WorldWideScience

Sample records for random networks growing

  1. Growing random networks with fitness

    OpenAIRE

    Ergun, G.; Rodgers, GJ

    2001-01-01

    Three models of growing random networks with fitness dependent growth rates are analysed using the rate equations for the distribution of their connectivities. In the first model (A), a network is built by connecting incoming nodes to nodes of connectivity $k$ and random additive fitness $\\eta$, with rate $(k-1)+ \\eta $. For $\\eta >0$ we find the connectivity distribution is power law with exponent $\\gamma=+2$. In the second model (B), the network is built by connecting nodes to nodes of conn...

  2. Organization of growing random networks

    Energy Technology Data Exchange (ETDEWEB)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  3. Passive random walkers and riverlike networks on growing surfaces.

    Science.gov (United States)

    Chin, Chen-Shan

    2002-08-01

    Passive random walker dynamics is introduced on a growing surface. The walker is designed to drift upward or downward and then follow specific topological features, such as hill tops or valley bottoms, of the fluctuating surface. The passive random walker can thus be used to directly explore scaling properties of otherwise somewhat hidden topological features. For example, the walker allows us to directly measure the dynamical exponent of the underlying growth dynamics. We use the Kardar-Parisi-Zhang (KPZ) -type surface growth as an example. The world lines of a set of merging passive walkers show nontrivial coalescence behaviors and display the riverlike network structures of surface ridges in space-time. In other dynamics, such as Edwards-Wilkinson growth, this does not happen. The passive random walkers in KPZ-type surface growth are closely related to the shock waves in the noiseless Burgers equation. We also briefly discuss their relations to the passive scalar dynamics in turbulence.

  4. Infection Dynamics on Growing Networks

    Science.gov (United States)

    Lai, Ying-Cheng; Liu, Zonghua; Ye, Nong

    We consider the entire spectrum of architectures for large, growing, and complex networks, ranging from being heterogeneous (scale-free) to homogeneous (random or small-world), and investigate the infection dynamics by using a realistic three-state epidemiological model. In this framework, a node can be in one of the three states: susceptible (S), infected (I), or refractory (R), and the populations in the three groups are approximately described by a set of nonlinear differential equations. Our heuristic analysis predicts that, (1) regardless of the network architecture, there exists a substantial fraction of nodes that can never be infected, and (2) heterogeneous networks are relatively more robust against spread of infection as compared with homogeneous networks. These are confirmed numerically. We have also considered the problem of deliberate immunization for preventing wide spread of infection, with the result that targeted immunization can be quite effective for heterogeneous networks. We believe these results are important for a host of problems in many areas of natural science and engineering, and in social sciences as well.

  5. Neural-like growing networks

    Science.gov (United States)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  6. Asymmetric evolving random networks

    Science.gov (United States)

    Coulomb, S.; Bauer, M.

    2003-10-01

    We generalize the Poissonian evolving random graph model of M. Bauer and D. Bernard (2003), to deal with arbitrary degree distributions. The motivation comes from biological networks, which are well-known to exhibit non Poissonian degree distributions. A node is added at each time step and is connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical asymmetry between incoming and outgoing edges. The law for the number of new edges at each time step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit. Although (by construction) the incoming degree distributions depend on this law, this is not the case for most qualitative features concerning the size distribution of connected components, as long as the law has a finite variance. As the variance grows above 1/4, the average being < 1/2, a giant component emerges, which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to give a refined description of the system.

  7. Structure analysis of growing network based on partial differential equations

    Directory of Open Access Journals (Sweden)

    Junbo JIA

    2016-04-01

    Full Text Available The topological structure is one of the most important contents in the complex network research. Therein the node degree and the degree distribution are the most basic characteristic quantities to describe topological structure. In order to calculate the degree distribution, first of all, the node degree is considered as a continuous variable. Then, according to the Markov Property of growing network, the cumulative distribution function's evolution equation with time can be obtained. Finally, the partial differential equation (PDE model can be established through distortion processing. Taking the growing network with preferential and random attachment mechanism as an example, the PDE model is obtained. The analytic expression of degree distribution is obtained when this model is solved. Besides, the degree function over time is the same as the characteristic line of PDE. At last, the model is simulated. This PDE method of changing the degree distribution calculation into problem of solving PDE makes the structure analysis more accurate.

  8. Gossip in Random Networks

    Science.gov (United States)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  9. Quantifying randomness in real networks

    Science.gov (United States)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  10. How do online social networks grow?

    Science.gov (United States)

    Zhu, Konglin; Li, Wenzhong; Fu, Xiaoming; Nagler, Jan

    2014-01-01

    Online social networks such as Facebook, Twitter and Gowalla allow people to communicate and interact across borders. In past years online social networks have become increasingly important for studying the behavior of individuals, group formation, and the emergence of online societies. Here we focus on the characterization of the average growth of online social networks and try to understand which are possible processes behind seemingly long-range temporal correlated collective behavior. In agreement with recent findings, but in contrast to Gibrat's law of proportionate growth, we find scaling in the average growth rate and its standard deviation. In contrast, Renren and Twitter deviate, however, in certain important aspects significantly from those found in many social and economic systems. Whereas independent methods suggest no significance for temporally long-range correlated behavior for Renren and Twitter, a scaling analysis of the standard deviation does suggest long-range temporal correlated growth in Gowalla. However, we demonstrate that seemingly long-range temporal correlations in the growth of online social networks, such as in Gowalla, can be explained by a decomposition into temporally and spatially independent growth processes with a large variety of entry rates. Our analysis thus suggests that temporally or spatially correlated behavior does not play a major role in the growth of online social networks.

  11. Algorithm For A Self-Growing Neural Network

    Science.gov (United States)

    Cios, Krzysztof J.

    1996-01-01

    CID3 algorithm simulates self-growing neural network. Constructs decision trees equivalent to hidden layers of neural network. Based on ID3 algorithm, which dynamically generates decision tree while minimizing entropy of information. CID3 algorithm generates feedforward neural network by use of either crisp or fuzzy measure of entropy.

  12. Benchmarking selected computational gene network growing tools in context of virus-host interactions.

    Science.gov (United States)

    Taye, Biruhalem; Vaz, Candida; Tanavde, Vivek; Kuznetsov, Vladimir A; Eisenhaber, Frank; Sugrue, Richard J; Maurer-Stroh, Sebastian

    2017-07-19

    Several available online tools provide network growing functions where an algorithm utilizing different data sources suggests additional genes/proteins that should connect an input gene set into functionally meaningful networks. Using the well-studied system of influenza host interactions, we compare the network growing function of two free tools GeneMANIA and STRING and the commercial IPA for their performance of recovering known influenza A virus host factors previously identified from siRNA screens. The result showed that given small (~30 genes) or medium (~150 genes) input sets all three network growing tools detect significantly more known host factors than random human genes with STRING overall performing strongest. Extending the networks with all the three tools significantly improved the detection of GO biological processes of known host factors compared to not growing networks. Interestingly, the rate of identification of true host factors using computational network growing is equal or better to doing another experimental siRNA screening study which could also be true and applied to other biological pathways/processes.

  13. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  14. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  15. A growing social network model in geographical space

    Science.gov (United States)

    Antonioni, Alberto; Tomassini, Marco

    2017-09-01

    In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.

  16. Ranking nodes in growing networks: When PageRank fails.

    Science.gov (United States)

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-11-10

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

  17. Ranking nodes in growing networks: When PageRank fails

    Science.gov (United States)

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-11-01

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

  18. Random Network Coding over Composite Fields

    DEFF Research Database (Denmark)

    Geil, Olav; Lucani Rötter, Daniel Enrique

    2017-01-01

    Random network coding is a method that achieves multicast capacity asymptotically for general networks [1, 7]. In this approach, vertices in the network randomly and linearly combine incoming information in a distributed manner before forwarding it through their outgoing edges. To ensure success...

  19. Growing networks of overlapping communities with internal structure

    Science.gov (United States)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  20. Handbook of Large-Scale Random Networks

    CERN Document Server

    Bollobas, Bela; Miklos, Dezso

    2008-01-01

    Covers various aspects of large-scale networks, including mathematical foundations and rigorous results of random graph theory, modeling and computational aspects of large-scale networks, as well as areas in physics, biology, neuroscience, sociology and technical areas

  1. Importance of randomness in biological networks: A random matrix ...

    Indian Academy of Sciences (India)

    2015-01-29

    Jan 29, 2015 ... We show that in spite of huge differences these interaction networks, representing real-world systems, posses from random matrix models, the spectral properties of the underlying matrices of these networks follow random matrix theory bringing them into the same universality class. We further demonstrate ...

  2. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  3. Regional frequency analysis using Growing Neural Gas network

    Science.gov (United States)

    Abdi, Amin; Hassanzadeh, Yousef; Ouarda, Taha B. M. J.

    2017-07-01

    The delineation of hydrologically homogeneous regions is an important issue in regional hydrological frequency analysis. In the present study, an application of the Growing Neural Gas (GNG) network for hydrological data clustering is presented. The GNG is an incremental and unsupervised neural network, which is able to adapt its structure during the training procedure without using a prior knowledge of the size and shape of the network. In the GNG algorithm, the Minimum Description Length (MDL) measure as the cluster validity index is utilized for determining the optimal number of clusters (sub-regions). The capability of the proposed algorithm is illustrated by regionalizing drought severities for 40 synoptic weather stations in Iran. To fulfill this aim, first a clustering method is applied to form the sub-regions and then a heterogeneity measure is used to test the degree of heterogeneity of the delineated sub-regions. According to the MDL measure and considering two different indices namely CS and Davies-Bouldin (DB) in the GNG network, the entire study area is subdivided in two sub-regions located in the eastern and western sides of Iran. In order to evaluate the performance of the GNG algorithm, a number of other commonly used clustering methods, like K-means, fuzzy C-means, self-organizing map and Ward method are utilized in this study. The results of the heterogeneity measure based on the L-moments approach reveal that only the GNG algorithm successfully yields homogeneous sub-regions in comparison to the other methods.

  4. Geometric modeling for citation networks with linearly growing scientific paper increment

    CERN Document Server

    Liu, Qi; Dong, Engming; Li, Jianping

    2016-01-01

    For the case that the numbers of annual published papers in some citation networks grow linearly, a geometric model is proposed to predict some statistical features of those networks, in which the academic influence scopes of papers are denoted through specific geometric areas related to time and space. In the model, nodes (papers) are uniformly and randomly sprinkled onto a cluster of circles of the Minkowski space whose centers are on the time axis. Edges (citations) are linked according to an influence mechanism which indicates an existing paper will be cited by a new paper locating in its influence zone. Considering the citations between papers in different disciplines, an interdisciplinary citation mechanism is added into the model in which some papers chosen with a small probability will cite some existing papers randomly and uniformly. Different from most existing models which only study the scale-free tail of the in-degree distribution, this model characterize the overall in-degree distribution well. ...

  5. Statistical properties of random clique networks

    Science.gov (United States)

    Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song

    2017-10-01

    In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

  6. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  7. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  8. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  9. Thermodynamics of Random Reaction Networks

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  10. Random walk centrality for temporal networks

    Science.gov (United States)

    Rocha, Luis E. C.; Masuda, Naoki

    2014-06-01

    Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included.

  11. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... analysis based on net theoretic measures has developed into a major field, .... with the value of the scaling index γ falling between 2 and 3. To compute the network measures, we first construct an ensemble of synthetic networks, both random and ... higher k values are present to maintain the same γ. In both.

  12. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)

    M.Wróbel

    2008-06-01

    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  13. Exploring complex networks through random walks.

    Science.gov (United States)

    Costa, Luciano da Fontoura; Travieso, Gonzalo

    2007-01-01

    Most real complex networks--such as protein interactions, social contacts, and the Internet--are only partially known and available to us. While the process of exploring such networks in many cases resembles a random walk, it becomes a key issue to investigate and characterize how effectively the nodes and edges of such networks can be covered by different strategies. At the same time, it is critically important to infer how well can topological measurements such as the average node degree and average clustering coefficient be estimated during such network explorations. The present article addresses these problems by considering random, Barabási-Albert (BA), and geographical network models with varying connectivity explored by three types of random walks: traditional, preferential to untracked edges, and preferential to unvisited nodes. A series of relevant results are obtained, including the fact that networks of the three studied models with the same size and average node degree allow similar node and edge coverage efficiency, the identification of linear scaling with the size of the network of the random walk step at which a given percentage of the nodes/edges is covered, and the critical result that the estimation of the averaged node degree and clustering coefficient by random walks on BA networks often leads to heavily biased results. Many are the theoretical and practical implications of such results.

  14. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  15. Exploring biological network structure with clustered random networks.

    Science.gov (United States)

    Bansal, Shweta; Khandelwal, Shashank; Meyers, Lauren Ancel

    2009-12-09

    Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions) and the extent of clustering (the tendency for a set of three nodes to be interconnected) are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks) provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics.Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in unraveling the functional consequences of the structural

  16. On the dynamics of random neuronal networks

    OpenAIRE

    Robert, Philippe; Touboul, Jonathan D.

    2014-01-01

    We study the mean-field limit and stationary distributions of a pulse-coupled network modeling the dynamics of a large neuronal assemblies. Our model takes into account explicitly the intrinsic randomness of firing times, contrasting with the classical integrate-and-fire model. The ergodicity properties of the Markov process associated to finite networks are investigated. We derive the limit in distribution of the sample path of the state of a neuron of the network when its size gets large. T...

  17. Bipartite quantum states and random complex networks

    Science.gov (United States)

    Garnerone, Silvano; Giorda, Paolo; Zanardi, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy \\bar S while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling \\bar {S} \\sim c log n +g_{ {e}} where both the prefactor c and the sub-leading O(1) term ge are characteristic of the different classes of complex networks. In particular, ge encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties.

  18. Dynamic regimes of random fuzzy logic networks

    Energy Technology Data Exchange (ETDEWEB)

    Wittmann, Dominik M; Theis, Fabian J, E-mail: dominik.wittmann@helmholtz-muenchen.de [Computational Modeling in Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg (Germany); Centre for Mathematical Sciences, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching (Germany)

    2011-01-15

    Random multistate networks, generalizations of the Boolean Kauffman networks, are generic models for complex systems of interacting agents. Depending on their mean connectivity, these networks exhibit ordered as well as chaotic behavior with a critical boundary separating both regimes. Typically, the nodes of these networks are assigned single discrete states. Here, we describe nodes by fuzzy numbers, i.e. vectors of degree-of-membership (DOM) functions specifying the degree to which the nodes are in each of their discrete states. This allows our models to deal with imprecision and uncertainties. Compatible update rules are constructed by expressing the update rules of the multistate network in terms of Boolean operators and generalizing them to fuzzy logic (FL) operators. The standard choice for these generalizations is the Goedel FL, where AND and OR are replaced by the minimum and maximum of two DOMs, respectively. In mean-field approximations we are able to analytically describe the percolation and asymptotic distribution of DOMs in random Goedel FL networks. This allows us to characterize the different dynamic regimes of random multistate networks in terms of FL. In a low-dimensional example, we provide explicit computations and validate our mean-field results by showing that they agree well with network simulations.

  19. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  20. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  1. Finite-Time Bounded Synchronization of the Growing Complex Network with Nondelayed and Delayed Coupling

    Directory of Open Access Journals (Sweden)

    Yuhua Xu

    2017-01-01

    Full Text Available The objective of this paper is to discuss finite-time bounded synchronization for a class of the growing complex network with nondelayed and delayed coupling. In order to realize finite-time synchronization of complex networks, a new finite-time stable theory is proposed; effective criteria are developed to realize synchronization of the growing complex dynamical network in finite time. Moreover, the error of two growing networks is bounded simultaneously in the process of finite-time synchronization. Finally, some numerical examples are provided to verify the theoretical results established in this paper.

  2. Balancing building and maintenance costs in growing transport networks

    Science.gov (United States)

    Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco

    2017-09-01

    The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.

  3. Balancing building and maintenance costs in growing transport networks.

    Science.gov (United States)

    Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco

    2017-09-01

    The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.

  4. Random walk centrality in interconnected multilayer networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  5. Growing up with Social Networks and Online Communities

    Science.gov (United States)

    Strom, Paris; Strom, Robert

    2012-01-01

    This presentation examines child and adolescent social networking with an emphasis on how this unprecedented form of communication can be used to contribute to healthy growth and development. Most literature about child and adolescent relationships reflects yesterday's world, a time when face-to-face encounters were the only concern. Students saw…

  6. Random graph models for dynamic networks

    Science.gov (United States)

    Zhang, Xiao; Moore, Cristopher; Newman, Mark E. J.

    2017-10-01

    Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.

  7. Growing up wired: social networking sites and adolescent psychosocial development.

    Science.gov (United States)

    Spies Shapiro, Lauren A; Margolin, Gayla

    2014-03-01

    Since the advent of social networking site (SNS) technologies, adolescents' use of these technologies has expanded and is now a primary way of communicating with and acquiring information about others in their social network. Overall, adolescents and young adults' stated motivations for using SNSs are quite similar to more traditional forms of communication-to stay in touch with friends, make plans, get to know people better, and present oneself to others. We begin with a summary of theories that describe the role of SNSs in adolescents' interpersonal relationships, as well as common methodologies used in this field of research thus far. Then, with the social changes that occur throughout adolescence as a backdrop, we address the ways in which SNSs intersect with key tasks of adolescent psychosocial development, specifically peer affiliation and friendship quality, as well as identity development. Evidence suggests that SNSs differentially relate to adolescents' social connectivity and identity development, with sociability, self-esteem, and nature of SNS feedback as important potential moderators. We synthesize current findings, highlight unanswered questions, and recommend both methodological and theoretical directions for future research.

  8. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  9. Accessibility and delay in random temporal networks

    Science.gov (United States)

    Tajbakhsh, Shahriar Etemadi; Coon, Justin P.; Simmons, David E.

    2017-09-01

    In a wide range of complex networks, the links between the nodes are temporal and may sporadically appear and disappear. This temporality is fundamental to analyzing the formation of paths within such networks. Moreover, the presence of the links between the nodes is a random process induced by nature in many real-world networks. In this paper, we study random temporal networks at a microscopic level and formulate the probability of accessibility from a node i to a node j after a certain number of discrete time units T . While solving the original problem is computationally intractable, we provide an upper and two lower bounds on this probability for a very general case with arbitrary time-varying probabilities of the links' existence. Moreover, for a special case where the links have identical probabilities across the network at each time slot, we obtain the exact probability of accessibility between any two nodes. Finally, we discuss scenarios where the information regarding the presence and absence of links is initially available in the form of time duration (of presence or absence intervals) continuous probability distributions rather than discrete probabilities over time slots. We provide a method for transforming such distributions to discrete probabilities, which enables us to apply the given bounds in this paper to a broader range of problem settings.

  10. Growing Up Wired: Social Networking Sites and Adolescent Psychosocial Development

    Science.gov (United States)

    Shapiro, Lauren A. Spies; Margolin, Gayla

    2013-01-01

    Since the advent of SNS technologies, adolescents' use of these technologies has expanded and is now a primary way of communicating with and acquiring information about others in their social network. Overall, adolescents and young adults’ stated motivations for using SNSs are quite similar to more traditional forms of communication—to stay in touch with friends, make plans, get to know people better, and present oneself to others. We begin with a summary of theories that describe the role of SNSs in adolescents’ interpersonal relationships, as well as common methodologies used in this field of research thus far. Then, with the social changes that occur throughout adolescence as a backdrop, we address the ways in which SNSs intersect with key tasks of adolescent psychosocial development, specifically peer affiliation and friendship quality, as well as identity development. Evidence suggests that SNSs differentially relate to adolescents’ social connectivity and identity development, with sociability, self-esteem, and nature of SNS feedback as important potential moderators. We synthesize current findings, highlight unanswered questions, and recommend both methodological and theoretical directions for future research. PMID:23645343

  11. Features of Random Metal Nanowire Networks with

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  12. Epidemic Spreading in Random Rectangular Networks

    CERN Document Server

    Estrada, Ernesto; Moreno, Yamir

    2015-01-01

    Recently, Estrada and Sheerin (Phys. Rev. E 91, 042805 (2015)) developed the random rectangular graph (RRG) model to account for the spatial distribution of nodes in a network allowing the variation of the shape of the unit square commonly used in random geometric graphs (RGGs). Here, we consider an epidemics dynamics taking place on the nodes and edges of an RRG and we derive analytically a lower bound for the epidemic threshold for a Susceptible-Infected-Susceptible (SIS) or Susceptible-Infected-Recovered (SIR) model on these networks. Using extensive numerical simulations of the SIS dynamics we show that the lower bound found is very tight. We conclude that the elongation of the area in which the nodes are distributed makes the network more resilient to the propagation of an epidemics due to the fact that the epidemic threshold increases with the elongation of the rectangle. On the other hand, using the "classical" RGG for modeling epidemics on non-squared cities generates a larger error due to the effects...

  13. Holographic coherent states from random tensor networks

    Science.gov (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang

    2017-08-01

    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  14. Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages.

    Directory of Open Access Journals (Sweden)

    Alison Elizabeth Bennett

    Full Text Available To date, few analyses of mutualistic networks have investigated successional or seasonal dynamics. Combining interaction data from multiple time points likely creates an inaccurate picture of the structure of networks (because these networks are aggregated across time, which may negatively influence their application in ecosystem assessments and conservation. Using a replicated bipartite mutualistic network of arbuscular mycorrhizal (AM fungal-plant associations, detected using large sample numbers of plants and AM fungi identified through molecular techniques, we test whether the properties of the network are temporally dynamic either between different successional stages or within the growing season. These questions have never been directly tested in the AM fungal-plant mutualism or the vast majority of other mutualisms. We demonstrate the following results: First, our examination of two different successional stages (young and old forest demonstrated that succession increases the proportion of specialists within the community and decreases the number of interactions. Second, AM fungal-plant mutualism structure changed throughout the growing season as the number of links between partners increased. Third, we observed shifts in associations between AM fungal and plant species throughout the growing season, potentially reflecting changes in biotic and abiotic conditions. Thus, this analysis opens up two entirely new areas of research: 1 identifying what influences changes in plant-AM fungal associations in these networks, and 2 what aspects of temporal variation and succession are of general importance in structuring bipartite networks and plant-AM fungal communities.

  15. Marginalization in Random Nonlinear Neural Networks

    Science.gov (United States)

    Vasudeva Raju, Rajkumar; Pitkow, Xaq

    2015-03-01

    Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.

  16. Self-growing neural network architecture using crisp and fuzzy entropy

    Science.gov (United States)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  17. On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

    DEFF Research Database (Denmark)

    Alizadeh, Tohid

    2008-01-01

    This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP-RBF neu...

  18. The Random Walk Model Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Zhang Man-Dun

    2016-01-01

    Full Text Available With the continuing development of the electronic commerce and growth of network information, there is a growing possibility for citizens to be confused by the information. Though the traditional technology of information retrieval have the ability to relieve the overload of information in some extent, it can not offer a targeted personality service based on user’s interests and activities. In this context, the recommendation algorithm arose. In this paper, on the basis of conventional recommendation, we studied the scheme of random walk based on bipartite network and the application of it. We put forward a similarity measurement based on implicit feedback. In this method, a uneven character vector is imported(the weight of item in the system. We put forward a improved random walk pattern which make use of partial or incomplete neighbor information to create recommendation information. In the end, there is an experiment in the real data set, the recommendation accuracy and practicality are improved. We promise the reality of the result of the experiment

  19. Application of Random Matrix Theory to Complex Networks

    Science.gov (United States)

    Rai, Aparna; Jalan, Sarika

    The present article provides an overview of recent developments in spectral analysis of complex networks under random matrix theory framework. Adjacency matrix of unweighted networks, reviewed here, differ drastically from a random matrix, as former have only binary entries. Remarkably, short range correlations in corresponding eigenvalues of such matrices exhibit Gaussian orthogonal statistics of RMT and thus bring them into the universality class. Spectral rigidity of spectra provides measure of randomness in underlying networks. We will consider several examples of model networks vastly studied in last two decades. To the end we would provide potential of RMT framework and obtained results to understand and predict behavior of complex systems with underlying network structure.

  20. SEGMENTATION OF LARGE UNSTRUCTURED POINT CLOUDS USING OCTREE-BASED REGION GROWING AND CONDITIONAL RANDOM FIELDS

    Directory of Open Access Journals (Sweden)

    M. Bassier

    2017-11-01

    Full Text Available Point cloud segmentation is a crucial step in scene understanding and interpretation. The goal is to decompose the initial data into sets of workable clusters with similar properties. Additionally, it is a key aspect in the automated procedure from point cloud data to BIM. Current approaches typically only segment a single type of primitive such as planes or cylinders. Also, current algorithms suffer from oversegmenting the data and are often sensor or scene dependent. In this work, a method is presented to automatically segment large unstructured point clouds of buildings. More specifically, the segmentation is formulated as a graph optimisation problem. First, the data is oversegmented with a greedy octree-based region growing method. The growing is conditioned on the segmentation of planes as well as smooth surfaces. Next, the candidate clusters are represented by a Conditional Random Field after which the most likely configuration of candidate clusters is computed given a set of local and contextual features. The experiments prove that the used method is a fast and reliable framework for unstructured point cloud segmentation. Processing speeds up to 40,000 points per second are recorded for the region growing. Additionally, the recall and precision of the graph clustering is approximately 80%. Overall, nearly 22% of oversegmentation is reduced by clustering the data. These clusters will be classified and used as a basis for the reconstruction of BIM models.

  1. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability ...

  2. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.

    Science.gov (United States)

    Vuković, Najdan; Miljković, Zoran

    2013-10-01

    Radial basis function (RBF) neural network is constructed of certain number of RBF neurons, and these networks are among the most used neural networks for modeling of various nonlinear problems in engineering. Conventional RBF neuron is usually based on Gaussian type of activation function with single width for each activation function. This feature restricts neuron performance for modeling the complex nonlinear problems. To accommodate limitation of a single scale, this paper presents neural network with similar but yet different activation function-hyper basis function (HBF). The HBF allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The HBF is based on generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. Compared to the RBF, the HBF neuron has more parameters to optimize, but HBF neural network needs less number of HBF neurons to memorize relationship between input and output sets in order to achieve good generalization property. However, recent research results of HBF neural network performance have shown that optimal way of constructing this type of neural network is needed; this paper addresses this issue and modifies sequential learning algorithm for HBF neural network that exploits the concept of neuron's significance and allows growing and pruning of HBF neuron during learning process. Extensive experimental study shows that HBF neural network, trained with developed learning algorithm, achieves lower prediction error and more compact neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-02

    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  4. Scaling solutions for connectivity and conductivity of continuous random networks.

    Science.gov (United States)

    Galindo-Torres, S A; Molebatsi, T; Kong, X-Z; Scheuermann, A; Bringemeier, D; Li, L

    2015-10-01

    Connectivity and conductivity of two-dimensional fracture networks (FNs), as an important type of continuous random networks, are examined systematically through Monte Carlo simulations under a variety of conditions, including different power law distributions of the fracture lengths and domain sizes. The simulation results are analyzed using analogies of the percolation theory for discrete random networks. With a characteristic length scale and conductivity scale introduced, we show that the connectivity and conductivity of FNs can be well described by universal scaling solutions. These solutions shed light on previous observations of scale-dependent FN behavior and provide a powerful method for quantifying effective bulk properties of continuous random networks.

  5. Growing Self-organized Design of Efficient and Robust Complex Networks

    CERN Document Server

    Hayashi, Yukio

    2014-01-01

    A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the periphery by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as m...

  6. Randomizing bipartite networks: the case of the World Trade Web

    CERN Document Server

    Saracco, Fabio; Gabrielli, Andrea; Squartini, Tiziano

    2015-01-01

    Within the last fifteen years, network theory has been successfully applied both to natural sciences and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a particularly insightful representation of many systems, ranging from mutualistic networks in ecology to trade networks in economy, whence the need of a pattern detection-oriented analysis in order to identify statistically-significant structural properties. Such an analysis rests upon the definition of suitable null models, i.e. upon the choice of the portion of network structure to be preserved while randomizing everything else. However, quite surprisingly, little work has been done so far to define null models for real bipartite networks. The aim of the present work is to fill this gap, extending a recently-proposed method to randomize monopartite networks to bipartite networks. While the proposed formalism is perfectly general, we apply our method to the binary, undirected, bipartite representation of the W...

