empirically used in search engines) and provide guidelines for designing an effective network to make information quickly accessible.

  17. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    Directory of Open Access Journals (Sweden)

    Guihua Wen

    2017-01-01

    Full Text Available Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  18. Exploring MEDLINE space with random indexing and pathfinder networks.

    Science.gov (United States)

    Cohen, Trevor

    2008-11-06

    The integration of disparate research domains is a prerequisite for the success of the translational science initiative. MEDLINE abstracts contain content from a broad range of disciplines, presenting an opportunity for the development of methods able to integrate the knowledge they contain. Latent Semantic Analysis (LSA) and related methods learn human-like associations between terms from unannotated text. However, their computational and memory demands limits their ability to address a corpus of this size. Furthermore, visualization methods previously used in conjunction with LSA have limited ability to define the local structure of the associative networks LSA learns. This paper explores these issues by (1) processing the entire MEDLINE corpus using Random Indexing, a variant of LSA, and (2) exploring learned associations using Pathfinder Networks. Meaningful associations are inferred from MEDLINE, including a drug-disease association undetected by PUBMED search.

  19. Characterizing the Path Coverage of Random Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Moslem Noori

    2010-01-01

    Full Text Available Wireless sensor networks are widely used in security monitoring applications to sense and report specific activities in a field. In path coverage, for example, the network is in charge of monitoring a path and discovering any intruder trying to cross it. In this paper, we investigate the path coverage properties of a randomly deployed wireless sensor network when the number of sensors and also the length of the path are finite. As a consequence, Boolean model, which has been widely used previously, is not applicable. Using results from geometric probability, we determine the probability of full path coverage, distribution of the number of uncovered gaps over the path, and the probability of having no uncovered gaps larger than a specific size. We also find the cumulative distribution function (cdf of the covered part of the path. Based on our results on the probability of full path coverage, we derive a tight upper bound for the number of nodes guaranteeing the full path coverage with a desired reliability. Through computer simulations, it is verified that for networks with nonasymptotic size, our analysis is accurate where the Boolean model can be inaccurate.

  20. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  1. Long-Range Navigation on Complex Networks using L\\'evy Random Walks

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2012-01-01

    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\\'evy random walk strategy, compared with the normal random walk stra...

  2. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However...... of packets, which are strategies that require additional signalling. Performance is evaluated using CAIDA TCP packets and 4k video traces. Our results show that our mechanisms reduce significantly the padding overhead even for small field sizes. Finally, our strategies provide a natural trade-off between...

  3. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  4. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Directory of Open Access Journals (Sweden)

    Umberto Esposito

    Full Text Available Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  5. Upscaling of spectral induced polarization response using random tube networks

    Science.gov (United States)

    Maineult, Alexis; Revil, André; Camerlynck, Christian; Florsch, Nicolas; Titov, Konstantin

    2017-05-01

    In order to upscale the induced polarization (IP) response of porous media, from the pore scale to the sample scale, we implement a procedure to compute the macroscopic complex resistivity response of random tube networks. A network is made of a 2-D square-meshed grid of connected tubes, which obey to a given tube radius distribution. In a simplified approach, the electrical impedance of each tube follows a local Pelton resistivity model, with identical resistivity, chargeability and Cole-Cole exponent values for all the tubes-only the time constant varies, as it depends on the radius of each tube and on a diffusion coefficient also identical for all the tubes. By solving the conservation law for the electrical charge, the macroscopic IP response of the network is obtained. We fit successfully the macroscopic complex resistivity also by a Pelton resistivity model. Simulations on uncorrelated and correlated networks, for which the tube radius distribution is so that the decimal logarithm of the radius is normally distributed, evidence that the local and macroscopic model parameters are the same, except the Cole-Cole exponent: its macroscopic value diminishes with increasing heterogeneity (i.e. with increasing standard deviation of the radius distribution), compared to its local value. The methodology is also applied to six siliciclastic rock samples, for which the pore radius distributions from mercury porosimetry are available. These samples exhibit the same behaviour as synthetic media, that is, the macroscopic Cole-Cole exponent is always lower than the local one. As a conclusion, the pore network method seems to be a promising tool for studying the upscaling of the IP response of porous media.

  6. The Random Walk Model Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Zhang Man-Dun

    2016-01-01

    Full Text Available With the continuing development of the electronic commerce and growth of network information, there is a growing possibility for citizens to be confused by the information. Though the traditional technology of information retrieval have the ability to relieve the overload of information in some extent, it can not offer a targeted personality service based on user’s interests and activities. In this context, the recommendation algorithm arose. In this paper, on the basis of conventional recommendation, we studied the scheme of random walk based on bipartite network and the application of it. We put forward a similarity measurement based on implicit feedback. In this method, a uneven character vector is imported(the weight of item in the system. We put forward a improved random walk pattern which make use of partial or incomplete neighbor information to create recommendation information. In the end, there is an experiment in the real data set, the recommendation accuracy and practicality are improved. We promise the reality of the result of the experiment

  7. Analysis of complex contagions in random multiplex networks

    CERN Document Server

    Yagan, Osman

    2012-01-01

    We study the diffusion of influence in random multiplex networks where links can be of $r$ different types, and for a given content (e.g., rumor, product, political view), each link type is associated with a content dependent parameter $c_i$ in $[0,\\infty]$ that measures the relative bias type-$i$ links have in spreading this content. In this setting, we propose a linear threshold model of contagion where nodes switch state if their "perceived" proportion of active neighbors exceeds a threshold \\tau. Namely, a node connected to $m_i$ active neighbors and $k_i-m_i$ inactive neighbors via type-$i$ links will turn active if $\\sum{c_i m_i}/\\sum{c_i k_i}$ exceeds its threshold \\tau. Under this model, we obtain the condition, probability and expected size of global spreading events. Our results extend the existing work on complex contagions in several directions by i) providing solutions for coupled random networks whose vertices are neither identical nor disjoint, (ii) highlighting the effect of content on the dyn...

  8. The functional connectivity of different EEG bands moves towards small-world network organization during sleep

    NARCIS (Netherlands)

    Ferri, R.; Rundo, F.; Bruni, O.; Terzano, M.G.; Stam, C.J.

    2008-01-01

    Objective: To analyze the functional connectivity patterns of the different EEG bands during wakefulness and sleep (different sleep stages and cyclic alternating pattern (CAP) conditions), using concepts derived from Graph Theory. Methods: We evaluated spatial patterns of EEG band synchronization

  9. Identification of yeast transcriptional regulation networks using multivariate random forests.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2009-06-01

    Full Text Available The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays to sequence features residing in gene promoters (as derived from DNA motif data and transcription factor binding to gene promoters (as derived from tiling microarrays. We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes.

  10. Enhancing the Performance of Random Access Networks with Random Packet CDMA and Joint Detection

    Directory of Open Access Journals (Sweden)

    Behrouz Farhang-Boroujeny

    2008-09-01

    Full Text Available Random packet CDMA (RP-CDMA is a recently proposed random transmission scheme which has been designed from the beginning as a cross-layer method to overcome the restrictive nature of the Aloha protocol. Herein, we more precisely model its performance and investigate throughput and network stability. In contrast to previous works, we adopt the spread Aloha model for header transmission, and the performance of different joint detection methods for the payload data is investigated. Furthermore, we introduce performance measures for multiple access systems based on the diagonal elements of a modified multipacket reception matrix, and show that our measures describe the upper limit of the vector of stable arrival rates for a finite number of users. Finally, we simulate queue sizes and throughput characteristics of RP-CDMA with various receiver structures and compare them to spread Aloha.

  11. Enhancing the Performance of Random Access Networks with Random Packet CDMA and Joint Detection

    Science.gov (United States)

    Kempter, Roland; Amini, Peiman; Farhang-Boroujeny, Behrouz

    2008-12-01

    Random packet CDMA (RP-CDMA) is a recently proposed random transmission scheme which has been designed from the beginning as a cross-layer method to overcome the restrictive nature of the Aloha protocol. Herein, we more precisely model its performance and investigate throughput and network stability. In contrast to previous works, we adopt the spread Aloha model for header transmission, and the performance of different joint detection methods for the payload data is investigated. Furthermore, we introduce performance measures for multiple access systems based on the diagonal elements of a modified multipacket reception matrix, and show that our measures describe the upper limit of the vector of stable arrival rates for a finite number of users. Finally, we simulate queue sizes and throughput characteristics of RP-CDMA with various receiver structures and compare them to spread Aloha.

  12. Design of Randomly Deployed Heterogeneous Wireless Sensor Networks by Algorithms Based on Swarm Intelligence

    OpenAIRE

    Joon-Woo Lee; Won Kim

    2015-01-01

    This paper reports the design of a randomly deployed heterogeneous wireless sensor network (HWSN) with two types of nodes: a powerful node and an ordinary node. Powerful nodes, such as Cluster Heads (CHs), communicate directly to the data sink of the network, and ordinary nodes sense the desired information and transmit the processed data to powerful nodes. The heterogeneity of HWSNs improves the networks lifetime and coverage. This paper focuses on the design of a random network among HWSNs....

  13. Stability and anomalous entropic elasticity of sub isostatic random-bond networks

    OpenAIRE

    Wigbers, Manon C.; MacKintosh, Fred C.; Dennison, Matthew

    2014-01-01

    We study the elasticity of thermalized spring networks under an applied bulk strain. The networks considered are sub-isostatic random-bond networks that, in the athermal limit, are known to have vanishing bulk and linear shear moduli at zero bulk strain. Above a bulk strain threshold, however, these networks become rigid, although surprisingly the shear modulus remains zero until a second, higher, strain threshold. We find that thermal fluctuations stabilize all networks below the rigidity tr...

  14. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work proposes a new protocol applying on– the–fly random linear network coding in wireless mesh net- works. The protocol provides increased reliability, low delay, and high throughput to the upper layers, while being oblivious to their specific requirements. This seemingly conflicting goals ...... and evaluated in a real test bed with Raspberry Pi devices. We show that order of magnitude gains in throughput over plain TCP are possible with moderate losses and up to two fold improvement in per packet delay in our results....

  15. Doubly stochastic coherence in complex neuronal networks

    Science.gov (United States)

    Gao, Yang; Wang, Jianjun

    2012-11-01

    A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.

  16. Complementary feeding: a Global Network cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Pasha Omrana

    2011-01-01

    Full Text Available Abstract Background Inadequate and inappropriate complementary feeding are major factors contributing to excess morbidity and mortality in young children in low resource settings. Animal source foods in particular are cited as essential to achieve micronutrient requirements. The efficacy of the recommendation for regular meat consumption, however, has not been systematically evaluated. Methods/Design A cluster randomized efficacy trial was designed to test the hypothesis that 12 months of daily intake of beef added as a complementary food would result in greater linear growth velocity than a micronutrient fortified equi-caloric rice-soy cereal supplement. The study is being conducted in 4 sites of the Global Network for Women's and Children's Health Research located in Guatemala, Pakistan, Democratic Republic of the Congo (DRC and Zambia in communities with toddler stunting rates of at least 20%. Five clusters per country were randomized to each of the food arms, with 30 infants in each cluster. The daily meat or cereal supplement was delivered to the home by community coordinators, starting when the infants were 6 months of age and continuing through 18 months. All participating mothers received nutrition education messages to enhance complementary feeding practices delivered by study coordinators and through posters at the local health center. Outcome measures, obtained at 6, 9, 12, and 18 months by a separate assessment team, included anthropometry; dietary variety and diversity scores; biomarkers of iron, zinc and Vitamin B12 status (18 months; neurocognitive development (12 and 18 months; and incidence of infectious morbidity throughout the trial. The trial was supervised by a trial steering committee, and an independent data monitoring committee provided oversight for the safety and conduct of the trial. Discussion Findings from this trial will test the efficacy of daily intake of meat commencing at age 6 months and, if beneficial, will

  17. Spectral coarse grained controllability of complex networks

    Science.gov (United States)

    Wang, Pei; Xu, Shuang

    2017-07-01

    With the accumulation of interaction data from various systems, a fundamental question in network science is how to reduce the sizes while keeping certain properties of complex networks. Combined the spectral coarse graining theory and the structural controllability of complex networks, we explore the structural controllability of undirected complex networks during coarse graining processes. We evidence that the spectral coarse grained controllability (SCGC) properties for the Erdös-Rényi (ER) random networks, the scale-free (SF) random networks and the small-world (SW) random networks are distinct from each other. The SW networks are very robust, while the SF networks are sensitive during the coarse graining processes. As an emergent properties for the dense ER networks, during the coarse graining processes, there exists a threshold value of the coarse grained sizes, which separates the controllability of the reduced networks into robust and sensitive to coarse graining. Investigations on some real-world complex networks indicate that the SCGC properties are varied among different categories and different kinds of networks, some highly organized social or biological networks are more difficult to be controlled, while many man-made power networks and infrastructure networks can keep the controllability properties during the coarse graining processes. Furthermore, we speculate that the SCGC properties of complex networks may depend on their degree distributions. The associated investigations have potential implications in the control of large-scale complex networks, as well as in the understanding of the organization of complex networks.

  18. The investigation of social networks based on multi-component random graphs

    Science.gov (United States)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  19. Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.

    Science.gov (United States)

    Çakir, Yüksel

    2016-01-01

    Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.

  20. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  1. Evaluating network-level predictors of behavior change among injection networks enrolled in the HPTN 037 randomized controlled trial.

    Science.gov (United States)

    Smith, Laramie R; Strathdee, Steffanie A; Metzger, David; Latkin, Carl

    2017-06-01

    Little is known about ways network-level factors that may influence the adoption of combination prevention behaviors among injection networks, or how network-oriented interventions might moderate this behavior change process. A total of 232 unique injection risk networks in Philadelphia, PA, were randomized to a peer educator network-oriented intervention or standard of care control arm. Network-level aggregates reflecting the injection networks' baseline substance use dynamics, social interactions, and the networks exposure to gender- and structural-related vulnerabilities were calculated and used to predict changes in the proportion of network members adopting safer injection practices at 6-month follow-up. At follow-up, safer injection practices were observed among 46.31% of a network's members on average. In contrast, 25.7% of networks observed no change. Controlling for the effects of the intervention, significant network-level factors influencing network-level behavior change reflected larger sized injection networks (b=2.20, p=0.013) with a greater proportion of members who shared needles (b=0.29, pnetwork's safer injection practices were also observed for networks with fewer new network members (b=-0.31, p=0.008), and for networks whose members were proportionally less likely to have experienced incarceration (b=-0.20, p=0.012) or more likely to have been exposed to drug treatment (b=0.17, p=0.034) in the 6-months prior to baseline. A significant interaction suggested the intervention uniquely facilitated change in safer injection practices among female-only networks (b=-0.32, p=0.046). Network-level factors offer insights into ways injection networks might be leveraged to promote combination prevention efforts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three-state Potts model on non-local directed small-world lattices

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Lima, José Luiz Sousa

    2017-10-01

    In this paper, we study the non-local directed Small-World (NLDSW) disorder effects in the three-state Potts model as a form to capture the essential features shared by real complex systems where non-locality effects play a important role in the behavior of these systems. Using Monte Carlo techniques and finite-size scaling analysis, we estimate the infinite lattice critical temperatures and the leading critical exponents in this model. In particular, we investigate the first- to second-order phase transition crossover when NLDSW links are inserted. A cluster-flip algorithm was used to reduce the critical slowing down effect in our simulations. We find that for a NLDSW disorder densities p new universality class, which continuously depends on the value of p, while for p∗ ⩽ p ⩽ 1 . 0, the model presents a weak first-order phase transition.

  3. Fractional dynamics on networks: Emergence of anomalous diffusion and L\\'evy flights

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2015-01-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional r...

  4. The complex network of the Brazilian Popular Music

    Science.gov (United States)

    de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.

    2004-02-01

    We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.

  5. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  6. Mission-Aware Medium Access Control in Random Access Networks

    OpenAIRE

    Park, Jaeok; Van Der Schaar, Mihaela

    2009-01-01

    We study mission-critical networking in wireless communication networks, where network users are subject to critical events such as emergencies and crises. If a critical event occurs to a user, the user needs to send necessary information for help as early as possible. However, most existing medium access control (MAC) protocols are not adequate to meet the urgent need for information transmission by users in a critical situation. In this paer, we propose a novel class of MAC protocols that u...