  7. Phase transitions for information diffusion in random clustered networks

    Science.gov (United States)

    Lim, Sungsu; Shin, Joongbo; Kwak, Namju; Jung, Kyomin

    2016-09-01

    We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

  8. Application of growing hierarchical SOM for visualisation of network forensics traffic data.

    Science.gov (United States)

    Palomo, E J; North, J; Elizondo, D; Luque, R M; Watson, T

    2012-08-01

    Digital investigation methods are becoming more and more important due to the proliferation of digital crimes and crimes involving digital evidence. Network forensics is a research area that gathers evidence by collecting and analysing network traffic data logs. This analysis can be a difficult process, especially because of the high variability of these attacks and large amount of data. Therefore, software tools that can help with these digital investigations are in great demand. In this paper, a novel approach to analysing and visualising network traffic data based on growing hierarchical self-organising maps (GHSOM) is presented. The self-organising map (SOM) has been shown to be successful for the analysis of highly-dimensional input data in data mining applications as well as for data visualisation in a more intuitive and understandable manner. However, the SOM has some problems related to its static topology and its inability to represent hierarchical relationships in the input data. The GHSOM tries to overcome these limitations by generating a hierarchical architecture that is automatically determined according to the input data and reflects the inherent hierarchical relationships among them. Moreover, the proposed GHSOM has been modified to correctly treat the qualitative features that are present in the traffic data in addition to the quantitative features. Experimental results show that this approach can be very useful for a better understanding of network traffic data, making it easier to search for evidence of attacks or anomalous behaviour in a network environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Modeling the Effect of Fluid Flow on a Growing Network of Fractures in a Porous Medium

    Science.gov (United States)

    Alhashim, Mohammed; Koch, Donald

    2015-11-01

    The injection of a viscous fluid at high pressure in a geological formation induces the fracturing of pre-existing joints. Assuming a constant solid-matrix stress field, a weak joint saturated with fluid is fractured when the fluid pressure exceeds a critical value that depends on the joint's orientation. In this work, the formation of a network of fractures in a porous medium is modeled. When the average length of the fractures is much smaller than the radius of a cluster of fractured joints, the fluid flow within the network can be described as Darcy flow in a permeable medium consisting of the fracture network. The permeability and porosity of the medium are functions of the number density of activated joints and consequently depend on the fluid pressure. We demonstrate conditions under which these relationships can be derived from percolation theory. Fluid may also be lost from the fracture network by flowing into the permeable rock matrix. The solution of the model shows that the cluster radius grows as a power law with time in two regimes: (1) an intermediate time regime when the network contains many fractures but fluid loss is negligible; and (2) a long time regime when fluid loss dominates. In both regimes, the power law exponent depends on the Euclidean dimension and the injection rate dependence on time.

  10. Application of random matrix theory to biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Luo Feng [Department of Computer Science, Clemson University, 100 McAdams Hall, Clemson, SC 29634 (United States); Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhong Jianxin [Department of Physics, Xiangtan University, Hunan 411105 (China) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhongjn@ornl.gov; Yang Yunfeng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Scheuermann, Richard H. [Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhou Jizhong [Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019 (United States) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhouj@ornl.gov

    2006-09-25

    We show that spectral fluctuation of interaction matrices of a yeast protein-protein interaction network and a yeast metabolic network follows the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the identification of functional modules.

  11. Random matrix analysis for gene interaction networks in cancer cells

    CERN Document Server

    Kikkawa, Ayumi

    2016-01-01

    Motivation: The investigation of topological modifications of the gene interaction networks in cancer cells is essential for understanding the desease. We study gene interaction networks in various human cancer cells with the random matrix theory. This study is based on the Cancer Network Galaxy (TCNG) database which is the repository of huge gene interactions inferred by Bayesian network algorithms from 256 microarray experimental data downloaded from NCBI GEO. The original GEO data are provided by the high-throughput microarray expression experiments on various human cancer cells. We apply the random matrix theory to the computationally inferred gene interaction networks in TCNG in order to detect the universality in the topology of the gene interaction networks in cancer cells. Results: We found the universal behavior in almost one half of the 256 gene interaction networks in TCNG. The distribution of nearest neighbor level spacing of the gene interaction matrix becomes the Wigner distribution when the net...

  12. Structural phase transition in a growing network model with tunable member intimacy

    Science.gov (United States)

    Kim, Kibum; Jo, Woo Seong; Kim, Beom Jun

    2017-05-01

    Users of online communities become more intimate in time by writing posts and exchanging comments to each other. Although a certain level of intimacy among a group of members can be beneficial for the activity of the whole community, too strong intimacy among existing members can make newcomers feel alienated, driving them to leave the community. In this letter, we introduce a growing network model in which we systematically study the effect of member intimacy on the formation of connected component of the network. We introduce a parameter called clinginess and control how the member intimacy affects the communication activity. We observe that cumulative number of users who leave the community exhibits a transition-like behavior, similarly to the discontinuous transition in statistical mechanics models. Implication of our result in constructing a sustainable online community is also discussed.

  13. Performance of wireless sensor networks under random node failures

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Feng, Pan [Los Alamos National Laboratory

    2011-01-28

    Networks are essential to the function of a modern society and the consequence of damages to a network can be large. Assessing network performance of a damaged network is an important step in network recovery and network design. Connectivity, distance between nodes, and alternative routes are some of the key indicators to network performance. In this paper, random geometric graph (RGG) is used with two types of node failure, uniform failure and localized failure. Since the network performance are multi-facet and assessment can be time constrained, we introduce four measures, which can be computed in polynomial time, to estimate performance of damaged RGG. Simulation experiments are conducted to investigate the deterioration of networks through a period of time. With the empirical results, the performance measures are analyzed and compared to provide understanding of different failure scenarios in a RGG.

  14. Mandibular response after rapid maxillary expansion in class II growing patients: a pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Roberta Lione

    2017-11-01

    Full Text Available Abstract Background The aim of this pilot randomized controlled trial (RCT was to evaluate the sagittal mandibular response induced by rapid maxillary expansion (RME therapy in mixed dentition patients with class II malocclusion, comparing the effects of bonded RME and banded RME with a matched untreated class II control group. Methods This RCT was designed in parallel with an allocation ratio of 1:1:1. The sample consisted of 30 children with a mean age of 8.1 ± 0.6 years who were randomly assigned to three groups: group 1 treated with bonded RME, group 2 treated with banded RME, and group 3 the untreated control group. All patients met the following inclusion criteria: early mixed dentition, class II molar relationship, transverse discrepancy ≥ 4 mm, overjet ≥ 5 mm, and prepubertal skeletal maturity stage (CS1–CS2. The expansion screw was activated one quarter of a turn per day (0.25 mm until overcorrection was reached. For each subject, lateral cephalograms and plaster casts were obtained before treatment (T1 and after 1 year (T2. A randomization list was created for the group assignment, with an allocation ratio of 1:1:1. The observer who performed all the measurements was blinded to group assignment. The study was single-blinded in regard to statistical analysis. Results RME was effective in the correction of maxillary deficiency. Class II patients treated with both types of RME showed no significant improvement of the anteroposterior relationship of the maxilla and the mandible at both skeletal and occlusal levels. The acrylic splint RME had significant effects on reducing the skeletal vertical dimension and the gonial angle. Conclusions The orthopedic expansion did not affect the sagittal relationship of class II patients treated in the early mixed dentition when compared with the untreated control group. Additional studies with a larger sample are warranted to elucidate individual variations in dento-skeletal mandibular

  15. Mandibular response after rapid maxillary expansion in class II growing patients: a pilot randomized controlled trial.

    Science.gov (United States)

    Lione, Roberta; Brunelli, Valerio; Franchi, Lorenzo; Pavoni, Chiara; Quiroga Souki, Bernardo; Cozza, Paola

    2017-11-06

    The aim of this pilot randomized controlled trial (RCT) was to evaluate the sagittal mandibular response induced by rapid maxillary expansion (RME) therapy in mixed dentition patients with class II malocclusion, comparing the effects of bonded RME and banded RME with a matched untreated class II control group. This RCT was designed in parallel with an allocation ratio of 1:1:1. The sample consisted of 30 children with a mean age of 8.1 ± 0.6 years who were randomly assigned to three groups: group 1 treated with bonded RME, group 2 treated with banded RME, and group 3 the untreated control group. All patients met the following inclusion criteria: early mixed dentition, class II molar relationship, transverse discrepancy ≥ 4 mm, overjet ≥ 5 mm, and prepubertal skeletal maturity stage (CS1-CS2). The expansion screw was activated one quarter of a turn per day (0.25 mm) until overcorrection was reached. For each subject, lateral cephalograms and plaster casts were obtained before treatment (T1) and after 1 year (T2). A randomization list was created for the group assignment, with an allocation ratio of 1:1:1. The observer who performed all the measurements was blinded to group assignment. The study was single-blinded in regard to statistical analysis. RME was effective in the correction of maxillary deficiency. Class II patients treated with both types of RME showed no significant improvement of the anteroposterior relationship of the maxilla and the mandible at both skeletal and occlusal levels. The acrylic splint RME had significant effects on reducing the skeletal vertical dimension and the gonial angle. The orthopedic expansion did not affect the sagittal relationship of class II patients treated in the early mixed dentition when compared with the untreated control group. Additional studies with a larger sample are warranted to elucidate individual variations in dento-skeletal mandibular response to the maxillary expansion protocol in class-II-growing

  16. Softening in random networks of non-identical beams

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H.; Shephard, Mark S.; Picu, R. Catalin

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  17. Softening in Random Networks of Non-Identical Beams.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  18. Localization transition of biased random walks on random networks.

    Science.gov (United States)

    Sood, Vishal; Grassberger, Peter

    2007-08-31

    We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength bc exists such that most walks find the target within a finite time when b > bc. For b infinity before hitting the target. The phase transition at b=bc is a critical point in the sense that quantities such as the return probability P(t) show power laws, but finite-size behavior is complex and does not obey the usual finite-size scaling ansatz. By extending rigorous results for biased walks on Galton-Watson trees, we give the exact analytical value for bc and verify it by large scale simulations.

  19. Emergence of Scaling in Random Networks

    Science.gov (United States)

    Barabási, Albert-László; Albert, Réka

    1999-10-01

    Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

  20. Sequential defense against random and intentional attacks in complex networks

    Science.gov (United States)

    Chen, Pin-Yu; Cheng, Shin-Ming

    2015-02-01

    Network robustness against attacks is one of the most fundamental researches in network science as it is closely associated with the reliability and functionality of various networking paradigms. However, despite the study on intrinsic topological vulnerabilities to node removals, little is known on the network robustness when network defense mechanisms are implemented, especially for networked engineering systems equipped with detection capabilities. In this paper, a sequential defense mechanism is first proposed in complex networks for attack inference and vulnerability assessment, where the data fusion center sequentially infers the presence of an attack based on the binary attack status reported from the nodes in the network. The network robustness is evaluated in terms of the ability to identify the attack prior to network disruption under two major attack schemes, i.e., random and intentional attacks. We provide a parametric plug-in model for performance evaluation on the proposed mechanism and validate its effectiveness and reliability via canonical complex network models and real-world large-scale network topology. The results show that the sequential defense mechanism greatly improves the network robustness and mitigates the possibility of network disruption by acquiring limited attack status information from a small subset of nodes in the network.

  1. Ambient awareness: From random noise to digital closeness in online social networks

    OpenAIRE

    Levordashka, Ana; Utz, Sonja

    2016-01-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empiricall...

  2. Cascading failures in spatially-embedded random networks.

    Science.gov (United States)

    Asztalos, Andrea; Sreenivasan, Sameet; Szymanski, Boleslaw K; Korniss, Gyorgy

    2014-01-01

    Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geometric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.

  3. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially a...

  4. Robustness of Dengue Complex Network under Targeted versus Random Attack

    Directory of Open Access Journals (Sweden)

    Hafiz Abid Mahmood Malik

    2017-01-01

    Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.

  5. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  6. Maximal information transfer and behavior diversity in Random Threshold Networks.

    Science.gov (United States)

    Andrecut, M; Foster, D; Carteret, H; Kauffman, S A

    2009-07-01

    Random Threshold Networks (RTNs) are an idealized model of diluted, non-symmetric spin glasses, neural networks or gene regulatory networks. RTNs also serve as an interesting general example of any coordinated causal system. Here we study the conditions for maximal information transfer and behavior diversity in RTNs. These conditions are likely to play a major role in physical and biological systems, perhaps serving as important selective traits in biological systems. We show that the pairwise mutual information is maximized in dynamically critical networks. Also, we show that the correlated behavior diversity is maximized for slightly chaotic networks, close to the critical region. Importantly, critical networks maximize coordinated, diverse dynamical behavior across the network and across time: the information transmission between source and receiver nodes and the diversity of dynamical behaviors, when measured with a time delay between the source and receiver, are maximized for critical networks.

  7. Transition to Chaos in Random Neuronal Networks

    National Research Council Canada - National Science Library

    Jonathan Kadmon; Haim Sompolinsky

    2015-01-01

    .... Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e...

  8. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Fitzek, Frank

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...

  9. Efficient sampling of complex network with modified random walk strategies

    Science.gov (United States)

    Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei

    2018-02-01

    We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.

  10. Recognition of handwritten similar Chinese characters by self-growing probabilistic decision-based neural network.

    Science.gov (United States)

    Fu, H C; Xu, Y Y; Chang, H Y

    1999-12-01

    Recognition of similar (confusion) characters is a difficult problem in optical character recognition (OCR). In this paper, we introduce a neural network solution that is capable of modeling minor differences among similar characters, and is robust to various personal handwriting styles. The Self-growing Probabilistic Decision-based Neural Network (SPDNN) is a probabilistic type neural network, which adopts a hierarchical network structure with nonlinear basis functions and a competitive credit-assignment scheme. Based on the SPDNN model, we have constructed a three-stage recognition system. First, a coarse classifier determines a character to be input to one of the pre-defined subclasses partitioned from a large character set, such as Chinese mixed with alphanumerics. Then a character recognizer determines the input image which best matches the reference character in the subclass. Lastly, the third module is a similar character recognizer, which can further enhance the recognition accuracy among similar or confusing characters. The prototype system has demonstrated a successful application of SPDNN to similar handwritten Chinese recognition for the public database CCL/HCCR1 (5401 characters x200 samples). Regarding performance, experiments on the CCL/HCCR1 database produced 90.12% recognition accuracy with no rejection, and 94.11% accuracy with 6.7% rejection, respectively. This recognition accuracy represents about 4% improvement on the previously announced performance. As to processing speed, processing before recognition (including image preprocessing, segmentation, and feature extraction) requires about one second for an A4 size character image, and recognition consumes approximately 0.27 second per character on a Pentium-100 based personal computer, without use of any hardware accelerator or co-processor.

  11. Random fracture networks: percolation, geometry and flow

    Science.gov (United States)

    Adler, P. M.; Thovert, J. F.; Mourzenko, V. V.

    2015-12-01

    This paper reviews some of the basic properties of fracture networks. Most of the data can only be derived numerically, and to be useful they need to be rationalized, i.e., a large set of numbers should be replaced by a simple formula which is easy to apply for estimating orders of magnitude. Three major tools are found useful in this rationalization effort. First, analytical results can usually be derived for infinite fractures, a limit which corresponds to large densities. Second, the excluded volume and the dimensionless density prove crucial to gather data obtained at intermediate densities. Finally, shape factors can be used to further reduce the influence of fracture shapes. Percolation of fracture networks is of primary importance since this characteristic controls transport properties such as permeability. Recent numerical studies for various types of fracture networks (isotropic, anisotropic, heterogeneous in space, polydisperse, mixture of shapes) are summarized; the percolation threshold rho is made dimensionless by means of the excluded volume. A general correlation for rho is proposed as a function of the gyration radius. The statistical characteristics of the blocks which are cut in the solid matrix by the network are presented, since they control transfers between the porous matrix and the fractures. Results on quantities such as the volume, surface and number of faces are given and semi empirical relations are proposed. The possible intersection of a percolating network and of a cubic cavity is also summarized. This might be of importance for the underground storage of wastes. An approximate reasoning based on the excluded volume of the percolating cluster and of the cubic cavity is proposed. Finally, consequences on the permeability of fracture networks are briefly addressed. An empirical formula which verifies some theoretical properties is proposed.

  12. Random walks on activity-driven networks with attractiveness

    Science.gov (United States)

    Alessandretti, Laura; Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola

    2017-05-01

    Virtually all real-world networks are dynamical entities. In social networks, the propensity of nodes to engage in social interactions (activity) and their chances to be selected by active nodes (attractiveness) are heterogeneously distributed. Here, we present a time-varying network model where each node and the dynamical formation of ties are characterized by these two features. We study how these properties affect random-walk processes unfolding on the network when the time scales describing the process and the network evolution are comparable. We derive analytical solutions for the stationary state and the mean first-passage time of the process, and we study cases informed by empirical observations of social networks. Our work shows that previously disregarded properties of real social systems, such as heterogeneous distributions of activity and attractiveness as well as the correlations between them, substantially affect the dynamical process unfolding on the network.

  13. Random field Ising model and community structure in complex networks

    Science.gov (United States)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  14. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  15. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    indicating that a physical infrastructure needs to be put in place before nodes can communicate. Ad hoc and sensor ... edges, the communication paths of the wireless network can be represented by a graph. The representation of the ..... Pr (Gn ∈ P) → 1. Another definition of a threshold is from Friedgut & Kalal (1996). For a.

  16. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  17. Reconstruction of a random phase dynamics network from observations

    Science.gov (United States)

    Pikovsky, A.

    2018-01-01

    We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.

  18. Exploring community structure in biological networks with random graphs.

    Science.gov (United States)

    Sah, Pratha; Singh, Lisa O; Clauset, Aaron; Bansal, Shweta

    2014-06-25

    Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system's functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems.

  19. Listening to the noise: random fluctuations reveal gene network parameters

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory; Khammash, Mustafa [UCSB

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  20. Nonparametric resampling of random walks for spectral network clustering

    Science.gov (United States)

    Fallani, Fabrizio De Vico; Nicosia, Vincenzo; Latora, Vito; Chavez, Mario

    2014-01-01

    Parametric resampling schemes have been recently introduced in complex network analysis with the aim of assessing the statistical significance of graph clustering and the robustness of community partitions. We propose here a method to replicate structural features of complex networks based on the non-parametric resampling of the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through resampling can be used to improve the performance of standard spectral algorithms for community detection.

  1. Nonparametric resampling of random walks for spectral network clustering.

    Science.gov (United States)

    De Vico Fallani, Fabrizio; Nicosia, Vincenzo; Latora, Vito; Chavez, Mario

    2014-01-01

    Parametric resampling schemes have been recently introduced in complex network analysis with the aim of assessing the statistical significance of graph clustering and the robustness of community partitions. We propose here a method to replicate structural features of complex networks based on the non-parametric resampling of the transition matrix associated with an unbiased random walk on the graph. We test this bootstrapping technique on synthetic and real-world modular networks and we show that the ensemble of replicates obtained through resampling can be used to improve the performance of standard spectral algorithms for community detection.

  2. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  3. Maps of random walks on complex networks reveal community structure.

    Science.gov (United States)

    Rosvall, Martin; Bergstrom, Carl T

    2008-01-29

    To comprehend the multipartite organization of large-scale biological and social systems, we introduce an information theoretic approach that reveals community structure in weighted and directed networks. We use the probability flow of random walks on a network as a proxy for information flows in the real system and decompose the network into modules by compressing a description of the probability flow. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of >6,000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network-including physics, chemistry, molecular biology, and medicine-information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.

  4. Developmental word grounding through a growing neural network with a humanoid robot.

    Science.gov (United States)

    He, Xiaoyuan; Kojima, Ryo; Hasegawa, Osamu

    2007-04-01

    This paper presents an unsupervised approach of integrating speech and visual information without using any prepared data. The approach enables a humanoid robot, Incremental Knowledge Robot 1 (IKR1), to learn word meanings. The approach is different from most existing approaches in that the robot learns online from audio-visual input, rather than from stationary data provided in advance. In addition, the robot is capable of learning incrementally, which is considered to be indispensable to lifelong learning. A noise-robust self-organized growing neural network is developed to represent the topological structure of unsupervised online data. We are also developing an active-learning mechanism, called "desire for knowledge," to let the robot select the object for which it possesses the least information for subsequent learning. Experimental results show that the approach raises the efficiency of the learning process. Based on audio and visual data, they construct a mental model for the robot, which forms a basis for constructing IKRI's inner world and builds a bridge connecting the learned concepts with current and past scenes.

  5. On Distributed Computation in Noisy Random Planar Networks

    OpenAIRE

    Kanoria, Y.; Manjunath, D.

    2007-01-01

    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.

  6. Random Access with Physical-layer Network Coding

    NARCIS (Netherlands)

    Goseling, J.; Gastpar, M.C.; Weber, J.H.

    2013-01-01

    Leveraging recent progress in compute-and-forward we propose an approach to random access that is based on physical-layer network coding: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receiver can thus

  7. Navigation by anomalous random walks on complex networks.

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-23

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  8. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  9. Random Deep Belief Networks for Recognizing Emotions from Speech Signals.

    Science.gov (United States)

    Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  10. Finite plateau in spectral gap of polychromatic constrained random networks

    Science.gov (United States)

    Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.

    2017-12-01

    We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.

  11. Grow Your Personal Learning Network: New Technologies Can Keep You Connected and Help You Manage Information Overload

    Science.gov (United States)

    Warlick, David

    2009-01-01

    Personal learning networks (PLNs) are not new. People have long relied on their families, friends, colleagues, and acquaintances to supplement their knowledge about the world. But the times are changing. Information and communication technologies (ICT), including an ever-growing repertoire of open source applications, have freed content from the…

  12. Navigation by anomalous random walks on complex networks

    CERN Document Server

    Weng, Tongfeng; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-01-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Levy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Levy walks and the underlying network structure. Interestingly, applying our framework to the famous PageRank search, we can explain why its damping factor empirically chosen to be around 0.85. The framework for analyzing anomalous random walks on complex networks offers a new us...

  13. Visual Tracking With Convolutional Random Vector Functional Link Network.

    Science.gov (United States)

    Zhang, Le; Suganthan, Ponnuthurai Nagaratnam

    2017-10-01

    Deep neural network-based methods have recently achieved excellent performance in visual tracking task. As very few training samples are available in visual tracking task, those approaches rely heavily on extremely large auxiliary dataset such as ImageNet to pretrain the model. In order to address the discrepancy between the source domain (the auxiliary data) and the target domain (the object being tracked), they need to be finetuned during the tracking process. However, those methods suffer from sensitivity to the hyper-parameters such as learning rate, maximum number of epochs, size of mini-batch, and so on. Thus, it is worthy to investigate whether pretraining and fine tuning through conventional back-prop is essential for visual tracking. In this paper, we shed light on this line of research by proposing convolutional random vector functional link (CRVFL) neural network, which can be regarded as a marriage of the convolutional neural network and random vector functional link network, to simplify the visual tracking system. The parameters in the convolutional layer are randomly initialized and kept fixed. Only the parameters in the fully connected layer need to be learned. We further propose an elegant approach to update the tracker. In the widely used visual tracking benchmark, without any auxiliary data, a single CRVFL model achieves 79.0% with a threshold of 20 pixels for the precision plot. Moreover, an ensemble of CRVFL yields comparatively the best result of 86.3%.

  14. Delineating social network data anonymization via random edge perturbation

    KAUST Repository

    Xue, Mingqiang

    2012-01-01

    Social network data analysis raises concerns about the privacy of related entities or individuals. To address this issue, organizations can publish data after simply replacing the identities of individuals with pseudonyms, leaving the overall structure of the social network unchanged. However, it has been shown that attacks based on structural identification (e.g., a walk-based attack) enable an adversary to re-identify selected individuals in an anonymized network. In this paper we explore the capacity of techniques based on random edge perturbation to thwart such attacks. We theoretically establish that any kind of structural identification attack can effectively be prevented using random edge perturbation and show that, surprisingly, important properties of the whole network, as well as of subgraphs thereof, can be accurately calculated and hence data analysis tasks performed on the perturbed data, given that the legitimate data recipient knows the perturbation probability as well. Yet we also examine ways to enhance the walk-based attack, proposing a variant we call probabilistic attack. Nevertheless, we demonstrate that such probabilistic attacks can also be prevented under sufficient perturbation. Eventually, we conduct a thorough theoretical study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments with synthetic and real datasets confirm our expectations. © 2012 ACM.

  15. Probing the Extent of Randomness in Protein Interaction Networks

    Science.gov (United States)

    2008-07-11

    scale-free networks are born equal: the role of the seed graph in PPI network evolution. PLoS Comput Biol 3: e118. doi:10.1371/journal.pcbi.0030118. 57...from seeds [56]. In the degree-conserving degree-weighted (DCDW) model, each node is considered once, in a random order, and a set number of edges are...gene duplication in fungi . Nature 449: 54–61. 63. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein

  16. A Random Dot Product Model for Weighted Networks

    CERN Document Server

    DeFord, Daryl R

    2016-01-01

    This paper presents a generalization of the random dot product model for networks whose edge weights are drawn from a parametrized probability distribution. We focus on the case of integer weight edges and show that many previously studied models can be recovered as special cases of this generalization. Our model also determines a dimension--reducing embedding process that gives geometric interpretations of community structure and centrality. The dimension of the embedding has consequences for the derived community structure and we exhibit a stress function for determining appropriate dimensions. We use this approach to analyze a coauthorship network and voting data from the U.S. Senate.

  17. Feed efficiency and body weight growth throughout growing-furring period in mink using random regression method

    DEFF Research Database (Denmark)

    Shirali, Mahmoud; Nielsen, Vivi Hunnicke; Møller, Steen Henrik

    2014-01-01

    be obtained by only considering RFI estimate and BW at pelting, however, lower genetic correlations than unity indicate that extra genetic gain can be obtained by including estimates of these traits at the growing period. This study suggests random regression methods are suitable for analysing feed efficiency......The aim of this study was to determine genetic background of longitudinal residual feed intake (RFI) and body weight (BW) growth in farmed mink using random regression methods considering heterogeneous residual variances. Eight BW measures for each mink was recorded every three weeks from 63 to 210...... days of age for 2139 male mink and the same number of females. Cumulative feed intake was calculated six times with three weeks interval based on daily feed consumption between weighing’s from 105 to 210 days of age. Heritability estimates for RFI increased by age from 0.18 (0.03, standard deviation...

  18. Design and implementation of a random neural network routing engine.

    Science.gov (United States)

    Kocak, T; Seeber, J; Terzioglu, H

    2003-01-01

    Random neural network (RNN) is an analytically tractable spiked neural network model that has been implemented in software for a wide range of applications for over a decade. This paper presents the hardware implementation of the RNN model. Recently, cognitive packet networks (CPN) is proposed as an alternative packet network architecture where there is no routing table, instead the RNN based reinforcement learning is used to route packets. Particularly, we describe implementation details for the RNN based routing engine of a CPN network processor chip: the smart packet processor (SPP). The SPP is a dual port device that stores, modifies, and interprets the defining characteristics of multiple RNN models. In addition to hardware design improvements over the software implementation such as the dual access memory, output calculation step, and reduced output calculation module, this paper introduces a major modification to the reinforcement learning algorithm used in the original CPN specification such that the number of weight terms are reduced from 2n/sup 2/ to 2n. This not only yields significant memory savings, but it also simplifies the calculations for the steady state probabilities (neuron outputs in RNN). Simulations have been conducted to confirm the proper functionality for the isolated SPP design as well as for the multiple SPP's in a networked environment.

  19. Randomly evolving idiotypic networks: modular mean field theory.

    Science.gov (United States)

    Schmidtchen, Holger; Behn, Ulrich

    2012-07-01

    We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modular architectures, the building principles of which are known. The nodes of the network can be classified into groups of nodes, the modules, which share statistical properties. Each node experiences only the mean influence of the groups to which it is linked. Given the size of the groups and linking between them the statistical properties such as mean occupation, mean lifetime, and mean number of occupied neighbors are calculated for a variety of patterns and compared with simulations. For a pattern which consists of pairs of occupied nodes correlations are taken into account.

  20. Peer-Assisted Content Distribution with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg

    2014-01-01

    Peer-to-peer networks constitute a widely used, cost-effective and scalable technology to distribute bandwidth-intensive content. The technology forms a great platform to build distributed cloud storage without the need of a central provider. However, the majority of todays peer-to-peer systems...... require complex algorithms to schedule what parts of obtained content to forward to other peers. Random Linear Network Coding can greatly simplify these algorithm by removing the need for coordination between the distributing nodes. In this paper we propose and evaluate the structure of the BRONCO peer-to-peer....... Furthermore, we evaluate the performance of different parameters and suggest a suitable trade-off between CPU utilization and network overhead. Within the limitations of the used test environment, we have shown that networkc coding is usable in peer-assisted content distribution and we suggest further...

  1. Coevolution of quantum and classical strategies on evolving random networks.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available We study the coevolution of quantum and classical strategies on weighted and directed random networks in the realm of the prisoner's dilemma game. During the evolution, agents can break and rewire their links with the aim of maximizing payoffs, and they can also adjust the weights to indicate preferences, either positive or negative, towards their neighbors. The network structure itself is thus also subject to evolution. Importantly, the directionality of links does not affect the accumulation of payoffs nor the strategy transfers, but serves only to designate the owner of each particular link and with it the right to adjust the link as needed. We show that quantum strategies outperform classical strategies, and that the critical temptation to defect at which cooperative behavior can be maintained rises, if the network structure is updated frequently. Punishing neighbors by reducing the weights of their links also plays an important role in maintaining cooperation under adverse conditions. We find that the self-organization of the initially random network structure, driven by the evolutionary competition between quantum and classical strategies, leads to the spontaneous emergence of small average path length and a large clustering coefficient.

  2. Robustness and information propagation in attractors of Random Boolean Networks.

    Science.gov (United States)

    Lloyd-Price, Jason; Gupta, Abhishekh; Ribeiro, Andre S

    2012-01-01

    Attractors represent the long-term behaviors of Random Boolean Networks. We study how the amount of information propagated between the nodes when on an attractor, as quantified by the average pairwise mutual information (I(A)), relates to the robustness of the attractor to perturbations (R(A)). We find that the dynamical regime of the network affects the relationship between I(A) and R(A). In the ordered and chaotic regimes, I(A) is anti-correlated with R(A), implying that attractors that are highly robust to perturbations have necessarily limited information propagation. Between order and chaos (for so-called "critical" networks) these quantities are uncorrelated. Finite size effects cause this behavior to be visible for a range of networks, from having a sensitivity of 1 to the point where I(A) is maximized. In this region, the two quantities are weakly correlated and attractors can be almost arbitrarily robust to perturbations without restricting the propagation of information in the network.

  3. Mechanical Behavior of Homogeneous and Composite Random Fiber Networks

    Science.gov (United States)

    Shahsavari, Ali

    Random fiber networks are present in many biological and non-biological materials such as paper, cytoskeleton, and tissue scaffolds. Mechanical behavior of networks is controlled by the mechanical properties of the constituent fibers and the architecture of the network. To characterize these two main factors, different parameters such as fiber density, fiber length, average segment length, nature of the cross-links at the fiber intersections, ratio of bending to axial behavior of fibers have been considered. Random fiber networks are usually modeled by representing each fiber as a Timoshenko or an Euler-Bernoulli beam and each cross-link as either a welded or rotating joint. In this dissertation, the effect of these modeling options on the dependence of the overall linear network modulus on microstructural parameters is studied. It is concluded that Timoshenko beams can be used for the whole range of density and fiber stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low densities. In the low density-low bending stiffness range, elastic strain energy is stored in the bending mode of the deformation, while in the other extreme range of parameters, the energy is stored predominantly in the axial and shear deformation modes. It is shown that both rotating and welded joint models give the same rules for scaling of the network modulus with different micromechanical parameters. The elastic modulus of sparsely cross-linked random fiber networks, i.e. networks in which the degree of cross-linking varies, is studied. The relationship between the micromechanical parameters - fiber density, fiber axial and bending stiffness, and degree of cross-linking - and the overall elastic modulus is presented in terms of a master curve. It is shown that the master plot with various degrees of cross-linking can be collapsed to a curve which is also valid for fully cross-linked networks. Random fiber networks in which fibers are bonded to each other are

  4. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    Science.gov (United States)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  5. Functional brain networks: random, "small world" or deterministic?

    Science.gov (United States)

    Blinowska, Katarzyna J; Kaminski, Maciej

    2013-01-01

    Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several publications based on bivariate estimators of relations between EEG channels authors reported random or "small world" structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links, show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing. In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds exchange the information by weaker connections.

  6. Functional brain networks: random, "small world" or deterministic?

    Directory of Open Access Journals (Sweden)

    Katarzyna J Blinowska

    Full Text Available Lately the problem of connectivity in brain networks is being approached frequently by graph theoretical analysis. In several publications based on bivariate estimators of relations between EEG channels authors reported random or "small world" structure of networks. The results of these works often have no relation to other evidence based on imaging, inverse solutions methods, physiological and anatomical data. Herein we try to find reasons for this discrepancy. We point out that EEG signals are very much interdependent, thus bivariate measures applied to them may produce many spurious connections. In fact, they may outnumber the true connections. Giving all connections equal weights, as it is usual in the framework of graph theoretical analysis, further enhances these spurious links. In effect, close to random and disorganized patterns of connections emerge. On the other hand, multivariate connectivity estimators, which are free of the artificial links, show specific, well determined patterns, which are in a very good agreement with other evidence. The modular structure of brain networks may be identified by multivariate estimators based on Granger causality and formalism of assortative mixing. In this way, the strength of coupling may be evaluated quantitatively. During working memory task, by means of multivariate Directed Transfer Function, it was demonstrated that the modules characterized by strong internal bonds exchange the information by weaker connections.

  7. Predicting genetic interactions with random walks on biological networks

    Directory of Open Access Journals (Sweden)

    Singh Ambuj K

    2009-01-01

    Full Text Available Abstract Background Several studies have demonstrated that synthetic lethal genetic interactions between gene mutations provide an indication of functional redundancy between molecular complexes and pathways. These observations help explain the finding that organisms are able to tolerate single gene deletions for a large majority of genes. For example, system-wide gene knockout/knockdown studies in S. cerevisiae and C. elegans revealed non-viable phenotypes for a mere 18% and 10% of the genome, respectively. It has been postulated that the low percentage of essential genes reflects the extensive amount of genetic buffering that occurs within genomes. Consistent with this hypothesis, systematic double-knockout screens in S. cerevisiae and C. elegans show that, on average, 0.5% of tested gene pairs are synthetic sick or synthetic lethal. While knowledge of synthetic lethal interactions provides valuable insight into molecular functionality, testing all combinations of gene pairs represents a daunting task for molecular biologists, as the combinatorial nature of these relationships imposes a large experimental burden. Still, the task of mapping pairwise interactions between genes is essential to discovering functional relationships between molecular complexes and pathways, as they form the basis of genetic robustness. Towards the goal of alleviating the experimental workload, computational techniques that accurately predict genetic interactions can potentially aid in targeting the most likely candidate interactions. Building on previous studies that analyzed properties of network topology to predict genetic interactions, we apply random walks on biological networks to accurately predict pairwise genetic interactions. Furthermore, we incorporate all published non-interactions into our algorithm for measuring the topological relatedness between two genes. We apply our method to S. cerevisiae and C. elegans datasets and, using a decision tree

  8. First Passage Time for Random Walks in Heterogeneous Networks

    Science.gov (United States)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2012-08-01

    The first passage time (FPT) for random walks is a key indicator of how fast information diffuses in a given system. Despite the role of FPT as a fundamental feature in transport phenomena, its behavior, particularly in heterogeneous networks, is not yet fully understood. Here, we study, both analytically and numerically, the scaling behavior of the FPT distribution to a given target node, averaged over all starting nodes. We find that random walks arrive quickly at a local hub, and therefore, the FPT distribution shows a crossover with respect to time from fast decay behavior (induced from the attractive effect to the hub) to slow decay behavior (caused by the exploring of the entire system). Moreover, the mean FPT is independent of the degree of the target node in the case of compact exploration. These theoretical results justify the necessity of using a random jump protocol (empirically used in search engines) and provide guidelines for designing an effective network to make information quickly accessible.

  9. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    Directory of Open Access Journals (Sweden)

    Guihua Wen

    2017-01-01

    Full Text Available Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  10. Exploring MEDLINE space with random indexing and pathfinder networks.

    Science.gov (United States)

    Cohen, Trevor

    2008-11-06

    The integration of disparate research domains is a prerequisite for the success of the translational science initiative. MEDLINE abstracts contain content from a broad range of disciplines, presenting an opportunity for the development of methods able to integrate the knowledge they contain. Latent Semantic Analysis (LSA) and related methods learn human-like associations between terms from unannotated text. However, their computational and memory demands limits their ability to address a corpus of this size. Furthermore, visualization methods previously used in conjunction with LSA have limited ability to define the local structure of the associative networks LSA learns. This paper explores these issues by (1) processing the entire MEDLINE corpus using Random Indexing, a variant of LSA, and (2) exploring learned associations using Pathfinder Networks. Meaningful associations are inferred from MEDLINE, including a drug-disease association undetected by PUBMED search.

  11. Comparison of Synchronization in Small World and Random Networks

    Science.gov (United States)

    Bernard, Tess; Miller, Bruce

    2008-10-01

    There are many models that simulate neuron firing in the brain. These range from the basic integrate-and-fire method to the complex Hodgkin-Huxley model. Eugene Izhikevich (2003) employed the principles of nonlinear dynamics, specifically bifurcation theory, to develop a model that is both simple and powerful, which can be described as an integrate-and-reset model. By changing only a few parameters, this model can simulate all the known types of cortical neuron firing patterns. Using it, we studied the properties of two different types of neural networks. In the first, originally used by Izhikevich, the synaptic connection strengths between the neurons are determined randomly, and each neuron is connected to all of the other neurons in the network. The second is a small world network modeled after the one employed by Alex Roxin, et al. (2004), but expanded to include inhibition. This geometry is an idealized representation of the nervous system. In our investigation we compared the onset of synchronization in each network, as well as its stability in the presence of external currents. We also considered the relevance of these results to real world phenomena such as seizures.

  12. Characterizing the Path Coverage of Random Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Moslem Noori

    2010-01-01

    Full Text Available Wireless sensor networks are widely used in security monitoring applications to sense and report specific activities in a field. In path coverage, for example, the network is in charge of monitoring a path and discovering any intruder trying to cross it. In this paper, we investigate the path coverage properties of a randomly deployed wireless sensor network when the number of sensors and also the length of the path are finite. As a consequence, Boolean model, which has been widely used previously, is not applicable. Using results from geometric probability, we determine the probability of full path coverage, distribution of the number of uncovered gaps over the path, and the probability of having no uncovered gaps larger than a specific size. We also find the cumulative distribution function (cdf of the covered part of the path. Based on our results on the probability of full path coverage, we derive a tight upper bound for the number of nodes guaranteeing the full path coverage with a desired reliability. Through computer simulations, it is verified that for networks with nonasymptotic size, our analysis is accurate where the Boolean model can be inaccurate.

  13. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  14. Long-Range Navigation on Complex Networks using L\\'evy Random Walks

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2012-01-01

    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\\'evy random walk strategy, compared with the normal random walk stra...

  15. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However...... of packets, which are strategies that require additional signalling. Performance is evaluated using CAIDA TCP packets and 4k video traces. Our results show that our mechanisms reduce significantly the padding overhead even for small field sizes. Finally, our strategies provide a natural trade-off between...

  16. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  17. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Directory of Open Access Journals (Sweden)

    Umberto Esposito

    Full Text Available Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  18. A Social Media Peer Group for Mothers To Prevent Obesity from Infancy: The Grow2Gether Randomized Trial.

    Science.gov (United States)

    Fiks, Alexander G; Gruver, Rachel S; Bishop-Gilyard, Chanelle T; Shults, Justine; Virudachalam, Senbagam; Suh, Andrew W; Gerdes, Marsha; Kalra, Gurpreet K; DeRusso, Patricia A; Lieberman, Alexandra; Weng, Daniel; Elovitz, Michal A; Berkowitz, Robert I; Power, Thomas J

    2017-10-01

    Few studies have addressed obesity prevention among low-income families whose infants are at increased obesity risk. We tested a Facebook peer-group intervention for low-income mothers to foster behaviors promoting healthy infant growth. In this randomized controlled trial, 87 pregnant women (Medicaid insured, BMI ≥25 kg/m2) were randomized to the Grow2Gether intervention or text message appointment reminders. Grow2Gether participants joined a private Facebook group of 9-13 women from 2 months before delivery until infant age 9 months. A psychologist facilitated groups featuring a curriculum of weekly videos addressing feeding, sleep, parenting, and maternal well-being. Feasibility was assessed using the frequency and content of participation, and acceptability using surveys. Maternal beliefs and behaviors and infant growth were assessed at birth, 2, 4, 6, and 9 months. Differences in infant growth between study arms were explored. We conducted intention-to-treat analyses using quasi-least-squares regression. Eighty-eight percent (75/85) of intervention participants (42% (36/85) food insecure, 88% (75/85) black) reported the group was helpful. Participants posted 30 times/group/week on average. At 9 months, the intervention group had significant improvement in feeding behaviors (Infant Feeding Style Questionnaire) compared to the control group (p = 0.01, effect size = 0.45). Intervention group mothers were significantly less likely to pressure infants to finish food and, at age 6 months, give cereal in the bottle. Differences were not observed for other outcomes, including maternal feeding beliefs or infant weight-for-length. A social media peer-group intervention was engaging and significantly impacted certain feeding behaviors in families with infants at high risk of obesity.

  19. Domination of growing-season evapotranspiration over runoff makes ditch network maintenance in mature peatland forests questionable

    Directory of Open Access Journals (Sweden)

    S. Sarkkola

    2013-04-01

    Full Text Available In Finland, ditch network maintenance (DNM is carried out annually on 60–70,000 ha of drained peatland to promote tree growth for forestry purposes. However, it is important to avoid ditching that contributes little to the stand growth and productivity, both to improve the economical profitability of forestry and to mitigate DNM-induced nutrient release to watercourses. We hypothesised that mature forest stands with substantial evapotranspiration potential do not necessarily need DNM, even if the ditch networks are in poor condition.We estimated evapotranspiration (EVT of forest vegetation during the growing seasons (June–September of 2007–2011 in four forested artificial peatland catchments dominated by Scots pine stands (Pinus sylvestris L. (stand volume 93–151 m3 ha-1 located in southern, western, central and northern Finland. Precipitation (P, runoff (R and water table level (WTL were monitored continuously in the field. The water storage change (ΔS was estimated on the basis of WTL measurements and peat pF curves determined from in situ peat samples. In addition, tree stand transpiration (T was estimated in two of the catchments using the sap flow method. EVT was estimated as the residual term of the water balance equation.During the growing season, EVT (153–295 mm was 49–161 % of the total accumulated P (155–368 mm, and decreased from south to north. Within each growing season, EVT was always largest in July or August. Tree transpiration was about 50 % of the total forest EVT in the two sites where it was measured directly. The mean WTL was at depth 36–63 cm during the growing seasons. Clear-cutting of a 100m3 ha-1 stand on one site resulted in an average rise of WTL by 18 cm.The results suggested that, in the southernmost site in particular, no drainage network management would be necessary to sustain satisfactory drainage conditions for tree growth because growing-season precipitation is transferred back to the

  20. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  1. Upscaling of spectral induced polarization response using random tube networks

    Science.gov (United States)

    Maineult, Alexis; Revil, André; Camerlynck, Christian; Florsch, Nicolas; Titov, Konstantin

    2017-05-01

    In order to upscale the induced polarization (IP) response of porous media, from the pore scale to the sample scale, we implement a procedure to compute the macroscopic complex resistivity response of random tube networks. A network is made of a 2-D square-meshed grid of connected tubes, which obey to a given tube radius distribution. In a simplified approach, the electrical impedance of each tube follows a local Pelton resistivity model, with identical resistivity, chargeability and Cole-Cole exponent values for all the tubes-only the time constant varies, as it depends on the radius of each tube and on a diffusion coefficient also identical for all the tubes. By solving the conservation law for the electrical charge, the macroscopic IP response of the network is obtained. We fit successfully the macroscopic complex resistivity also by a Pelton resistivity model. Simulations on uncorrelated and correlated networks, for which the tube radius distribution is so that the decimal logarithm of the radius is normally distributed, evidence that the local and macroscopic model parameters are the same, except the Cole-Cole exponent: its macroscopic value diminishes with increasing heterogeneity (i.e. with increasing standard deviation of the radius distribution), compared to its local value. The methodology is also applied to six siliciclastic rock samples, for which the pore radius distributions from mercury porosimetry are available. These samples exhibit the same behaviour as synthetic media, that is, the macroscopic Cole-Cole exponent is always lower than the local one. As a conclusion, the pore network method seems to be a promising tool for studying the upscaling of the IP response of porous media.

  2. Ambient awareness: From random noise to digital closeness in online social networks.

    Science.gov (United States)

    Levordashka, Ana; Utz, Sonja

    2016-07-01

    Ambient awareness refers to the awareness social media users develop of their online network in result of being constantly exposed to social information, such as microblogging updates. Although each individual bit of information can seem like random noise, their incessant reception can amass to a coherent representation of social others. Despite its growing popularity and important implications for social media research, ambient awareness on public social media has not been studied empirically. We provide evidence for the occurrence of ambient awareness and examine key questions related to its content and functions. A diverse sample of participants reported experiencing awareness, both as a general feeling towards their network as a whole, and as knowledge of individual members of the network, whom they had not met in real life. Our results indicate that ambient awareness can develop peripherally, from fragmented information and in the relative absence of extensive one-to-one communication. We report the effects of demographics, media use, and network variables and discuss the implications of ambient awareness for relational and informational processes online.

  3. Analysis of complex contagions in random multiplex networks

    CERN Document Server

    Yagan, Osman

    2012-01-01

    We study the diffusion of influence in random multiplex networks where links can be of $r$ different types, and for a given content (e.g., rumor, product, political view), each link type is associated with a content dependent parameter $c_i$ in $[0,\\infty]$ that measures the relative bias type-$i$ links have in spreading this content. In this setting, we propose a linear threshold model of contagion where nodes switch state if their "perceived" proportion of active neighbors exceeds a threshold \\tau. Namely, a node connected to $m_i$ active neighbors and $k_i-m_i$ inactive neighbors via type-$i$ links will turn active if $\\sum{c_i m_i}/\\sum{c_i k_i}$ exceeds its threshold \\tau. Under this model, we obtain the condition, probability and expected size of global spreading events. Our results extend the existing work on complex contagions in several directions by i) providing solutions for coupled random networks whose vertices are neither identical nor disjoint, (ii) highlighting the effect of content on the dyn...

  4. The City in the Country: Growing Alternative Food Networks in Metropolitan Areas

    Science.gov (United States)

    Jarosz, Lucy

    2008-01-01

    Alternative food networks (AFNs) are commonly defined by attributes such as the spatial proximity between farmers and consumers, the existence of retail venues such as farmers markets, community supported agriculture (CSA) and a commitment to sustainable food production and consumption. Focusing upon processes rather than attributes, this paper…

  5. Growing complex network of citations of scientific papers: Modeling and measurements

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  6. Harnessing Electrostatic Forces to Grow Bio-inspired Hierarchical Vascular Networks

    Science.gov (United States)

    Behler, Kristopher; Melrose, Zachary; Schott, Andrew; Wetzel, Eric

    2012-02-01

    Vascular networks provide a system for fluid distribution. Artificial vascular materials with enhanced properties are currently being developed that could ultimately be integrated into systems reliant upon fluid transport while retaining their structural properties. An uninterrupted and controllable supply of liquid is optimal for many applications such as continual self-healing materials, in-situ delivery of index matched fluids, thermal management and drug delivery systems could benefit from a bio-inspired vascular approach that combines complex network geometries with minimal processing parameters. Two such approaches to induce vascular networks are electrohydrodynamic viscous fingering (EHVF) and electrical treeing (ET). EHVF is a phenomenon that occurs when a low viscosity liquid is forced through a high viscosity fluid or matrix, resulting in branches due to capillary and viscous forces in the high viscosity material. By applying voltages of 0 -- 60 kV, finger diameter is reduced. ET is the result of partial discharges in a dielectric material. In the vicinity of a small diameter electrode, the local electric field is greater than the global dielectric strength, causing a localized, step-wise, breakdown to occur forming a highly branched interconnected structure. ET is a viable method to produce networks on a smaller, micron, scale than the products of the EHVF method.

  7. Identification of yeast transcriptional regulation networks using multivariate random forests.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2009-06-01

    Full Text Available The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays to sequence features residing in gene promoters (as derived from DNA motif data and transcription factor binding to gene promoters (as derived from tiling microarrays. We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes.

  8. A κ-deformed model of growing complex networks with fitness

    Science.gov (United States)

    Stella, Massimo; Brede, Markus

    2014-08-01

    The Barabási-Bianconi (BB) fitness model can be solved by a mapping between the original network growth model to an idealized bosonic gas. The well-known transition to Bose-Einstein condensation in the latter then corresponds to the emergence of “super-hubs” in the network model. Motivated by the preservation of the scale-free property, thermodynamic stability and self-duality, we generalize the original extensive mapping of the BB fitness model by using the nonextensive Kaniadakis κ-distribution. Through numerical simulation and mean-field calculations we show that deviations from extensivity do not compromise qualitative features of the phase transition. Analysis of the critical temperature yields a monotonically decreasing dependence on the nonextensive parameter κ.

  9. Enhancing the Performance of Random Access Networks with Random Packet CDMA and Joint Detection

    Directory of Open Access Journals (Sweden)

    Behrouz Farhang-Boroujeny

    2008-09-01

    Full Text Available Random packet CDMA (RP-CDMA is a recently proposed random transmission scheme which has been designed from the beginning as a cross-layer method to overcome the restrictive nature of the Aloha protocol. Herein, we more precisely model its performance and investigate throughput and network stability. In contrast to previous works, we adopt the spread Aloha model for header transmission, and the performance of different joint detection methods for the payload data is investigated. Furthermore, we introduce performance measures for multiple access systems based on the diagonal elements of a modified multipacket reception matrix, and show that our measures describe the upper limit of the vector of stable arrival rates for a finite number of users. Finally, we simulate queue sizes and throughput characteristics of RP-CDMA with various receiver structures and compare them to spread Aloha.

  10. Enhancing the Performance of Random Access Networks with Random Packet CDMA and Joint Detection

    Science.gov (United States)

    Kempter, Roland; Amini, Peiman; Farhang-Boroujeny, Behrouz

    2008-12-01

    Random packet CDMA (RP-CDMA) is a recently proposed random transmission scheme which has been designed from the beginning as a cross-layer method to overcome the restrictive nature of the Aloha protocol. Herein, we more precisely model its performance and investigate throughput and network stability. In contrast to previous works, we adopt the spread Aloha model for header transmission, and the performance of different joint detection methods for the payload data is investigated. Furthermore, we introduce performance measures for multiple access systems based on the diagonal elements of a modified multipacket reception matrix, and show that our measures describe the upper limit of the vector of stable arrival rates for a finite number of users. Finally, we simulate queue sizes and throughput characteristics of RP-CDMA with various receiver structures and compare them to spread Aloha.

  11. Design of Randomly Deployed Heterogeneous Wireless Sensor Networks by Algorithms Based on Swarm Intelligence

    OpenAIRE

    Joon-Woo Lee; Won Kim

    2015-01-01

    This paper reports the design of a randomly deployed heterogeneous wireless sensor network (HWSN) with two types of nodes: a powerful node and an ordinary node. Powerful nodes, such as Cluster Heads (CHs), communicate directly to the data sink of the network, and ordinary nodes sense the desired information and transmit the processed data to powerful nodes. The heterogeneity of HWSNs improves the networks lifetime and coverage. This paper focuses on the design of a random network among HWSNs....

  12. Growing adaptive machines combining development and learning in artificial neural networks

    CERN Document Server

    Bredeche, Nicolas; Doursat, René

    2014-01-01

    The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs, and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a...

  13. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  14. Growing Pains: The Asia Pacific Refugee Rights Network at Seven Years

    Directory of Open Access Journals (Sweden)

    Savitri Taylor

    2016-07-01

    Full Text Available The Asia Pacific Refugee Rights Network (APRRN, founded in late 2008, now has 249 members, including 135 organisational members, across 26 countries. APRRN’s mission, as stated in its Constitution, is ‘to advance the rights of refugees and other people in need of protection in the Asia Pacific region’. APRRN’s organisational membership (i.e. voting membership is incredibly diverse. APRRN has chosen to deal with this challenge through incrementally increasing the formalisation of its governance arrangements as its membership has grown. In theory, this kind of bureaucratisation makes for greater organisational longevity and stability than more informal ways of operating.  The problem is that APRRN’s membership and agenda have expanded to a point where the weight has probably become too great for the actual strength of APRRN’s supporting infrastructure. Over the period 2012-2014, APRRN developed a Vision for Regional Protection which is very expansive in scope. APRRN has foreshadowed development of a Plan of Action to achieve the Vision as well as a Research and Consultation Framework though there has been not much movement on this front. If APRRN decides to continue pursuing its agenda setting ambitions, it needs to prioritise its goals and focus on achieving one at a time; otherwise it risks achieving none at all. Agenda setting ambitions aside, APRRN endeavours to achieve its mission through ‘outreach and sharing of knowledge and resources’, ‘mutual capacity strengthening’, and ‘joint advocacy’. Mutual capacity strengthening undoubtedly advances APRRN’s mission; outreach carries risks as well as benefits; and some joint advocacy activities are more useful than others. Other things being held constant, APRRN probably needs to decide whether it wants to focus on being an agenda setter at a regional level or wants to focus on supporting organisational members to achieve their individual goals, which will usually be

  15. Stability and anomalous entropic elasticity of sub isostatic random-bond networks

    OpenAIRE

    Wigbers, Manon C.; MacKintosh, Fred C.; Dennison, Matthew

    2014-01-01

    We study the elasticity of thermalized spring networks under an applied bulk strain. The networks considered are sub-isostatic random-bond networks that, in the athermal limit, are known to have vanishing bulk and linear shear moduli at zero bulk strain. Above a bulk strain threshold, however, these networks become rigid, although surprisingly the shear modulus remains zero until a second, higher, strain threshold. We find that thermal fluctuations stabilize all networks below the rigidity tr...

  16. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work proposes a new protocol applying on– the–fly random linear network coding in wireless mesh net- works. The protocol provides increased reliability, low delay, and high throughput to the upper layers, while being oblivious to their specific requirements. This seemingly conflicting goals ...... and evaluated in a real test bed with Raspberry Pi devices. We show that order of magnitude gains in throughput over plain TCP are possible with moderate losses and up to two fold improvement in per packet delay in our results....

  17. Complementary feeding: a Global Network cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Pasha Omrana

    2011-01-01

    Full Text Available Abstract Background Inadequate and inappropriate complementary feeding are major factors contributing to excess morbidity and mortality in young children in low resource settings. Animal source foods in particular are cited as essential to achieve micronutrient requirements. The efficacy of the recommendation for regular meat consumption, however, has not been systematically evaluated. Methods/Design A cluster randomized efficacy trial was designed to test the hypothesis that 12 months of daily intake of beef added as a complementary food would result in greater linear growth velocity than a micronutrient fortified equi-caloric rice-soy cereal supplement. The study is being conducted in 4 sites of the Global Network for Women's and Children's Health Research located in Guatemala, Pakistan, Democratic Republic of the Congo (DRC and Zambia in communities with toddler stunting rates of at least 20%. Five clusters per country were randomized to each of the food arms, with 30 infants in each cluster. The daily meat or cereal supplement was delivered to the home by community coordinators, starting when the infants were 6 months of age and continuing through 18 months. All participating mothers received nutrition education messages to enhance complementary feeding practices delivered by study coordinators and through posters at the local health center. Outcome measures, obtained at 6, 9, 12, and 18 months by a separate assessment team, included anthropometry; dietary variety and diversity scores; biomarkers of iron, zinc and Vitamin B12 status (18 months; neurocognitive development (12 and 18 months; and incidence of infectious morbidity throughout the trial. The trial was supervised by a trial steering committee, and an independent data monitoring committee provided oversight for the safety and conduct of the trial. Discussion Findings from this trial will test the efficacy of daily intake of meat commencing at age 6 months and, if beneficial, will

  18. The investigation of social networks based on multi-component random graphs

    Science.gov (United States)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  19. Stability and dynamical properties of material flow systems on random networks

    Science.gov (United States)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  20. Long-range navigation on complex networks using Lévy random walks

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2012-11-01

    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by Lévy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the Lévy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the Lévy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: Lévy navigation strategies and dynamics on complex networks.

  1. Evaluating network-level predictors of behavior change among injection networks enrolled in the HPTN 037 randomized controlled trial.

    Science.gov (United States)

    Smith, Laramie R; Strathdee, Steffanie A; Metzger, David; Latkin, Carl

    2017-06-01

    Little is known about ways network-level factors that may influence the adoption of combination prevention behaviors among injection networks, or how network-oriented interventions might moderate this behavior change process. A total of 232 unique injection risk networks in Philadelphia, PA, were randomized to a peer educator network-oriented intervention or standard of care control arm. Network-level aggregates reflecting the injection networks' baseline substance use dynamics, social interactions, and the networks exposure to gender- and structural-related vulnerabilities were calculated and used to predict changes in the proportion of network members adopting safer injection practices at 6-month follow-up. At follow-up, safer injection practices were observed among 46.31% of a network's members on average. In contrast, 25.7% of networks observed no change. Controlling for the effects of the intervention, significant network-level factors influencing network-level behavior change reflected larger sized injection networks (b=2.20, p=0.013) with a greater proportion of members who shared needles (b=0.29, pnetwork's safer injection practices were also observed for networks with fewer new network members (b=-0.31, p=0.008), and for networks whose members were proportionally less likely to have experienced incarceration (b=-0.20, p=0.012) or more likely to have been exposed to drug treatment (b=0.17, p=0.034) in the 6-months prior to baseline. A significant interaction suggested the intervention uniquely facilitated change in safer injection practices among female-only networks (b=-0.32, p=0.046). Network-level factors offer insights into ways injection networks might be leveraged to promote combination prevention efforts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2017-11-22

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler which stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain, and is modulated by its projection domain. Site-specific pseudo-phosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phospho-dependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations which may have a deleterious impact during neurodegeneration. © 2017 by The American Society for Cell Biology.