  7. Complex Network for Solar Active Regions

    Science.gov (United States)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda

    2017-08-01

    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  8. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  9. Completely random measures for modelling block-structured sparse networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2016-01-01

    Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... [2014] proposed the use of a different notion of exchangeability due to Kallenberg [2006] and obtained a network model which admits power-law behaviour while retaining desirable statistical properties, however this model does not capture latent vertex traits such as block-structure. In this work we re......-introduce the use of block-structure for network models obeying allenberg’s notion of exchangeability and thereby obtain a model which admits the inference of block-structure and edge inhomogeneity. We derive a simple expression for the likelihood and an efficient sampling method. The obtained model...

  10. Atom land guided tour through the strange (and impossibly small) world of particle physics

    CERN Document Server

    Butterworth, Jon

    2018-01-01

    For fans of Seven Brief Lessons on Physics and Astrophysics for People in a Hurry: a richly conjured world, in map and metaphor, of particle physics. Atom Land brings the impossibly small world of particle physics to life, taking readers on a guided journey through the subatomic world. Readers will sail the subatomic seas in search of electron ports, boson continents, and hadron islands. The sea itself is the quantum field, complete with quantum waves. Beware dark energy and extra dimensions, embodied by fantastical sea creatures prowling the far edges of the known world. Your tour guide through this whimsical—and highly instructive— world is Jon Butterworth, leading physicist at CERN (the epicenter of today’s greatest findings in physics). Over a series of journeys, he shows how everything fits together, and how a grasp of particle physics is key to unlocking a deeper understanding of many of the most profound mysteries—and science’s possible answers—in the known universe.

  11. Effective trapping of random walkers in complex networks.

    Science.gov (United States)

    Hwang, S; Lee, D-S; Kahng, B

    2012-04-01

    Exploring the World Wide Web has become one of the key issues in information science, specifically in view of its application to the PageRank-like algorithms used in search engines. The random walk approach has been employed to study such a problem. The probability of return to the origin (RTO) of random walks is inversely related to how information can be accessed during random surfing. We find analytically that the RTO probability for a given starting node shows a crossover from a slow to a fast decay behavior with time and the crossover time increases with the degree of the starting node. We remark that the RTO probability becomes almost constant in the early-time regime as the degree exponent approaches two. This result indicates that a random surfer can be effectively trapped at the hub and supports the necessity of the random jump strategy empirically used in the Google's search engine.

  12. Throughput Analysis of Fading Sensor Networks with Regular and Random Topologies

    Directory of Open Access Journals (Sweden)

    Liu Xiaowen

    2005-01-01

    Full Text Available We present closed-form expressions of the average link throughput for sensor networks with a slotted ALOHA MAC protocol in Rayleigh fading channels. We compare networks with three regular topologies in terms of throughput, transmit efficiency, and transport capacity. In particular, for square lattice networks, we present a sensitivity analysis of the maximum throughput and the optimum transmit probability with respect to the signal-to-interference ratio threshold. For random networks with nodes distributed according to a two-dimensional Poisson point process, the average throughput is analytically characterized and numerically evaluated. It turns out that although regular networks have an only slightly higher average link throughput than random networks for the same link distance, regular topologies have a significant benefit when the end-to-end throughput in multihop connections is considered.

  13. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  14. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  15. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  16. $k$-core percolation on complex networks: Comparing random, localized and targeted attacks

    CERN Document Server

    Yuan, Xin; Stanley, H Eugene; Havlin, Shlomo

    2016-01-01

    The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation in which a node fails when it becomes disconnected from the giant component. Here we study its generalization, $k$-core percolation, in which a node fails when it loses connection to a threshold $k$ number of neighbors. We study and compare analytically and by numerical simulations of $k$-core percolation the stability of networks under random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA exerts the greatest damage to the core structure of a network. We also find that for Erd\\H{o}s-R\\'{e}nyi (ER) networks, LA and RA exert equal damage to the core structure whereas for scale-free (SF) networks, LA exerts much more damage than RA does to the core structure.

  17. Multitarget search on complex networks: A logarithmic growth of global mean random cover time

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Yang, Ji; Bijarbooneh, Farshid Hassani; Hui, Pan

    2017-09-01

    We investigate multitarget search on complex networks and derive an exact expression for the mean random cover time that quantifies the expected time a walker needs to visit multiple targets. Based on this, we recover and extend some interesting results of multitarget search on networks. Specifically, we observe the logarithmic increase of the global mean random cover time with the target number for a broad range of random search processes, including generic random walks, biased random walks, and maximal entropy random walks. We show that the logarithmic growth pattern is a universal feature of multi-target search on networks by using the annealed network approach and the Sherman-Morrison formula. Moreover, we find that for biased random walks, the global mean random cover time can be minimized, and that the corresponding optimal parameter also minimizes the global mean first passage time, pointing towards its robustness. Our findings further confirm that the logarithmic growth pattern is a universal law governing multitarget search in confined media.

  18. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  19. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia.

    Science.gov (United States)

    Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T

    2015-07-21

    Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population.

  20. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    Science.gov (United States)

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  1. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study

    Directory of Open Access Journals (Sweden)

    Wenyu Jiang

    2017-05-01

    Full Text Available Previous studies have shown that temporal lobe epilepsy (TLE involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  2. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Structurally Dynamic Spin Market Networks

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  4. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  5. Random Walker Coverage Analysis for Information Dissemination in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Konstantinos Skiadopoulos

    2017-06-01

    Full Text Available The increasing technological progress in electronics provides network nodes with new and enhanced capabilities that allow the revisit of the traditional information dissemination (and collection problem. The probabilistic nature of information dissemination using random walkers is exploited here to deal with challenges imposed by unconventional modern environments. In such systems, node operation is not deterministic (e.g., does not depend only on network nodes’ battery, but it rather depends on the particulars of the ambient environment (e.g., in the case of energy harvesting: sunshine, wind. The mechanism of information dissemination using one random walker is studied and analyzed in this paper under a different and novel perspective. In particular, it takes into account the stochastic nature of random walks, enabling further understanding of network coverage. A novel and original analysis is presented, which reveals the evolution network coverage by a random walker with respect to time. The derived analytical results reveal certain additional interesting aspects regarding network coverage, thus shedding more light on the random walker mechanism. Further analytical results, regarding the walker’s spatial movement and its associated neighborhood, are also confirmed through experimentation. Finally, simulation results considering random geometric graph topologies, which are suitable for modeling mobile environments, support and confirm the analytical findings.

  6. Random Walks on Directed Networks: Inference and Respondent-driven Sampling

    CERN Document Server

    Malmros, Jens; Britton, Tom

    2013-01-01

    Respondent driven sampling (RDS) is a method often used to estimate population properties (e.g. sexual risk behavior) in hard-to-reach populations. It combines an effective modified snowball sampling methodology with an estimation procedure that yields unbiased population estimates under the assumption that the sampling process behaves like a random walk on the social network of the population. Current RDS estimation methodology assumes that the social network is undirected, i.e. that all edges are reciprocal. However, empirical social networks in general also have non-reciprocated edges. To account for this fact, we develop a new estimation method for RDS in the presence of directed edges on the basis of random walks on directed networks. We distinguish directed and undirected edges and consider the possibility that the random walk returns to its current position in two steps through an undirected edge. We derive estimators of the selection probabilities of individuals as a function of the number of outgoing...

  7. Addressing Head Motion Dependencies for Small-World Topologies in Functional Connectomics

    Directory of Open Access Journals (Sweden)

    Chao-Gan eYan

    2013-12-01

    Full Text Available Graph theoretical explorations of functional interactions within the human connectome, are rapidly advancing our understanding of brain architecture. In particular, global and regional topological parameters are increasingly being employed to quantify and characterize inter-individual differences in human brain function. Head motion remains a significant concern in the accurate determination of resting-state fMRI based assessments of the connectome, including those based on graph theoretical analysis (e.g., motion can increase local efficiency, while decreasing global efficiency and small-worldness. This study provides a comprehensive examination of motion correction strategies on the relationship between motion and commonly used topological parameters. At the individual-level, we evaluated different models of head motion regression and scrubbing, as well as the potential benefits of using partial correlation (estimated via graphical lasso instead of full correlation. At the group-level, we investigated the utility of regression of motion and mean intrinsic functional connectivity before topological parameters calculation and/or after. Consistent with prior findings, none of the explicit motion-correction approaches at individual-level were able to remove motion relationships for topological parameters. Global signal regression (GSR emerged as an effective means of mitigating relationships between motion and topological parameters; though at the risk of altering the connectivity structure and topological hub distributions when higher densities graphs are employed (e.g., > 6%. Group-level analysis correction for motion was once again found to be a crucial step. Finally, similar to recent work, we found a constellation of findings suggestive of the possibility that some of the motion-relationships detected may reflect neural or trait signatures of motion, rather than simply motion-induced artifact.

  8. USING THE RANDOM OF QUANTIZATION IN THE SIMULATION OF NETWORKED CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. K. Bitiukov

    2014-01-01

    Full Text Available Network control systems using a network channel for communication between the elements. This approach has several advantages: lower installation costs, ease of configuration, ease of diagnostics and maintenance. The use of networks in control systems poses new problems. The network characteristics make the analysis, modeling, and control of networked control systems more complex and challenging. In the simulation must consider the following factors: packet loss, packet random time over the network, the need for location records in a channel simultaneously multiple data packets with sequential transmission. Attempts to account at the same time all of these factors lead to a significant increase in the dimension of the mathematical model and, as a con-sequence, a significant computational challenges. Such models tend to have a wide application in research. However, for engineering calculations required mathematical models of small dimension, but at the same time having sufficient accuracy. Considered the networks channels with random delays and packet loss. Random delay modeled by appropriate distribution the Erlang. The probability of packet loss depends on the arrival rate of data packets in the transmission channel, and the parameters of the distribution Erlang. We propose a model of the channel in the form of a serial connection of discrete elements. Discrete elements produce independents quantization of the input signal. To change the probability of packet loss is proposed to use a random quantization input signal. Obtained a formula to determine the probability of packet loss during transmission.

  9. Evolution of vocabulary on scale-free and random networks

    Science.gov (United States)

    Kalampokis, Alkiviadis; Kosmidis, Kosmas; Argyrakis, Panos

    2007-06-01

    We examine the evolution of the vocabulary of a group of individuals (linguistic agents) on a scale-free network, using Monte Carlo simulations and assumptions from evolutionary game theory. It is known that when the agents are arranged in a two-dimensional lattice structure and interact by diffusion and encounter, then their final vocabulary size is the maximum possible. Knowing all available words is essential in order to increase the probability to “survive” by effective reproduction. On scale-free networks we find a different result. It is not necessary to learn the entire vocabulary available. Survival chances are increased by using the vocabulary of the “hubs” (nodes with high degree). The existence of the “hubs” in a scale-free network is the source of an additional important fitness generating mechanism.

  10. Eigentime identities for random walks on a family of treelike networks and polymer networks

    Science.gov (United States)

    Dai, Meifeng; Wang, Xiaoqian; Sun, Yanqiu; Sun, Yu; Su, Weiyi

    2017-10-01

    In this paper, we investigate the eigentime identities quantifying as the sum of reciprocals of all nonzero normalized Laplacian eigenvalues on a family of treelike networks and the polymer networks. Firstly, for a family of treelike networks, it is shown that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. We obtain the scalings of the eigentime identity on a family of treelike with network size Nn is Nn lnNn. Then, for the polymer networks, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities. Using the relationship between the generation and the next generation of eigenvalues we obtain the scalings of the eigentime identity on the polymer networks with network size Nn is Nn lnNn. By comparing the eigentime identities on these two kinds of networks, their scalings with network size Nn are all Nn lnNn.

  11. Analysis of Greedy Decision Making for Geographic Routing for Networks of Randomly Moving Objects

    Directory of Open Access Journals (Sweden)

    Amber Israr

    2016-04-01

    Full Text Available Autonomous and self-organizing wireless ad-hoc communication networks for moving objects consist of nodes, which use no centralized network infrastructure. Examples of moving object networks are networks of flying objects, networks of vehicles, networks of moving people or robots. Moving object networks have to face many critical challenges in terms of routing because of dynamic topological changes and asymmetric networks links. A suitable and effective routing mechanism helps to extend the deployment of moving nodes. In this paper an attempt has been made to analyze the performance of the Greedy Decision method (position aware distance based algorithm for geographic routing for network nodes moving according to the random waypoint mobility model. The widely used GPSR (Greedy Packet Stateless Routing protocol utilizes geographic distance and position based data of nodes to transmit packets towards destination nodes. In this paper different scenarios have been tested to develop a concrete set of recommendations for optimum deployment of distance based Greedy Decision of Geographic Routing in randomly moving objects network

  12. A random walk evolution model of wireless sensor networks and virus spreading

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan

    2013-01-01

    In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations.

  13. Emergent complex network geometry.

    Science.gov (United States)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-18

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  14. Efficient randomization of biological networks while preserving functional characterization of individual nodes.

    Science.gov (United States)

    Iorio, Francesco; Bernardo-Faura, Marti; Gobbi, Andrea; Cokelaer, Thomas; Jurman, Giuseppe; Saez-Rodriguez, Julio

    2016-12-20

    Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.

  15. Evaluation of geocast routing trees on random and actual networks

    NARCIS (Netherlands)

    Meijerink, Berend Jan; Baratchi, Mitra; Heijenk, Geert; Koucheryavy, Yevgeni; Mamatas, Lefteris; Matta, Ibrahim; Ometov, Aleksandr; Papadimitriou, Panagiotis

    2017-01-01

    Efficient geocast routing schemes are needed to transmit messages to mobile networked devices in geographically scoped areas. To design an efficient geocast routing algorithm a comprehensive evaluation of different routing tree approaches is needed. In this paper, we present an analytical study

  16. Network motif identification and structure detection with exponential random graph models

    Directory of Open Access Journals (Sweden)

    Munni Begum

    2014-12-01

    Full Text Available Local regulatory motifs are identified in the transcription regulatory network of the most studied model organism Escherichia coli (E. coli through graphical models. Network motifs are small structures in a network that appear more frequently than expected by chance alone. We apply social network methodologies such as p* models, also known as Exponential Random Graph Models (ERGMs, to identify statistically significant network motifs. In particular, we generate directed graphical models that can be applied to study interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC computational algorithms are implemented to obtain the estimates of model parameters to the corresponding network statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of these interaction networks, arc (a directed edge in a directed network and k-istar (or incoming star structures, for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. The goodness of fit statistics are provided to determine the quality of these models.

  17. Structure and modeling of the network of two-Chinese-character compound words in the Japanese language

    Science.gov (United States)

    Yamamoto, Ken; Yamazaki, Yoshihiro

    2014-10-01

    This paper proposes a numerical model of the network of two-Chinese-character compound words (two-character network, for short). In this network, a Chinese character is a node and a two-Chinese-character compound word links two nodes. The basic framework of the model is that an important character gets many edges. As the importance of a character, we use the frequency of each character appearing in publications. The direction of edge is given according to a random number assigned to nodes. The network generated by the model is small-world and scale-free, and reproduces statistical properties in the actual two-character network quantitatively.

  18. Application of Poisson random effect models for highway network screening.

    Science.gov (United States)

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  20. Do natural proteins differ from random sequences polypeptides? Natural vs. random proteins classification using an evolutionary neural network.

    Directory of Open Access Journals (Sweden)

    Davide De Lucrezia

    Full Text Available Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity. The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random.

  1. Learning random networks for compression of still and moving images

    Science.gov (United States)

    Gelenbe, Erol; Sungur, Mert; Cramer, Christopher

    1994-01-01

    Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.

  2. Variability of Fiber Elastic Moduli in Composite Random Fiber Networks Makes the Network Softer

    Science.gov (United States)

    Ban, Ehsan; Picu, Catalin

    2015-03-01

    Athermal fiber networks are assemblies of beams or trusses. They have been used to model mechanics of fibrous materials such as biopolymer gels and synthetic nonwovens. Elasticity of these networks has been studied in terms of various microstructural parameters such as the stiffness of their constituent fibers. In this work we investigate the elasticity of composite fiber networks made from fibers with moduli sampled from a distribution function. We use finite elements simulations to study networks made by 3D Voronoi and Delaunay tessellations. The resulting data collapse to power laws showing that variability in fiber stiffness makes fiber networks softer. We also support the findings by analytical arguments. Finally, we apply these results to a network with curved fibers to explain the dependence of the network's modulus on the variation of its structural parameters.

  3. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2015-01-07

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  4. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    Science.gov (United States)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  5. Role Analysis in Networks using Mixtures of Exponential Random Graph Models.

    Science.gov (United States)

    Salter-Townshend, Michael; Murphy, Thomas Brendan

    2015-06-01

    A novel and flexible framework for investigating the roles of actors within a network is introduced. Particular interest is in roles as defined by local network connectivity patterns, identified using the ego-networks extracted from the network. A mixture of Exponential-family Random Graph Models is developed for these ego-networks in order to cluster the nodes into roles. We refer to this model as the ego-ERGM. An Expectation-Maximization algorithm is developed to infer the unobserved cluster assignments and to estimate the mixture model parameters using a maximum pseudo-likelihood approximation. The flexibility and utility of the method are demonstrated on examples of simulated and real networks.

  6. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  7. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  8. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.

    2015-11-25

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  9. Decentralized formation of random regular graphs for robust multi-agent networks

    KAUST Repository

    Yazicioglu, A. Yasin

    2014-12-15

    Multi-agent networks are often modeled via interaction graphs, where the nodes represent the agents and the edges denote direct interactions between the corresponding agents. Interaction graphs have significant impact on the robustness of networked systems. One family of robust graphs is the random regular graphs. In this paper, we present a locally applicable reconfiguration scheme to build random regular graphs through self-organization. For any connected initial graph, the proposed scheme maintains connectivity and the average degree while minimizing the degree differences and randomizing the links. As such, if the average degree of the initial graph is an integer, then connected regular graphs are realized uniformly at random as time goes to infinity.

  10. Risk Assessment of Distribution Network Based on Random set Theory and Sensitivity Analysis

    Science.gov (United States)

    Zhang, Sh; Bai, C. X.; Liang, J.; Jiao, L.; Hou, Z.; Liu, B. Zh

    2017-05-01

    Considering the complexity and uncertainty of operating information in distribution network, this paper introduces the use of random set for risk assessment. The proposed method is based on the operating conditions defined in the random set framework to obtain the upper and lower cumulative probability functions of risk indices. Moreover, the sensitivity of risk indices can effectually reflect information about system reliability and operating conditions, and by use of these information the bottlenecks that suppress system reliability can be found. The analysis about a typical radial distribution network shows that the proposed method is reasonable and effective.

  11. Trend-driven information cascades on random networks.

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2015-12-01

    Threshold models of global cascades have been extensively used to model real-world collective behavior, such as the contagious spread of fads and the adoption of new technologies. A common property of those cascade models is that a vanishingly small seed fraction can spread to a finite fraction of an infinitely large network through local infections. In social and economic networks, however, individuals' behavior is often influenced not only by what their direct neighbors are doing, but also by what the majority of people are doing as a trend. A trend affects individuals' behavior while individuals' behavior creates a trend. To analyze such a complex interplay between local- and global-scale phenomena, I generalize the standard threshold model by introducing a type of node called global nodes (or trend followers), whose activation probability depends on a global-scale trend, specifically the percentage of activated nodes in the population. The model shows that global nodes play a role as accelerating cascades once a trend emerges while reducing the probability of a trend emerging. Global nodes thus either facilitate or inhibit cascades, suggesting that a moderate share of trend followers may maximize the average size of cascades.

  12. Mean First Passage Time of Preferential Random Walks on Complex Networks with Applications

    Directory of Open Access Journals (Sweden)

    Zhongtuan Zheng

    2017-01-01

    Full Text Available This paper investigates, both theoretically and numerically, preferential random walks (PRW on weighted complex networks. By using two different analytical methods, two exact expressions are derived for the mean first passage time (MFPT between two nodes. On one hand, the MFPT is got explicitly in terms of the eigenvalues and eigenvectors of a matrix associated with the transition matrix of PRW. On the other hand, the center-product-degree (CPD is introduced as one measure of node strength and it plays a main role in determining the scaling of the MFPT for the PRW. Comparative studies are also performed on PRW and simple random walks (SRW. Numerical simulations of random walks on paradigmatic network models confirm analytical predictions and deepen discussions in different aspects. The work may provide a comprehensive approach for exploring random walks on complex networks, especially biased random walks, which may also help to better understand and tackle some practical problems such as search and routing on networks.

  13. Cascading failures in interdependent modular networks with partial random coupling preference

    Science.gov (United States)

    Tian, Meng; Wang, Xianpei; Dong, Zhengcheng; Zhu, Guowei; Long, Jiachuang; Dai, Dangdang; Zhang, Qilin

    2017-10-01

    Cascading failures have been widely analyzed in interdependent networks with different coupling preferences from microscopic and macroscopic perspectives in recent years. Plenty of real-world interdependent infrastructures, representing as interdependent networks, exhibit community structure, one of the most important mesoscopic structures, and partial coupling preferences, which can affect cascading failures in interdependent networks. In this paper, we propose the partial random coupling in communities, investigating cascading failures in interdependent modular scale-free networks under inner attacks and hub attacks. We mainly analyze the effects of the discoupling probability and the intermodular connection probability on cascading failures in interdependent networks. We find that increasing either the dicoupling probability or the intermodular connection probability can enhance the network robustness under both hub attacks and inner attacks. We also note that the community structure can prevent cascading failures spreading globally in entire interdependent networks. Finally, we obtain the result that if we want to efficiently improve the robustness of interdependent networks and reduce the protection cost, the intermodular connection probability should be protected preferentially, implying that improving the robustness of a single network is the fundamental method to enhance the robustness of the entire interdependent networks.

  14. Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-04-01

    Fiber networks are assemblies of one-dimensional elements representative of materials with fibrous microstructures such as collagen networks and synthetic nonwovens. The mechanics of random fiber networks has been the focus of numerous studies. However, fiber crimp has been explicitly represented only in few cases. In the present work, the mechanics of cross-linked networks with crimped athermal fibers, with and without an embedding elastic matrix, is studied. The dependence of the effective network stiffness on the fraction of nonstraight fibers and the relative crimp amplitude (or tortuosity) is studied using finite element simulations of networks with sinusoidally curved fibers. A semi-analytic model is developed to predict the dependence of network modulus on the crimp amplitude and the bounds of the stiffness reduction associated with the presence of crimp. The transition from the linear to the nonlinear elastic response of the network is rendered more gradual by the presence of crimp, and the effect of crimp on the network tangent stiffness decreases as strain increases. If the network is embedded in an elastic matrix, the effect of crimp becomes negligible even for very small, biologically relevant matrix stiffness values. However, the distribution of the maximum principal stress in the matrix becomes broader in the presence of crimp relative to the similar system with straight fibers, which indicates an increased probability of matrix failure.

  15. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    Science.gov (United States)

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  16. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Science.gov (United States)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  17. Dynamics of comb-of-comb-network polymers in random layered flows.

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.

  18. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  19. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  20. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    Science.gov (United States)

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-01-01

    Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the

  1. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory.

    Science.gov (United States)

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-08-14

    Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the recovery of gene

  2. Microscopic Evaluation of Electrical and Thermal Conduction in Random Metal Wire Networks.

    Science.gov (United States)

    Gupta, Ritu; Kumar, Ankush; Sadasivam, Sridhar; Walia, Sunil; Kulkarni, Giridhar U; Fisher, Timothy S; Marconnet, Amy

    2017-04-19

    Ideally, transparent heaters exhibit uniform temperature, fast response time, high achievable temperatures, low operating voltage, stability across a range of temperatures, and high optical transmittance. For metal network heaters, unlike for uniform thin-film heaters, all of these parameters are directly or indirectly related to the network geometry. In the past, at equilibrium, the temperature distributions within metal networks have primarily been studied using either a physical temperature probe or direct infrared (IR) thermography, but there are limits to the spatial resolution of these cameras and probes, and thus, only average regional temperatures have typically been measured. However, knowledge of local temperatures within the network with a very high spatial resolution is required for ensuring a safe and stable operation. Here, we examine the thermal properties of random metal network thin-film heaters fabricated from crack templates using high-resolution IR microscopy. Importantly, the heaters achieve predominantly uniform temperatures throughout the substrate despite the random crack network structure (e.g., unequal sized polygons created by metal wires), but the temperatures of the wires in the network are observed to be significantly higher than the substrate because of the significant thermal contact resistance at the interface between the metal and the substrate. Last, the electrical breakdown mechanisms within the network are examined through transient IR imaging. In addition to experimental measurements of temperatures, an analytical model of the thermal properties of the network is developed in terms of geometrical parameters and material properties, providing insights into key design rules for such transparent heaters. Beyond this work, the methods and the understanding developed here extend to other network-based heaters and conducting films, including those that are not transparent.

  3. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  4. Scaling laws for file dissemination in P2P networks with random contacts

    NARCIS (Netherlands)

    Núñez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate lambda a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted

  5. Relay-aided multi-cell broadcasting with random network coding

    DEFF Research Database (Denmark)

    Lu, Lu; Sun, Fan; Xiao, Ming

    2010-01-01

    We investigate a relay-aided multi-cell broadcasting system using random network codes, where the focus is on devising efficient scheduling algorithms between relay and base stations. Two scheduling algorithms are proposed based on different feedback strategies; namely, a one-step scheduling...

  6. Theoretical solutions for degree distribution of decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2017-05-01

    In this paper, theoretical solutions for degree distribution of decreasing random birth-and-death networks (0 probability generating function approach are employed. Then, based on the form of Poisson summation, we further confirm the tail characteristic of degree distribution is Poisson tail. Finally, simulations are carried out to verify these results by comparing the theoretical solutions with computer simulations.

  7. High Performance Ambipolar Field-Effect Transistor of Random Network Carbon Nanotubes

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Gao, Jia; Derenskyi, Vladimir; Gomulya, Widianta; Iezhokin, Igor; Gordiichuk, Pavlo; Herrmann, Andreas; Loi, Maria Antonietta

    2012-01-01

    Ambipolar field-effect transistors of random network carbon nanotubes are fabricated from an enriched dispersion utilizing a conjugated polymer as the selective purifying medium. The devices exhibit high mobility values for both holes and electrons (3 cm(2)/V.s) with a high on/off ratio (10(6)). The

  8. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  9. Observer-based H(infinity) control for networked nonlinear systems with random packet losses.

    Science.gov (United States)

    Li, Jian Guo; Yuan, Jing Qi; Lu, Jun Guo

    2010-01-01

    This paper investigates the observer-based H(infinity) control problem of networked nonlinear systems with global Lipschitz nonlinearities and random communication packet losses. The random packet loss is modelled as a Bernoulli distributed white sequence with a known conditional probability distribution. In the presence of random packet losses, sufficient conditions for the existence of an observer-based feedback controller are derived, such that the closed-loop networked nonlinear system is exponentially stable in the mean-square sense, and a prescribed H(infinity) disturbance-rejection-attenuation performance is also achieved. Then a linear matrix inequality (LMI) approach for designing such an observer-based H(infinity) controller is presented. Finally, a simulation example is used to demonstrate the effectiveness of the proposed method. 2009. Published by Elsevier Ltd.

  10. Engineering Online and In-person Social Networks for Physical Activity: A Randomized Trial

    Science.gov (United States)

    Rovniak, Liza S.; Kong, Lan; Hovell, Melbourne F.; Ding, Ding; Sallis, James F.; Ray, Chester A.; Kraschnewski, Jennifer L.; Matthews, Stephen A.; Kiser, Elizabeth; Chinchilli, Vernon M.; George, Daniel R.; Sciamanna, Christopher N.

    2016-01-01

    Background Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. Purpose To conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively-measured outcomes. Methods Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3% male, 83.4% overweight/obese) were randomized to 1 of 3 groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking, and prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Results Participants increased their MVPA by 21.0 mins/week, 95% CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Conclusions Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. Trial Registration Number NCT01142804 PMID:27405724

  11. Engineering Online and In-Person Social Networks for Physical Activity: A Randomized Trial.

    Science.gov (United States)

    Rovniak, Liza S; Kong, Lan; Hovell, Melbourne F; Ding, Ding; Sallis, James F; Ray, Chester A; Kraschnewski, Jennifer L; Matthews, Stephen A; Kiser, Elizabeth; Chinchilli, Vernon M; George, Daniel R; Sciamanna, Christopher N

    2016-12-01

    Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. The purpose of this study was to conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively measured outcomes. Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3 % male, 83.4 % overweight/obese) were randomized to one of three groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking as well as prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Participants increased their MVPA by 21.0 min/week, 95 % CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. The trial was registered with the ClinicalTrials.gov (NCT01142804).

  12. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.

    Science.gov (United States)

    Jin, Tao; Stanciulescu, Ilinca

    2016-08-01

    This paper presents a computational framework to simulate the mechanical behavior of fibrous biomaterials with randomly distributed fiber networks. A random walk algorithm is implemented to generate the synthetic fiber network in 2D used in simulations. The embedded fiber approach is then adopted to model the fibers as embedded truss elements in the ground matrix, which is essentially equivalent to the affine fiber kinematics. The fiber-matrix interaction is partially considered in the sense that the two material components deform together, but no relative movement is considered. A variational approach is carried out to derive the element residual and stiffness matrices for finite element method (FEM), in which material and geometric nonlinearities are both included. Using a data structure proposed to record the network geometric information, the fiber network is directly incorporated into the FEM simulation without significantly increasing the computational cost. A mesh sensitivity analysis is conducted to show the influence of mesh size on various simulation results. The proposed method can be easily combined with Monte Carlo (MC) simulations to include the influence of the stochastic nature of the network and capture the material behavior in an average sense. The computational framework proposed in this work goes midway between homogenizing the fiber network into the surrounding matrix and accounting for the fully coupled fiber-matrix interaction at the segment length scale, and can be used to study the connection between the microscopic structure and the macro-mechanical behavior of fibrous biomaterials with a reasonable computational cost.

  13. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  14. Degree-correlation, omniscience, and randomized immunization protocols in finite networks

    CERN Document Server

    Alm, Jeremy F

    2016-01-01

    Many naturally occurring networks have a power-law degree distribution as well as a non-zero degree correlation. Despite this, most studies analyzing the efficiency of immunization strategies in networks have concentrated only on power-law degree distribution and ignored degree correlation. This study looks specifically at the effect degree-correlation has on the efficiency of several immunization strategies in scale-free networks. Generally, we found that positive degree correlation raises the number of immunized individuals needed to stop the spread of the infection. Importantly, we found that in networks with positive degree correlation, immunization strategies that utilize knowledge of initial popularity actually perform worse on average than random immunization strategies.

  15. H∞ Networked Cascade Control System Design for Turboshaft Engines with Random Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2017-01-01

    Full Text Available The distributed control architecture becomes more and more important in future gas turbine engine control systems, in which the sensors and actuators will be connected to the controllers via a network. Therefore, the control problem of network-enabled high-performance distributed engine control (DEC has come to play an important role in modern gas turbine control systems, while, due to the properties of the network, the packet dropouts must be considered. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine distributed controllers are designed based on the NCCS framework with H∞ state feedback under random packet dropouts. The sufficient robust stable conditions are derived via the Lyapunov stability theory and linear matrix inequality approach. Simulations illustrate the effectiveness of the presented method.

  16. LCN: a random graph mixture model for community detection in functional brain networks.

    Science.gov (United States)

    Bryant, Christopher; Zhu, Hongtu; Ahn, Mihye; Ibrahim, Joseph

    2017-01-01

    The aim of this article is to develop a Bayesian random graph mixture model (RGMM) to detect the latent class network (LCN) structure of brain connectivity networks and estimate the parameters governing this structure. The use of conjugate priors for unknown parameters leads to efficient estimation, and a well-known nonidentifiability issue is avoided by a particular parameterization of the stochastic block model (SBM). Posterior computation proceeds via an efficient Markov Chain Monte Carlo algorithm. Simulations demonstrate that LCN outperforms several other competing methods for community detection in weighted networks, and we apply our RGMM to estimate the latent community structures in the functional resting brain networks of 185 subjects from the ADHD-200 sample. We find overlap in the estimated community structure across subjects, but also heterogeneity even within a given diagnosis group.

  17. Characterizing Acupuncture De Qi in Mild Cognitive Impairment: Relations with Small-World Efficiency of Functional Brain Networks

    OpenAIRE

    Lijun Bai; Ming Zhang; Shangjie Chen; Lin Ai; Maosheng Xu; Dan Wang; Fei Wang; Lihua Liu; Fang Wang; Lixing Lao

    2013-01-01

    As an intermediate state between normal aging and dementia, mild cognitive impairment (MCI) became a hot topic and early treatments can improve disease prognosis. Acupuncture is shown to have possible effect in improving its cognitive defect. However, the underlying neural mechanism of acupuncture and relations between De Qi and different needling depths are still elusive. The present study aimed to explore how acupuncture can exert effect on the reorganization of MCI and to what extent needl...