  3. Documenting Uncertainty and Error in Gridded Growing Degree Day and Spring Onset Maps Generated by the USA National Phenology Network

    Science.gov (United States)

    Crimmins, T. M.; Switzer, J.; Rosemartin, A.; Marsh, L.; Gerst, K.; Crimmins, M.; Weltzin, J. F.

    2016-12-01

    Since 2016 the USA National Phenology Network (USA-NPN; www.usanpn.org) has produced and delivered daily maps and short-term forecasts of accumulated growing degree days and spring onset dates at fine spatial scale for the conterminous United States. Because accumulated temperature is a strong driver of phenological transitions in plants and animals, including leaf-out, flowering, fruit ripening, and migration, these data products have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, determining planting dates, anticipating allergy outbreaks and planning agricultural harvest dates. The USA-NPN is a national-scale program that supports scientific advancement and decision-making by collecting, storing, and sharing phenology data and information. We will be expanding the suite of gridded map products offered by the USA-NPN to include predictive species-specific maps of phenological transitions in plants and animals at fine spatial and temporal resolution in the future. Data products, such as the gridded maps currently produced by the USA-NPN, inherently contain uncertainty and error arising from multiple sources, including error propagated forward from underlying climate data and from the models implemented. As providing high-quality, vetted data in a transparent way is central to the USA-NPN, we aim to identify and report the sources and magnitude of uncertainty and error in gridded maps and forecast products. At present, we compare our real-time gridded products to independent, trustworthy data sources, such as the Climate Reference Network, on a daily basis and report Mean Absolute Error and bias through an interactive online dashboard.

  4. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Science.gov (United States)

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  5. Mission-Aware Medium Access Control in Random Access Networks

    OpenAIRE

    Park, Jaeok; Van Der Schaar, Mihaela

    2009-01-01

    We study mission-critical networking in wireless communication networks, where network users are subject to critical events such as emergencies and crises. If a critical event occurs to a user, the user needs to send necessary information for help as early as possible. However, most existing medium access control (MAC) protocols are not adequate to meet the urgent need for information transmission by users in a critical situation. In this paer, we propose a novel class of MAC protocols that u...

  6. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  7. Completely random measures for modelling block-structured sparse networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2016-01-01

    Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... [2014] proposed the use of a different notion of exchangeability due to Kallenberg [2006] and obtained a network model which admits power-law behaviour while retaining desirable statistical properties, however this model does not capture latent vertex traits such as block-structure. In this work we re......-introduce the use of block-structure for network models obeying allenberg’s notion of exchangeability and thereby obtain a model which admits the inference of block-structure and edge inhomogeneity. We derive a simple expression for the likelihood and an efficient sampling method. The obtained model...

  8. Effective trapping of random walkers in complex networks.

    Science.gov (United States)

    Hwang, S; Lee, D-S; Kahng, B

    2012-04-01

    Exploring the World Wide Web has become one of the key issues in information science, specifically in view of its application to the PageRank-like algorithms used in search engines. The random walk approach has been employed to study such a problem. The probability of return to the origin (RTO) of random walks is inversely related to how information can be accessed during random surfing. We find analytically that the RTO probability for a given starting node shows a crossover from a slow to a fast decay behavior with time and the crossover time increases with the degree of the starting node. We remark that the RTO probability becomes almost constant in the early-time regime as the degree exponent approaches two. This result indicates that a random surfer can be effectively trapped at the hub and supports the necessity of the random jump strategy empirically used in the Google's search engine.

  9. Throughput Analysis of Fading Sensor Networks with Regular and Random Topologies

    Directory of Open Access Journals (Sweden)

    Liu Xiaowen

    2005-01-01

    Full Text Available We present closed-form expressions of the average link throughput for sensor networks with a slotted ALOHA MAC protocol in Rayleigh fading channels. We compare networks with three regular topologies in terms of throughput, transmit efficiency, and transport capacity. In particular, for square lattice networks, we present a sensitivity analysis of the maximum throughput and the optimum transmit probability with respect to the signal-to-interference ratio threshold. For random networks with nodes distributed according to a two-dimensional Poisson point process, the average throughput is analytically characterized and numerically evaluated. It turns out that although regular networks have an only slightly higher average link throughput than random networks for the same link distance, regular topologies have a significant benefit when the end-to-end throughput in multihop connections is considered.

  10. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  11. Neural network based adaptive control of nonlinear plants using random search optimization algorithms

    Science.gov (United States)

    Boussalis, Dhemetrios; Wang, Shyh J.

    1992-01-01

    This paper presents a method for utilizing artificial neural networks for direct adaptive control of dynamic systems with poorly known dynamics. The neural network weights (controller gains) are adapted in real time using state measurements and a random search optimization algorithm. The results are demonstrated via simulation using two highly nonlinear systems.

  12. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  13. $k$-core percolation on complex networks: Comparing random, localized and targeted attacks

    CERN Document Server

    Yuan, Xin; Stanley, H Eugene; Havlin, Shlomo

    2016-01-01

    The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation in which a node fails when it becomes disconnected from the giant component. Here we study its generalization, $k$-core percolation, in which a node fails when it loses connection to a threshold $k$ number of neighbors. We study and compare analytically and by numerical simulations of $k$-core percolation the stability of networks under random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA exerts the greatest damage to the core structure of a network. We also find that for Erd\\H{o}s-R\\'{e}nyi (ER) networks, LA and RA exert equal damage to the core structure whereas for scale-free (SF) networks, LA exerts much more damage than RA does to the core structure.

  14. Multitarget search on complex networks: A logarithmic growth of global mean random cover time

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Yang, Ji; Bijarbooneh, Farshid Hassani; Hui, Pan

    2017-09-01

    We investigate multitarget search on complex networks and derive an exact expression for the mean random cover time that quantifies the expected time a walker needs to visit multiple targets. Based on this, we recover and extend some interesting results of multitarget search on networks. Specifically, we observe the logarithmic increase of the global mean random cover time with the target number for a broad range of random search processes, including generic random walks, biased random walks, and maximal entropy random walks. We show that the logarithmic growth pattern is a universal feature of multi-target search on networks by using the annealed network approach and the Sherman-Morrison formula. Moreover, we find that for biased random walks, the global mean random cover time can be minimized, and that the corresponding optimal parameter also minimizes the global mean first passage time, pointing towards its robustness. Our findings further confirm that the logarithmic growth pattern is a universal law governing multitarget search in confined media.

  15. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  16. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia.

    Science.gov (United States)

    Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T

    2015-07-21

    Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population.

  17. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  19. Random Walker Coverage Analysis for Information Dissemination in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Konstantinos Skiadopoulos

    2017-06-01

    Full Text Available The increasing technological progress in electronics provides network nodes with new and enhanced capabilities that allow the revisit of the traditional information dissemination (and collection problem. The probabilistic nature of information dissemination using random walkers is exploited here to deal with challenges imposed by unconventional modern environments. In such systems, node operation is not deterministic (e.g., does not depend only on network nodes’ battery, but it rather depends on the particulars of the ambient environment (e.g., in the case of energy harvesting: sunshine, wind. The mechanism of information dissemination using one random walker is studied and analyzed in this paper under a different and novel perspective. In particular, it takes into account the stochastic nature of random walks, enabling further understanding of network coverage. A novel and original analysis is presented, which reveals the evolution network coverage by a random walker with respect to time. The derived analytical results reveal certain additional interesting aspects regarding network coverage, thus shedding more light on the random walker mechanism. Further analytical results, regarding the walker’s spatial movement and its associated neighborhood, are also confirmed through experimentation. Finally, simulation results considering random geometric graph topologies, which are suitable for modeling mobile environments, support and confirm the analytical findings.

  20. Random Walks on Directed Networks: Inference and Respondent-driven Sampling

    CERN Document Server

    Malmros, Jens; Britton, Tom

    2013-01-01

    Respondent driven sampling (RDS) is a method often used to estimate population properties (e.g. sexual risk behavior) in hard-to-reach populations. It combines an effective modified snowball sampling methodology with an estimation procedure that yields unbiased population estimates under the assumption that the sampling process behaves like a random walk on the social network of the population. Current RDS estimation methodology assumes that the social network is undirected, i.e. that all edges are reciprocal. However, empirical social networks in general also have non-reciprocated edges. To account for this fact, we develop a new estimation method for RDS in the presence of directed edges on the basis of random walks on directed networks. We distinguish directed and undirected edges and consider the possibility that the random walk returns to its current position in two steps through an undirected edge. We derive estimators of the selection probabilities of individuals as a function of the number of outgoing...

  1. USING THE RANDOM OF QUANTIZATION IN THE SIMULATION OF NETWORKED CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. K. Bitiukov

    2014-01-01

    Full Text Available Network control systems using a network channel for communication between the elements. This approach has several advantages: lower installation costs, ease of configuration, ease of diagnostics and maintenance. The use of networks in control systems poses new problems. The network characteristics make the analysis, modeling, and control of networked control systems more complex and challenging. In the simulation must consider the following factors: packet loss, packet random time over the network, the need for location records in a channel simultaneously multiple data packets with sequential transmission. Attempts to account at the same time all of these factors lead to a significant increase in the dimension of the mathematical model and, as a con-sequence, a significant computational challenges. Such models tend to have a wide application in research. However, for engineering calculations required mathematical models of small dimension, but at the same time having sufficient accuracy. Considered the networks channels with random delays and packet loss. Random delay modeled by appropriate distribution the Erlang. The probability of packet loss depends on the arrival rate of data packets in the transmission channel, and the parameters of the distribution Erlang. We propose a model of the channel in the form of a serial connection of discrete elements. Discrete elements produce independents quantization of the input signal. To change the probability of packet loss is proposed to use a random quantization input signal. Obtained a formula to determine the probability of packet loss during transmission.

  2. Evolution of vocabulary on scale-free and random networks

    Science.gov (United States)

    Kalampokis, Alkiviadis; Kosmidis, Kosmas; Argyrakis, Panos

    2007-06-01

    We examine the evolution of the vocabulary of a group of individuals (linguistic agents) on a scale-free network, using Monte Carlo simulations and assumptions from evolutionary game theory. It is known that when the agents are arranged in a two-dimensional lattice structure and interact by diffusion and encounter, then their final vocabulary size is the maximum possible. Knowing all available words is essential in order to increase the probability to “survive” by effective reproduction. On scale-free networks we find a different result. It is not necessary to learn the entire vocabulary available. Survival chances are increased by using the vocabulary of the “hubs” (nodes with high degree). The existence of the “hubs” in a scale-free network is the source of an additional important fitness generating mechanism.

  3. Eigentime identities for random walks on a family of treelike networks and polymer networks

    Science.gov (United States)

    Dai, Meifeng; Wang, Xiaoqian; Sun, Yanqiu; Sun, Yu; Su, Weiyi

    2017-10-01

    In this paper, we investigate the eigentime identities quantifying as the sum of reciprocals of all nonzero normalized Laplacian eigenvalues on a family of treelike networks and the polymer networks. Firstly, for a family of treelike networks, it is shown that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. We obtain the scalings of the eigentime identity on a family of treelike with network size Nn is Nn lnNn. Then, for the polymer networks, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities. Using the relationship between the generation and the next generation of eigenvalues we obtain the scalings of the eigentime identity on the polymer networks with network size Nn is Nn lnNn. By comparing the eigentime identities on these two kinds of networks, their scalings with network size Nn are all Nn lnNn.

  4. Analysis of Greedy Decision Making for Geographic Routing for Networks of Randomly Moving Objects

    Directory of Open Access Journals (Sweden)

    Amber Israr

    2016-04-01

    Full Text Available Autonomous and self-organizing wireless ad-hoc communication networks for moving objects consist of nodes, which use no centralized network infrastructure. Examples of moving object networks are networks of flying objects, networks of vehicles, networks of moving people or robots. Moving object networks have to face many critical challenges in terms of routing because of dynamic topological changes and asymmetric networks links. A suitable and effective routing mechanism helps to extend the deployment of moving nodes. In this paper an attempt has been made to analyze the performance of the Greedy Decision method (position aware distance based algorithm for geographic routing for network nodes moving according to the random waypoint mobility model. The widely used GPSR (Greedy Packet Stateless Routing protocol utilizes geographic distance and position based data of nodes to transmit packets towards destination nodes. In this paper different scenarios have been tested to develop a concrete set of recommendations for optimum deployment of distance based Greedy Decision of Geographic Routing in randomly moving objects network

  5. A random walk evolution model of wireless sensor networks and virus spreading

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan

    2013-01-01

    In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations.

  6. Efficient randomization of biological networks while preserving functional characterization of individual nodes.

    Science.gov (United States)

    Iorio, Francesco; Bernardo-Faura, Marti; Gobbi, Andrea; Cokelaer, Thomas; Jurman, Giuseppe; Saez-Rodriguez, Julio

    2016-12-20

    Networks are popular and powerful tools to describe and model biological processes. Many computational methods have been developed to infer biological networks from literature, high-throughput experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess results' significance against null distributions of randomized networks. However, these standard unconstrained randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their degrees and connection signs), hence including potential biases in the assessment. Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced bipartite networks. Additionally, we reformulate the lower bound to the iterations' number of the switching-algorithm to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a case study about the identification of modules from gene expression data mapped on protein interaction networks, and a second one focused on building logic models from more complex signed-directed reference signaling networks and phosphoproteomic data. BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/ , and it should have a broad application as it allows an efficient and analytically derived statistical assessment of results from any network biology tool.

  7. Evaluation of geocast routing trees on random and actual networks

    NARCIS (Netherlands)

    Meijerink, Berend Jan; Baratchi, Mitra; Heijenk, Geert; Koucheryavy, Yevgeni; Mamatas, Lefteris; Matta, Ibrahim; Ometov, Aleksandr; Papadimitriou, Panagiotis

    2017-01-01

    Efficient geocast routing schemes are needed to transmit messages to mobile networked devices in geographically scoped areas. To design an efficient geocast routing algorithm a comprehensive evaluation of different routing tree approaches is needed. In this paper, we present an analytical study

  8. Network motif identification and structure detection with exponential random graph models

    Directory of Open Access Journals (Sweden)

    Munni Begum

    2014-12-01

    Full Text Available Local regulatory motifs are identified in the transcription regulatory network of the most studied model organism Escherichia coli (E. coli through graphical models. Network motifs are small structures in a network that appear more frequently than expected by chance alone. We apply social network methodologies such as p* models, also known as Exponential Random Graph Models (ERGMs, to identify statistically significant network motifs. In particular, we generate directed graphical models that can be applied to study interaction networks in a broad range of databases. The Markov Chain Monte Carlo (MCMC computational algorithms are implemented to obtain the estimates of model parameters to the corresponding network statistics. A variety of ERGMs are fitted to identify statistically significant network motifs in transcription regulatory networks of E. coli. A total of nine ERGMs are fitted to study the transcription factor - transcription factor interactions and eleven ERGMs are fitted for the transcription factor-operon interactions. For both of these interaction networks, arc (a directed edge in a directed network and k-istar (or incoming star structures, for values of k between 2 and 10, are found to be statistically significant local structures or network motifs. The goodness of fit statistics are provided to determine the quality of these models.

  9. Random variation in voluntary dry matter intake and effect of day length on feed intake capacity in growing cattle

    DEFF Research Database (Denmark)

    Ingvartsen, Klaus Lønne; Andersen, Refsgaard; Foldager, John

    1992-01-01

    in fifteen bulls, steers and heifers, respectively, fed a complete diet ad libitum. The diet was based on chopped straw formulated to secure physical regulation of feed intake. Total random variation of recorded VDMI corresponded to a coefficient of variation (CV) of 24.6%. Two thirds of this variation...... was increased by 0.32% per hour increase in day length. This is in agreement with the increase found in reviewed literature when photoperiod was manipulated artificially. Practical application of the results for monitoring purposes are exemplified and discussed....

  10. Application of Poisson random effect models for highway network screening.

    Science.gov (United States)

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs

    Directory of Open Access Journals (Sweden)

    Künzi Niklaus

    2002-01-01

    Full Text Available Abstract A random regression model for daily feed intake and a conventional multiple trait animal model for the four traits average daily gain on test (ADG, feed conversion ratio (FCR, carcass lean content and meat quality index were combined to analyse data from 1 449 castrated male Large White pigs performance tested in two French central testing stations in 1997. Group housed pigs fed ad libitum with electronic feed dispensers were tested from 35 to 100 kg live body weight. A quadratic polynomial in days on test was used as a regression function for weekly means of daily feed intake and to escribe its residual variance. The same fixed (batch and random (additive genetic, pen and individual permanent environmental effects were used for regression coefficients of feed intake and single measured traits. Variance components were estimated by means of a Bayesian analysis using Gibbs sampling. Four Gibbs chains were run for 550 000 rounds each, from which 50 000 rounds were discarded from the burn-in period. Estimates of posterior means of covariance matrices were calculated from the remaining two million samples. Low heritabilities of linear and quadratic regression coefficients and their unfavourable genetic correlations with other performance traits reveal that altering the shape of the feed intake curve by direct or indirect selection is difficult.

  12. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  13. Do natural proteins differ from random sequences polypeptides? Natural vs. random proteins classification using an evolutionary neural network.

    Directory of Open Access Journals (Sweden)

    Davide De Lucrezia

    Full Text Available Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity. The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random.

  14. Learning random networks for compression of still and moving images

    Science.gov (United States)

    Gelenbe, Erol; Sungur, Mert; Cramer, Christopher

    1994-01-01

    Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.

  15. Variability of Fiber Elastic Moduli in Composite Random Fiber Networks Makes the Network Softer

    Science.gov (United States)

    Ban, Ehsan; Picu, Catalin

    2015-03-01

    Athermal fiber networks are assemblies of beams or trusses. They have been used to model mechanics of fibrous materials such as biopolymer gels and synthetic nonwovens. Elasticity of these networks has been studied in terms of various microstructural parameters such as the stiffness of their constituent fibers. In this work we investigate the elasticity of composite fiber networks made from fibers with moduli sampled from a distribution function. We use finite elements simulations to study networks made by 3D Voronoi and Delaunay tessellations. The resulting data collapse to power laws showing that variability in fiber stiffness makes fiber networks softer. We also support the findings by analytical arguments. Finally, we apply these results to a network with curved fibers to explain the dependence of the network's modulus on the variation of its structural parameters.

  16. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2015-01-07

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  17. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    Science.gov (United States)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  18. Role Analysis in Networks using Mixtures of Exponential Random Graph Models.

    Science.gov (United States)

    Salter-Townshend, Michael; Murphy, Thomas Brendan

    2015-06-01

    A novel and flexible framework for investigating the roles of actors within a network is introduced. Particular interest is in roles as defined by local network connectivity patterns, identified using the ego-networks extracted from the network. A mixture of Exponential-family Random Graph Models is developed for these ego-networks in order to cluster the nodes into roles. We refer to this model as the ego-ERGM. An Expectation-Maximization algorithm is developed to infer the unobserved cluster assignments and to estimate the mixture model parameters using a maximum pseudo-likelihood approximation. The flexibility and utility of the method are demonstrated on examples of simulated and real networks.

  19. Effect of a Growing-up Milk Containing Synbiotics on Immune Function and Growth in Children: A Cluster Randomized, Multicenter, Double-blind, Placebo Controlled Study

    Directory of Open Access Journals (Sweden)

    Ninh Nguyen Xuan

    2013-01-01

    Full Text Available Common infectious diseases, such as diarrhea, are still the major cause of death in children under 5-years-old, particularly in developing countries. It is known that there is a close relationship between nutrition and immune function. To evaluate the effect of a growing-up milk containing synbiotics on immune function and child growth, we conducted a cluster randomized, multicenter, double-blind, placebo controlled clinical trial in children between 18 and 36 months of age in Vietnam. Eligible children from eight and seven kindergartens were randomly assigned to receive test and isocaloric/isoproteic control milk, respectively, for 5 months. We found that the blood immunoglobulin A (IgA level and growth parameters were increased in the test group. Compared to the control group, there was also a trend of decreased vitamin A deficiency and fewer adverse events in the test group. These data suggest that a growing-up milk containing synbiotics may be useful in supporting immune function and promoting growth in children.

  20. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.

    2015-11-25

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  1. Decentralized formation of random regular graphs for robust multi-agent networks

    KAUST Repository

    Yazicioglu, A. Yasin

    2014-12-15

    Multi-agent networks are often modeled via interaction graphs, where the nodes represent the agents and the edges denote direct interactions between the corresponding agents. Interaction graphs have significant impact on the robustness of networked systems. One family of robust graphs is the random regular graphs. In this paper, we present a locally applicable reconfiguration scheme to build random regular graphs through self-organization. For any connected initial graph, the proposed scheme maintains connectivity and the average degree while minimizing the degree differences and randomizing the links. As such, if the average degree of the initial graph is an integer, then connected regular graphs are realized uniformly at random as time goes to infinity.

  2. Risk Assessment of Distribution Network Based on Random set Theory and Sensitivity Analysis

    Science.gov (United States)

    Zhang, Sh; Bai, C. X.; Liang, J.; Jiao, L.; Hou, Z.; Liu, B. Zh

    2017-05-01

    Considering the complexity and uncertainty of operating information in distribution network, this paper introduces the use of random set for risk assessment. The proposed method is based on the operating conditions defined in the random set framework to obtain the upper and lower cumulative probability functions of risk indices. Moreover, the sensitivity of risk indices can effectually reflect information about system reliability and operating conditions, and by use of these information the bottlenecks that suppress system reliability can be found. The analysis about a typical radial distribution network shows that the proposed method is reasonable and effective.

  3. Trend-driven information cascades on random networks.

    Science.gov (United States)

    Kobayashi, Teruyoshi

    2015-12-01

    Threshold models of global cascades have been extensively used to model real-world collective behavior, such as the contagious spread of fads and the adoption of new technologies. A common property of those cascade models is that a vanishingly small seed fraction can spread to a finite fraction of an infinitely large network through local infections. In social and economic networks, however, individuals' behavior is often influenced not only by what their direct neighbors are doing, but also by what the majority of people are doing as a trend. A trend affects individuals' behavior while individuals' behavior creates a trend. To analyze such a complex interplay between local- and global-scale phenomena, I generalize the standard threshold model by introducing a type of node called global nodes (or trend followers), whose activation probability depends on a global-scale trend, specifically the percentage of activated nodes in the population. The model shows that global nodes play a role as accelerating cascades once a trend emerges while reducing the probability of a trend emerging. Global nodes thus either facilitate or inhibit cascades, suggesting that a moderate share of trend followers may maximize the average size of cascades.

  4. Mean First Passage Time of Preferential Random Walks on Complex Networks with Applications

    Directory of Open Access Journals (Sweden)

    Zhongtuan Zheng

    2017-01-01

    Full Text Available This paper investigates, both theoretically and numerically, preferential random walks (PRW on weighted complex networks. By using two different analytical methods, two exact expressions are derived for the mean first passage time (MFPT between two nodes. On one hand, the MFPT is got explicitly in terms of the eigenvalues and eigenvectors of a matrix associated with the transition matrix of PRW. On the other hand, the center-product-degree (CPD is introduced as one measure of node strength and it plays a main role in determining the scaling of the MFPT for the PRW. Comparative studies are also performed on PRW and simple random walks (SRW. Numerical simulations of random walks on paradigmatic network models confirm analytical predictions and deepen discussions in different aspects. The work may provide a comprehensive approach for exploring random walks on complex networks, especially biased random walks, which may also help to better understand and tackle some practical problems such as search and routing on networks.

  5. Cascading failures in interdependent modular networks with partial random coupling preference

    Science.gov (United States)

    Tian, Meng; Wang, Xianpei; Dong, Zhengcheng; Zhu, Guowei; Long, Jiachuang; Dai, Dangdang; Zhang, Qilin

    2017-10-01

    Cascading failures have been widely analyzed in interdependent networks with different coupling preferences from microscopic and macroscopic perspectives in recent years. Plenty of real-world interdependent infrastructures, representing as interdependent networks, exhibit community structure, one of the most important mesoscopic structures, and partial coupling preferences, which can affect cascading failures in interdependent networks. In this paper, we propose the partial random coupling in communities, investigating cascading failures in interdependent modular scale-free networks under inner attacks and hub attacks. We mainly analyze the effects of the discoupling probability and the intermodular connection probability on cascading failures in interdependent networks. We find that increasing either the dicoupling probability or the intermodular connection probability can enhance the network robustness under both hub attacks and inner attacks. We also note that the community structure can prevent cascading failures spreading globally in entire interdependent networks. Finally, we obtain the result that if we want to efficiently improve the robustness of interdependent networks and reduce the protection cost, the intermodular connection probability should be protected preferentially, implying that improving the robustness of a single network is the fundamental method to enhance the robustness of the entire interdependent networks.

  6. Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-04-01

    Fiber networks are assemblies of one-dimensional elements representative of materials with fibrous microstructures such as collagen networks and synthetic nonwovens. The mechanics of random fiber networks has been the focus of numerous studies. However, fiber crimp has been explicitly represented only in few cases. In the present work, the mechanics of cross-linked networks with crimped athermal fibers, with and without an embedding elastic matrix, is studied. The dependence of the effective network stiffness on the fraction of nonstraight fibers and the relative crimp amplitude (or tortuosity) is studied using finite element simulations of networks with sinusoidally curved fibers. A semi-analytic model is developed to predict the dependence of network modulus on the crimp amplitude and the bounds of the stiffness reduction associated with the presence of crimp. The transition from the linear to the nonlinear elastic response of the network is rendered more gradual by the presence of crimp, and the effect of crimp on the network tangent stiffness decreases as strain increases. If the network is embedded in an elastic matrix, the effect of crimp becomes negligible even for very small, biologically relevant matrix stiffness values. However, the distribution of the maximum principal stress in the matrix becomes broader in the presence of crimp relative to the similar system with straight fibers, which indicates an increased probability of matrix failure.

  7. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    Science.gov (United States)

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  8. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Science.gov (United States)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  9. Dynamics of comb-of-comb-network polymers in random layered flows.

    Science.gov (United States)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength W_{α}. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν=2-α/2. Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t^{-α/2}. We show that the network with greater total mass moves faster.

  10. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  11. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  12. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    Science.gov (United States)

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-01-01

    Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the

  13. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory.

    Science.gov (United States)

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-08-14

    Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the recovery of gene

  14. Microscopic Evaluation of Electrical and Thermal Conduction in Random Metal Wire Networks.

    Science.gov (United States)

    Gupta, Ritu; Kumar, Ankush; Sadasivam, Sridhar; Walia, Sunil; Kulkarni, Giridhar U; Fisher, Timothy S; Marconnet, Amy

    2017-04-19

    Ideally, transparent heaters exhibit uniform temperature, fast response time, high achievable temperatures, low operating voltage, stability across a range of temperatures, and high optical transmittance. For metal network heaters, unlike for uniform thin-film heaters, all of these parameters are directly or indirectly related to the network geometry. In the past, at equilibrium, the temperature distributions within metal networks have primarily been studied using either a physical temperature probe or direct infrared (IR) thermography, but there are limits to the spatial resolution of these cameras and probes, and thus, only average regional temperatures have typically been measured. However, knowledge of local temperatures within the network with a very high spatial resolution is required for ensuring a safe and stable operation. Here, we examine the thermal properties of random metal network thin-film heaters fabricated from crack templates using high-resolution IR microscopy. Importantly, the heaters achieve predominantly uniform temperatures throughout the substrate despite the random crack network structure (e.g., unequal sized polygons created by metal wires), but the temperatures of the wires in the network are observed to be significantly higher than the substrate because of the significant thermal contact resistance at the interface between the metal and the substrate. Last, the electrical breakdown mechanisms within the network are examined through transient IR imaging. In addition to experimental measurements of temperatures, an analytical model of the thermal properties of the network is developed in terms of geometrical parameters and material properties, providing insights into key design rules for such transparent heaters. Beyond this work, the methods and the understanding developed here extend to other network-based heaters and conducting films, including those that are not transparent.

  15. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  16. Scaling laws for file dissemination in P2P networks with random contacts

    NARCIS (Netherlands)

    Núñez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate lambda a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted

  17. Relay-aided multi-cell broadcasting with random network coding

    DEFF Research Database (Denmark)

    Lu, Lu; Sun, Fan; Xiao, Ming

    2010-01-01

    We investigate a relay-aided multi-cell broadcasting system using random network codes, where the focus is on devising efficient scheduling algorithms between relay and base stations. Two scheduling algorithms are proposed based on different feedback strategies; namely, a one-step scheduling...