  18. Parademo: e-Democracy Based on a Delegated Expert Selection Process in a Small-World Network

    Science.gov (United States)

    Siebes, Ronny

    Many countries have a representative democracy where their governments consist of a relatively small group of politicians that represent the values and beliefs of the majority of the voters. Unfortunately, many citizens are un- satisfied with their rather limited influence on politics especially regarding governments on national level or even higher like the EU or the UN. On the other side, referenda or direct democracies seem to be a too risky way of letting un- knowledgeable or uninterested individuals decide over complex issues. We mainly have these extreme opposites in our democracies due to the limitations of our manually maintained ballot system. Initiatives like Vivarto propose an alternative, called 'Delegated voting' where parts of a vote can be delegated to people with more knowledge on a certain topic. This leads to a convenient position in the middle between both mentioned extremes. We want to use the vast amount of expertise of many online citizens in our societies in selecting the right politicians and solutions. In this paper we propose the design of system called Parademo, that enables a fine-grained e-democracy. Next to this we briefly describe how we can achieve more transparency and third-party functionality by allowing listeners to subscribe to specific information-streams within communities that are formalized in a Semantic-Web language.

  19. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    Science.gov (United States)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  20. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  1. Multiple random walks on complex networks: A harmonic law predicts search time

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Hui, Pan

    2017-05-01

    We investigate multiple random walks traversing independently and concurrently on complex networks and introduce the concept of mean first parallel passage time (MFPPT) to quantify their search efficiency. The mean first parallel passage time represents the expected time required to find a given target by one or some of the multiple walkers. We develop a general theory that allows us to calculate the MFPPT analytically. Interestingly, we find that the global MFPPT follows a harmonic law with respect to the global mean first passage times of the associated walkers. Remarkably, when the properties of multiple walkers are identical, the global MFPPT decays in a power law manner with an exponent of unity, irrespective of network structure. These findings are confirmed by numerical and theoretical results on various synthetic and real networks. The harmonic law reveals a universal principle governing multiple random walks on networks that uncovers the contribution and role of the combined walkers in a target search. Our paradigm is also applicable to a broad range of random search processes.

  2. Big brains, small worlds: material culture and the evolution of the mind.

    Science.gov (United States)

    Coward, Fiona; Gamble, Clive

    2008-06-12

    New developments in neuroimaging have demonstrated that the basic capacities underpinning human social skills are shared by our closest extant primate relatives. The challenge for archaeologists is to explain how complex human societies evolved from this shared pattern of face-to-face social interaction. We argue that a key process was the gradual incorporation of material culture into social networks over the course of hominin evolution. Here we use three long-term processes in hominin evolution-encephalization, the global human diaspora and sedentism/agriculture-to illustrate how the cultural transmission of material culture allowed the 'scaling up' of face-to-face social interactions to the global societies known today. We conclude that future research by neuroimagers and archaeologists will need to investigate the cognitive mechanisms behind human engagement with material culture as well as other persons.

  3. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  4. Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds.

    Science.gov (United States)

    Berker, A Nihat; Hinczewski, Michael; Netz, Roland R

    2009-10-01

    Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic [Berezinskii-Kosterlitz-Thouless (BKT)] geometric order, occurs in the phase diagram in addition to the ordinary (compact) percolating phase and the nonpercolating phase. It is found that no connection exists between, on the one hand, the onset of this geometric BKT behavior and, on the other hand, the onsets of the highly clustered small-world character of the network and of the thermal BKT transition of the Ising model on this network. Nevertheless, both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is expected, namely, at low bond probability and high temperature, respectively. This may be a general property of long-range networks.

  5. Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks

    Science.gov (United States)

    Wu, Shaochuan; Tan, Xuezhi

    2007-11-01

    By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.

  6. Fast Road Network Extraction in Satellite Images Using Mathematical Morphology and Markov Random Fields

    Directory of Open Access Journals (Sweden)

    Géraud Thierry

    2004-01-01

    Full Text Available We present a fast method for road network extraction in satellite images. It can be seen as a transposition of the segmentation scheme "watershed transform region adjacency graph Markov random fields" to the extraction of curvilinear objects. Many road extractors which are composed of two stages can be found in the literature. The first one acts like a filter that can decide from a local analysis, at every image point, if there is a road or not. The second stage aims at obtaining the road network structure. In the method we propose to rely on a "potential" image, that is, unstructured image data that can be derived from any road extractor filter. In such a potential image, the value assigned to a point is a measure of its likelihood to be located in the middle of a road. A filtering step applied on the potential image relies on the area closing operator followed by the watershed transform to obtain a connected line which encloses the road network. Then a graph describing adjacency relationships between watershed lines is built. Defining Markov random fields upon this graph, associated with an energetic model of road networks, leads to the expression of road network extraction as a global energy minimization problem. This method can easily be adapted to other image processing fields, where the recognition of curvilinear structures is involved.

  7. Estimating the Size of a Large Network and its Communities from a Random Sample.

    Science.gov (United States)

    Chen, Lin; Karbasi, Amin; Crawford, Forrest W

    2016-01-01

    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.

  8. An adaptive random search for short term generation scheduling with network constraints.

    Directory of Open Access Journals (Sweden)

    J A Marmolejo

    Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  9. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  10. Big city, small world: density, contact rates, and transmission of dengue across Pakistan.

    Science.gov (United States)

    Kraemer, M U G; Perkins, T A; Cummings, D A T; Zakar, R; Hay, S I; Smith, D L; Reiner, R C

    2015-10-06

    Macroscopic descriptions of populations commonly assume that encounters between individuals are well mixed; i.e. each individual has an equal chance of coming into contact with any other individual. Relaxing this assumption can be challenging though, due to the difficulty of acquiring detailed knowledge about the non-random nature of encounters. Here, we fitted a mathematical model of dengue virus transmission to spatial time-series data from Pakistan and compared maximum-likelihood estimates of 'mixing parameters' when disaggregating data across an urban-rural gradient. We show that dynamics across this gradient are subject not only to differing transmission intensities but also to differing strengths of nonlinearity due to differences in mixing. Accounting for differences in mobility by incorporating two fine-scale, density-dependent covariate layers eliminates differences in mixing but results in a doubling of the estimated transmission potential of the large urban district of Lahore. We furthermore show that neglecting spatial variation in mixing can lead to substantial underestimates of the level of effort needed to control a pathogen with vaccines or other interventions. We complement this analysis with estimates of the relationships between dengue transmission intensity and other putative environmental drivers thereof. © 2015 The Authors.

  11. Distributed Detection of Randomly Located Targets in Mobility-Assisted Sensor Networks with Node Mobility Management

    Directory of Open Access Journals (Sweden)

    Jayaweera SudharmanK

    2010-01-01

    Full Text Available Performance gain achieved by adding mobile nodes to a stationary sensor network for target detection depends on factors such as the number of mobile nodes deployed, mobility patterns, speed and energy constraints of mobile nodes, and the nature of the target locations (deterministic or random. In this paper, we address the problem of distributed detection of a randomly located target by a hybrid sensor network. Specifically, we develop two decision-fusion architectures for detection where in the first one, impact of node mobility is taken into account for decisions updating at the fusion center, while in the second model the impact of node mobility is taken at the node level decision updating. The cost of deploying mobile nodes is analyzed in terms of the minimum fraction of mobile nodes required to achieve the desired performance level within a desired delay constraint. Moreover, we consider managing node mobility under given constraints.

  12. Randomized gradient-free method for multiagent optimization over time-varying networks.

    Science.gov (United States)

    Yuan, Deming; Ho, Daniel W C

    2015-06-01

    In this brief, we consider the multiagent optimization over a network where multiple agents try to minimize a sum of nonsmooth but Lipschitz continuous functions, subject to a convex state constraint set. The underlying network topology is modeled as time varying. We propose a randomized derivative-free method, where in each update, the random gradient-free oracles are utilized instead of the subgradients (SGs). In contrast to the existing work, we do not require that agents are able to compute the SGs of their objective functions. We establish the convergence of the method to an approximate solution of the multiagent optimization problem within the error level depending on the smoothing parameter and the Lipschitz constant of each agent's objective function. Finally, a numerical example is provided to demonstrate the effectiveness of the method.

  13. Stability Analysis of Recurrent Neural Networks with Random Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Enwen Zhu

    2010-01-01

    Full Text Available In this paper, the exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs with random delay and Markovian switching. The evolution of the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed recurrent neural network with Markovian switching is exponentially stable. The analysis is based on the Lyapunov-Krasovskii functional and stochastic analysis approach, and the conditions are expressed in terms of linear matrix inequalities, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.

  14. Heterogeneity and nearest-neighbor coupling can explain small-worldness and wave properties in pancreatic islets

    Science.gov (United States)

    Cappon, Giacomo; Pedersen, Morten Gram

    2016-05-01

    Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.

  15. Ambient awareness: From random noise to digital closeness in online social networks

    OpenAIRE

    Levordashka, Ana; Utz, Sonja

    2016-01-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empiricall...

  16. Control Capacity and A Random Sampling Method in Exploring Controllability of Complex Networks

    OpenAIRE

    Jia, Tao; Barab?si, Albert-L?szl?

    2013-01-01

    Controlling complex systems is a fundamental challenge of network science. Recent advances indicate that control over the system can be achieved through a minimum driver node set (MDS). The existence of multiple MDS's suggests that nodes do not participate in control equally, prompting us to quantify their participations. Here we introduce control capacity quantifying the likelihood that a node is a driver node. To efficiently measure this quantity, we develop a random sampling algorithm. Thi...

  17. Topological properties of four networks in protein structures

    Science.gov (United States)

    Min, Seungsik; Kim, Kyungsik; Chang, Ki-Ho; Ha, Deok-Ho; Lee, Jun-Ho

    2017-11-01

    In this paper, we investigate the complex networks of interacting amino acids in protein structures. The cellular networks and their random controls are treated for the four threshold distances between atoms. The numerical simulation and analysis are relevant to the topological properties of the complex networks in the structural classification of proteins, and we mainly estimate the network's metrics from the resultant network. The cellular network is shown to exhibit a small-world feature regardless of their structural class. The protein structure presents the positive assortative coefficients, when the topological property is described as a tendency for connectivity of high-degree nodes. We particularly show that both the modularity and the small-wordness are significantly followed the increasing function against nodes.

  18. Distributed Fusion Filtering in Networked Systems with Random Measurement Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Raquel Caballero-Águila

    2015-01-01

    Full Text Available The distributed fusion state estimation problem is addressed for sensor network systems with random state transition matrix and random measurement matrices, which provide a unified framework to consider some network-induced random phenomena. The process noise and all the sensor measurement noises are assumed to be one-step autocorrelated and different sensor noises are one-step cross-correlated; also, the process noise and each sensor measurement noise are two-step cross-correlated. These correlation assumptions cover many practical situations, where the classical independence hypothesis is not realistic. Using an innovation methodology, local least-squares linear filtering estimators are recursively obtained at each sensor. The distributed fusion method is then used to form the optimal matrix-weighted sum of these local filters according to the mean squared error criterion. A numerical simulation example shows the accuracy of the proposed distributed fusion filtering algorithm and illustrates some of the network-induced stochastic uncertainties that can be dealt with in the current system model, such as sensor gain degradation, missing measurements, and multiplicative noise.

  19. Discriminating different classes of biological networks by analyzing the graphs spectra distribution

    CERN Document Server

    Takahashi, Daniel Yasumasa; Ferreira, Carlos Eduardo; Fujita, André

    2012-01-01

    The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibl...

  20. A hybrid network intrusion detection framework based on random forests and weighted k-means

    Directory of Open Access Journals (Sweden)

    Reda M. Elbasiony

    2013-12-01

    Full Text Available Many current NIDSs are rule-based systems, which are very difficult in encoding rules, and cannot detect novel intrusions. Therefore, a hybrid detection framework that depends on data mining classification and clustering techniques is proposed. In misuse detection, random forests classification algorithm is used to build intrusion patterns automatically from a training dataset, and then matches network connections to these intrusion patterns to detect network intrusions. In anomaly detection, the k-means clustering algorithm is used to detect novel intrusions by clustering the network connections’ data to collect the most of intrusions together in one or more clusters. In the proposed hybrid framework, the anomaly part is improved by replacing the k-means algorithm with another one called weighted k-means algorithm, moreover, it uses a proposed method in choosing the anomalous clusters by injecting known attacks into uncertain connections data. Our approaches are evaluated over the Knowledge Discovery and Data Mining (KDD’99 datasets.

  1. Edge-based SEIR dynamics with or without infectious force in latent period on random networks

    Science.gov (United States)

    Wang, Yi; Cao, Jinde; Alsaedi, Ahmed; Ahmad, Bashir

    2017-04-01

    In nature, most of the diseases have latent periods, and most of the networks look as if they were spun randomly at the first glance. Hence, we consider SEIR dynamics with or without infectious force in latent period on random networks with arbitrary degree distributions. Both of these models are governed by intrinsically three dimensional nonlinear systems of ordinary differential equations, which are the same as classical SEIR models. The basic reproduction numbers and the final size formulae are explicitly derived. Predictions of the models agree well with the large-scale stochastic SEIR simulations on contact networks. In particular, for SEIR model without infectious force in latent period, although the length of latent period has no effect on the basic reproduction number and the final epidemic size, it affects the arrival time of the peak and the peak size; while for SEIR model with infectious force in latent period it also affects the basic reproduction number and the final epidemic size. These accurate model predictions, may provide guidance for the control of network infectious diseases with latent periods.

  2. Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting

    CERN Document Server

    Swapna, B T; Shroff, Ness B

    2011-01-01

    In an unreliable single-hop broadcast network setting, we investigate the throughput and decoding-delay performance of random linear network coding as a function of the coding window size and the network size. Our model consists of a source transmitting packets of a single flow to a set of $n$ users over independent erasure channels. The source performs random linear network coding (RLNC) over $k$ (coding window size) packets and broadcasts them to the users. We note that the broadcast throughput of RLNC must vanish with increasing $n$, for any fixed $k.$ Hence, in contrast to other works in the literature, we investigate how the coding window size $k$ must scale for increasing $n$. Our analysis reveals that the coding window size of $\\Theta(\\ln(n))$ represents a phase transition rate, below which the throughput converges to zero, and above which it converges to the broadcast capacity. Further, we characterize the asymptotic distribution of decoding delay and provide approximate expressions for the mean and v...

  3. Estimating the Size of a Large Network and its Communities from a Random Sample

    CERN Document Server

    Chen, Lin; Crawford, Forrest W

    2016-01-01

    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V;E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that correctly estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhausti...

  4. Synaptic signal streams generated by ex vivo neuronal networks contain non-random, complex patterns.

    Science.gov (United States)

    Lee, Sangmook; Zemianek, Jill M; Shultz, Abraham; Vo, Anh; Maron, Ben Y; Therrien, Mikaela; Courtright, Christina; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2014-11-01

    Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks. Copyright © 2014. Published by Elsevier Ltd.

  5. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2017-11-22

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler which stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain, and is modulated by its projection domain. Site-specific pseudo-phosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phospho-dependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations which may have a deleterious impact during neurodegeneration. © 2017 by The American Society for Cell Biology.

  6. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  7. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    Science.gov (United States)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  8. Light scattering optimization of chitin random network in ultrawhite beetle scales

    Science.gov (United States)

    Utel, Francesco; Cortese, Lorenzo; Pattelli, Lorenzo; Burresi, Matteo; Vignolini, Silvia; Wiersma, Diederik

    2017-09-01

    Among the natural white colored photonics structures, a bio-system has become of great interest in the field of disordered optical media: the scale of the white beetle Chyphochilus. Despite its low thickness, on average 7 μm, and low refractive index, this beetle exhibits extreme high brightness and unique whiteness. These properties arise from the interaction of light with a complex network of chitin nano filaments embedded in the interior of the scales. As it's been recently claimed, this could be a consequence of the peculiar morphology of the filaments network that, by means of high filling fraction (0.61) and structural anisotropy, optimizes the multiple scattering of light. We therefore performed a numerical analysis on the structural properties of the chitin network in order to understand their role in the enhancement of the scale scattering intensity. Modeling the filaments as interconnected rod shaped scattering centers, we numerically generated the spatial coordinates of the network components. Controlling the quantities that are claimed to play a fundamental role in the brightness and whiteness properties of the investigated system (filling fraction and average rods orientation, i.e. the anisotropy of the ensemble of scattering centers), we obtained a set of customized random networks. FDTD simulations of light transport have been performed on these systems, observing high reflectance for all the visible frequencies and proving the implemented algorithm to numerically generate the structures is suitable to investigate the dependence of reflectance by anisotropy.

  9. Consumers don’t play dice, influence of social networks and advertisements

    Science.gov (United States)

    Groot, Robert D.