  18. Theoretical solutions for degree distribution of decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2017-05-01

    In this paper, theoretical solutions for degree distribution of decreasing random birth-and-death networks (0 probability generating function approach are employed. Then, based on the form of Poisson summation, we further confirm the tail characteristic of degree distribution is Poisson tail. Finally, simulations are carried out to verify these results by comparing the theoretical solutions with computer simulations.

  19. High Performance Ambipolar Field-Effect Transistor of Random Network Carbon Nanotubes

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Gao, Jia; Derenskyi, Vladimir; Gomulya, Widianta; Iezhokin, Igor; Gordiichuk, Pavlo; Herrmann, Andreas; Loi, Maria Antonietta

    2012-01-01

    Ambipolar field-effect transistors of random network carbon nanotubes are fabricated from an enriched dispersion utilizing a conjugated polymer as the selective purifying medium. The devices exhibit high mobility values for both holes and electrons (3 cm(2)/V.s) with a high on/off ratio (10(6)). The

  20. Active random noise control using adaptive learning rate neural networks with an immune feedback law

    Science.gov (United States)

    Sasaki, Minoru; Kuribayashi, Takumi; Ito, Satoshi

    2005-12-01

    In this paper an active random noise control using adaptive learning rate neural networks with an immune feedback law is presented. The adaptive learning rate strategy increases the learning rate by a small constant if the current partial derivative of the objective function with respect to the weight and the exponential average of the previous derivatives have the same sign, otherwise the learning rate is decreased by a proportion of its value. The use of an adaptive learning rate attempts to keep the learning step size as large as possible without leading to oscillation. In the proposed method, because of the immune feedback law change a learning rate of the neural networks individually and adaptively, it is expected that a cost function minimize rapidly and training time is decreased. Numerical simulations and experiments of active random noise control with the transfer function of the error path will be performed, to validate the convergence properties of the adaptive learning rate Neural Networks with the immune feedback law. Control results show that adaptive learning rate Neural Networks control structure can outperform linear controllers and conventional neural network controller for the active random noise control.

  1. Correlation of Eigenvector Centrality to Other Centrality Measures : Random, Small-World and Real-World Networks

    OpenAIRE

    Xiaojia He; Natarajan Meghanathan

    2016-01-01

    In this paper, we thoroughly investigate correlations of eigenvector centrality to five centrality measures, including degree centrality, betweenness centrality, clustering coefficient centrality, closeness centrality, and farness centrality, of various types of network (random network, small world network, and real-world network). For each network, we compute those six centrality measures, from which the correlation coefficient is determined. Our analysis suggests that the degree centrali...

  2. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants.

    Science.gov (United States)

    Boya P, Cristopher A; Fernández-Marín, Hermógenes; Mejía, Luis C; Spadafora, Carmenza; Dorrestein, Pieter C; Gutiérrez, Marcelino

    2017-07-17

    The fungus-growing ant-microbe symbiosis is an ideal system to study chemistry-based microbial interactions due to the wealth of microbial interactions described, and the lack of information on the molecules involved therein. In this study, we employed a combination of MALDI imaging mass spectrometry (MALDI-IMS) and MS/MS molecular networking to study chemistry-based microbial interactions in this system. MALDI IMS was used to visualize the distribution of antimicrobials at the inhibition zone between bacteria associated to the ant Acromyrmex echinatior and the fungal pathogen Escovopsis sp. MS/MS molecular networking was used for the dereplication of compounds found at the inhibition zones. We identified the antibiotics actinomycins D, X2 and X0β, produced by the bacterium Streptomyces CBR38; and the macrolides elaiophylin, efomycin A and efomycin G, produced by the bacterium Streptomyces CBR53.These metabolites were found at the inhibition zones using MALDI IMS and were identified using MS/MS molecular networking. Additionally, three shearinines D, F, and J produced by the fungal pathogen Escovopsis TZ49 were detected. This is the first report of elaiophylins, actinomycin X0β and shearinines in the fungus-growing ant symbiotic system. These results suggest a secondary prophylactic use of these antibiotics by A. echinatior because of their permanent production by the bacteria.

  3. Observer-based H(infinity) control for networked nonlinear systems with random packet losses.

    Science.gov (United States)

    Li, Jian Guo; Yuan, Jing Qi; Lu, Jun Guo

    2010-01-01

    This paper investigates the observer-based H(infinity) control problem of networked nonlinear systems with global Lipschitz nonlinearities and random communication packet losses. The random packet loss is modelled as a Bernoulli distributed white sequence with a known conditional probability distribution. In the presence of random packet losses, sufficient conditions for the existence of an observer-based feedback controller are derived, such that the closed-loop networked nonlinear system is exponentially stable in the mean-square sense, and a prescribed H(infinity) disturbance-rejection-attenuation performance is also achieved. Then a linear matrix inequality (LMI) approach for designing such an observer-based H(infinity) controller is presented. Finally, a simulation example is used to demonstrate the effectiveness of the proposed method. 2009. Published by Elsevier Ltd.

  4. Engineering Online and In-person Social Networks for Physical Activity: A Randomized Trial

    Science.gov (United States)

    Rovniak, Liza S.; Kong, Lan; Hovell, Melbourne F.; Ding, Ding; Sallis, James F.; Ray, Chester A.; Kraschnewski, Jennifer L.; Matthews, Stephen A.; Kiser, Elizabeth; Chinchilli, Vernon M.; George, Daniel R.; Sciamanna, Christopher N.

    2016-01-01

    Background Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. Purpose To conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively-measured outcomes. Methods Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3% male, 83.4% overweight/obese) were randomized to 1 of 3 groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking, and prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Results Participants increased their MVPA by 21.0 mins/week, 95% CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Conclusions Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. Trial Registration Number NCT01142804 PMID:27405724

  5. Engineering Online and In-Person Social Networks for Physical Activity: A Randomized Trial.

    Science.gov (United States)

    Rovniak, Liza S; Kong, Lan; Hovell, Melbourne F; Ding, Ding; Sallis, James F; Ray, Chester A; Kraschnewski, Jennifer L; Matthews, Stephen A; Kiser, Elizabeth; Chinchilli, Vernon M; George, Daniel R; Sciamanna, Christopher N

    2016-12-01

    Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. The purpose of this study was to conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively measured outcomes. Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3 % male, 83.4 % overweight/obese) were randomized to one of three groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking as well as prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Participants increased their MVPA by 21.0 min/week, 95 % CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. The trial was registered with the ClinicalTrials.gov (NCT01142804).

  6. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.

    Science.gov (United States)

    Jin, Tao; Stanciulescu, Ilinca

    2016-08-01

    This paper presents a computational framework to simulate the mechanical behavior of fibrous biomaterials with randomly distributed fiber networks. A random walk algorithm is implemented to generate the synthetic fiber network in 2D used in simulations. The embedded fiber approach is then adopted to model the fibers as embedded truss elements in the ground matrix, which is essentially equivalent to the affine fiber kinematics. The fiber-matrix interaction is partially considered in the sense that the two material components deform together, but no relative movement is considered. A variational approach is carried out to derive the element residual and stiffness matrices for finite element method (FEM), in which material and geometric nonlinearities are both included. Using a data structure proposed to record the network geometric information, the fiber network is directly incorporated into the FEM simulation without significantly increasing the computational cost. A mesh sensitivity analysis is conducted to show the influence of mesh size on various simulation results. The proposed method can be easily combined with Monte Carlo (MC) simulations to include the influence of the stochastic nature of the network and capture the material behavior in an average sense. The computational framework proposed in this work goes midway between homogenizing the fiber network into the surrounding matrix and accounting for the fully coupled fiber-matrix interaction at the segment length scale, and can be used to study the connection between the microscopic structure and the macro-mechanical behavior of fibrous biomaterials with a reasonable computational cost.

  7. Degree-correlation, omniscience, and randomized immunization protocols in finite networks

    CERN Document Server

    Alm, Jeremy F

    2016-01-01

    Many naturally occurring networks have a power-law degree distribution as well as a non-zero degree correlation. Despite this, most studies analyzing the efficiency of immunization strategies in networks have concentrated only on power-law degree distribution and ignored degree correlation. This study looks specifically at the effect degree-correlation has on the efficiency of several immunization strategies in scale-free networks. Generally, we found that positive degree correlation raises the number of immunized individuals needed to stop the spread of the infection. Importantly, we found that in networks with positive degree correlation, immunization strategies that utilize knowledge of initial popularity actually perform worse on average than random immunization strategies.

  8. H∞ Networked Cascade Control System Design for Turboshaft Engines with Random Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2017-01-01

    Full Text Available The distributed control architecture becomes more and more important in future gas turbine engine control systems, in which the sensors and actuators will be connected to the controllers via a network. Therefore, the control problem of network-enabled high-performance distributed engine control (DEC has come to play an important role in modern gas turbine control systems, while, due to the properties of the network, the packet dropouts must be considered. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine distributed controllers are designed based on the NCCS framework with H∞ state feedback under random packet dropouts. The sufficient robust stable conditions are derived via the Lyapunov stability theory and linear matrix inequality approach. Simulations illustrate the effectiveness of the presented method.

  9. LCN: a random graph mixture model for community detection in functional brain networks.

    Science.gov (United States)

    Bryant, Christopher; Zhu, Hongtu; Ahn, Mihye; Ibrahim, Joseph

    2017-01-01

    The aim of this article is to develop a Bayesian random graph mixture model (RGMM) to detect the latent class network (LCN) structure of brain connectivity networks and estimate the parameters governing this structure. The use of conjugate priors for unknown parameters leads to efficient estimation, and a well-known nonidentifiability issue is avoided by a particular parameterization of the stochastic block model (SBM). Posterior computation proceeds via an efficient Markov Chain Monte Carlo algorithm. Simulations demonstrate that LCN outperforms several other competing methods for community detection in weighted networks, and we apply our RGMM to estimate the latent community structures in the functional resting brain networks of 185 subjects from the ADHD-200 sample. We find overlap in the estimated community structure across subjects, but also heterogeneity even within a given diagnosis group.

  10. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    Science.gov (United States)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  11. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  12. Multiple random walks on complex networks: A harmonic law predicts search time

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Hui, Pan

    2017-05-01

    We investigate multiple random walks traversing independently and concurrently on complex networks and introduce the concept of mean first parallel passage time (MFPPT) to quantify their search efficiency. The mean first parallel passage time represents the expected time required to find a given target by one or some of the multiple walkers. We develop a general theory that allows us to calculate the MFPPT analytically. Interestingly, we find that the global MFPPT follows a harmonic law with respect to the global mean first passage times of the associated walkers. Remarkably, when the properties of multiple walkers are identical, the global MFPPT decays in a power law manner with an exponent of unity, irrespective of network structure. These findings are confirmed by numerical and theoretical results on various synthetic and real networks. The harmonic law reveals a universal principle governing multiple random walks on networks that uncovers the contribution and role of the combined walkers in a target search. Our paradigm is also applicable to a broad range of random search processes.

  13. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  14. Pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks

    Science.gov (United States)

    Wu, Shaochuan; Tan, Xuezhi

    2007-11-01

    By analyzing all kinds of address configuration algorithms, this paper provides a new pseudo-random dynamic address configuration (PRDAC) algorithm for mobile ad hoc networks. Based on PRDAC, the first node that initials this network randomly chooses a nonlinear shift register that can generates an m-sequence. When another node joins this network, the initial node will act as an IP address configuration sever to compute an IP address according to this nonlinear shift register, and then allocates this address and tell the generator polynomial of this shift register to this new node. By this means, when other node joins this network, any node that has obtained an IP address can act as a server to allocate address to this new node. PRDAC can also efficiently avoid IP conflicts and deal with network partition and merge as same as prophet address (PA) allocation and dynamic configuration and distribution protocol (DCDP). Furthermore, PRDAC has less algorithm complexity, less computational complexity and more sufficient assumption than PA. In addition, PRDAC radically avoids address conflicts and maximizes the utilization rate of IP addresses. Analysis and simulation results show that PRDAC has rapid convergence, low overhead and immune from topological structures.

  15. Fast Road Network Extraction in Satellite Images Using Mathematical Morphology and Markov Random Fields

    Directory of Open Access Journals (Sweden)

    Géraud Thierry

    2004-01-01

    Full Text Available We present a fast method for road network extraction in satellite images. It can be seen as a transposition of the segmentation scheme "watershed transform region adjacency graph Markov random fields" to the extraction of curvilinear objects. Many road extractors which are composed of two stages can be found in the literature. The first one acts like a filter that can decide from a local analysis, at every image point, if there is a road or not. The second stage aims at obtaining the road network structure. In the method we propose to rely on a "potential" image, that is, unstructured image data that can be derived from any road extractor filter. In such a potential image, the value assigned to a point is a measure of its likelihood to be located in the middle of a road. A filtering step applied on the potential image relies on the area closing operator followed by the watershed transform to obtain a connected line which encloses the road network. Then a graph describing adjacency relationships between watershed lines is built. Defining Markov random fields upon this graph, associated with an energetic model of road networks, leads to the expression of road network extraction as a global energy minimization problem. This method can easily be adapted to other image processing fields, where the recognition of curvilinear structures is involved.

  16. Estimating the Size of a Large Network and its Communities from a Random Sample.

    Science.gov (United States)

    Chen, Lin; Karbasi, Amin; Crawford, Forrest W

    2016-01-01

    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W ⊆ V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that accurately estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhaustive set of experiments to study the effects of sample size, K, and SBM model parameters on the accuracy of the estimates. The experimental results also demonstrate that PULSE significantly outperforms a widely-used method called the network scale-up estimator in a wide variety of scenarios.

  17. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    2009-05-01

    Full Text Available Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments.In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore.Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  18. An adaptive random search for short term generation scheduling with network constraints.

    Directory of Open Access Journals (Sweden)

    J A Marmolejo

    Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  19. Distributed Detection of Randomly Located Targets in Mobility-Assisted Sensor Networks with Node Mobility Management

    Directory of Open Access Journals (Sweden)

    Jayaweera SudharmanK

    2010-01-01

    Full Text Available Performance gain achieved by adding mobile nodes to a stationary sensor network for target detection depends on factors such as the number of mobile nodes deployed, mobility patterns, speed and energy constraints of mobile nodes, and the nature of the target locations (deterministic or random. In this paper, we address the problem of distributed detection of a randomly located target by a hybrid sensor network. Specifically, we develop two decision-fusion architectures for detection where in the first one, impact of node mobility is taken into account for decisions updating at the fusion center, while in the second model the impact of node mobility is taken at the node level decision updating. The cost of deploying mobile nodes is analyzed in terms of the minimum fraction of mobile nodes required to achieve the desired performance level within a desired delay constraint. Moreover, we consider managing node mobility under given constraints.

  20. Randomized gradient-free method for multiagent optimization over time-varying networks.

    Science.gov (United States)

    Yuan, Deming; Ho, Daniel W C

    2015-06-01

    In this brief, we consider the multiagent optimization over a network where multiple agents try to minimize a sum of nonsmooth but Lipschitz continuous functions, subject to a convex state constraint set. The underlying network topology is modeled as time varying. We propose a randomized derivative-free method, where in each update, the random gradient-free oracles are utilized instead of the subgradients (SGs). In contrast to the existing work, we do not require that agents are able to compute the SGs of their objective functions. We establish the convergence of the method to an approximate solution of the multiagent optimization problem within the error level depending on the smoothing parameter and the Lipschitz constant of each agent's objective function. Finally, a numerical example is provided to demonstrate the effectiveness of the method.

  1. Stability Analysis of Recurrent Neural Networks with Random Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Enwen Zhu

    2010-01-01

    Full Text Available In this paper, the exponential stability analysis problem is considered for a class of recurrent neural networks (RNNs with random delay and Markovian switching. The evolution of the delay is modeled by a continuous-time homogeneous Markov process with a finite number of states. The main purpose of this paper is to establish easily verifiable conditions under which the random delayed recurrent neural network with Markovian switching is exponentially stable. The analysis is based on the Lyapunov-Krasovskii functional and stochastic analysis approach, and the conditions are expressed in terms of linear matrix inequalities, which can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example is exploited to show the usefulness of the derived LMI-based stability conditions.

  2. Phase Transition with the Berezinskii-Kosterlitz-Thouless Singularity in the Ising Model on a Growing Network

    Science.gov (United States)

    Bauer, M.; Coulomb, S.; Dorogovtsev, S. N.

    2005-05-01

    We consider the ferromagnetic Ising model on a highly inhomogeneous network created by a growth process. We find that the phase transition in this system is characterized by the Berezinskii-Kosterlitz-Thouless singularity, although critical fluctuations are absent and the mean-field description is exact. Below this infinite order transition, the magnetization behaves as exp((-const/√(Tc-T)). We show that the critical point separates the phase with the power-law distribution of the linear response to a local field and the phase where this distribution rapidly decreases. We suggest that this phase transition occurs in a wide range of cooperative models with a strong infinite-range inhomogeneity.

  3. Control Capacity and A Random Sampling Method in Exploring Controllability of Complex Networks

    OpenAIRE

    Jia, Tao; Barab?si, Albert-L?szl?

    2013-01-01

    Controlling complex systems is a fundamental challenge of network science. Recent advances indicate that control over the system can be achieved through a minimum driver node set (MDS). The existence of multiple MDS's suggests that nodes do not participate in control equally, prompting us to quantify their participations. Here we introduce control capacity quantifying the likelihood that a node is a driver node. To efficiently measure this quantity, we develop a random sampling algorithm. Thi...

  4. Distributed Fusion Filtering in Networked Systems with Random Measurement Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Raquel Caballero-Águila

    2015-01-01

    Full Text Available The distributed fusion state estimation problem is addressed for sensor network systems with random state transition matrix and random measurement matrices, which provide a unified framework to consider some network-induced random phenomena. The process noise and all the sensor measurement noises are assumed to be one-step autocorrelated and different sensor noises are one-step cross-correlated; also, the process noise and each sensor measurement noise are two-step cross-correlated. These correlation assumptions cover many practical situations, where the classical independence hypothesis is not realistic. Using an innovation methodology, local least-squares linear filtering estimators are recursively obtained at each sensor. The distributed fusion method is then used to form the optimal matrix-weighted sum of these local filters according to the mean squared error criterion. A numerical simulation example shows the accuracy of the proposed distributed fusion filtering algorithm and illustrates some of the network-induced stochastic uncertainties that can be dealt with in the current system model, such as sensor gain degradation, missing measurements, and multiplicative noise.

  5. Naming games in two-dimensional and small-world-connected random geometric networks

    Science.gov (United States)

    Lu, Qiming; Korniss, G.; Szymanski, B. K.

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli , J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a “small-world”-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  6. Naming games in two-dimensional and small-world-connected random geometric networks.

    Science.gov (United States)

    Lu, Qiming; Korniss, G; Szymanski, B K

    2008-01-01

    We investigate a prototypical agent-based model, the naming game, on two-dimensional random geometric networks. The naming game [Baronchelli, J. Stat. Mech.: Theory Exp. (2006) P06014] is a minimal model, employing local communications that captures the emergence of shared communication schemes (languages) in a population of autonomous semiotic agents. Implementing the naming games with local broadcasts on random geometric graphs, serves as a model for agreement dynamics in large-scale, autonomously operating wireless sensor networks. Further, it captures essential features of the scaling properties of the agreement process for spatially embedded autonomous agents. Among the relevant observables capturing the temporal properties of the agreement process, we investigate the cluster-size distribution and the distribution of the agreement times, both exhibiting dynamic scaling. We also present results for the case when a small density of long-range communication links are added on top of the random geometric graph, resulting in a "small-world"-like network and yielding a significantly reduced time to reach global agreement. We construct a finite-size scaling analysis for the agreement times in this case.

  7. A hybrid network intrusion detection framework based on random forests and weighted k-means

    Directory of Open Access Journals (Sweden)

    Reda M. Elbasiony

    2013-12-01

    Full Text Available Many current NIDSs are rule-based systems, which are very difficult in encoding rules, and cannot detect novel intrusions. Therefore, a hybrid detection framework that depends on data mining classification and clustering techniques is proposed. In misuse detection, random forests classification algorithm is used to build intrusion patterns automatically from a training dataset, and then matches network connections to these intrusion patterns to detect network intrusions. In anomaly detection, the k-means clustering algorithm is used to detect novel intrusions by clustering the network connections’ data to collect the most of intrusions together in one or more clusters. In the proposed hybrid framework, the anomaly part is improved by replacing the k-means algorithm with another one called weighted k-means algorithm, moreover, it uses a proposed method in choosing the anomalous clusters by injecting known attacks into uncertain connections data. Our approaches are evaluated over the Knowledge Discovery and Data Mining (KDD’99 datasets.

  8. Properties of a new small-world network with spatially biased random shortcuts

    Science.gov (United States)

    Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko

    2017-11-01

    This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.

  9. Edge-based SEIR dynamics with or without infectious force in latent period on random networks

    Science.gov (United States)

    Wang, Yi; Cao, Jinde; Alsaedi, Ahmed; Ahmad, Bashir

    2017-04-01

    In nature, most of the diseases have latent periods, and most of the networks look as if they were spun randomly at the first glance. Hence, we consider SEIR dynamics with or without infectious force in latent period on random networks with arbitrary degree distributions. Both of these models are governed by intrinsically three dimensional nonlinear systems of ordinary differential equations, which are the same as classical SEIR models. The basic reproduction numbers and the final size formulae are explicitly derived. Predictions of the models agree well with the large-scale stochastic SEIR simulations on contact networks. In particular, for SEIR model without infectious force in latent period, although the length of latent period has no effect on the basic reproduction number and the final epidemic size, it affects the arrival time of the peak and the peak size; while for SEIR model with infectious force in latent period it also affects the basic reproduction number and the final epidemic size. These accurate model predictions, may provide guidance for the control of network infectious diseases with latent periods.

  10. Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting

    CERN Document Server

    Swapna, B T; Shroff, Ness B

    2011-01-01

    In an unreliable single-hop broadcast network setting, we investigate the throughput and decoding-delay performance of random linear network coding as a function of the coding window size and the network size. Our model consists of a source transmitting packets of a single flow to a set of $n$ users over independent erasure channels. The source performs random linear network coding (RLNC) over $k$ (coding window size) packets and broadcasts them to the users. We note that the broadcast throughput of RLNC must vanish with increasing $n$, for any fixed $k.$ Hence, in contrast to other works in the literature, we investigate how the coding window size $k$ must scale for increasing $n$. Our analysis reveals that the coding window size of $\\Theta(\\ln(n))$ represents a phase transition rate, below which the throughput converges to zero, and above which it converges to the broadcast capacity. Further, we characterize the asymptotic distribution of decoding delay and provide approximate expressions for the mean and v...

  11. Estimating the Size of a Large Network and its Communities from a Random Sample

    CERN Document Server

    Chen, Lin; Crawford, Forrest W

    2016-01-01

    Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V;E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership. Given this partial information, we propose an efficient PopULation Size Estimation algorithm, called PULSE, that correctly estimates the size of the whole population as well as the size of each community. To support our theoretical analysis, we perform an exhausti...

  12. Synaptic signal streams generated by ex vivo neuronal networks contain non-random, complex patterns.

    Science.gov (United States)

    Lee, Sangmook; Zemianek, Jill M; Shultz, Abraham; Vo, Anh; Maron, Ben Y; Therrien, Mikaela; Courtright, Christina; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2014-11-01

    Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks. Copyright © 2014. Published by Elsevier Ltd.

  13. The effects of the growing pro-social program on cognitive distortions and early maladaptive schemas over time in male prison inmates: A randomized controlled trial.

    Science.gov (United States)

    Brazão, Nélio; Rijo, Daniel; Salvador, Maria do Céu; Pinto-Gouveia, José

    2017-11-01

    This randomized controlled trial aimed to assess the efficacy of a structured cognitive-behavioral group program, Growing Pro-Social (GPS), in reducing cognitive distortions and early maladaptive schemas over time in male prison inmates. A total of 254 participants were recruited from nine Portuguese prisons and allocated to receive GPS (n = 121) or treatment as usual (n = 133). Participants were assessed with self-report measures on cognitive distortions and early maladaptive schemas at baseline, during intervention, at post-treatment and at 12 months' follow-up. Assessors were blind to group allocation. Treatment effects were tested with latent growth curve models. At baseline, no significant differences between conditions were found. Results from latent growth curve models showed that condition was a significant predictor of change observed in all outcome measures over time. When compared with the control group, the treatment group showed a significant increase on adaptive thinking, and a significant decrease of cognitive distortions and early maladaptive schemas over time. Results also showed that treatment effects were maintained over time (12 months after GPS completion). Additionally, participants who completed the program presented higher improvements on cognitive distortions and early maladaptive schemas over time than noncompleters. This study showed that a structured cognitive-behavioral group program can have positive effects on the cognitive functioning of male prison inmates, by reducing cognitive distortions and the prominence of early maladaptive schemas. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  15. Growing a professional network to over 3000 members in less than 4 years: evaluation of InspireNet, British Columbia's virtual nursing health services research network.

    Science.gov (United States)

    Frisch, Noreen; Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes

    2014-02-21

    Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals' use of a network designed to increase nurses' interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. "InspireNet", a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Network growth exceeded all expectations. Members engaged with varying aspects of the network's virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members' database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times each. At the time of writing, 21 research teams

  16. Growing a Professional Network to Over 3000 Members in Less Than 4 Years: Evaluation of InspireNet, British Columbia’s Virtual Nursing Health Services Research Network

    Science.gov (United States)

    Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes

    2014-01-01

    Background Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals’ use of a network designed to increase nurses’ interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. Objective “InspireNet”, a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Methods Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Results Network growth exceeded all expectations. Members engaged with varying aspects of the network’s virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members’ database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times

  17. Light scattering optimization of chitin random network in ultrawhite beetle scales

    Science.gov (United States)

    Utel, Francesco; Cortese, Lorenzo; Pattelli, Lorenzo; Burresi, Matteo; Vignolini, Silvia; Wiersma, Diederik

    2017-09-01

    Among the natural white colored photonics structures, a bio-system has become of great interest in the field of disordered optical media: the scale of the white beetle Chyphochilus. Despite its low thickness, on average 7 μm, and low refractive index, this beetle exhibits extreme high brightness and unique whiteness. These properties arise from the interaction of light with a complex network of chitin nano filaments embedded in the interior of the scales. As it's been recently claimed, this could be a consequence of the peculiar morphology of the filaments network that, by means of high filling fraction (0.61) and structural anisotropy, optimizes the multiple scattering of light. We therefore performed a numerical analysis on the structural properties of the chitin network in order to understand their role in the enhancement of the scale scattering intensity. Modeling the filaments as interconnected rod shaped scattering centers, we numerically generated the spatial coordinates of the network components. Controlling the quantities that are claimed to play a fundamental role in the brightness and whiteness properties of the investigated system (filling fraction and average rods orientation, i.e. the anisotropy of the ensemble of scattering centers), we obtained a set of customized random networks. FDTD simulations of light transport have been performed on these systems, observing high reflectance for all the visible frequencies and proving the implemented algorithm to numerically generate the structures is suitable to investigate the dependence of reflectance by anisotropy.

  18. All-Direction Random Routing for Source-Location Privacy Protecting against Parasitic Sensor Networks.

    Science.gov (United States)

    Wang, Na; Zeng, Jiwen

    2017-03-17

    Wireless sensor networks are deployed to monitor the surrounding physical environments and they also act as the physical environments of parasitic sensor networks, whose purpose is analyzing the contextual privacy and obtaining valuable information from the original wireless sensor networks. Recently, contextual privacy issues associated with wireless communication in open spaces have not been thoroughly addressed and one of the most important challenges is protecting the source locations of the valuable packages. In this paper, we design an all-direction random routing algorithm (ARR) for source-location protecting against parasitic sensor networks. For each package, the routing process of ARR is divided into three stages, i.e., selecting a proper agent node, delivering the package to the agent node from the source node, and sending it to the final destination from the agent node. In ARR, the agent nodes are randomly chosen in all directions by the source nodes using only local decisions, rather than knowing the whole topology of the networks. ARR can control the distributions of the routing paths in a very flexible way and it can guarantee that the routing paths with the same source and destination are totally different from each other. Therefore, it is extremely difficult for the parasitic sensor nodes to trace the packages back to the source nodes. Simulation results illustrate that ARR perfectly confuses the parasitic nodes and obviously outperforms traditional routing-based schemes in protecting source-location privacy, with a marginal increase in the communication overhead and energy consumption. In addition, ARR also requires much less energy than the cloud-based source-location privacy protection schemes.

  19. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    Science.gov (United States)

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  20. Estimating mean first passage time of biased random walks with short relaxation time on complex networks.