    2006-05-01

    Empirical data of supermarket sales show stylised facts that are similar to stock markets, with a broad (truncated) Lévy distribution of weekly sales differences in the baseline sales [R.D. Groot, Physica A 353 (2005) 501]. To investigate the cause of this, the influence of social interactions and advertisements are studied in an agent-based model of consumers in a social network. The influence of network topology was varied by using a small-world network, a random network and a Barabási-Albert network. The degree to which consumers value the opinion of their peers was also varied. On a small-world and random network we find a phase transition between an open market and a locked-in market that is similar to condensation in liquids. At the critical point, fluctuations become large and buying behaviour is strongly correlated. However, on the small world network the noise distribution at the critical point is Gaussian, and critical slowing down occurs which is not observed in supermarket sales. On a scale-free network, the model shows a transition between a gas-like phase and a glassy state, but at the transition point the noise amplitude is much larger than what is seen in supermarket sales. To explore the role of advertisements, a model is studied where imprints are placed on the minds of consumers that ripen when a decision for a product is made. The correct distribution of weekly sales returns follows naturally from this model, as well as the noise amplitude, the correlation time and cross-correlation of sales fluctuations. For particular parameter values, simulated sales correlation shows power-law decay in time. The model predicts that social interaction helps to prevent aversion, and that products are viewed more positively when their consumption rate is higher.

  10. Incentives for academic excellence: sex, money and self-advertising in David Lodge’s Changing Places and Small World

    Directory of Open Access Journals (Sweden)

    Felix Nicolau

    2013-12-01

    Full Text Available The paper will focus on two novels of David Lodge’s trilogy, namely Changing Places. A Tale of Two Campuses and Small World. An Academic Romance. During the 1970’s the university life was profusely sponsored by the state. Consequently, academics travelled extensively and improved their professional expertise by leading tumultuous lives. Thus, the latest theories were intertwined with empirical experiments in hedonistic enterprises. The academic rivalries used to be appeased by parallel satisfactions. The legends of the Holy Grail, the Arthurian Cycle, and the Green Knight constituted ferments of a hermeneutics of fertility imbued with post-structuralist relativization. Interculturality received political implications and, in this way, professors had to assume a social standing. This involvement secured their status of authentic intellectuals, beyond the ivory tower. The research resorts to diverse studies on the campus novel. The main scholars to be quoted are Chris Baldick, Catherine Belsey, Eva Lambertsson Björk, and Elaine Showalter.

  11. All-Direction Random Routing for Source-Location Privacy Protecting against Parasitic Sensor Networks.

    Science.gov (United States)

    Wang, Na; Zeng, Jiwen

    2017-03-17

    Wireless sensor networks are deployed to monitor the surrounding physical environments and they also act as the physical environments of parasitic sensor networks, whose purpose is analyzing the contextual privacy and obtaining valuable information from the original wireless sensor networks. Recently, contextual privacy issues associated with wireless communication in open spaces have not been thoroughly addressed and one of the most important challenges is protecting the source locations of the valuable packages. In this paper, we design an all-direction random routing algorithm (ARR) for source-location protecting against parasitic sensor networks. For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper agent node, delivering the package to the agent node from the source node, and sending it to the final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions by the source nodes using only local decisions, rather than knowing the whole topology of the networks. ARR can control the distributions of the routing paths in a very flexible way and it can guarantee that the routing paths with the same source and destination are totally different from each other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and obviously outperforms traditional routing-based schemes in protecting source-location privacy, with a marginal increase in the communication overhead and energy consumption. In addition, ARR also requires much less energy than the cloud-based source-location privacy protection schemes.

  12. Fractional random walk lattice dynamics

    Science.gov (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-02-01

    We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0<α ≤slant 2 is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

  13. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    Science.gov (United States)

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  14. Estimating mean first passage time of biased random walks with short relaxation time on complex networks.

    Directory of Open Access Journals (Sweden)

    Zhuo Qi Lee

    Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.

  15. Equivalence of effective medium and random resistor network models for disorder-induced unsaturating linear magnetoresistance

    Science.gov (United States)

    Ramakrishnan, Navneeth; Lai, Ying Tong; Lara, Silvia; Parish, Meera M.; Adam, Shaffique

    2017-12-01

    A linear unsaturating magnetoresistance at high perpendicular magnetic fields, together with a quadratic positive magnetoresistance at low fields, has been seen in many different experimental materials, ranging from silver chalcogenides and thin films of InSb to topological materials like graphene and Dirac semimetals. In the literature, two very different theoretical approaches have been used to explain this classical magnetoresistance as a consequence of sample disorder. The phenomenological random resistor network model constructs a grid of four terminal resistors, each with a varying random resistance. The effective medium theory model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. Here, we demonstrate numerically that both models belong to the same universality class and that a restricted class of the random resistor network is actually equivalent to the effective medium theory. Both models are also in good agreement with experiments on a diverse range of materials. Moreover, we show that in both cases, a single parameter, i.e., the ratio of the fluctuations in the carrier density to the average carrier density, completely determines the magnetoresistance profile.

  16. Changes in topological organization of functional PET brain network with normal aging.

    Directory of Open Access Journals (Sweden)

    Zhiliang Liu

    Full Text Available Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET data are still barely understood. Here, we constructed functional brain networks composed of 90 regions in younger (mean age 36.5 years and older (mean age 56.3 years age groups with PET data. 113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.

  17. Changes in topological organization of functional PET brain network with normal aging.

    Science.gov (United States)

    Liu, Zhiliang; Ke, Lining; Liu, Huafeng; Huang, Wenhua; Hu, Zhenghui

    2014-01-01

    Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of 90 regions in younger (mean age 36.5 years) and older (mean age 56.3 years) age groups with PET data. 113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.

  18. Unanticipated Effect of a Randomized Peer Network Intervention on Depressive Symptoms among Young Methamphetamine Users in Thailand

    Science.gov (United States)

    German, D.; Sutcliffe, C. G.; Sirirojn, B.; Sherman, S. G.; Latkin, C. A.; Aramrattana, A.; Celentano, D. D.

    2012-01-01

    We examined the effect on depressive symptoms of a peer network-oriented intervention effective in reducing sexual risk behavior and methamphetamine (MA) use. Current Thai MA users aged 18-25 years and their drug and/or sex network members enrolled in a randomized controlled trial with 4 follow-ups over 12 months. A total of 415 index participants…

  19. Mediated attachment as a mechanism for growth of complex networks

    CERN Document Server

    Shekatkar, Snehal M

    2014-01-01

    Connection topologies of many networked systems like human brain, biological cell, world wide web, power grids, human society and ecological food webs markedly deviate from that of completely random networks indicating the presence of organizing principles behind their evolution. The five important features that characterize such networks are scale-free topology, small average path length, high clustering, hierarchical community structure and assortative mixing. Till now the generic mechanisms underlying the existence of these properties are not well understood. Here we show that potentially a single mechanism, which we call "mediated attachment", where two nodes get connected through a mediator or common neighbor, could be responsible for the emergence of all important properties of real networks. The mediated attachment naturally unifies scale-free topology, high clustering, small world nature, hierarchical community structure and dissortative nature of networks. Further, with additional mixing by age, this...

  20. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    Science.gov (United States)

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  1. Network Models of Mechanical Assemblies

    Science.gov (United States)

    Whitney, Daniel E.

    Recent network research has sought to characterize complex systems with a number of statistical metrics, such as power law exponent (if any), clustering coefficient, community behavior, and degree correlation. Use of such metrics represents a choice of level of abstraction, a balance of generality and detailed accuracy. It has been noted that "social networks" consistently display clustering coefficients that are higher than those of random or generalized random networks, that they have small world properties such as short path lengths, and that they have positive degree correlations (assortative mixing). "Technological" or "non-social" networks display many of these characteristics except that they generally have negative degree correlations (disassortative mixing). [Newman 2003i] In this paper we examine network models of mechanical assemblies. Such systems are well understood functionally. We show that there is a cap on their average nodal degree and that they have negative degree correlations (disassortative mixing). We identify specific constraints arising from first principles, their structural patterns, and engineering practice that suggest why they have these properties. In addition, we note that their main "motif" is closed loops (as it is for electric and electronic circuits), a pattern that conventional network analysis does not detect but which is used by software intended to aid in the design of such systems.

  2. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  3. Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services

    DEFF Research Database (Denmark)

    Tassi, Andrea; Chatzigeorgiou, Ioannis; Roetter, Daniel Enrique Lucani

    2016-01-01

    techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterize the performance of users targeted by ultra-reliable layered multicast services. The proposed modeling allows to efficiently derive the average number of coded packet...... transmissions needed to recover one or more service layers. We design a convex resource allocation framework that allows to minimize the complexity of the RLNC decoder by jointly optimizing the transmission parameters and the sparsity of the code. The designed optimization framework also ensures service......Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different random linear network coding (RLNC...

  4. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure

    CERN Document Server

    Ball, Frank

    2016-01-01

    This paper is concerned with the analysis of vaccination strategies in a stochastic SIR (susceptible $\\to$ infected $\\to$ removed) model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability and fraction of the population infected by such an outbreak. The performance of these schemes is studied numerically, focusing on the influence of the household size distribution and the degree distribution of the soc...

  5. Distributed Constrained Stochastic Subgradient Algorithms Based on Random Projection and Asynchronous Broadcast over Networks

    Directory of Open Access Journals (Sweden)

    Junlong Zhu

    2017-01-01

    Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.

  6. Control capacity and a random sampling method in exploring controllability of complex networks.

    Science.gov (United States)

    Jia, Tao; Barabási, Albert-László

    2013-01-01

    Controlling complex systems is a fundamental challenge of network science. Recent advances indicate that control over the system can be achieved through a minimum driver node set (MDS). The existence of multiple MDS's suggests that nodes do not participate in control equally, prompting us to quantify their participations. Here we introduce control capacity quantifying the likelihood that a node is a driver node. To efficiently measure this quantity, we develop a random sampling algorithm. This algorithm not only provides a statistical estimate of the control capacity, but also bridges the gap between multiple microscopic control configurations and macroscopic properties of the network under control. We demonstrate that the possibility of being a driver node decreases with a node's in-degree and is independent of its out-degree. Given the inherent multiplicity of MDS's, our findings offer tools to explore control in various complex systems.

  7. Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined Neural Networks

    DEFF Research Database (Denmark)

    Veenstra, Frank; Struck, Alexander; Krauledat, Matthias

    2015-01-01

    The acquisition and optimization of dynamically stable locomotion is important to engender fast and energy efficient locomotion in animals. Conventional optimization strategies tend to have difficulties in acquiring dynamically stable gaits in legged robots. In this paper, an evolving neural...... network (ENN) was implemented with the aim to optimize the locomotive behavior of a four-legged simulated robot. In the initial generation, individuals had neural networks (NNs) that were either predefined or randomly initialized. Additional investigations show that the efficiency of applying additional...... sensors to the simulated quadruped improved the performance of the ENN slightly. Promising results were seen in the evolutionary runs where the initial predefined NNs of the population contributed to slight movements of the limbs. This paper shows how a predefined ENNs linked to bio-inspired sensors can...

  8. A Cloud-Assisted Random Linear Network Coding Medium Access Control Protocol for Healthcare Applications

    Directory of Open Access Journals (Sweden)

    Elli Kartsakli

    2014-03-01

    Full Text Available Relay sensor networks are often employed in end-to-end healthcare applications to facilitate the information flow between patient worn sensors and the medical data center. Medium access control (MAC protocols, based on random linear network coding (RLNC, are a novel and suitable approach to efficiently handle data dissemination. However, several challenges arise, such as additional delays introduced by the intermediate relay nodes and decoding failures, due to channel errors. In this paper, we tackle these issues by adopting a cloud architecture where the set of relays is connected to a coordinating entity, called cloud manager. We propose a cloud-assisted RLNC-based MAC protocol (CLNC-MAC and develop a mathematical model for the calculation of the key performance metrics, namely the system throughput, the mean completion time for data delivery and the energy efficiency. We show the importance of central coordination in fully exploiting the gain of RLNC under error-prone channels.

  9. Statistics of energy dissipation and stress relaxation in a crumpling network of randomly folded aluminum foils

    Science.gov (United States)

    Balankin, Alexander S.; Susarrey Huerta, Orlando; Tapia, Viktor

    2013-09-01

    We study stress relaxation in hand folded aluminum foils subjected to the uniaxial compression force F(λ). We found that once the compression ratio is fixed (λ=const) the compression force decreases in time as F∝F0P(t), where P(t) is the survival probability time distribution belonging to the domain of attraction of max-stable distribution of the Fréchet type. This finding provides a general physical picture of energy dissipation in the crumpling network of a crushed elastoplastic foil. The difference between energy dissipation statistics in crushed viscoelastic papers and elastoplastic foils is outlined. Specifically, we argue that the dissipation of elastic energy in crushed aluminum foils is ruled by a multiplicative Poisson process governed by the maximum waiting time distribution. The mapping of this process into the problem of transient random walk on a fractal crumpling network is suggested.

  10. Impact of network topology on synchrony of oscillatory power grids

    Science.gov (United States)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk; Timme, Marc

    2014-03-01

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  11. Ambient awareness: From random noise to digital closeness in online social networks.

    Science.gov (United States)

    Levordashka, Ana; Utz, Sonja

    2016-07-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.

  12. Altered network communication following a neuroprotective drug treatment.

    Directory of Open Access Journals (Sweden)

    Kathleen Vincent

    Full Text Available Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic, on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.

  13. A novel root-index based prioritized random access scheme for 5G cellular networks

    Directory of Open Access Journals (Sweden)

    Taehoon Kim

    2015-12-01

    Full Text Available Cellular networks will play an important role in realizing the newly emerging Internet-of-Everything (IoE. One of the challenging issues is to support the quality of service (QoS during the access phase, while accommodating a massive number of machine nodes. In this paper, we show a new paradigm of multiple access priorities in random access (RA procedure and propose a novel root-index based prioritized random access (RIPRA scheme that implicitly embeds the access priority in the root index of the RA preambles. The performance evaluation shows that the proposed RIPRA scheme can successfully support differentiated performance for different access priority levels, even though there exist a massive number of machine nodes.

  14. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  15. Flexible sampling large-scale social networks by self-adjustable random walk

    Science.gov (United States)

    Xu, Xiao-Ke; Zhu, Jonathan J. H.

    2016-12-01

    Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.

  16. Social networking technologies as an emerging tool for HIV prevention: a cluster randomized trial.

    Science.gov (United States)

    Young, Sean D; Cumberland, William G; Lee, Sung-Jae; Jaganath, Devan; Szekeres, Greg; Coates, Thomas

    2013-09-03

    Social networking technologies are an emerging tool for HIV prevention. To determine whether social networking communities can increase HIV testing among African American and Latino men who have sex with men (MSM). Randomized, controlled trial with concealed allocation. (ClinicalTrials.gov: NCT01701206). Online. 112 MSM based in Los Angeles, more than 85% of whom were African American or Latino. Sixteen peer leaders were randomly assigned to deliver information about HIV or general health to participants via Facebook groups over 12 weeks. After participants accepted a request to join the group, participation was voluntary. Group participation and engagement were monitored. Participants could request a free, home-based HIV testing kit and completed questionnaires at baseline and 12-week follow-up. Participant acceptance of and engagement in the intervention and social network participation, rates of home-based HIV testing, and sexual risk behaviors. Almost 95% of intervention participants and 73% of control participants voluntarily communicated using the social platform. Twenty-five of 57 intervention participants (44%) requested home-based HIV testing kits compared with 11 of 55 control participants (20%) (difference, 24 percentage points [95% CI, 8 to 41 percentage points]). Nine of the 25 intervention participants (36%) who requested the test took it and mailed it back compared with 2 of the 11 control participants (18%) who requested the test. Retention at study follow-up was more than 93%. Only 2 Facebook communities were included for each group. Social networking communities are acceptable and effective tools to increase home-based HIV testing among at-risk populations. National Institute of Mental Health.

  17. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    Science.gov (United States)

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  18. Synchronization analysis of coloured delayed networks under ...

    Indian Academy of Sciences (India)

    Up to now, many network models on synchronization have been put forward, such as, the small-world network, directed network, neural network etc. Previous efforts were mainly to study the outer relationship between the nodes. But, the inner interaction is always overlooked. Afterwards, the coloured network model has ...

  19. Small-World Optimization Algorithm and Its Application in a Sequencing Problem of Painted Body Storage in a Car Company

    Directory of Open Access Journals (Sweden)

    Tian Zhipeng

    2015-01-01

    Full Text Available In the car company, the painted body storage (PBS is set up between the paint shop and the assembly shop. It stores the vehicles in production and reorders the vehicles sequence. To improve production efficiency of assembly shop, a mathematical model is developed aiming at minimizing the consumption rate of options and the total overtime and idle time. As the PBS sequencing process contains upstream sequence inbound and downstream sequence outbound, this paper proposes an algorithm with two phases. In the first phase, the discrete small-world optimization algorithm (DSWOA is applied to schedule the inbound sequence by employing the short-range nodes and the long-range nodes in order to realize the global searching. In the second phase, the heuristic algorithm is applied to schedule the outbound sequencing. The proposed model and algorithm are applied in an automobile enterprise. The results indicate that the two-phase algorithm is suitable for the PBS sequencing problem and the DSWOA has a better searching performance than GA in this problem. The sensitivity of model parameters is analyzed as well.

  20. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  1. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  2. Exploring the Causal Pathway From Telomere Length to Coronary Heart Disease: A Network Mendelian Randomization Study.

    Science.gov (United States)

    Zhan, Yiqiang; Karlsson, Ida K; Karlsson, Robert; Tillander, Annika; Reynolds, Chandra A; Pedersen, Nancy L; Hägg, Sara

    2017-07-21

    Observational studies have found shorter leukocyte telomere length (TL) to be a risk factor for coronary heart disease (CHD), and recently the association was suggested to be causal. However, the relationship between TL and common metabolic risk factors for CHD is not well understood. Whether these risk factors could explain pathways from TL to CHD warrants further attention. To examine whether metabolic risk factors for CHD mediate the causal pathway from short TL to increased risk of CHD using a network Mendelian randomization design. Summary statistics from several genome-wide association studies were used in a 2-sample Mendelian randomization study design. Network Mendelian randomization analysis-an approach using genetic variants as the instrumental variables for both the exposure and mediator to infer causality-was performed to examine the causal association between telomeres and CHD and metabolic risk factors. Summary statistics from the ENGAGE Telomere Consortium were used (n=37 684) as a TL genetic instrument, CARDIoGRAMplusC4D Consortium data were used (case=22 233 and control=64 762) for CHD, and other consortia data were used for metabolic traits (fasting insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, fasting glucose, diabetes mellitus, glycohemoglobin, body mass index, waist circumference, and waist:hip ratio). One-unit increase of genetically determined TL was associated with -0.07 (95% confidence interval, -0.01 to -0.12; P=0.01) lower log-transformed fasting insulin (pmol/L) and 21% lower odds (95% confidence interval, 3-35; P=0.02) of CHD. Higher genetically determined log-transformed fasting insulin level was associated with higher CHD risk (odds ratio, 1.86; 95% confidence interval, 1.01-3.41; P=0.04). Overall, our findings support a role of insulin as a mediator on the causal pathway from shorter telomeres to CHD pathogenesis. © 2017 American Heart Association, Inc.

  3. Network Location-Aware Service Recommendation with Random Walk in Cyber-Physical Systems.

    Science.gov (United States)

    Yin, Yuyu; Yu, Fangzheng; Xu, Yueshen; Yu, Lifeng; Mu, Jinglong

    2017-09-08

    Cyber-physical systems (CPS) have received much attention from both academia and industry. An increasing number of functions in CPS are provided in the way of services, which gives rise to an urgent task, that is, how to recommend the suitable services in a huge number of available services in CPS. In traditional service recommendation, collaborative filtering (CF) has been studied in academia, and used in industry. However, there exist several defects that limit the application of CF-based methods in CPS. One is that under the case of high data sparsity, CF-based methods are likely to generate inaccurate prediction results. In this paper, we discover that mining the potential similarity relations among users or services in CPS is really helpful to improve the prediction accuracy. Besides, most of traditional CF-based methods are only capable of using the service invocation records, but ignore the context information, such as network location, which is a typical context in CPS. In this paper, we propose a novel service recommendation method for CPS, which utilizes network location as context information and contains three prediction models using random walking. We conduct sufficient experiments on two real-world datasets, and the results demonstrate the effectiveness of our proposed methods and verify that the network location is indeed useful in QoS prediction.

  4. Asymptotic Analysis of Large Cooperative Relay Networks Using Random Matrix Theory

    Directory of Open Access Journals (Sweden)

    H. Poor

    2008-04-01

    Full Text Available Cooperative transmission is an emerging communication technology that takes advantage of the broadcast nature of wireless channels. In cooperative transmission, the use of relays can create a virtual antenna array so that multiple-input/multiple-output (MIMO techniques can be employed. Most existing work in this area has focused on the situation in which there are a small number of sources and relays and a destination. In this paper, cooperative relay networks with large numbers of nodes are analyzed, and in particular the asymptotic performance improvement of cooperative transmission over direction transmission and relay transmission is analyzed using random matrix theory. The key idea is to investigate the eigenvalue distributions related to channel capacity and to analyze the moments of this distribution in large wireless networks. A performance upper bound is derived, the performance in the low signal-to-noise-ratio regime is analyzed, and two approximations are obtained for high and low relay-to-destination link qualities, respectively. Finally, simulations are provided to validate the accuracy of the analytical results. The analysis in this paper provides important tools for the understanding and the design of large cooperative wireless networks.

  5. Adaptive bridge control strategy for opinion evolution on social networks.

    Science.gov (United States)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  6. Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights.

    Science.gov (United States)

    Lian, Cheng; Zeng, Zhigang; Yao, Wei; Tang, Huiming; Chen, Chun Lung Philip

    2016-12-01

    In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.

  7. Statistical Analysis of Bus Networks in India.

    Science.gov (United States)

    Chatterjee, Atanu; Manohar, Manju; Ramadurai, Gitakrishnan

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future.

  8. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  9. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  10. Randomized Trial of a Social Networking Intervention for Cancer-Related Distress.

    Science.gov (United States)

    Owen, Jason E; O'Carroll Bantum, Erin; Pagano, Ian S; Stanton, Annette

    2017-10-01

    Web and mobile technologies appear to hold promise for delivering evidence-informed and evidence-based intervention to cancer survivors and others living with trauma and other psychological concerns. Health-space.net was developed as a comprehensive online social networking and coping skills training program for cancer survivors living with distress. The purpose of this study was to evaluate the effects of a 12-week social networking intervention on distress, depression, anxiety, vigor, and fatigue in cancer survivors reporting high levels of cancer-related distress. We recruited 347 participants from a local cancer registry and internet, and all were randomized to either a 12-week waiting list control group or to immediate access to the intervention. Intervention participants received secure access to the study website, which provided extensive social networking capabilities and coping skills training exercises facilitated by a professional facilitator. Across time, the prevalence of clinically significant depression symptoms declined from 67 to 34 % in both conditions. The health-space.net intervention had greater declines in fatigue than the waitlist control group, but the intervention did not improve outcomes for depression, trauma-related anxiety symptoms, or overall mood disturbance. For those with more severe levels of anxiety at baseline, greater engagement with the intervention was associated with higher levels of symptom reduction over time. The intervention resulted in small but significant effects on fatigue but not other primary or secondary outcomes. Results suggest that this social networking intervention may be most effective for those who have distress that is not associated with high levels of anxiety symptoms or very poor overall psychological functioning. The trial was registered with the ClinicalTrials.gov database ( ClinicalTrials.gov #NCT01976949).

  11. Modeling structure and resilience of the dark network.

    Science.gov (United States)

    De Domenico, Manlio; Arenas, Alex

    2017-02-01

    While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.

  12. Modeling structure and resilience of the dark network

    Science.gov (United States)

    De Domenico, Manlio; Arenas, Alex

    2017-02-01

    While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.

  13. Random graphs : From static to dynamic

    NARCIS (Netherlands)

    Van den Esker, H.

    2008-01-01

    Many empirical studies on real-life networks show that many networks are small worlds, meaning that typical distances in these networks are small, and many of them have power-law degree sequences, meaning that the number of nodes with degree k falls off as kˆ (-τ) for some exponent τ>1. These

  14. Dynamics of social networks

    OpenAIRE

    Ebel, Holger; Davidsen, Joern; Bornholdt, Stefan

    2003-01-01

    Complex networks as the World Wide Web, the web of human sexual contacts or criminal networks often do not have an engineered architecture but instead are self-organized by the actions of a large number of individuals. From these local interactions non-trivial global phenomena can emerge as small-world properties or scale-free degree distributions. A simple model for the evolution of acquaintance networks highlights the essential dynamical ingredients necessary to obtain such complex network ...

  15. Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno; Thomsen, Henning; Popovski, Petar

    2015-01-01

    In this chapter, we describe and discuss the current LTE random access procedure and the Radio Access Network Load Control solution within LTE/LTE-A. We provide an overview of the several considered load control solutions and give a detailed description of the standardized Extended Access Class B...

  16. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  17. Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Shunhua Wang

    2013-01-01

    Full Text Available Flexible, transparent, and conductive films based on random networks of Ag nanowires were prepared by vacuum-filtrating method. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby achieving a high aspect ratio (>1000. The films fabricated by Ag nanowires exhibit the excellent transparency with a 92% optical transmittance and a low surface resistivity of 11 Ωsq−1. Importantly, both the transmittance and sheet resistance decrease with the increasing of the Ag nanowires contents. When the contents of Ag nanowires are up to 200 mg/m2 especially, the surface resistivity quickly falls below 5 Ωsq−1. Also, these films are robust, which have almost no change in sheet resistance after the repeating bends over 200 cycles. These encouraging results may have a potential application in flexible and transparent electronics and other heating systems.

  18. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  19. A Chemical Reaction Network to Generate Random, Power-Law-Distributed Time Intervals.

    Science.gov (United States)

    Krauss, Patrick; Schulze, Holger; Metzner, Claus

    2017-10-06

    In Lévy walks (LWs), particles move with a fixed speed along straight line segments and turn in new directions after random time intervals that are distributed according to a power law. Such LWs are thought to be an advantageous foraging and search strategy for organisms. While complex nervous systems are certainly capable of producing such behavior, it is not clear at present how single-cell organisms can generate the long-term correlated control signals required for a LW. Here, we construct a biochemical reaction system that generates long-time correlated concentration fluctuations of a signaling substance, with a tunable fractional exponent of the autocorrelation function. The network is based on well-known modules, and its basic function is highly robust with respect to the parameter settings.

  20. Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays

    Directory of Open Access Journals (Sweden)

    Ye-Guo Sun

    2012-01-01

    Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.

  1. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

    Directory of Open Access Journals (Sweden)

    Qing Han

    2013-10-01

    Full Text Available Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.

  2. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A web-based, social networking physical activity intervention for insufficiently active adults delivered via Facebook app : randomized controlled trial

    OpenAIRE

    Maher, Carol; Ferguson, Monika; Vandelanotte, Corneel; Plotnikoff, Ron; de Bourdeaudhuij, Ilse; Thomas, Samantha; Nelson-Field, Karen; Olds, Tim

    2015-01-01

    Background Online social networks offer considerable potential for delivery of socially influential health behavior change interventions. Objective To determine the efficacy, engagement, and feasibility of an online social networking physical activity intervention with pedometers delivered via Facebook app. Methods A total of 110 adults with a mean age of 35.6 years (SD 12.4) were recruited online in teams of 3 to 8 friends. Teams were randomly allocated to receive access to a 50-day online s...

  4. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  5. Surgical interventions to treat humerus shaft fractures: A network meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Jia-Guo Zhao

    Full Text Available There are three main surgical techniques to treat humeral shaft fractures: open reduction and plate fixation (ORPF, intramedullary nail (IMN fixation, and minimally invasive percutaneous osteosynthesis (MIPO. We performed a network meta-analysis to compare three surgical procedures, including ORPF, IMN fixation, and MIPO, to provide the optimum treatment for humerus shaft fractures.MEDLINE, EMBASE, Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, and Cochrane library were researched for reports published up to May 2016. We only included randomized controlled trials (RCTs comparing two or more of the three surgical procedures, including the ORPF, IMN, and MIPO techniques, for humeral shaft fractures in adults. The methodological quality was evaluated based on the Cochrane risk of bias tool. We used WinBUGS1.4 to conduct this Bayesian network meta-analysis. We used the odd ratios (ORs with 95% confidence intervals (CIs to calculate the dichotomous outcomes and analyzed the percentages of the surface under the cumulative ranking curve.Seventeen eligible publications reporting 16 RCTs were included in this study. Eight hundred and thirty-two participants were randomized to receive one of three surgical procedures. The results showed that shoulder impingement occurred more commonly in the IMN group than with either ORPF (OR, 0.13; 95% CI, 0.03-0.37 or MIPO fixation (OR, 0.08; 95% CI, 0.00-0.69. Iatrogenic radial nerve injury occurred more commonly in the ORPF group than in the MIPO group (OR, 11.09; 95% CI, 1.80-124.20. There were no significant differences among the three procedures in nonunion, delayed union, and infection.Compared with IMN and ORPF, MIPO technique is the preferred treatment method for humeral shaft fractures.

  6. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways.

    Science.gov (United States)

    Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G

    2015-04-01

    Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.

  7. Support or competition? How online social networks increase physical activity: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jingwen Zhang, PhD

    2016-12-01

    Full Text Available To identify what features of online social networks can increase physical activity, we conducted a 4-arm randomized controlled trial in 2014 in Philadelphia, PA. Students (n = 790, mean age = 25.2 at an university were randomly assigned to one of four conditions composed of either supportive or competitive relationships and either with individual or team incentives for attending exercise classes. The social comparison condition placed participants into 6-person competitive networks with individual incentives. The social support condition placed participants into 6-person teams with team incentives. The combined condition with both supportive and competitive relationships placed participants into 6-person teams, where participants could compare their team's performance to 5 other teams' performances. The control condition only allowed participants to attend classes with individual incentives. Rewards were based on the total number of classes attended by an individual, or the average number of classes attended by the members of a team. The outcome was the number of classes that participants attended. Data were analyzed using multilevel models in 2014. The mean attendance numbers per week were 35.7, 38.5, 20.3, and 16.8 in the social comparison, the combined, the control, and the social support conditions. Attendance numbers were 90% higher in the social comparison and the combined conditions (mean = 1.9, SE = 0.2 in contrast to the two conditions without comparison (mean = 1.0, SE = 0.2 (p = 0.003. Social comparison was more effective for increasing physical activity than social support and its effects did not depend on individual or team incentives.

  8. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  9. The distribution of first hitting times of random walks on directed Erdős-Rényi networks

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan

    2017-04-01

    We present analytical results for the distribution of first hitting times of random walkers (RWs) on directed Erdős-Rényi (ER) networks. Starting from a random initial node, a random walker hops randomly along directed edges between adjacent nodes in the network. The path terminates either by the retracing scenario, when the walker enters a node which it has already visited before, or by the trapping scenario, when it becomes trapped in a dead-end node from which it cannot exit. The path length, namely the number of steps, d, pursued by the random walker from the initial node up to its termination, is called the first hitting time. Using recursion equations, we obtain analytical results for the tail distribution of first hitting times, P≤ft(d>\\ell \\right) . The results are found to be in excellent agreement with numerical simulations. It turns out that the distribution P≤ft(d>\\ell \\right) can be expressed as a product of an exponential distribution and a Rayleigh distribution. We obtain expressions for the mean, median and standard deviation of this distribution in terms of the network size and its mean degree. We also calculate the distribution of last hitting times, namely the path lengths of self-avoiding walks on directed ER networks, which do not retrace their paths. The last hitting times are found to be much longer than the first hitting times. The results are compared to those obtained for undirected ER networks. It is found that the first hitting times of RWs in a directed ER network are much longer than in the corresponding undirected network. This is due to the fact that RWs on directed networks do not exhibit the backtracking scenario, which is a dominant termination mechanism of RWs on undirected networks. It is shown that our approach also applies to a broader class of networks, referred to as semi-ER networks, in which the distribution of in-degrees is Poisson, while the out-degrees may follow any desired distribution with the same mean as

  10. Randomly biased investments and the evolution of public goods on interdependent networks

    Science.gov (United States)

    Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long

    2017-08-01

    Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.

  11. Heave motion prediction of a large barge in random seas by using artificial neural network

    Science.gov (United States)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  12. Random Neighborhood Graphs as Models of Fracture Networks on Rocks: Structural and Dynamical Analysis

    CERN Document Server

    Estrada, Ernesto

    2016-01-01

    We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...