    Directory of Open Access Journals (Sweden)

    Zhuo Qi Lee

    Full Text Available Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees.

  1. Equivalence of effective medium and random resistor network models for disorder-induced unsaturating linear magnetoresistance

    Science.gov (United States)

    Ramakrishnan, Navneeth; Lai, Ying Tong; Lara, Silvia; Parish, Meera M.; Adam, Shaffique

    2017-12-01

    A linear unsaturating magnetoresistance at high perpendicular magnetic fields, together with a quadratic positive magnetoresistance at low fields, has been seen in many different experimental materials, ranging from silver chalcogenides and thin films of InSb to topological materials like graphene and Dirac semimetals. In the literature, two very different theoretical approaches have been used to explain this classical magnetoresistance as a consequence of sample disorder. The phenomenological random resistor network model constructs a grid of four terminal resistors, each with a varying random resistance. The effective medium theory model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. Here, we demonstrate numerically that both models belong to the same universality class and that a restricted class of the random resistor network is actually equivalent to the effective medium theory. Both models are also in good agreement with experiments on a diverse range of materials. Moreover, we show that in both cases, a single parameter, i.e., the ratio of the fluctuations in the carrier density to the average carrier density, completely determines the magnetoresistance profile.

  2. Unanticipated Effect of a Randomized Peer Network Intervention on Depressive Symptoms among Young Methamphetamine Users in Thailand

    Science.gov (United States)

    German, D.; Sutcliffe, C. G.; Sirirojn, B.; Sherman, S. G.; Latkin, C. A.; Aramrattana, A.; Celentano, D. D.

    2012-01-01

    We examined the effect on depressive symptoms of a peer network-oriented intervention effective in reducing sexual risk behavior and methamphetamine (MA) use. Current Thai MA users aged 18-25 years and their drug and/or sex network members enrolled in a randomized controlled trial with 4 follow-ups over 12 months. A total of 415 index participants…

  3. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    Science.gov (United States)

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  4. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  5. Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services

    DEFF Research Database (Denmark)

    Tassi, Andrea; Chatzigeorgiou, Ioannis; Roetter, Daniel Enrique Lucani

    2016-01-01

    techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterize the performance of users targeted by ultra-reliable layered multicast services. The proposed modeling allows to efficiently derive the average number of coded packet...... transmissions needed to recover one or more service layers. We design a convex resource allocation framework that allows to minimize the complexity of the RLNC decoder by jointly optimizing the transmission parameters and the sparsity of the code. The designed optimization framework also ensures service......Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different random linear network coding (RLNC...

  6. Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure

    CERN Document Server

    Ball, Frank

    2016-01-01

    This paper is concerned with the analysis of vaccination strategies in a stochastic SIR (susceptible $\\to$ infected $\\to$ removed) model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability and fraction of the population infected by such an outbreak. The performance of these schemes is studied numerically, focusing on the influence of the household size distribution and the degree distribution of the soc...

  7. Distributed Constrained Stochastic Subgradient Algorithms Based on Random Projection and Asynchronous Broadcast over Networks

    Directory of Open Access Journals (Sweden)

    Junlong Zhu

    2017-01-01

    Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.

  8. Control capacity and a random sampling method in exploring controllability of complex networks.

    Science.gov (United States)

    Jia, Tao; Barabási, Albert-László

    2013-01-01

    Controlling complex systems is a fundamental challenge of network science. Recent advances indicate that control over the system can be achieved through a minimum driver node set (MDS). The existence of multiple MDS's suggests that nodes do not participate in control equally, prompting us to quantify their participations. Here we introduce control capacity quantifying the likelihood that a node is a driver node. To efficiently measure this quantity, we develop a random sampling algorithm. This algorithm not only provides a statistical estimate of the control capacity, but also bridges the gap between multiple microscopic control configurations and macroscopic properties of the network under control. We demonstrate that the possibility of being a driver node decreases with a node's in-degree and is independent of its out-degree. Given the inherent multiplicity of MDS's, our findings offer tools to explore control in various complex systems.

  9. Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined Neural Networks

    DEFF Research Database (Denmark)

    Veenstra, Frank; Struck, Alexander; Krauledat, Matthias

    2015-01-01

    The acquisition and optimization of dynamically stable locomotion is important to engender fast and energy efficient locomotion in animals. Conventional optimization strategies tend to have difficulties in acquiring dynamically stable gaits in legged robots. In this paper, an evolving neural...... network (ENN) was implemented with the aim to optimize the locomotive behavior of a four-legged simulated robot. In the initial generation, individuals had neural networks (NNs) that were either predefined or randomly initialized. Additional investigations show that the efficiency of applying additional...... sensors to the simulated quadruped improved the performance of the ENN slightly. Promising results were seen in the evolutionary runs where the initial predefined NNs of the population contributed to slight movements of the limbs. This paper shows how a predefined ENNs linked to bio-inspired sensors can...

  10. A Cloud-Assisted Random Linear Network Coding Medium Access Control Protocol for Healthcare Applications

    Directory of Open Access Journals (Sweden)

    Elli Kartsakli

    2014-03-01

    Full Text Available Relay sensor networks are often employed in end-to-end healthcare applications to facilitate the information flow between patient worn sensors and the medical data center. Medium access control (MAC protocols, based on random linear network coding (RLNC, are a novel and suitable approach to efficiently handle data dissemination. However, several challenges arise, such as additional delays introduced by the intermediate relay nodes and decoding failures, due to channel errors. In this paper, we tackle these issues by adopting a cloud architecture where the set of relays is connected to a coordinating entity, called cloud manager. We propose a cloud-assisted RLNC-based MAC protocol (CLNC-MAC and develop a mathematical model for the calculation of the key performance metrics, namely the system throughput, the mean completion time for data delivery and the energy efficiency. We show the importance of central coordination in fully exploiting the gain of RLNC under error-prone channels.

  11. Statistics of energy dissipation and stress relaxation in a crumpling network of randomly folded aluminum foils

    Science.gov (United States)

    Balankin, Alexander S.; Susarrey Huerta, Orlando; Tapia, Viktor

    2013-09-01

    We study stress relaxation in hand folded aluminum foils subjected to the uniaxial compression force F(λ). We found that once the compression ratio is fixed (λ=const) the compression force decreases in time as F∝F0P(t), where P(t) is the survival probability time distribution belonging to the domain of attraction of max-stable distribution of the Fréchet type. This finding provides a general physical picture of energy dissipation in the crumpling network of a crushed elastoplastic foil. The difference between energy dissipation statistics in crushed viscoelastic papers and elastoplastic foils is outlined. Specifically, we argue that the dissipation of elastic energy in crushed aluminum foils is ruled by a multiplicative Poisson process governed by the maximum waiting time distribution. The mapping of this process into the problem of transient random walk on a fractal crumpling network is suggested.

  12. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  13. A novel root-index based prioritized random access scheme for 5G cellular networks

    Directory of Open Access Journals (Sweden)

    Taehoon Kim

    2015-12-01

    Full Text Available Cellular networks will play an important role in realizing the newly emerging Internet-of-Everything (IoE. One of the challenging issues is to support the quality of service (QoS during the access phase, while accommodating a massive number of machine nodes. In this paper, we show a new paradigm of multiple access priorities in random access (RA procedure and propose a novel root-index based prioritized random access (RIPRA scheme that implicitly embeds the access priority in the root index of the RA preambles. The performance evaluation shows that the proposed RIPRA scheme can successfully support differentiated performance for different access priority levels, even though there exist a massive number of machine nodes.

  14. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  15. Flexible sampling large-scale social networks by self-adjustable random walk

    Science.gov (United States)

    Xu, Xiao-Ke; Zhu, Jonathan J. H.

    2016-12-01

    Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.

  16. Social networking technologies as an emerging tool for HIV prevention: a cluster randomized trial.

    Science.gov (United States)

    Young, Sean D; Cumberland, William G; Lee, Sung-Jae; Jaganath, Devan; Szekeres, Greg; Coates, Thomas

    2013-09-03

    Social networking technologies are an emerging tool for HIV prevention. To determine whether social networking communities can increase HIV testing among African American and Latino men who have sex with men (MSM). Randomized, controlled trial with concealed allocation. (ClinicalTrials.gov: NCT01701206). Online. 112 MSM based in Los Angeles, more than 85% of whom were African American or Latino. Sixteen peer leaders were randomly assigned to deliver information about HIV or general health to participants via Facebook groups over 12 weeks. After participants accepted a request to join the group, participation was voluntary. Group participation and engagement were monitored. Participants could request a free, home-based HIV testing kit and completed questionnaires at baseline and 12-week follow-up. Participant acceptance of and engagement in the intervention and social network participation, rates of home-based HIV testing, and sexual risk behaviors. Almost 95% of intervention participants and 73% of control participants voluntarily communicated using the social platform. Twenty-five of 57 intervention participants (44%) requested home-based HIV testing kits compared with 11 of 55 control participants (20%) (difference, 24 percentage points [95% CI, 8 to 41 percentage points]). Nine of the 25 intervention participants (36%) who requested the test took it and mailed it back compared with 2 of the 11 control participants (18%) who requested the test. Retention at study follow-up was more than 93%. Only 2 Facebook communities were included for each group. Social networking communities are acceptable and effective tools to increase home-based HIV testing among at-risk populations. National Institute of Mental Health.

  17. Bayesian Markov Random Field analysis for protein function prediction based on network data.

    Science.gov (United States)

    Kourmpetis, Yiannis A I; van Dijk, Aalt D J; Bink, Marco C A M; van Ham, Roeland C H J; ter Braak, Cajo J F

    2010-02-24

    Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S. cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.

  18. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  19. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  20. Exploring the Causal Pathway From Telomere Length to Coronary Heart Disease: A Network Mendelian Randomization Study.

    Science.gov (United States)

    Zhan, Yiqiang; Karlsson, Ida K; Karlsson, Robert; Tillander, Annika; Reynolds, Chandra A; Pedersen, Nancy L; Hägg, Sara

    2017-07-21

    Observational studies have found shorter leukocyte telomere length (TL) to be a risk factor for coronary heart disease (CHD), and recently the association was suggested to be causal. However, the relationship between TL and common metabolic risk factors for CHD is not well understood. Whether these risk factors could explain pathways from TL to CHD warrants further attention. To examine whether metabolic risk factors for CHD mediate the causal pathway from short TL to increased risk of CHD using a network Mendelian randomization design. Summary statistics from several genome-wide association studies were used in a 2-sample Mendelian randomization study design. Network Mendelian randomization analysis-an approach using genetic variants as the instrumental variables for both the exposure and mediator to infer causality-was performed to examine the causal association between telomeres and CHD and metabolic risk factors. Summary statistics from the ENGAGE Telomere Consortium were used (n=37 684) as a TL genetic instrument, CARDIoGRAMplusC4D Consortium data were used (case=22 233 and control=64 762) for CHD, and other consortia data were used for metabolic traits (fasting insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, fasting glucose, diabetes mellitus, glycohemoglobin, body mass index, waist circumference, and waist:hip ratio). One-unit increase of genetically determined TL was associated with -0.07 (95% confidence interval, -0.01 to -0.12; P=0.01) lower log-transformed fasting insulin (pmol/L) and 21% lower odds (95% confidence interval, 3-35; P=0.02) of CHD. Higher genetically determined log-transformed fasting insulin level was associated with higher CHD risk (odds ratio, 1.86; 95% confidence interval, 1.01-3.41; P=0.04). Overall, our findings support a role of insulin as a mediator on the causal pathway from shorter telomeres to CHD pathogenesis. © 2017 American Heart Association, Inc.

  1. Network Location-Aware Service Recommendation with Random Walk in Cyber-Physical Systems.

    Science.gov (United States)

    Yin, Yuyu; Yu, Fangzheng; Xu, Yueshen; Yu, Lifeng; Mu, Jinglong

    2017-09-08

    Cyber-physical systems (CPS) have received much attention from both academia and industry. An increasing number of functions in CPS are provided in the way of services, which gives rise to an urgent task, that is, how to recommend the suitable services in a huge number of available services in CPS. In traditional service recommendation, collaborative filtering (CF) has been studied in academia, and used in industry. However, there exist several defects that limit the application of CF-based methods in CPS. One is that under the case of high data sparsity, CF-based methods are likely to generate inaccurate prediction results. In this paper, we discover that mining the potential similarity relations among users or services in CPS is really helpful to improve the prediction accuracy. Besides, most of traditional CF-based methods are only capable of using the service invocation records, but ignore the context information, such as network location, which is a typical context in CPS. In this paper, we propose a novel service recommendation method for CPS, which utilizes network location as context information and contains three prediction models using random walking. We conduct sufficient experiments on two real-world datasets, and the results demonstrate the effectiveness of our proposed methods and verify that the network location is indeed useful in QoS prediction.

  2. Asymptotic Analysis of Large Cooperative Relay Networks Using Random Matrix Theory

    Directory of Open Access Journals (Sweden)

    H. Poor

    2008-04-01

    Full Text Available Cooperative transmission is an emerging communication technology that takes advantage of the broadcast nature of wireless channels. In cooperative transmission, the use of relays can create a virtual antenna array so that multiple-input/multiple-output (MIMO techniques can be employed. Most existing work in this area has focused on the situation in which there are a small number of sources and relays and a destination. In this paper, cooperative relay networks with large numbers of nodes are analyzed, and in particular the asymptotic performance improvement of cooperative transmission over direction transmission and relay transmission is analyzed using random matrix theory. The key idea is to investigate the eigenvalue distributions related to channel capacity and to analyze the moments of this distribution in large wireless networks. A performance upper bound is derived, the performance in the low signal-to-noise-ratio regime is analyzed, and two approximations are obtained for high and low relay-to-destination link qualities, respectively. Finally, simulations are provided to validate the accuracy of the analytical results. The analysis in this paper provides important tools for the understanding and the design of large cooperative wireless networks.

  3. Landslide Displacement Prediction With Uncertainty Based on Neural Networks With Random Hidden Weights.

    Science.gov (United States)

    Lian, Cheng; Zeng, Zhigang; Yao, Wei; Tang, Huiming; Chen, Chun Lung Philip

    2016-12-01

    In this paper, we propose a new approach to establish a landslide displacement forecasting model based on artificial neural networks (ANNs) with random hidden weights. To quantify the uncertainty associated with the predictions, a framework for probabilistic forecasting of landslide displacement is developed. The aim of this paper is to construct prediction intervals (PIs) instead of deterministic forecasting. A lower-upper bound estimation (LUBE) method is adopted to construct ANN-based PIs, while a new single hidden layer feedforward ANN with random hidden weights for LUBE is proposed. Unlike the original implementation of LUBE, the input weights and hidden biases of the ANN are randomly chosen, and only the output weights need to be adjusted. Combining particle swarm optimization (PSO) and gravitational search algorithm (GSA), a hybrid evolutionary algorithm, PSOGSA, is utilized to optimize the output weights. Furthermore, a new ANN objective function, which combines a modified combinational coverage width-based criterion with one-norm regularization, is proposed. Two benchmark data sets and two real-world landslide data sets are presented to illustrate the capability and merit of our method. Experimental results reveal that the proposed method can construct high-quality PIs.

  4. Assessing Wheat Frost Risk with the Support of GIS: An Approach Coupling a Growing Season Meteorological Index and a Hybrid Fuzzy Neural Network Model

    Directory of Open Access Journals (Sweden)

    Yaojie Yue

    2016-12-01

    Full Text Available Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS, a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008. Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is

  5. Neural networks combined with region growing techniques for tumor detection in [18F]-fluorothymidine dynamic positron emission tomography breast cancer studies

    Science.gov (United States)

    Cseh, Zoltan; Kenny, Laura; Swingland, James; Bose, Subrata; Turheimer, Federico E.

    2013-03-01

    Early detection and precise localization of malignant tumors has been a primary challenge in medical imaging in recent years. Functional modalities play a continuously increasing role in these efforts. Image segmentation algorithms which enable automatic, accurate tumor visualization and quantification on noisy positron emission tomography (PET) images would significantly improve the quality of treatment planning processes and in turn, the success of treatments. In this work a novel multistep method has been applied in order to identify tumor regions in 4D dynamic [18F] fluorothymidine (FLT) PET studies of patients with locally advanced breast cancer. In order to eliminate the effect of inherently detectable high inhomogeneity inside tumors, specific voxel-kinetic classes were initially introduced by finding characteristic FLT-uptake curves with K-means algorithm on a set of voxels collected from each tumor. Image voxel sets were then split based on voxel time-activity curve (TAC) similarities, and models were generated separately on each voxel set. At first, artificial neural networks, in comparison with linear classification algorithms were applied to distinguish tumor and healthy regions relying on the characteristics of TACs of the individual voxels. The outputs of the best model with very high specificity were then used as input seeds for region shrinking and growing techniques, the application of which considerably enhanced the sensitivity and specificity (78.65% +/- 0.65% and 98.98% +/- 0.03%, respectively) of the final image segmentation model.

  6. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  7. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  8. Randomized Trial of a Social Networking Intervention for Cancer-Related Distress.

    Science.gov (United States)

    Owen, Jason E; O'Carroll Bantum, Erin; Pagano, Ian S; Stanton, Annette

    2017-10-01

    Web and mobile technologies appear to hold promise for delivering evidence-informed and evidence-based intervention to cancer survivors and others living with trauma and other psychological concerns. Health-space.net was developed as a comprehensive online social networking and coping skills training program for cancer survivors living with distress. The purpose of this study was to evaluate the effects of a 12-week social networking intervention on distress, depression, anxiety, vigor, and fatigue in cancer survivors reporting high levels of cancer-related distress. We recruited 347 participants from a local cancer registry and internet, and all were randomized to either a 12-week waiting list control group or to immediate access to the intervention. Intervention participants received secure access to the study website, which provided extensive social networking capabilities and coping skills training exercises facilitated by a professional facilitator. Across time, the prevalence of clinically significant depression symptoms declined from 67 to 34 % in both conditions. The health-space.net intervention had greater declines in fatigue than the waitlist control group, but the intervention did not improve outcomes for depression, trauma-related anxiety symptoms, or overall mood disturbance. For those with more severe levels of anxiety at baseline, greater engagement with the intervention was associated with higher levels of symptom reduction over time. The intervention resulted in small but significant effects on fatigue but not other primary or secondary outcomes. Results suggest that this social networking intervention may be most effective for those who have distress that is not associated with high levels of anxiety symptoms or very poor overall psychological functioning. The trial was registered with the ClinicalTrials.gov database ( ClinicalTrials.gov #NCT01976949).

  9. Growing Pains

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Heat expands and cold contracts: it’s a simple thermodynamic rule. But when temperatures swing from 300 K to near-absolute zero, this rule can mean a contraction of more than 80 metres across the LHC’s 27-km-long cryogenic system. Keeping this growth in check are compensators (a.k.a. bellows), which shrink and stretch in response to thermodynamic changes. Leak tests and X-rays now underway in the tunnel have revealed that these “joints” might be suffering from growing pains…   This 25-μm weld crack is thought to be the cause of the helium leaks. Prior to the LS1 warm-up, CERN’s cryogenic experts knew of two points in the machine’s cryogenic distribution system that were leaking helium. Fortunately, these leaks were sufficiently small, confined to known sub-sectors of the cryogenic line and – with help from the vacuum team (TE-VSC) – could easily be compensated for. But as the machine warmed up f...

  10. Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno; Thomsen, Henning; Popovski, Petar

    2015-01-01

    In this chapter, we describe and discuss the current LTE random access procedure and the Radio Access Network Load Control solution within LTE/LTE-A. We provide an overview of the several considered load control solutions and give a detailed description of the standardized Extended Access Class B...

  11. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  12. Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Shunhua Wang

    2013-01-01

    Full Text Available Flexible, transparent, and conductive films based on random networks of Ag nanowires were prepared by vacuum-filtrating method. The size of Ag nanowires prepared by hydrothermal method is uniform, with a relatively smaller diameter and a longer length, thereby achieving a high aspect ratio (>1000. The films fabricated by Ag nanowires exhibit the excellent transparency with a 92% optical transmittance and a low surface resistivity of 11 Ωsq−1. Importantly, both the transmittance and sheet resistance decrease with the increasing of the Ag nanowires contents. When the contents of Ag nanowires are up to 200 mg/m2 especially, the surface resistivity quickly falls below 5 Ωsq−1. Also, these films are robust, which have almost no change in sheet resistance after the repeating bends over 200 cycles. These encouraging results may have a potential application in flexible and transparent electronics and other heating systems.

  13. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  14. A Chemical Reaction Network to Generate Random, Power-Law-Distributed Time Intervals.

    Science.gov (United States)

    Krauss, Patrick; Schulze, Holger; Metzner, Claus

    2017-10-06

    In Lévy walks (LWs), particles move with a fixed speed along straight line segments and turn in new directions after random time intervals that are distributed according to a power law. Such LWs are thought to be an advantageous foraging and search strategy for organisms. While complex nervous systems are certainly capable of producing such behavior, it is not clear at present how single-cell organisms can generate the long-term correlated control signals required for a LW. Here, we construct a biochemical reaction system that generates long-time correlated concentration fluctuations of a signaling substance, with a tunable fractional exponent of the autocorrelation function. The network is based on well-known modules, and its basic function is highly robust with respect to the parameter settings.

  15. Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays

    Directory of Open Access Journals (Sweden)

    Ye-Guo Sun

    2012-01-01

    Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.

  16. Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

    Directory of Open Access Journals (Sweden)

    Qing Han

    2013-10-01

    Full Text Available Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.

  17. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A web-based, social networking physical activity intervention for insufficiently active adults delivered via Facebook app : randomized controlled trial

    OpenAIRE

    Maher, Carol; Ferguson, Monika; Vandelanotte, Corneel; Plotnikoff, Ron; de Bourdeaudhuij, Ilse; Thomas, Samantha; Nelson-Field, Karen; Olds, Tim

    2015-01-01

    Background Online social networks offer considerable potential for delivery of socially influential health behavior change interventions. Objective To determine the efficacy, engagement, and feasibility of an online social networking physical activity intervention with pedometers delivered via Facebook app. Methods A total of 110 adults with a mean age of 35.6 years (SD 12.4) were recruited online in teams of 3 to 8 friends. Teams were randomly allocated to receive access to a 50-day online s...

  19. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  20. Surgical interventions to treat humerus shaft fractures: A network meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Jia-Guo Zhao

    Full Text Available There are three main surgical techniques to treat humeral shaft fractures: open reduction and plate fixation (ORPF, intramedullary nail (IMN fixation, and minimally invasive percutaneous osteosynthesis (MIPO. We performed a network meta-analysis to compare three surgical procedures, including ORPF, IMN fixation, and MIPO, to provide the optimum treatment for humerus shaft fractures.MEDLINE, EMBASE, Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, and Cochrane library were researched for reports published up to May 2016. We only included randomized controlled trials (RCTs comparing two or more of the three surgical procedures, including the ORPF, IMN, and MIPO techniques, for humeral shaft fractures in adults. The methodological quality was evaluated based on the Cochrane risk of bias tool. We used WinBUGS1.4 to conduct this Bayesian network meta-analysis. We used the odd ratios (ORs with 95% confidence intervals (CIs to calculate the dichotomous outcomes and analyzed the percentages of the surface under the cumulative ranking curve.Seventeen eligible publications reporting 16 RCTs were included in this study. Eight hundred and thirty-two participants were randomized to receive one of three surgical procedures. The results showed that shoulder impingement occurred more commonly in the IMN group than with either ORPF (OR, 0.13; 95% CI, 0.03-0.37 or MIPO fixation (OR, 0.08; 95% CI, 0.00-0.69. Iatrogenic radial nerve injury occurred more commonly in the ORPF group than in the MIPO group (OR, 11.09; 95% CI, 1.80-124.20. There were no significant differences among the three procedures in nonunion, delayed union, and infection.Compared with IMN and ORPF, MIPO technique is the preferred treatment method for humeral shaft fractures.

  1. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways.

    Science.gov (United States)

    Burgess, Stephen; Daniel, Rhian M; Butterworth, Adam S; Thompson, Simon G

    2015-04-01

    Mendelian randomization uses genetic variants, assumed to be instrumental variables for a particular exposure, to estimate the causal effect of that exposure on an outcome. If the instrumental variable criteria are satisfied, the resulting estimator is consistent even in the presence of unmeasured confounding and reverse causation. We extend the Mendelian randomization paradigm to investigate more complex networks of relationships between variables, in particular where some of the effect of an exposure on the outcome may operate through an intermediate variable (a mediator). If instrumental variables for the exposure and mediator are available, direct and indirect effects of the exposure on the outcome can be estimated, for example using either a regression-based method or structural equation models. The direction of effect between the exposure and a possible mediator can also be assessed. Methods are illustrated in an applied example considering causal relationships between body mass index, C-reactive protein and uric acid. These estimators are consistent in the presence of unmeasured confounding if, in addition to the instrumental variable assumptions, the effects of both the exposure on the mediator and the mediator on the outcome are homogeneous across individuals and linear without interactions. Nevertheless, a simulation study demonstrates that even considerable heterogeneity in these effects does not lead to bias in the estimates. These methods can be used to estimate direct and indirect causal effects in a mediation setting, and have potential for the investigation of more complex networks between multiple interrelated exposures and disease outcomes. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.

  2. Support or competition? How online social networks increase physical activity: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jingwen Zhang, PhD

    2016-12-01

    Full Text Available To identify what features of online social networks can increase physical activity, we conducted a 4-arm randomized controlled trial in 2014 in Philadelphia, PA. Students (n = 790, mean age = 25.2 at an university were randomly assigned to one of four conditions composed of either supportive or competitive relationships and either with individual or team incentives for attending exercise classes. The social comparison condition placed participants into 6-person competitive networks with individual incentives. The social support condition placed participants into 6-person teams with team incentives. The combined condition with both supportive and competitive relationships placed participants into 6-person teams, where participants could compare their team's performance to 5 other teams' performances. The control condition only allowed participants to attend classes with individual incentives. Rewards were based on the total number of classes attended by an individual, or the average number of classes attended by the members of a team. The outcome was the number of classes that participants attended. Data were analyzed using multilevel models in 2014. The mean attendance numbers per week were 35.7, 38.5, 20.3, and 16.8 in the social comparison, the combined, the control, and the social support conditions. Attendance numbers were 90% higher in the social comparison and the combined conditions (mean = 1.9, SE = 0.2 in contrast to the two conditions without comparison (mean = 1.0, SE = 0.2 (p = 0.003. Social comparison was more effective for increasing physical activity than social support and its effects did not depend on individual or team incentives.

  3. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  4. The distribution of first hitting times of random walks on directed Erdős-Rényi networks

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan

    2017-04-01

    We present analytical results for the distribution of first hitting times of random walkers (RWs) on directed Erdős-Rényi (ER) networks. Starting from a random initial node, a random walker hops randomly along directed edges between adjacent nodes in the network. The path terminates either by the retracing scenario, when the walker enters a node which it has already visited before, or by the trapping scenario, when it becomes trapped in a dead-end node from which it cannot exit. The path length, namely the number of steps, d, pursued by the random walker from the initial node up to its termination, is called the first hitting time. Using recursion equations, we obtain analytical results for the tail distribution of first hitting times, P≤ft(d>\\ell \\right) . The results are found to be in excellent agreement with numerical simulations. It turns out that the distribution P≤ft(d>\\ell \\right) can be expressed as a product of an exponential distribution and a Rayleigh distribution. We obtain expressions for the mean, median and standard deviation of this distribution in terms of the network size and its mean degree. We also calculate the distribution of last hitting times, namely the path lengths of self-avoiding walks on directed ER networks, which do not retrace their paths. The last hitting times are found to be much longer than the first hitting times. The results are compared to those obtained for undirected ER networks. It is found that the first hitting times of RWs in a directed ER network are much longer than in the corresponding undirected network. This is due to the fact that RWs on directed networks do not exhibit the backtracking scenario, which is a dominant termination mechanism of RWs on undirected networks. It is shown that our approach also applies to a broader class of networks, referred to as semi-ER networks, in which the distribution of in-degrees is Poisson, while the out-degrees may follow any desired distribution with the same mean as

  5. Randomly biased investments and the evolution of public goods on interdependent networks

    Science.gov (United States)

    Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long

    2017-08-01

    Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.

  6. Heave motion prediction of a large barge in random seas by using artificial neural network

    Science.gov (United States)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  7. Random Neighborhood Graphs as Models of Fracture Networks on Rocks: Structural and Dynamical Analysis

    CERN Document Server

    Estrada, Ernesto

    2016-01-01

    We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...