  13. Griffiths singularities in the random quantum Ising antiferromagnet: A tree tensor network renormalization group study

    Science.gov (United States)

    Lin, Yu-Ping; Kao, Ying-Jer; Chen, Pochung; Lin, Yu-Cheng

    2017-08-01

    The antiferromagnetic Ising chain in both transverse and longitudinal magnetic fields is one of the paradigmatic models of a quantum phase transition. The antiferromagnetic system exhibits a zero-temperature critical line separating an antiferromagnetic phase and a paramagnetic phase; the critical line connects an integrable quantum critical point at zero longitudinal field and a classical first-order transition point at zero transverse field. Using a strong-disorder renormalization group method formulated as a tree tensor network, we study the zero-temperature phase of the quantum Ising chain with bond randomness. We introduce a new matrix product operator representation of high-order moments, which provides an efficient and accurate tool for determining quantum phase transitions via the Binder cumulant of the order parameter. Our results demonstrate an infinite-randomness quantum critical point in zero longitudinal field accompanied by pronounced quantum Griffiths singularities, arising from rare ordered regions with anomalously slow fluctuations inside the paramagnetic phase. The strong Griffiths effects are signaled by a large dynamical exponent z >1 , which characterizes a power-law density of low-energy states of the localized rare regions and becomes infinite at the quantum critical point. Upon application of a longitudinal field, the quantum phase transition between the paramagnetic phase and the antiferromagnetic phase is completely destroyed. Furthermore, quantum Griffiths effects are suppressed, showing z <1 , when the dynamics of the rare regions is hampered by the longitudinal field.

  14. Text Message Delivered Peer Network Counseling for Adolescent Smokers: A Randomized Controlled Trial.

    Science.gov (United States)

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Zaharakis, Nikola; Campbell, Leah Floyd; Benotsch, Eric G; Keyser-Marcus, Lori; King, Laura

    2016-10-01

    Although adolescent tobacco use has declined in the last 10 years, African American high school seniors' past 30-day use has increased by 12 %, and as they age they are more likely to report lifetime use of tobacco. Very few urban youth are enrolled in evidenced-based smoking prevention and cessation programming. Therefore, we tested a text messaging smoking cessation intervention designed to engage urban youth through an automated texting program utilizing motivational interviewing-based peer network counseling. We recruited 200 adolescents (90.5 % African American) into a randomized controlled trial that delivered either the experimental intervention of 30 personalized motivational interviewing-based peer network counseling messages, or the attention control intervention, consisting of text messages covering general (non-smoking related) health habits. All adolescents were provided smart phones for the study and were assessed at baseline, and at 1, 3, and 6 months post intervention. Utilizing repeated measures general linear models we examined the effects of the intervention while controlling for race, gender, age, presence of a smoker in the home, and mental health counseling. At 6 months, participants in the experimental condition significantly decreased the number of days they smoked cigarettes and the number of cigarettes they smoked per day; they significantly increased their intentions not to smoke in the future; and significantly increased peer social support among girls. For boys, participants in the experimental condition significantly reduced the number of close friends in their networks who smoke daily compared to those in the control condition. Effect sizes ranged from small to large. These results provide encouraging evidence of the efficacy of text messaging interventions to reduce smoking among adolescents and our intervention holds promise as a large-scale public health preventive intervention platform.

  15. Distribution of shortest path lengths in a class of node duplication network models

    Science.gov (United States)

    Steinbock, Chanania; Biham, Ofer; Katzav, Eytan

    2017-09-01

    We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .

  16. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    Science.gov (United States)

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that

  17. General scaling of maximum degree of synchronization in noisy complex networks

    Science.gov (United States)

    Traxl, Dominik; Boers, Niklas; Kurths, Jürgen

    2014-11-01

    The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.

  18. Reducing financial avalanches by random investments

    Science.gov (United States)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  19. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  20. A Mixed-Methods Randomized Controlled Trial of Financial Incentives and Peer Networks to Promote Walking among Older Adults

    Science.gov (United States)

    Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason

    2014-01-01

    Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…

  1. Performance Evaluation of AODV, DSDV & DSR for Quasi Random Deployment of Sensor Nodes in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Ramjee; Cornean, Horia

    2011-01-01

    Sensor deployment is one of the key topics addressed in Wireless Sensor Network (WSN). This paper proposes a new deployment technique of sensor nodes for WSN called as Quasi Random Deployment (QRD). The novel approach to deploy sensor nodes in QRD fashion is to improve the energy efficiency...... of the WSN in order to increase the network life time and coverage. The QRD produces highly uniform coordinates and it systematically fills the specified area. Along with Random Deployment (RD) pattern of wireless sensor node QRD is analysed in this study. The network is simulated using NS-2 simulator...... energy consumption, coverage area. The simulation results show that the conventional routing protocols like DSR have a best performance for both RD and QRD of the sensor nodes when there is no mobility of the sensor nodes as compared to AODV and DSDV. Among AODV and DSDV, AODV performs better as compared...

  2. Network Support II: Randomized controlled trial of Network Support treatment and cognitive behavioral therapy for alcohol use disorder.

    Science.gov (United States)

    Litt, Mark D; Kadden, Ronald M; Tennen, Howard; Kabela-Cormier, Elise

    2016-08-01

    The social network of those treated for alcohol use disorder can play a significant role in subsequent drinking behavior, both for better and worse. Network Support treatment was devised to teach ways to reconstruct social networks so that they are more supportive of abstinence and less supportive of drinking. For many patients this may involve engagement with AA, but other strategies are also used. The current trial of Network Support treatment, building on our previous work, was intended to further enhance the ability of patients to construct abstinence-supportive social networks, and to test this approach against a strong control treatment. Patients were 193 men and women with alcohol use disorder recruited from the community and assigned to either 12 weeks of Network Support (NS) or Packaged Cognitive-Behavioral Treatment (PCBT), and followed for 27 months. Results of multilevel analyses indicated that NS yielded better posttreatment results in terms of both proportion of days abstinent and drinking consequences, and equivalent improvements in 90-day abstinence, heavy drinking days and drinks per drinking day. Mediation analyses revealed that NS treatment effects were mediated by pre-post changes in abstinence self-efficacy and in social network variables, especially proportion of non-drinkers in the social network and attendance at Alcoholics Anonymous. It was concluded that helping patients enhance their abstinent social network can be effective, and may provide a useful alternative or adjunctive approach to treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Acupuncture for Myofascial Pain Syndrome: A Network Meta-Analysis of 33 Randomized Controlled Trials.

    Science.gov (United States)

    Li, Xiuxia; Wang, Rong; Xing, Xin; Shi, Xiue; Tian, Jinhui; Zhang, Jun; Ge, Long; Zhang, Jingyun; Li, Lun; Yang, Kehu

    2017-09-01

    Acupuncture techniques are commonly used as initial treatments for myofascial pain syndrome. This study aimed to assess and compare the efficacy and safety of different techniques of acupuncture for myofascial pain syndrome. Network meta-analysis. All selected studies were randomized controlled trials (RCTs). The Cochrane Central Register of Controlled Trials, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature Database were searched from their inceptions to February 2016. Only full texts of RCTs comparing acupuncture therapies with any other therapies or placebo-sham acupuncture were included. Two reviewers independently assessed eligibility and extracted data. The primary outcomes included pain intensity, PPT, and adverse events. Secondary outcome was physical function. Thirty-three trials with 1,692 patients were included. Patients were allocated to 22 kinds of interventions, of which dry needling and manual acupuncture was the most frequently investigated intervention. Compared with placebo-sham acupuncture, scraping combined with warming acupuncture and moxibustion was found to be more effective for decreasing pain intensity (standardized mean difference (SMD) = -3.6, 95% confidence interval (CI) ranging from -5.2 to -2.1); miniscalpel-needle was more effective for increasing the PPT (SMD = 2.2, 95% CI ranging from 1.2 to 3.1); trigger points injection with bupivacaine was associated with the highest risk of adverse event (odds ratio = 557.2, 95% CI ranging from 3.6 to 86867.3); and only EA showed a significant difference in the ROM (SMD = -4.4, 95% CI ranging from -7.5 to -1.3). Lack of clarity concerning treatment periods, repetitive RCTs, and other valuable outcome measurements. The potential bias might affect the judgment of efficacy and safety. The existing evidence suggests that most acupuncture therapies, including acupuncture combined with other therapies, are effective in decreasing pain and in improving physical function, but additional

  4. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks

    Directory of Open Access Journals (Sweden)

    Alberto eCapurro

    2012-04-01

    Full Text Available Neural responses to odor blends often interact at different stages of the olfactory pathway. The first olfactory processing center in insects, the antennal lobe (AL, exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth M. sexta with those generated using a population-based computational model constructed from the morphologically-based connectivity pattern of projection neurons (PNs and local interneurons (LNs with randomized connection probabilities, from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons (OSNs and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.

  5. Infection Dynamics on Growing Networks

    Science.gov (United States)

    Lai, Ying-Cheng; Liu, Zonghua; Ye, Nong

    We consider the entire spectrum of architectures for large, growing, and complex networks, ranging from being heterogeneous (scale-free) to homogeneous (random or small-world), and investigate the infection dynamics by using a realistic three-state epidemiological model. In this framework, a node can be in one of the three states: susceptible (S), infected (I), or refractory (R), and the populations in the three groups are approximately described by a set of nonlinear differential equations. Our heuristic analysis predicts that, (1) regardless of the network architecture, there exists a substantial fraction of nodes that can never be infected, and (2) heterogeneous networks are relatively more robust against spread of infection as compared with homogeneous networks. These are confirmed numerically. We have also considered the problem of deliberate immunization for preventing wide spread of infection, with the result that targeted immunization can be quite effective for heterogeneous networks. We believe these results are important for a host of problems in many areas of natural science and engineering, and in social sciences as well.

  6. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University

    Directory of Open Access Journals (Sweden)

    Joseph Paul Caruso

    2015-12-01

    Full Text Available Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested “The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery” to see if it also improved student performance and the critical thinking of nonscience majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution in academic year 2014–15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  7. Network Statistical Models for Language Learning Contexts: Exponential Random Graph Models and Willingness to Communicate

    Science.gov (United States)

    Gallagher, H. Colin; Robins, Garry

    2015-01-01

    As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…

  8. The distribution of first hitting times of non-backtracking random walks on Erdős-Rényi networks

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan

    2017-05-01

    We present analytical results for the distribution of first hitting times of non-backtracking random walks on finite Erdős-Rényi networks of N nodes. The walkers hop randomly between adjacent nodes on the network, without stepping back to the previous node, until they hit a node which they have already visited before or get trapped in a dead-end node. At this point, the path is terminated. The length, d, of the resulting path, is called the first hitting time. Using recursion equations, we obtain analytical results for the tail distribution of first hitting times, P(d > \\ell) , \\ell=0, 1, 2, \\dots , of non-backtracking random walks starting from a random initial node. It turns out that the distribution P(d > \\ell) is given by a product of a discrete Rayleigh distribution and an exponential distribution. We obtain analytical expressions for central measures (mean and median) and a dispersion measure (standard deviation) of this distribution. It is found that the paths of non-backtracking random walks, up to their termination at the first hitting time, are longer, on average, than those of the corresponding simple random walks. However, they are shorter than those of self avoiding walks on the same network, which terminate at the last hitting time. We obtain analytical results for the probabilities, p ret and p trap, that a path will terminate by retracing, namely stepping into an already visited node, or by trapping, namely entering a node of degree k  =  1, which has no exit link, respectively. It is shown that in dilute networks the dominant termination scenario is trapping while in dense networks most paths terminate by retracing. We obtain expressions for the conditional tail distributions of path lengths, P(d> \\ell \\vert ret) and P(d> \\ell \\vert {trap}) , for those paths which terminate by retracing or by trapping, respectively. We also study a class of generalized non-backtracking random walk models which not only avoid the backtracking step

  9. Modeling and dynamical topology properties of VANET based on complex networks theory

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2015-01-01

    Full Text Available Vehicular Ad hoc Network (VANET is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I and Vehicle-to-Vehicle (V2V inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET

  10. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    Directory of Open Access Journals (Sweden)

    Huifa Lin

    Full Text Available We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  11. Random-network simulation of an ultracapacitor based on metal-solid-electrolyte composite

    Science.gov (United States)

    Abel, J.; Kornyshev, A. A.

    1996-09-01

    A random-network model of a dense (pore-free) metal-solid-electrolyte composite is developed. Real and imaginary parts of admittance are simulated as a function of frequency and composition by means of the transfer matrix algorithm on a cubic lattice. For a composite without a solid-electrolyte membrane in the middle (insulating with respect to electronic current) the results predict the capacity maximum at the percolation threshold in three dimensions and two maxima in two dimensions as a function of composition; they are compared with the predictions of the effective medium theory. For a composite with an insulating membrane in the middle, typical for ultracapacitors, the maximum of capacitance in three dimensions is at equal portion of metal and solid-electrolyte particles. In contrast to metal dielectric mixtures there are no giant enhancement effects in static capacitance as a function of composition: the upper estimates of the enhancement factor are proportional to the ratio of the size of the sample to the size of the grains.

  12. Randomness in the network inhibits cooperation based on the bounded rational collective altruistic decision

    Science.gov (United States)

    Ohdaira, Tetsushi

    2014-07-01

    Previous studies discussing cooperation employ the best decision that every player knows all information regarding the payoff matrix and selects the strategy of the highest payoff. Therefore, they do not discuss cooperation based on the altruistic decision with limited information (bounded rational altruistic decision). In addition, they do not cover the case where every player can submit his/her strategy several times in a match of the game. This paper is based on Ohdaira's reconsideration of the bounded rational altruistic decision, and also employs the framework of the prisoner's dilemma game (PDG) with sequential strategy. The distinction between this study and the Ohdaira's reconsideration is that the former covers the model of multiple groups, but the latter deals with the model of only two groups. Ohdaira's reconsideration shows that the bounded rational altruistic decision facilitates much more cooperation in the PDG with sequential strategy than Ohdaira and Terano's bounded rational second-best decision does. However, the detail of cooperation of multiple groups based on the bounded rational altruistic decision has not been resolved yet. This study, therefore, shows how randomness in the network composed of multiple groups affects the increase of the average frequency of mutual cooperation (cooperation between groups) based on the bounded rational altruistic decision of multiple groups. We also discuss the results of the model in comparison with related studies which employ the best decision.

  13. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    Science.gov (United States)

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  14. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks

    Science.gov (United States)

    Wei, Qikang; Chen, Tao; Xu, Ruifeng; He, Yulan; Gui, Lin

    2016-01-01

    The recognition of disease and chemical named entities in scientific articles is a very important subtask in information extraction in the biomedical domain. Due to the diversity and complexity of disease names, the recognition of named entities of diseases is rather tougher than those of chemical names. Although there are some remarkable chemical named entity recognition systems available online such as ChemSpot and tmChem, the publicly available recognition systems of disease named entities are rare. This article presents a system for disease named entity recognition (DNER) and normalization. First, two separate DNER models are developed. One is based on conditional random fields model with a rule-based post-processing module. The other one is based on the bidirectional recurrent neural networks. Then the named entities recognized by each of the DNER model are fed into a support vector machine classifier for combining results. Finally, each recognized disease named entity is normalized to a medical subject heading disease name by using a vector space model based method. Experimental results show that using 1000 PubMed abstracts for training, our proposed system achieves an F1-measure of 0.8428 at the mention level and 0.7804 at the concept level, respectively, on the testing data of the chemical-disease relation task in BioCreative V. Database URL: http://219.223.252.210:8080/SS/cdr.html PMID:27777244

  15. Robust Fault-Tolerant Control for Uncertain Networked Control Systems with State-Delay and Random Data Packet Dropout

    Directory of Open Access Journals (Sweden)

    Xiaomei Qi

    2012-01-01

    Full Text Available A robust fault-tolerant controller design problem for networked control system (NCS with random packet dropout in both sensor-to-controller link and controller-to-actuator link is investigated. A novel stochastic NCS model with state-delay, model uncertainty, disturbance, probabilistic sensor failure, and actuator failure is proposed. The random packet dropout, sensor failures, and actuator failures are characterized by a binary random variable. The sufficient condition for asymptotical mean-square stability of NCS is derived and the closed-loop NCS satisfies H∞ performance constraints caused by the random packet dropout and disturbance. The fault-tolerant controller is designed by solving a linear matrix inequality. A numerical example is presented to illustrate the effectiveness of the proposed method.

  16. Analyzing self-similar and fractal properties of the C. elegans neural network.

    Directory of Open Access Journals (Sweden)

    Tyler M Reese

    Full Text Available The brain is one of the most studied and highly complex systems in the biological world. While much research has concentrated on studying the brain directly, our focus is the structure of the brain itself: at its core an interconnected network of nodes (neurons. A better understanding of the structural connectivity of the brain should elucidate some of its functional properties. In this paper we analyze the connectome of the nematode Caenorhabditis elegans. Consisting of only 302 neurons, it is one of the better-understood neural networks. Using a Laplacian Matrix of the 279-neuron "giant component" of the network, we use an eigenvalue counting function to look for fractal-like self similarity. This matrix representation is also used to plot visualizations of the neural network in eigenfunction coordinates. Small-world properties of the system are examined, including average path length and clustering coefficient. We test for localization of eigenfunctions, using graph energy and spacial variance on these functions. To better understand results, all calculations are also performed on random networks, branching trees, and known fractals, as well as fractals which have been "rewired" to have small-world properties. We propose algorithms for generating Laplacian matrices of each of these graphs.