  8. Griffiths singularities in the random quantum Ising antiferromagnet: A tree tensor network renormalization group study

    Science.gov (United States)

    Lin, Yu-Ping; Kao, Ying-Jer; Chen, Pochung; Lin, Yu-Cheng

    2017-08-01

    The antiferromagnetic Ising chain in both transverse and longitudinal magnetic fields is one of the paradigmatic models of a quantum phase transition. The antiferromagnetic system exhibits a zero-temperature critical line separating an antiferromagnetic phase and a paramagnetic phase; the critical line connects an integrable quantum critical point at zero longitudinal field and a classical first-order transition point at zero transverse field. Using a strong-disorder renormalization group method formulated as a tree tensor network, we study the zero-temperature phase of the quantum Ising chain with bond randomness. We introduce a new matrix product operator representation of high-order moments, which provides an efficient and accurate tool for determining quantum phase transitions via the Binder cumulant of the order parameter. Our results demonstrate an infinite-randomness quantum critical point in zero longitudinal field accompanied by pronounced quantum Griffiths singularities, arising from rare ordered regions with anomalously slow fluctuations inside the paramagnetic phase. The strong Griffiths effects are signaled by a large dynamical exponent z >1 , which characterizes a power-law density of low-energy states of the localized rare regions and becomes infinite at the quantum critical point. Upon application of a longitudinal field, the quantum phase transition between the paramagnetic phase and the antiferromagnetic phase is completely destroyed. Furthermore, quantum Griffiths effects are suppressed, showing z <1 , when the dynamics of the rare regions is hampered by the longitudinal field.

  9. Text Message Delivered Peer Network Counseling for Adolescent Smokers: A Randomized Controlled Trial.

    Science.gov (United States)

    Mason, Michael; Mennis, Jeremy; Way, Thomas; Zaharakis, Nikola; Campbell, Leah Floyd; Benotsch, Eric G; Keyser-Marcus, Lori; King, Laura

    2016-10-01

    Although adolescent tobacco use has declined in the last 10 years, African American high school seniors' past 30-day use has increased by 12 %, and as they age they are more likely to report lifetime use of tobacco. Very few urban youth are enrolled in evidenced-based smoking prevention and cessation programming. Therefore, we tested a text messaging smoking cessation intervention designed to engage urban youth through an automated texting program utilizing motivational interviewing-based peer network counseling. We recruited 200 adolescents (90.5 % African American) into a randomized controlled trial that delivered either the experimental intervention of 30 personalized motivational interviewing-based peer network counseling messages, or the attention control intervention, consisting of text messages covering general (non-smoking related) health habits. All adolescents were provided smart phones for the study and were assessed at baseline, and at 1, 3, and 6 months post intervention. Utilizing repeated measures general linear models we examined the effects of the intervention while controlling for race, gender, age, presence of a smoker in the home, and mental health counseling. At 6 months, participants in the experimental condition significantly decreased the number of days they smoked cigarettes and the number of cigarettes they smoked per day; they significantly increased their intentions not to smoke in the future; and significantly increased peer social support among girls. For boys, participants in the experimental condition significantly reduced the number of close friends in their networks who smoke daily compared to those in the control condition. Effect sizes ranged from small to large. These results provide encouraging evidence of the efficacy of text messaging interventions to reduce smoking among adolescents and our intervention holds promise as a large-scale public health preventive intervention platform.

  10. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    Science.gov (United States)

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that

  11. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  12. A Mixed-Methods Randomized Controlled Trial of Financial Incentives and Peer Networks to Promote Walking among Older Adults

    Science.gov (United States)

    Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason

    2014-01-01

    Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…

  13. Performance Evaluation of AODV, DSDV & DSR for Quasi Random Deployment of Sensor Nodes in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Ramjee; Cornean, Horia

    2011-01-01

    Sensor deployment is one of the key topics addressed in Wireless Sensor Network (WSN). This paper proposes a new deployment technique of sensor nodes for WSN called as Quasi Random Deployment (QRD). The novel approach to deploy sensor nodes in QRD fashion is to improve the energy efficiency...... of the WSN in order to increase the network life time and coverage. The QRD produces highly uniform coordinates and it systematically fills the specified area. Along with Random Deployment (RD) pattern of wireless sensor node QRD is analysed in this study. The network is simulated using NS-2 simulator...... energy consumption, coverage area. The simulation results show that the conventional routing protocols like DSR have a best performance for both RD and QRD of the sensor nodes when there is no mobility of the sensor nodes as compared to AODV and DSDV. Among AODV and DSDV, AODV performs better as compared...

  14. Emergent complex network geometry.

    Science.gov (United States)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-18

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  15. Network Support II: Randomized controlled trial of Network Support treatment and cognitive behavioral therapy for alcohol use disorder.

    Science.gov (United States)

    Litt, Mark D; Kadden, Ronald M; Tennen, Howard; Kabela-Cormier, Elise

    2016-08-01

    The social network of those treated for alcohol use disorder can play a significant role in subsequent drinking behavior, both for better and worse. Network Support treatment was devised to teach ways to reconstruct social networks so that they are more supportive of abstinence and less supportive of drinking. For many patients this may involve engagement with AA, but other strategies are also used. The current trial of Network Support treatment, building on our previous work, was intended to further enhance the ability of patients to construct abstinence-supportive social networks, and to test this approach against a strong control treatment. Patients were 193 men and women with alcohol use disorder recruited from the community and assigned to either 12 weeks of Network Support (NS) or Packaged Cognitive-Behavioral Treatment (PCBT), and followed for 27 months. Results of multilevel analyses indicated that NS yielded better posttreatment results in terms of both proportion of days abstinent and drinking consequences, and equivalent improvements in 90-day abstinence, heavy drinking days and drinks per drinking day. Mediation analyses revealed that NS treatment effects were mediated by pre-post changes in abstinence self-efficacy and in social network variables, especially proportion of non-drinkers in the social network and attendance at Alcoholics Anonymous. It was concluded that helping patients enhance their abstinent social network can be effective, and may provide a useful alternative or adjunctive approach to treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Acupuncture for Myofascial Pain Syndrome: A Network Meta-Analysis of 33 Randomized Controlled Trials.

    Science.gov (United States)

    Li, Xiuxia; Wang, Rong; Xing, Xin; Shi, Xiue; Tian, Jinhui; Zhang, Jun; Ge, Long; Zhang, Jingyun; Li, Lun; Yang, Kehu

    2017-09-01

    Acupuncture techniques are commonly used as initial treatments for myofascial pain syndrome. This study aimed to assess and compare the efficacy and safety of different techniques of acupuncture for myofascial pain syndrome. Network meta-analysis. All selected studies were randomized controlled trials (RCTs). The Cochrane Central Register of Controlled Trials, PubMed, Web of Science, EMBASE, and Chinese Biomedical Literature Database were searched from their inceptions to February 2016. Only full texts of RCTs comparing acupuncture therapies with any other therapies or placebo-sham acupuncture were included. Two reviewers independently assessed eligibility and extracted data. The primary outcomes included pain intensity, PPT, and adverse events. Secondary outcome was physical function. Thirty-three trials with 1,692 patients were included. Patients were allocated to 22 kinds of interventions, of which dry needling and manual acupuncture was the most frequently investigated intervention. Compared with placebo-sham acupuncture, scraping combined with warming acupuncture and moxibustion was found to be more effective for decreasing pain intensity (standardized mean difference (SMD) = -3.6, 95% confidence interval (CI) ranging from -5.2 to -2.1); miniscalpel-needle was more effective for increasing the PPT (SMD = 2.2, 95% CI ranging from 1.2 to 3.1); trigger points injection with bupivacaine was associated with the highest risk of adverse event (odds ratio = 557.2, 95% CI ranging from 3.6 to 86867.3); and only EA showed a significant difference in the ROM (SMD = -4.4, 95% CI ranging from -7.5 to -1.3). Lack of clarity concerning treatment periods, repetitive RCTs, and other valuable outcome measurements. The potential bias might affect the judgment of efficacy and safety. The existing evidence suggests that most acupuncture therapies, including acupuncture combined with other therapies, are effective in decreasing pain and in improving physical function, but additional

  17. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks

    Directory of Open Access Journals (Sweden)

    Alberto eCapurro

    2012-04-01

    Full Text Available Neural responses to odor blends often interact at different stages of the olfactory pathway. The first olfactory processing center in insects, the antennal lobe (AL, exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth M. sexta with those generated using a population-based computational model constructed from the morphologically-based connectivity pattern of projection neurons (PNs and local interneurons (LNs with randomized connection probabilities, from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons (OSNs and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.

  18. Network Statistical Models for Language Learning Contexts: Exponential Random Graph Models and Willingness to Communicate

    Science.gov (United States)

    Gallagher, H. Colin; Robins, Garry

    2015-01-01

    As part of the shift within second language acquisition (SLA) research toward complex systems thinking, researchers have called for investigations of social network structure. One strand of social network analysis yet to receive attention in SLA is network statistical models, whereby networks are explained in terms of smaller substructures of…

  19. The distribution of first hitting times of non-backtracking random walks on Erdős-Rényi networks

    Science.gov (United States)

    Tishby, Ido; Biham, Ofer; Katzav, Eytan

    2017-05-01

    We present analytical results for the distribution of first hitting times of non-backtracking random walks on finite Erdős-Rényi networks of N nodes. The walkers hop randomly between adjacent nodes on the network, without stepping back to the previous node, until they hit a node which they have already visited before or get trapped in a dead-end node. At this point, the path is terminated. The length, d, of the resulting path, is called the first hitting time. Using recursion equations, we obtain analytical results for the tail distribution of first hitting times, P(d > \\ell) , \\ell=0, 1, 2, \\dots , of non-backtracking random walks starting from a random initial node. It turns out that the distribution P(d > \\ell) is given by a product of a discrete Rayleigh distribution and an exponential distribution. We obtain analytical expressions for central measures (mean and median) and a dispersion measure (standard deviation) of this distribution. It is found that the paths of non-backtracking random walks, up to their termination at the first hitting time, are longer, on average, than those of the corresponding simple random walks. However, they are shorter than those of self avoiding walks on the same network, which terminate at the last hitting time. We obtain analytical results for the probabilities, p ret and p trap, that a path will terminate by retracing, namely stepping into an already visited node, or by trapping, namely entering a node of degree k  =  1, which has no exit link, respectively. It is shown that in dilute networks the dominant termination scenario is trapping while in dense networks most paths terminate by retracing. We obtain expressions for the conditional tail distributions of path lengths, P(d> \\ell \\vert ret) and P(d> \\ell \\vert {trap}) , for those paths which terminate by retracing or by trapping, respectively. We also study a class of generalized non-backtracking random walk models which not only avoid the backtracking step

  20. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    Directory of Open Access Journals (Sweden)

    Huifa Lin

    Full Text Available We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  1. Random-network simulation of an ultracapacitor based on metal-solid-electrolyte composite

    Science.gov (United States)

    Abel, J.; Kornyshev, A. A.

    1996-09-01

    A random-network model of a dense (pore-free) metal-solid-electrolyte composite is developed. Real and imaginary parts of admittance are simulated as a function of frequency and composition by means of the transfer matrix algorithm on a cubic lattice. For a composite without a solid-electrolyte membrane in the middle (insulating with respect to electronic current) the results predict the capacity maximum at the percolation threshold in three dimensions and two maxima in two dimensions as a function of composition; they are compared with the predictions of the effective medium theory. For a composite with an insulating membrane in the middle, typical for ultracapacitors, the maximum of capacitance in three dimensions is at equal portion of metal and solid-electrolyte particles. In contrast to metal dielectric mixtures there are no giant enhancement effects in static capacitance as a function of composition: the upper estimates of the enhancement factor are proportional to the ratio of the size of the sample to the size of the grains.

  2. Randomness in the network inhibits cooperation based on the bounded rational collective altruistic decision

    Science.gov (United States)

    Ohdaira, Tetsushi

    2014-07-01

    Previous studies discussing cooperation employ the best decision that every player knows all information regarding the payoff matrix and selects the strategy of the highest payoff. Therefore, they do not discuss cooperation based on the altruistic decision with limited information (bounded rational altruistic decision). In addition, they do not cover the case where every player can submit his/her strategy several times in a match of the game. This paper is based on Ohdaira's reconsideration of the bounded rational altruistic decision, and also employs the framework of the prisoner's dilemma game (PDG) with sequential strategy. The distinction between this study and the Ohdaira's reconsideration is that the former covers the model of multiple groups, but the latter deals with the model of only two groups. Ohdaira's reconsideration shows that the bounded rational altruistic decision facilitates much more cooperation in the PDG with sequential strategy than Ohdaira and Terano's bounded rational second-best decision does. However, the detail of cooperation of multiple groups based on the bounded rational altruistic decision has not been resolved yet. This study, therefore, shows how randomness in the network composed of multiple groups affects the increase of the average frequency of mutual cooperation (cooperation between groups) based on the bounded rational altruistic decision of multiple groups. We also discuss the results of the model in comparison with related studies which employ the best decision.

  3. Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    Science.gov (United States)

    Lin, Huifa; Shin, Won-Yong

    2017-01-01

    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.

  4. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks

    Science.gov (United States)

    Wei, Qikang; Chen, Tao; Xu, Ruifeng; He, Yulan; Gui, Lin

    2016-01-01

    The recognition of disease and chemical named entities in scientific articles is a very important subtask in information extraction in the biomedical domain. Due to the diversity and complexity of disease names, the recognition of named entities of diseases is rather tougher than those of chemical names. Although there are some remarkable chemical named entity recognition systems available online such as ChemSpot and tmChem, the publicly available recognition systems of disease named entities are rare. This article presents a system for disease named entity recognition (DNER) and normalization. First, two separate DNER models are developed. One is based on conditional random fields model with a rule-based post-processing module. The other one is based on the bidirectional recurrent neural networks. Then the named entities recognized by each of the DNER model are fed into a support vector machine classifier for combining results. Finally, each recognized disease named entity is normalized to a medical subject heading disease name by using a vector space model based method. Experimental results show that using 1000 PubMed abstracts for training, our proposed system achieves an F1-measure of 0.8428 at the mention level and 0.7804 at the concept level, respectively, on the testing data of the chemical-disease relation task in BioCreative V. Database URL: http://219.223.252.210:8080/SS/cdr.html PMID:27777244

  5. Robust Fault-Tolerant Control for Uncertain Networked Control Systems with State-Delay and Random Data Packet Dropout

    Directory of Open Access Journals (Sweden)

    Xiaomei Qi

    2012-01-01

    Full Text Available A robust fault-tolerant controller design problem for networked control system (NCS with random packet dropout in both sensor-to-controller link and controller-to-actuator link is investigated. A novel stochastic NCS model with state-delay, model uncertainty, disturbance, probabilistic sensor failure, and actuator failure is proposed. The random packet dropout, sensor failures, and actuator failures are characterized by a binary random variable. The sufficient condition for asymptotical mean-square stability of NCS is derived and the closed-loop NCS satisfies H∞ performance constraints caused by the random packet dropout and disturbance. The fault-tolerant controller is designed by solving a linear matrix inequality. A numerical example is presented to illustrate the effectiveness of the proposed method.

  6. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. RADB: Random Access with Differentiated Barring for Latency-Constrained Applications in NB-IoT Network

    OpenAIRE

    Miao, Yiming; Tian, Yuanwen; Cheng, Jingjing; Hossain, M. Shamim; Ghoneim, Ahmed

    2018-01-01

    With the development of LPWA (Low Power Wide Area) technology, the emerging NB-IoT (Narrowband Internet of Things) technology is becoming popular with wide area and low-data-rate services. In order to achieve objectives such as huge amount of connection and wide area coverage within NB-IoT, the problem of network congestion generated by random access of numerous devices should be solved. In this paper, we first introduce the background of NB-IoT and investigate the research on random access o...

  8. Predicting the random drift of MEMS gyroscope based on K-means clustering and OLS RBF Neural Network

    Science.gov (United States)

    Wang, Zhen-yu; Zhang, Li-jie

    2017-10-01

    Measure error of the sensor can be effectively compensated with prediction. Aiming at large random drift error of MEMS(Micro Electro Mechanical System))gyroscope, an improved learning algorithm of Radial Basis Function(RBF) Neural Network(NN) based on K-means clustering and Orthogonal Least-Squares (OLS) is proposed in this paper. The algorithm selects the typical samples as the initial cluster centers of RBF NN firstly, candidates centers with K-means algorithm secondly, and optimizes the candidate centers with OLS algorithm thirdly, which makes the network structure simpler and makes the prediction performance better. Experimental results show that the proposed K-means clustering OLS learning algorithm can predict the random drift of MEMS gyroscope effectively, the prediction error of which is 9.8019e-007°/s and the prediction time of which is 2.4169e-006s

  9. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    NARCIS (Netherlands)

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as

  10. Targeted drugs for pulmonary arterial hypertension: a network meta-analysis of 32 randomized clinical trials

    Directory of Open Access Journals (Sweden)

    Gao XF

    2017-05-01

    Full Text Available Xiao-Fei Gao,1 Jun-Jie Zhang,1,2 Xiao-Min Jiang,1 Zhen Ge,1,2 Zhi-Mei Wang,1 Bing Li,1 Wen-Xing Mao,1 Shao-Liang Chen1,2 1Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 2Department of Cardiology, Nanjing Heart Center, Nanjing, People’s Republic of China Background: Pulmonary arterial hypertension (PAH is a devastating disease and ultimately leads to right heart failure and premature death. A total of four classical targeted drugs, prostanoids, endothelin receptor antagonists (ERAs, phosphodiesterase 5 inhibitors (PDE-5Is, and soluble guanylate cyclase stimulator (sGCS, have been proved to improve exercise capacity and hemodynamics compared to placebo; however, direct head-to-head comparisons of these drugs are lacking. This network meta-analysis was conducted to comprehensively compare the efficacy of these targeted drugs for PAH.Methods: Medline, the Cochrane Library, and other Internet sources were searched for randomized clinical trials exploring the efficacy of targeted drugs for patients with PAH. The primary effective end point of this network meta-analysis was a 6-minute walk distance (6MWD.Results: Thirty-two eligible trials including 6,758 patients were identified. There was a statistically significant improvement in 6MWD, mean pulmonary arterial pressure, pulmonary vascular resistance, and clinical worsening events associated with each of the four targeted drugs compared with placebo. Combination therapy improved 6MWD by 20.94 m (95% confidence interval [CI]: 6.94, 34.94; P=0.003 vs prostanoids, and 16.94 m (95% CI: 4.41, 29.47; P=0.008 vs ERAs. PDE-5Is improved 6MWD by 17.28 m (95% CI: 1.91, 32.65; P=0.028 vs prostanoids, with a similar result with combination therapy. In addition, combination therapy reduced mean pulmonary artery pressure by 3.97 mmHg (95% CI: -6.06, -1.88; P<0.001 vs prostanoids, 8.24 mmHg (95% CI: -10.71, -5.76; P<0.001 vs ERAs, 3.38 mmHg (95% CI: -6.30, -0.47; P=0.023 vs

  11. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    Science.gov (United States)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  12. A feed-forward neural network for modeling feeding behavior of group-housed grow-finish pigs with respect to thermal conditions

    Science.gov (United States)

    Feeding patterns of pigs in the grow-finish phase have been investigated for use in management decisions, identifying sick animals, and determining genetic differences within a herd. Development of models to predict swine feeding behavior has been limited due the large number of potential environmen...

  13. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    Science.gov (United States)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  14. A Robust on-Demand Path-Key Establishment Framework via Random Key Predistribution for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wu Weili

    2006-01-01

    Full Text Available Secure communication is a necessity for some wireless sensor network (WSN applications. However, the resource constraints of a sensor render existing cryptographic systems for traditional network systems impractical for a WSN. Random key predistribution scheme has been proposed to overcome these limits. In this scheme, a ring of keys is randomly drawn from a large key pool and assigned to a sensor. Nodes sharing common keys can communicate securely using a shared key, while a path-key is established for those nodes that do not share any common keys. This scheme requires moderate memory and processing power, thus it is considered suitable for WSN applications. However, since the shared key is not exclusively owned by the two end entities, the established path-key may be revealed to other nodes just by eavesdropping. Based on the random-key predistribution scheme, we present a framework that utilizes multiple proxies to secure the path-key establishment. Our scheme is resilient against node capture, collusive attack, and random dropping, while only incurring a small amount of overhead. Furthermore, the scheme ensures that, with high probability, all path-keys are exclusively known by the two end nodes involved in the communication along the path.

  15. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    Science.gov (United States)

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  16. Viking Disruptions or Growing Integration?

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2012-01-01

    Long-distance communication has emerged as a particular focus for archaeological exploration using network theory, analysis, and modelling. Initial attempts to adapt methods from social network analysis to archaeological data have, however, struggled to produce decisive results. This paper...... demonstrates how formal network analysis can be combined with a contextual reading of evidence relating to a long-distance communication network in the past. A study of the combined distributions of ten vessel types in 152 settlement sites from the 10th century suggests the outline of the core structure...... of the network. The model implies that 10th century long-distance exchange in the North Sea region featured long-distance links equal to those of the Carolingian emporia trade, and represented a growth in terms of new axes of integration, above all the growing links between the Scandinavian Peninsula...

  17. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Science.gov (United States)

    Barekatain, Behrang; Khezrimotlagh, Dariush; Aizaini Maarof, Mohd; Ghaeini, Hamid Reza; Salleh, Shaharuddin; Quintana, Alfonso Ariza; Akbari, Behzad; Cabrera, Alicia Triviño

    2013-01-01

    In recent years, Random Network Coding (RNC) has emerged as a promising solution for efficient Peer-to-Peer (P2P) video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  18. MATIN: a random network coding based framework for high quality peer-to-peer live video streaming.

    Directory of Open Access Journals (Sweden)

    Behrang Barekatain

    Full Text Available In recent years, Random Network Coding (RNC has emerged as a promising solution for efficient Peer-to-Peer (P2P video multicasting over the Internet. This probably refers to this fact that RNC noticeably increases the error resiliency and throughput of the network. However, high transmission overhead arising from sending large coefficients vector as header has been the most important challenge of the RNC. Moreover, due to employing the Gauss-Jordan elimination method, considerable computational complexity can be imposed on peers in decoding the encoded blocks and checking linear dependency among the coefficients vectors. In order to address these challenges, this study introduces MATIN which is a random network coding based framework for efficient P2P video streaming. The MATIN includes a novel coefficients matrix generation method so that there is no linear dependency in the generated coefficients matrix. Using the proposed framework, each peer encapsulates one instead of n coefficients entries into the generated encoded packet which results in very low transmission overhead. It is also possible to obtain the inverted coefficients matrix using a bit number of simple arithmetic operations. In this regard, peers sustain very low computational complexities. As a result, the MATIN permits random network coding to be more efficient in P2P video streaming systems. The results obtained from simulation using OMNET++ show that it substantially outperforms the RNC which uses the Gauss-Jordan elimination method by providing better video quality on peers in terms of the four important performance metrics including video distortion, dependency distortion, End-to-End delay and Initial Startup delay.

  19. Construction of citrus gene coexpression networks from microarray data using random matrix theory

    Science.gov (United States)

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G.

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus. PMID:26504573

  20. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks.

    Science.gov (United States)

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-11-06

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search.

  1. Pharmacological and psychotherapeutic interventions for management of poststroke depression: A Bayesian network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Sun, Xuejun; Deng, Linghui; Qiu, Shi; Tu, Xiang; Wang, Deren; Liu, Ming

    2017-02-01

    Poststroke depression (PSD) constitutes an important complication of stroke, leading to great disability as well as increased mortality. Since which treatment for PSD should be preferred are still matters of controversy, we are aiming to compare and rank these pharmacological and nonpharmacological interventions. We will employ a network meta-analysis to incorporate both direct and indirect evidence from relevant trials. We will search PubMed, the Cochrane Library Central Register of Controlled Trials, Embase, and the reference lists of relevant articles for randomized controlled trials (RCT) of different PSD treatment strategies. The characteristics of each RCT will be summarized, including the study characteristics, the participant characteristics, the outcome measurements, and adverse events. The risk of bias will be assessed by means of the Cochrane Collaboration's risk of bias tool. The primary outcome was change in Hamilton Depression Scale (HAMD) score. Secondary outcomes involve patient response rate (defined as at least a 50% score reduction on HAMD), and remission rate (defined as no longer meeting baseline criteria for depression). Moreover, we will assess the acceptability of treatments according to treatment discontinuation. We will perform pairwise meta-analyses by random effects model and network meta-analysis by Bayesian random effects model. Formal ethical approval is not required as primary data will not be collected. Our results will help to reduce the uncertainty about the effectiveness and safety of PSD management, which will encourage further research for other therapeutic options. The review will be disseminated in peer-reviewed publications and conference presentations. CRD42016049049.

  2. Explaining the structure of inter-organizational networks using exponential random graph models

    NARCIS (Netherlands)

    Broekel, T.; Hartog, M.

    2013-01-01

    A key question raised in recent years is what factors determine the structure of interorganizational networks. Most research so far has focused on different forms of proximity between organizations, namely geographical, cognitive, social, institutional and organizational proximity, which are

  3. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control.

    Science.gov (United States)

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2016-12-01

    This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bidirectional Long Short-Term Memory Network with a Conditional Random Field Layer for Uyghur Part-Of-Speech Tagging

    Directory of Open Access Journals (Sweden)

    Maihemuti Maimaiti

    2017-11-01

    Full Text Available Uyghur is an agglutinative and a morphologically rich language; natural language processing tasks in Uyghur can be a challenge. Word morphology is important in Uyghur part-of-speech (POS tagging. However, POS tagging performance suffers from error propagation of morphological analyzers. To address this problem, we propose a few models for POS tagging: conditional random fields (CRF, long short-term memory (LSTM, bidirectional LSTM networks (BI-LSTM, LSTM networks with a CRF layer, and BI-LSTM networks with a CRF layer. These models do not depend on stemming and word disambiguation for Uyghur and combine hand-crafted features with neural network models. State-of-the-art performance on Uyghur POS tagging is achieved on test data sets using the proposed approach: 98.41% accuracy on 15 labels and 95.74% accuracy on 64 labels, which are 2.71% and 4% improvements, respectively, over the CRF model results. Using engineered features, our model achieves further improvements of 0.2% (15 labels and 0.48% (64 labels. The results indicate that the proposed method could be an effective approach for POS tagging in other morphologically rich languages.

  5. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons.

    Science.gov (United States)

    Siri, Benoît; Quoy, Mathias; Delord, Bruno; Cessac, Bruno; Berry, Hugues

    2007-01-01

    The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the "edge of chaos" where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.

  6. Enhanced modularity-based community detection by random walk network preprocessing.

    Science.gov (United States)

    Lai, Darong; Lu, Hongtao; Nardini, Christine

    2010-06-01

    The representation of real systems with network models is becoming increasingly common and critical to both capture and simplify systems' complexity, notably, via the partitioning of networks into communities. In this respect, the definition of modularity, a common and broadly used quality measure for networks partitioning, has induced a surge of efficient modularity-based community detection algorithms. However, recently, the optimization of modularity has been found to show a resolution limit, which reduces its effectiveness and range of applications. Therefore, one recent trend in this area of research has been related to the definition of novel quality functions, alternative to modularity. In this paper, however, instead of laying aside the important body of knowledge developed so far for modularity-based algorithms, we propose to use a strategy to preprocess networks before feeding them into modularity-based algorithms. This approach is based on the observation that dynamic processes triggered on vertices in the same community possess similar behavior patterns but dissimilar on vertices in different communities. Validations on real-world and synthetic networks demonstrate that network preprocessing can enhance the modularity-based community detection algorithms to find more natural clusters and effectively alleviates the problem of resolution limit.

  7. Image reconstruction of the location of macro-inhomogeneity in random turbid medium by using artificial neural networks

    Science.gov (United States)

    Veksler, Boris A.; Maksimova, Irina L.; Meglinski, Igor V.

    2007-07-01

    Nowadays the artificial neural network (ANN), an effective powerful technique that is able denoting complex input and output relationships, is widely used in different biomedical applications. In present study the applying of ANN for the determination of characteristics of random highly scattering medium (like bio-tissue) is considered. Spatial distribution of the backscattered light calculated by Monte Carlo method is used to train ANN for multiply scattering regimes. The potential opportunities of use of ANN for image reconstruction of an absorbing macro inhomogeneity located in topical layers of random scattering medium are presented. This is especially of high priority because of new diagnostics/treatment developing that is based on the applying gold nano-particles for labeling cancer cells.

  8. A Web-Based, Social Networking Physical Activity Intervention for Insufficiently Active Adults Delivered via Facebook App: Randomized Controlled Trial.

    Science.gov (United States)

    Maher, Carol; Ferguson, Monika; Vandelanotte, Corneel; Plotnikoff, Ron; De Bourdeaudhuij, Ilse; Thomas, Samantha; Nelson-Field, Karen; Olds, Tim

    2015-07-13

    Online social networks offer considerable potential for delivery of socially influential health behavior change interventions. To determine the efficacy, engagement, and feasibility of an online social networking physical activity intervention with pedometers delivered via Facebook app. A total of 110 adults with a mean age of 35.6 years (SD 12.4) were recruited online in teams of 3 to 8 friends. Teams were randomly allocated to receive access to a 50-day online social networking physical activity intervention which included self-monitoring, social elements, and pedometers ("Active Team" Facebook app; n=51 individuals, 12 teams) or a wait-listed control condition (n=59 individuals, 13 teams). Assessments were undertaken online at baseline, 8 weeks, and 20 weeks. The primary outcome measure was self-reported weekly moderate-to-vigorous physical activity (MVPA). Secondary outcomes were weekly walking, vigorous physical activity time, moderate physical activity time, overall quality of life, and mental health quality of life. Analyses were undertaken using random-effects mixed modeling, accounting for potential clustering at the team level. Usage statistics were reported descriptively to determine engagement and feasibility. At the 8-week follow-up, the intervention participants had significantly increased their total weekly MVPA by 135 minutes relative to the control group (P=.03), due primarily to increases in walking time (155 min/week increase relative to controls, Pself-monitoring features, were observed. An online, social networking physical activity intervention with pedometers can produce sizable short-term physical activity changes. Future work is needed to determine how to maintain behavior change in the longer term, how to reach at-need populations, and how to disseminate such interventions on a mass scale. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12614000488606; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366239

  9. Massive Access Control Aided by Knowledge-Extraction for Co-Existing Periodic and Random Services over Wireless Clinical Networks.

    Science.gov (United States)

    Du, Qinghe; Zhao, Weidong; Li, Weimin; Zhang, Xuelin; Sun, Bo; Song, Houbing; Ren, Pinyi; Sun, Li; Wang, Yichen

    2016-07-01

    The prosperity of e-health is boosted by fast development of medical devices with wireless communications capability such as wearable devices, tiny sensors, monitoring equipments, etc., which are randomly distributed in clinic environments. The drastically-increasing population of such devices imposes new challenges on the limited wireless resources. To relieve this problem, key knowledge needs to be extracted from massive connection attempts dispersed in the air towards efficient access control. In this paper, a hybrid periodic-random massive access (HPRMA) scheme for wireless clinical networks employing ultra-narrow band (UNB) techniques is proposed. In particular, the proposed scheme towards accommodating a large population of devices include the following new features. On one hand, it can dynamically adjust the resource allocated for coexisting periodic and random services based on the traffic load learned from signal collision status. On the other hand, the resource allocation within periodic services is thoroughly designed to simultaneously align with the timing requests of differentiated services. Abundant simulation results are also presented to demonstrate the superiority of the proposed HPRMA scheme over baseline schemes including time-division multiple access (TDMA) and random access approach, in terms of channel utilization efficiency, packet drop ratio, etc., for the support of massive devices' services.

  10. Growing media [Chapter 5

    Science.gov (United States)

    Douglass F. Jacobs; Thomas D. Landis; Tara Luna

    2009-01-01

    Selecting the proper growing medium is one of the most important considerations in nursery plant production. A growing medium can be defined as a substance through which roots grow and extract water and nutrients. In native plant nurseries, a growing medium can consist of native soil but is more commonly an "artificial soil" composed of materials such as peat...

  11. Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case.

    Science.gov (United States)

    Moisset de Espanés, P; Osses, A; Rapaport, I

    2016-12-01

    Fixed points are fundamental states in any dynamical system. In the case of gene regulatory networks (GRNs) they correspond to stable genes profiles associated to the various cell types. We use Kauffman's approach to model GRNs with random Boolean networks (RBNs). In this paper we explore how the topology affects the distribution of the number of fixed points in randomly generated networks. We also study the size of the basins of attraction of these fixed points if we assume the α-asynchronous dynamics (where every node is updated independently with probability 0≤α≤1). It is well-known that asynchrony avoids the cyclic attractors into which parallel dynamics tends to fall. We observe the remarkable property that, in all our simulations, if for a given RBN with Barabási-Albert topology and α-asynchronous dynamics an initial configuration reaches a fixed point, then every configuration also reaches a fixed point. By contrast, in the parallel regime, the percentage of initial configurations reaching a fixed point (for the same networks) is dramatically smaller. We contrast the results of the simulations on Barabási-Albert networks with the classical Erdös-Rényi model of random networks. Everything indicates that Barabási-Albert networks are extremely robust. Finally, we study the mean and maximum time/work needed to reach a fixed point when starting from randomly chosen initial configurations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Adaptive locomotor network activation during randomized walking speeds using functional near-infrared spectroscopy.

    Science.gov (United States)

    Kim, Ha Yeon; Kim, Eun Joo; You, Joshua Sung H

    2017-07-20

    An improved understanding of the mechanisms underlying locomotor networks has the potential to benefit the neurorehabilitation of patients with neurological locomotor deficits. However, the specific locomotor networks that mediate adaptive locomotor performance and changes in gait speed remain unknown. The aim of the present study was to examine patterns of cortical activation associated with the walking speeds of 1.5, 2.0, 2.5, and 3.0 km/h on a treadmill. Functional near-infrared spectroscopy (fNIRS) was performed on a 30-year-old right-handed healthy female subject, and cerebral hemodynamic changes were observed in cortical locomotor network areas including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). The software package NIRS-statistical parametric mapping (NIRS-SPM) was utilized to analyze fNIRS data in the MATLAB environment. SPM t-statistic maps were computed at an uncorrected threshold of pglobalized locomotor network activation of the SMC, PMC, SMA, and PMC; additionally, the site with the highest cortical activation ratio shifted from the SMC to the SMA. Global locomotor network recruitment, in particular PFC activation indicated by OxyHb in our study, may indicate a response to increased cognitive-locomotor demand due to simultaneous postural maintenance and leg movement coordination.

  13. A scale-free neural network for modelling neurogenesis

    Science.gov (United States)

    Perotti, Juan I.; Tamarit, Francisco A.; Cannas, Sergio A.

    2006-11-01

    In this work we introduce a neural network model for associative memory based on a diluted Hopfield model, which grows through a neurogenesis algorithm that guarantees that the final network is a small-world and scale-free one. We also analyze the storage capacity of the network and prove that its performance is larger than that measured in a randomly dilute network with the same connectivity.

  14. Analytic treatment of tipping points for social consensus in large random networks

    Science.gov (United States)

    Zhang, W.; Lim, C.; Szymanski, B. K.

    2012-12-01

    We introduce a homogeneous pair approximation to the naming game (NG) model by deriving a six-dimensional Open Dynamics Engine (ODE) for the two-word naming game. Our ODE reveals the change in dynamical behavior of the naming game as a function of the average degree of an uncorrelated network. This result is in good agreement with the numerical results. We also analyze the extended NG model that allows for presence of committed nodes and show that there is a shift of the tipping point for social consensus in sparse networks.

  15. Global collaborative networks on meta-analyses of randomized trials published in high impact factor medical journals: a social network analysis.

    Science.gov (United States)

    Catalá-López, Ferrán; Alonso-Arroyo, Adolfo; Hutton, Brian; Aleixandre-Benavent, Rafael; Moher, David

    2014-01-29

    Research collaboration contributes to the advancement of knowledge by exploiting the results of scientific efforts more efficiently, but the global patterns of collaboration on meta-analysis are unknown. The purpose of this research was to describe and characterize the global collaborative patterns in meta-analyses of randomized trials published in high impact factor medical journals over the past three decades. This was a cross-sectional, social network analysis. We searched PubMed for relevant meta-analyses of randomized trials published up to December 2012. We selected meta-analyses (including at least randomized trials as primary evidence source) published in the top seven high impact factor general medical journals (according to Journal Citation Reports 2011): The New England Journal of Medicine, The Lancet, the BMJ, JAMA, Annals of Internal Medicine, Archives of Internal Medicine (now renamed JAMA Internal Medicine), and PLoS Medicine. Opinion articles, conceptual papers, narrative reviews, reviews without meta-analysis, reviews of reviews, and other study designs were excluded. Overall, we included 736 meta-analyses, in which 3,178 authors, 891 institutions, and 51 countries participated. The BMJ was the journal that published the greatest number of articles (39%), followed by The Lancet (18%), JAMA (15%) and the Archives of Internal Medicine (15%). The USA, the UK, and Canada headed the absolute global productivity ranking in number of papers. The 64 authors and the 39 institutions with the highest publication rates were identified. We also found 82 clusters of authors (one group with 55 members and one group with 54 members) and 19 clusters of institutions (one major group with 76 members). The most prolific authors were mainly affiliated with the University of Oxford (UK), McMaster University (Canada), and the University of Bern (Switzerland). Our analysis identified networks of authors, institutions and countries publishing meta-analyses of randomized

  16. A Web-Based, Social Networking Beginners' Running Intervention for Adults Aged 18 to 50 Years Delivered via a Facebook Group: Randomized Controlled Trial.

    Science.gov (United States)

    Looyestyn, Jemma; Kernot, Jocelyn; Boshoff, Kobie; Maher, Carol

    2018-02-26

    Online social networks continue to grow in popularity, with 1.7 billion users worldwide accessing Facebook each month. The use of social networking sites such as Facebook for the delivery of health behavior programs is relatively new. The primary aim of this study was to determine the effectiveness of a Web-based beginners' running program for adults aged 18 to 50 years, delivered via a Facebook group, in increasing physical activity (PA) and cardiorespiratory fitness. A total of 89 adults with a mean age of 35.2 years (SD 10.9) were recruited online and via print media. Participants were randomly allocated to receive the UniSA Run Free program, an 8-week Web-based beginners' running intervention, delivered via a closed Facebook group (n=41) that included daily interactive posts (information with links, motivational quotes, opinion polls, or questions) and details of the running sessions; or to the control group who received a hard copy of the running program (n=48). Assessments were completed online at baseline, 2 months, and 5 months. The primary outcome measures were self-reported weekly moderate to vigorous physical activity (MVPA) and objectively measured cardiorespiratory fitness. Secondary outcomes were social support, exercise attitudes, and self-efficacy. Analyses were undertaken using random effects mixed modeling. Compliance with the running program and engagement with the Facebook group were analyzed descriptively. Both groups significantly increased MVPA across the study period (P=.004); however, this was significantly higher in the Facebook group (P=.04). The Facebook group increased their MVPA from baseline by 140 min/week versus 91 min for the control at 2 months. MVPA remained elevated for the Facebook group (from baseline) by 129 min/week versus a 50 min/week decrease for the control at 5 months. Both groups had significant increases in social support scores at 2 months (P=.02); however, there were no group by time differences (P=.16). There were

  17. Why we need more than just randomized controlled trials to establish the effectiveness of online social networks for health behavior change.

    Science.gov (United States)

    Vandelanotte, Corneel; Maher, Carol A

    2015-01-01

    Despite their popularity and potential to promote health in large populations, the effectiveness of online social networks (e.g., Facebook) to improve health behaviors has been somewhat disappointing. Most of the research examining the effectiveness of such interventions has used randomized controlled trials (RCTs). It is asserted that the modest outcomes may be due to characteristics specific to both online social networks and RCTs. The highly controlled nature of RCTs stifles the dynamic nature of online social networks. Alternative and ecologically valid research designs that evaluate online social networks in real-life conditions are needed to advance the science in this area.

  18. Experimental Evaluation of Novel Master-Slave Configurations for Position Control under Random Network Delay and Variable Load for Teleoperation

    Directory of Open Access Journals (Sweden)

    Ahmet Kuzu

    2014-01-01

    Full Text Available This paper proposes two novel master-slave configurations that provide improvements in both control and communication aspects of teleoperation systems to achieve an overall improved performance in position control. The proposed novel master-slave configurations integrate modular control and communication approaches, consisting of a delay regulator to address problems related to variable network delay common to such systems, and a model tracking control that runs on the slave side for the compensation of uncertainties and model mismatch on the slave side. One of the configurations uses a sliding mode observer and the other one uses a modified Smith predictor scheme on the master side to ensure position transparency between the master and slave, while reference tracking of the slave is ensured by a proportional-differentiator type controller in both configurations. Experiments conducted for the networked position control of a single-link arm under system uncertainties and randomly varying network delays demonstrate significant performance improvements with both configurations over the past literature.

  19. Percolation in Self-Similar Networks

    Science.gov (United States)

    Serrano, M. Ángeles; Krioukov, Dmitri; Boguñá, Marián

    2011-01-01

    We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.

  20. Distributed Detection of Binary Decisions with Collisions in a Large, Random Network

    Science.gov (United States)

    2013-09-01

    each sensor with a detection attempts to transmit a single detection message via Slotted ALOHA (S- ALOHA ). The communicating period is broken into 1...asynchronous (or pure) ALOHA to reduce energy consumption in the sensor network. S- ALOHA requires time synchronization between all the sensor nodes and... ALOHA reduces the probability of a collision over pure ALOHA due to halving of the vulnerability period. Thus, it is reasonable to conclude that the

  1. An Ambition to Grow

    OpenAIRE

    Ron Kemp; Hakkert, R.

    2006-01-01

    This report tries to gain insight in the willingness or ambition to grow of a small business owner. The main question of this report is therefore: Which factors influence the ambition to grow a business? To examine the ambition to grow an economic and a psychological perspective is given in this study.

  2. Robust Network Architecture Against Random Threats in WMD Environments: Theoretical Limits and Recovery Strategies

    Science.gov (United States)

    2017-08-01

    help us understand how a social environment evolves so that we are able to make predictions about its impact. Moreover, we might even learn how to...Mika, B. Schlkopf, and R. Williamson, “ Regularized principal manifolds,” Journal of Machine Learning Research,, vol. 1, pp. 179–209, June 2001. [74] H...Architecture Against Random Threats in WMD Environments : Theoretical Limits and Recovery Strategies Distribution Statement A. Approved for public

  3. Random sampler M-estimator algorithm with sequential probability ratio test for robust function approximation via feed-forward neural networks.

    Science.gov (United States)

    El-Melegy, Moumen T

    2013-07-01

    This paper addresses the problem of fitting a functional model to data corrupted with outliers using a multilayered feed-forward neural network. Although it is of high importance in practical applications, this problem has not received careful attention from the neural network research community. One recent approach to solving this problem is to use a neural network training algorithm based on the random sample consensus (RANSAC) framework. This paper proposes a new algorithm that offers two enhancements over the original RANSAC algorithm. The first one improves the algorithm accuracy and robustness by employing an M-estimator cost function to decide on the best estimated model from the randomly selected samples. The other one improves the time performance of the algorithm by utilizing a statistical pretest based on Wald's sequential probability ratio test. The proposed algorithm is successfully evaluated on synthetic and real data, contaminated with varying degrees of outliers, and compared with existing neural network training algorithms.

  4. Management of frailty: a protocol of a network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Negm, Ahmed M; Kennedy, Courtney C; Thabane, Lehana; Veroniki, Areti-Angeliki; Adachi, Jonathan D; Richardson, Julie; Cameron, Ian D; Giangregorio, Aidan; Papaioannou, Alexandra

    2017-07-05

    Frailty is a common syndrome affecting 5-17% of community-dwelling older adults. Various interventions are used to prevent or treat frailty. Given the diversity of singular and multi-faceted frailty interventions, not all of them have been compared in head-to-head studies. Network meta-analyses provide an approach to simultaneous consideration of the relative effectiveness of multiple treatment alternatives. This systematic review and network meta-analysis of RCTs aims to determine the comparative effect of interventions targeting the prevention or treatment of frailty. We will identify relevant RCTs, in any language and publication date, by a systematic search of databases including MEDLINE, EMBASE, CINAHL, AMED, the Cochrane Central Registry of Controlled Trials (CENTRAL), HealthSTAR, DARE, PsychINFO, PEDro, SCOPUS, and Scielo. Duplicate title and abstract and full-text screening will be performed. Authors will extract data and assess risk of bias (using the Cochrane Risk of Bias tool) of eligible studies. The review interventions will include (1) physical activity only, (2) physical activity with protein supplementation or other nutritional supplementation, (3) psychosocial intervention, (4) medication management, (5) pharmacotherapy, and (6) multi-faceted intervention (defined as an intervention that combine physical activity and/or nutrition with any of the following: (1) psychosocial intervention, (2) medication management, and (3) pharmacotherapy). Our primary outcome is difference in change of physical frailty from baseline measured by a reliable and valid frailty measure. Secondary outcomes and the assessments are (1) cognition, (2) short physical performance battery, (3) any other physical performance measure, (4) treatment cost, (5) quality of life, and (6) any adverse outcome. We will conduct a network meta-analysis using a Bayesian hierarchical model. We will also estimate the ranking probabilities for all treatments at each possible rank for each

  5. Using Exponential Random Graph Models to Analyze the Character of Peer Relationship Networks and Their Effects on the Subjective Well-being of Adolescents.

    Science.gov (United States)

    Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe

    2017-01-01

    The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual's subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents.

  6. Modeling and predicting the Spanish Bachillerato academic results over the next few years using a random network model

    Science.gov (United States)

    Cortés, J.-C.; Colmenar, J.-M.; Hidalgo, J.-I.; Sánchez-Sánchez, A.; Santonja, F.-J.; Villanueva, R.-J.

    2016-01-01

    Academic performance is a concern of paramount importance in Spain, where around of 30 % of the students in the last two courses in high school, before to access to the labor market or to the university, do not achieve the minimum knowledge required according to the Spanish educational law in force. In order to analyze this problem, we propose a random network model to study the dynamics of the academic performance in Spain. Our approach is based on the idea that both, good and bad study habits, are a mixture of personal decisions and influence of classmates. Moreover, in order to consider the uncertainty in the estimation of model parameters, we perform a lot of simulations taking as the model parameters the ones that best fit data returned by the Differential Evolution algorithm. This technique permits to forecast model trends in the next few years using confidence intervals.

  7. Combination of Deep Recurrent Neural Networks and Conditional Random Fields for Extracting Adverse Drug Reactions from User Reviews

    Directory of Open Access Journals (Sweden)

    Elena Tutubalina

    2017-01-01

    Full Text Available Adverse drug reactions (ADRs are an essential part of the analysis of drug use, measuring drug use benefits, and making policy decisions. Traditional channels for identifying ADRs are reliable but very slow and only produce a small amount of data. Text reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form text is a challenging natural language processing problem. In this work, we propose a novel model for this problem, uniting recurrent neural architectures and conditional random fields. We evaluate our model with a comprehensive experimental study, showing improvements over state-of-the-art methods of ADR extraction.

  8. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.

    Science.gov (United States)

    Lindsay, Grace W; Rigotti, Mattia; Warden, Melissa R; Miller, Earl K; Fusi, Stefano

    2017-11-08

    Complex cognitive behaviors, such as context-switching and rule-following, are thought to be supported by the prefrontal cortex (PFC). Neural activity in the PFC must thus be specialized to specific tasks while retaining flexibility. Nonlinear "mixed" selectivity is an important neurophysiological trait for enabling complex and context-dependent behaviors. Here we investigate (1) the extent to which the PFC exhibits computationally relevant properties, such as mixed selectivity, and (2) how such properties could arise via circuit mechanisms. We show that PFC cells recorded from male and female rhesus macaques during a complex task show a moderate level of specialization and structure that is not replicated by a model wherein cells receive random feedforward inputs. While random connectivity can be effective at generating mixed selectivity, the data show significantly more mixed selectivity than predicted by a model with otherwise matched parameters. A simple Hebbian learning rule applied to the random connectivity, however, increases mixed selectivity and enables the model to match the data more accurately. To explain how learning achieves this, we provide analysis along with a clear geometric interpretation of the impact of learning on selectivity. After learning, the model also matches the data on measures of noise, response density, clustering, and the distribution of selectivities. Of two styles of Hebbian learning tested, the simpler and more biologically plausible option better matches the data. These modeling results provide clues about how neural properties important for cognition can arise in a circuit and make clear experimental predictions regarding how various measures of selectivity would evolve during animal training. SIGNIFICANCE STATEMENT The prefrontal cortex is a brain region believed to support the ability of animals to engage in complex behavior. How neurons in this area respond to stimuli-and in particular, to combinations of stimuli ("mixed

  9. Acupuncture-Related Techniques for Psoriasis: A Systematic Review with Pairwise and Network Meta-Analyses of Randomized Controlled Trials.

    Science.gov (United States)

    Yeh, Mei-Ling; Ko, Shu-Hua; Wang, Mei-Hua; Chi, Ching-Chi; Chung, Yu-Chu

    2017-12-01

    There has be a large body of evidence on the pharmacological treatments for psoriasis, but whether nonpharmacological interventions are effective in managing psoriasis remains largely unclear. This systematic review conducted pairwise and network meta-analyses to determine the effects of acupuncture-related techniques on acupoint stimulation for the treatment of psoriasis and to determine the order of effectiveness of these remedies. This study searched the following databases from inception to March 15, 2016: Medline, PubMed, Cochrane Central Register of Controlled Trials, EBSCO (including Academic Search Premier, American Doctoral Dissertations, and CINAHL), Airiti Library, and China National Knowledge Infrastructure. Randomized controlled trials (RCTs) on the effects of acupuncture-related techniques on acupoint stimulation as intervention for psoriasis were independently reviewed by two researchers. A total of 13 RCTs with 1,060 participants were included. The methodological quality of included studies was not rigorous. Acupoint stimulation, compared with nonacupoint stimulation, had a significant treatment for psoriasis. However, the most common adverse events were thirst and dry mouth. Subgroup analysis was further done to confirm that the short-term treatment effect was superior to that of the long-term effect in treating psoriasis. Network meta-analysis identified acupressure or acupoint catgut embedding, compared with medication, and had a significant effect for improving psoriasis. It was noted that acupressure was the most effective treatment. Acupuncture-related techniques could be considered as an alternative or adjuvant therapy for psoriasis in short term, especially of acupressure and acupoint catgut embedding. This study recommends further well-designed, methodologically rigorous, and more head-to-head randomized trials to explore the effects of acupuncture-related techniques for treating psoriasis.

  10. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  11. BIOTECHNOLOGY IN FRUIT GROWING

    Directory of Open Access Journals (Sweden)

    Z. Jurković

    2008-09-01

    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  12. Medical expulsive therapy in urolithiasis: a mixed treatment comparison network meta-analysis of randomized controlled clinical trials.

    Science.gov (United States)

    Sridharan, Kannan; Sivaramakrishnan, Gowri

    2017-10-01

    Medical expulsive therapy (MET) using alpha blockers, calcium channel blockers (CCB), phosphodiesterase inhibitors (PDEI) and spasmolytics have been shown to be effective in clinical trials on urolithiasis. The present study is a network meta-analysis comparing the above mentioned drug classes. Electronic databases were searched for randomized controlled trials comparing the above mentioned drug classes in patients with urolithiasis using appropriate search strategy. Inverse variance heterogeneity model was used for the mixed treatment comparisons. Stone expulsion rate (SER) was the primary and stone expulsion time (SET) was the main secondary outcome measure. We included a total of 114 studies for systematic review and 108 studies for the network meta-analysis. Alpha blockers, PDEI, and combined alpha blockers and corticosteroids had significantly increased SER and shorter SET than placebo or standard of care. Alpha blockers have the highest probability of being the 'best' in the pool with regard to SER. This effect persisted in patients with stones ≥ 5 mm, children, after shockwave lithotripsy, proximal ureteric stones and distal ureteric stones. To conclude, we observed a statistically significant increase in the expulsion rate and shorter expulsion time with alpha blockers, PDEI and combined alpha blockers with corticosteroids. Of these interventions, alpha blockers have the high probability of being the 'best'.

  13. Road Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields

    Directory of Open Access Journals (Sweden)

    Teerapong Panboonyuen

    2017-07-01

    Full Text Available Object segmentation of remotely-sensed aerial (or very-high resolution, VHS images and satellite (or high-resolution, HR images, has been applied to many application domains, especially in road extraction in which the segmented objects are served as a mandatory layer in geospatial databases. Several attempts at applying the deep convolutional neural network (DCNN to extract roads from remote sensing images have been made; however, the accuracy is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road extraction of remote sensing images by applying landscape metrics (LMs and conditional random fields (CRFs. To improve the DCNN, a modern activation function called the exponential linear unit (ELU, is employed in our network, resulting in a higher number of, and yet more accurate, extracted roads. To further reduce falsely classified road objects, a solution based on an adoption of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our framework. The experiments were conducted on Massachusetts road aerial imagery as well as the Thailand Earth Observation System (THEOS satellite imagery data sets. The results showed that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique, on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F 1 .

  14. Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Jean-François Feller

    2014-01-01

    Full Text Available Different grades of chemically functionalized carbon nanotubes (CNT have been processed by spraying layer-by-layer (sLbL to obtain an array of chemoresistive transducers for volatile organic compound (VOC detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to vapors than filtration under vacuum (bucky papers. Shorter CNT were also found to be more sensitive due to the less entangled and more easily disconnectable conducting networks they are making. Chemical functionalization of the CNT’ surface is changing their selectivity towards VOC, which makes it possible to easily discriminate methanol, chloroform and tetrahydrofuran (THF from toluene vapors after the assembly of CNT transducers into an array to make an e-nose. Interestingly, the amplitude of the CNT transducers’ responses can be enhanced by a factor of five (methanol to 100 (chloroform by dispersing them into a polymer matrix, such as poly(styrene (PS, poly(carbonate (PC or poly(methyl methacrylate (PMMA. COOH functionalization of CNT was found to penalize their dispersion in polymers and to decrease the sensors’ sensitivity. The resulting conductive polymer nanocomposites (CPCs not only allow for a more easy tuning of the sensors’ selectivity by changing the chemical nature of the matrix, but they also allow them to adjust their sensitivity by changing the average gap between CNT (acting on quantum tunneling in the CNT network. Quantum resistive sensors (QRSs appear promising for environmental monitoring and anticipated disease diagnostics that are both based on VOC analysis.

  15. Implementation and Performance Evaluation of Distributed Cloud Storage Solutions using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Fitzek, Frank H. P.; Toth, Tamas; Szabados, Aron

    2014-01-01

    Distributed storage is usually considered within a cloud provider to ensure availability and reliability of the data. However, the user is still directly dependent on the quality of a single system. It is also entrusting the service provider with large amounts of private data, which may be accessed...... by a successful attack to that cloud system or even be inspected by government agencies in some countries. This paper advocates a general framework for network coding enabled distributed storage over multiple commercial cloud solutions, such as, Dropbox, Box, Skydrive, and Google Drive, as a way to address...... these reliability and privacy issues. By means of theoretical analysis and real– life implementations, we show not only that our framework constitutes a viable solution to increase the reliability of stored data and to ensure data privacy, but it also provides a way to reduce the storage costs and to increase...

  16. Suboptimal feedback control of TCP flows in computer network using random early discard (RED mechanism

    Directory of Open Access Journals (Sweden)

    Ahmed N. U.

    2005-01-01

    Full Text Available We consider a dynamic model that simulates the interaction of TCP sources with active queue management system (AQM. We propose a modified version of an earlier dynamic model called RED. This is governed by a system of stochastic differential equations driven by a doubly stochastic point process with intensity as the control. The feedback control law proposed observes the router (queue status and controls the intensity by sending congestion signals (warnings to the sources for adjustment of their transmission rates. The (feedback control laws used are of polynomial type (including linear with adjustable coefficients. They are optimized by use of genetic algorithm (GA and random recursive search (RRS technique. The numerical results demonstrate that the proposed model and the method can improve the system performance significantly.

  17. Efficacy of biologics in the treatment of moderate to severe psoriasis: a network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Reich, K; Burden, A D; Eaton, J N; Hawkins, N S

    2012-01-01

    Ustekinumab, a novel monoclonal antibody for the treatment of moderate to severe plaque-type psoriasis, has recently received regulatory approval in Europe, bringing the total number of biologic agents licensed in this indication to five. To assist treatment selection in daily practice it is essential to understand the benefit/risk profile of these agents and in the absence of a clinical trial comparing all available biologics a number of reviews have used statistical techniques to generate estimates of the comparative effectiveness of these therapies through the available network of randomized clinical trials. These estimates have previously been published for a limited range of psoriasis biologic treatments, although, to date no review has compared all the currently available agents in Europe. To estimate the comparative effectiveness of all biologic agents indicated in the treatment of moderate to severe psoriasis currently available in Europe based on the primary trial endpoints. A number of databases were searched for details of randomized controlled trials of available biologics in the treatment of plaque-type psoriasis in adults. Comparative effectiveness was estimated based on the reported Psoriasis Area and Severity Index (PASI) 50, 75 and 90 response rates. A network meta-analysis conducted on the ordered probit scale and implemented as a Bayesian hierarchical model provided estimates for the probability of response and relative risk vs. placebo, based on all observed comparisons. Twenty trials were included in the meta-analysis including patients with a mean disease duration of 18-22years. Based on the indirect comparison and given a placebo PASI 50 response of 13%, infliximab had the highest predicted mean probability of response at PASI levels 50 (93%), 75 (80%) and 90 (54%), followed by ustekinumab 90 mg at 90%, 74% and 46%, respectively, and then ustekinumab 45mg, adalimumab, etanercept and efalizumab. The ordered probit model allowed a