  17. Identifying Vulnerable Nodes of Complex Networks in Cascading Failures Induced by Node-Based Attacks

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2013-01-01

    Full Text Available In the research on network security, distinguishing the vulnerable components of networks is very important for protecting infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which was ignored before. Concerned with random attack (RA and highest load attack (HL on nodes, we model cascading dynamics of complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-Albert scale-free networks (SF, Watts-Strogatz small-world networks (WS, Erdos-Renyi random networks (ER, and two real-world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of weight are the most vulnerable and the ones with small value of the third weight are also vulnerable. Also, the real-world autonomous system with power-law distribution verifies these findings. Moreover, for WS and ER networks under both RA and HL attack, when the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole and making protection strategy.

  18. Altered topological patterns of large-scale brain functional networks during passive hyperthermia.

    Science.gov (United States)

    Qian, Shaowen; Sun, Gang; Jiang, Qingjun; Liu, Kai; Li, Bo; Li, Min; Yang, Xiao; Yang, Zhen; Zhao, Lun

    2013-10-01

    In this study, we simulated environmental heat exposure to 18 participants, and obtained functional magnetic resonance image (fMRI) data during resting state. Brain functional networks were constructed over a wide range of sparsity threshold according to a prior atlas dividing the whole cerebrum into 90 regions. Results of graph theoretical approaches showed that although brain networks in both normal and hyperthermia conditions exhibited economical small-world property, significant alterations in both global and nodal network metrics were demonstrated during hyperthermia. Specifically, a lower clustering coefficient, maintained shortest path length, a lower small-worldness, a lower mean local efficiency were found, indicating a tendency shift to a randomized network. Additionally, significant alterations in nodal efficiency were found in bilateral gyrus rectus, bilateral parahippocampal gyrus, bilateral insula, right caudate nucleus, bilateral putamen, left temporal pole of middle temporal gyrus, right inferior temporal gyrus. In consideration of physiological system changes, we found that the alterations of normalized clustering coefficient, small-worldness, mean normalized local efficiency were significantly correlated with the rectal temperature alteration, but failed to obtain significant correlations with the weight loss. More importantly, behavioral attention network test (ANT) after MRI scanning showed that the ANT effects were altered and correlated with the alterations of some global metrics (normalized shortest path length and normalized global efficiency) and prefrontal nodal efficiency (right dorsolateral superior frontal gyrus, right middle frontal gyrus and left orbital inferior frontal gyrus), implying behavioral deficits in executive control effects and maintained alerting and orienting effects during passive hyperthermia. The present study provided the first evidence for human brain functional disorder during passive hyperthermia according to

  19. A Gaussian graphical model approach to climate networks

    Energy Technology Data Exchange (ETDEWEB)

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  20. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. RADB: Random Access with Differentiated Barring for Latency-Constrained Applications in NB-IoT Network

    OpenAIRE

    Miao, Yiming; Tian, Yuanwen; Cheng, Jingjing; Hossain, M. Shamim; Ghoneim, Ahmed

    2018-01-01

    With the development of LPWA (Low Power Wide Area) technology, the emerging NB-IoT (Narrowband Internet of Things) technology is becoming popular with wide area and low-data-rate services. In order to achieve objectives such as huge amount of connection and wide area coverage within NB-IoT, the problem of network congestion generated by random access of numerous devices should be solved. In this paper, we first introduce the background of NB-IoT and investigate the research on random access o...

  2. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  3. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    Science.gov (United States)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  4. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    NARCIS (Netherlands)

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as

  5. Targeted drugs for pulmonary arterial hypertension: a network meta-analysis of 32 randomized clinical trials

    Directory of Open Access Journals (Sweden)

    Gao XF

    2017-05-01

    Full Text Available Xiao-Fei Gao,1 Jun-Jie Zhang,1,2 Xiao-Min Jiang,1 Zhen Ge,1,2 Zhi-Mei Wang,1 Bing Li,1 Wen-Xing Mao,1 Shao-Liang Chen1,2 1Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 2Department of Cardiology, Nanjing Heart Center, Nanjing, People’s Republic of China Background: Pulmonary arterial hypertension (PAH is a devastating disease and ultimately leads to right heart failure and premature death. A total of four classical targeted drugs, prostanoids, endothelin receptor antagonists (ERAs, phosphodiesterase 5 inhibitors (PDE-5Is, and soluble guanylate cyclase stimulator (sGCS, have been proved to improve exercise capacity and hemodynamics compared to placebo; however, direct head-to-head comparisons of these drugs are lacking. This network meta-analysis was conducted to comprehensively compare the efficacy of these targeted drugs for PAH.Methods: Medline, the Cochrane Library, and other Internet sources were searched for randomized clinical trials exploring the efficacy of targeted drugs for patients with PAH. The primary effective end point of this network meta-analysis was a 6-minute walk distance (6MWD.Results: Thirty-two eligible trials including 6,758 patients were identified. There was a statistically significant improvement in 6MWD, mean pulmonary arterial pressure, pulmonary vascular resistance, and clinical worsening events associated with each of the four targeted drugs compared with placebo. Combination therapy improved 6MWD by 20.94 m (95% confidence interval [CI]: 6.94, 34.94; P=0.003 vs prostanoids, and 16.94 m (95% CI: 4.41, 29.47; P=0.008 vs ERAs. PDE-5Is improved 6MWD by 17.28 m (95% CI: 1.91, 32.65; P=0.028 vs prostanoids, with a similar result with combination therapy. In addition, combination therapy reduced mean pulmonary artery pressure by 3.97 mmHg (95% CI: -6.06, -1.88; P<0.001 vs prostanoids, 8.24 mmHg (95% CI: -10.71, -5.76; P<0.001 vs ERAs, 3.38 mmHg (95% CI: -6.30, -0.47; P=0.023 vs

  6. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  7. EEG-based research on brain functional networks in cognition.

    Science.gov (United States)

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.

  8. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    Science.gov (United States)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  9. A Robust on-Demand Path-Key Establishment Framework via Random Key Predistribution for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wu Weili

    2006-01-01

    Full Text Available Secure communication is a necessity for some wireless sensor network (WSN applications. However, the resource constraints of a sensor render existing cryptographic systems for traditional network systems impractical for a WSN. Random key predistribution scheme has been proposed to overcome these limits. In this scheme, a ring of keys is randomly drawn from a large key pool and assigned to a sensor. Nodes sharing common keys can communicate securely using a shared key, while a path-key is established for those nodes that do not share any common keys. This scheme requires moderate memory and processing power, thus it is considered suitable for WSN applications. However, since the shared key is not exclusively owned by the two end entities, the established path-key may be revealed to other nodes just by eavesdropping. Based on the random-key predistribution scheme, we present a framework that utilizes multiple proxies to secure the path-key establishment. Our scheme is resilient against node capture, collusive attack, and random dropping, while only incurring a small amount of overhead. Furthermore, the scheme ensures that, with high probability, all path-keys are exclusively known by the two end nodes involved in the communication along the path.

  10. Public authority control strategy for opinion evolution in social networks

    Science.gov (United States)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  11. Public authority control strategy for opinion evolution in social networks.

    Science.gov (United States)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  12. Robustness of complex networks with both unidirectional and bidirectional links against cascading failures

    Science.gov (United States)

    Ding, Lin; Leung, Victor C. M.; Tan, Min-Sheng

    2017-09-01

    The robustness of complex networks against cascading failures has been of great interest, while most of the researchers have considered undirected networks. However, to be more realistic, a part of links of many real systems should be described as unidirectional. In this paper, by applying three link direction-determining (DD) strategies, the tolerance of cascading failures is investigated in various networks with both unidirectional and bidirectional links. By extending the utilization of a classical global betweenness method, we propose a new cascading model, taking into account the weights of nodes and the directions of links. Then, the effects of unidirectional links on the network robustness against cascaded attacks are examined under the global load-based distribution mechanism. The simulation results show that the link-directed methods could not always lead to the decrease of the network robustness as indicated in the previous studies. For small-world networks, these methods certainly make the network weaker. However, for scale-free networks, the network robustness can be significantly improved by the link-directed method, especially for the method with non-random DD strategies. These results are independent of the weight parameter of the nodes. Due to the strongly improved robustness and easy realization with low cost on networks, the method for enforcing proper links to the unidirectional ones may be useful for leading to insights into the control of cascading failures in real-world networks, like communication and transportation networks.

  13. Model of Opinion Spreading in Social Networks

    CERN Document Server

    Kanovsky, Igor

    2011-01-01

    We proposed a new model, which capture the main difference between information and opinion spreading. In information spreading additional exposure to certain information has a small effect. Contrary, when an actor is exposed to 2 opinioned actors the probability to adopt the opinion is significant higher than in the case of contact with one such actor (called by J. Kleinberg "the 0-1-2 effect"). In each time step if an actor does not have an opinion, we randomly choose 2 his network neighbors. If one of them has an opinion, the actor adopts opinion with some low probability, if two - with a higher probability. Opinion spreading was simulated on different real world social networks and similar random scale-free networks. The results show that small world structure has a crucial impact on tipping point time. The "0-1-2" effect causes a significant difference between ability of the actors to start opinion spreading. Actor is an influencer according to his topological position in the network.

  14. Generalized synchronization in complex dynamical networks via adaptive couplings

    NARCIS (Netherlands)

    Liu, Hui; Chen, Juan; Lu, Jun-an; Cao, Ming

    2010-01-01

    This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks. and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node's coupling strength based oil the node's local

  15. Statistical analysis of the road network of India

    Indian Academy of Sciences (India)

    In this paper we study the Indian highway network as a complex network where the junction points are considered as nodes, and the links are formed by an existing connection. We explore the topological properties and community structure of the network. We observe that the Indian highway network displays small-world ...

  16. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Science.gov (United States)

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  17. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Directory of Open Access Journals (Sweden)

    Behrang Barekatain

    Full Text Available In recent years, Random Network Coding (RNC has emerged as a promising solution for efficient Peer-to-Peer (P2P video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  18. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    Directory of Open Access Journals (Sweden)

    Lindsay eRutter

    2013-07-01

    Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

  19. Kinetic Transition Networks for the Thomson Problem and Smale's Seventh Problem

    Science.gov (United States)

    Mehta, Dhagash; Chen, Jianxu; Chen, Danny Z.; Kusumaatmaja, Halim; Wales, David J.

    2016-07-01

    The Thomson problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology. Here, we show that the energy landscape of the Thomson problem for N particles with N =132 , 135, 138, 141, 144, 147, and 150 is single funneled, characteristic of a structure-seeking organization where the global minimum is easily accessible. Algorithmically, constructing starting points close to the global minimum of such a potential with spherical constraints is one of Smale's 18 unsolved problems in mathematics for the 21st century because it is important in the solution of univariate and bivariate random polynomial equations. By analyzing the kinetic transition networks, we show that a randomly chosen minimum is, in fact, always "close" to the global minimum in terms of the number of transition states that separate them, a characteristic of small world networks.

  20. Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  1. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  2. Magnitude Characterization Using Complex Networks in Central Chile

    Science.gov (United States)

    Pasten, D.; Comte, D.; Munoz, V.

    2013-12-01

    one turns out to have small world behavior. These results are compared with a second, ficticious network, constructed in the same way, but where each successive node is chosen randomly in the grid, and its associated probability is also random, but taken from a Gaussian distribution. We find that this also generates a scale free network, but not a small world one. These results show an interesting behavior, another evidence of the complex organization of seismicity.

  3. Construction of citrus gene coexpression networks from microarray data using random matrix theory

    Science.gov (United States)

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G.

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus. PMID:26504573

  4. Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies.

    Science.gov (United States)

    Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan

    2017-01-01

    Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons.

  5. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks.

    Science.gov (United States)

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-11-06

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search.

  6. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University

    Science.gov (United States)

    Caruso, Joseph P.; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J.; Saunders, Mary Jane

    2016-01-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested “The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery” to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014–15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students. PMID:27047613

  7. Pharmacological and psychotherapeutic interventions for management of poststroke depression: A Bayesian network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Sun, Xuejun; Deng, Linghui; Qiu, Shi; Tu, Xiang; Wang, Deren; Liu, Ming

    2017-02-01

    Poststroke depression (PSD) constitutes an important complication of stroke, leading to great disability as well as increased mortality. Since which treatment for PSD should be preferred are still matters of controversy, we are aiming to compare and rank these pharmacological and nonpharmacological interventions. We will employ a network meta-analysis to incorporate both direct and indirect evidence from relevant trials. We will search PubMed, the Cochrane Library Central Register of Controlled Trials, Embase, and the reference lists of relevant articles for randomized controlled trials (RCT) of different PSD treatment strategies. The characteristics of each RCT will be summarized, including the study characteristics, the participant characteristics, the outcome measurements, and adverse events. The risk of bias will be assessed by means of the Cochrane Collaboration's risk of bias tool. The primary outcome was change in Hamilton Depression Scale (HAMD) score. Secondary outcomes involve patient response rate (defined as at least a 50% score reduction on HAMD), and remission rate (defined as no longer meeting baseline criteria for depression). Moreover, we will assess the acceptability of treatments according to treatment discontinuation. We will perform pairwise meta-analyses by random effects model and network meta-analysis by Bayesian random effects model. Formal ethical approval is not required as primary data will not be collected. Our results will help to reduce the uncertainty about the effectiveness and safety of PSD management, which will encourage further research for other therapeutic options. The review will be disseminated in peer-reviewed publications and conference presentations. CRD42016049049.

  8. Synchronization properties of heterogeneous neuronal networks with mixed excitability type.

    Science.gov (United States)

    Leone, Michael J; Schurter, Brandon N; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G

    2015-03-01

    We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.

  9. On the Simulation-Based Reliability of Complex Emergency Logistics Networks in Post-Accident Rescues.

    Science.gov (United States)

    Wang, Wei; Huang, Li; Liang, Xuedong

    2018-01-06

    This paper investigates the reliability of complex emergency logistics networks, as reliability is crucial to reducing environmental and public health losses in post-accident emergency rescues. Such networks' statistical characteristics are analyzed first. After the connected reliability and evaluation indices for complex emergency logistics networks are effectively defined, simulation analyses of network reliability are conducted under two different attack modes using a particular emergency logistics network as an example. The simulation analyses obtain the varying trends in emergency supply times and the ratio of effective nodes and validates the effects of network characteristics and different types of attacks on network reliability. The results demonstrate that this emergency logistics network is both a small-world and a scale-free network. When facing random attacks, the emergency logistics network steadily changes, whereas it is very fragile when facing selective attacks. Therefore, special attention should be paid to the protection of supply nodes and nodes with high connectivity. The simulation method provides a new tool for studying emergency logistics networks and a reference for similar studies.

  10. Robustness in Weighted Networks with Cluster Structure

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    2014-01-01

    Full Text Available The vulnerability of complex systems induced by cascade failures revealed the comprehensive interaction of dynamics with network structure. The effect on cascade failures induced by cluster structure was investigated on three networks, small-world, scale-free, and module networks, of which the clustering coefficient is controllable by the random walk method. After analyzing the shifting process of load, we found that the betweenness centrality and the cluster structure play an important role in cascading model. Focusing on this point, properties of cascading failures were studied on model networks with adjustable clustering coefficient and fixed degree distribution. In the proposed weighting strategy, the path length of an edge is designed as the product of the clustering coefficient of its end nodes, and then the modified betweenness centrality of the edge is calculated and applied in cascade model as its weights. The optimal region of the weighting scheme and the size of the survival components were investigated by simulating the edge removing attack, under the rule of local redistribution based on edge weights. We found that the weighting scheme based on the modified betweenness centrality makes all three networks have better robustness against edge attack than the one based on the original betweenness centrality.

  11. Explaining the structure of inter-organizational networks using exponential random graph models

    NARCIS (Netherlands)

    Broekel, T.; Hartog, M.

    2013-01-01

    A key question raised in recent years is what factors determine the structure of interorganizational networks. Most research so far has focused on different forms of proximity between organizations, namely geographical, cognitive, social, institutional and organizational proximity, which are

  12. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control.

    Science.gov (United States)

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2016-12-01

    This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks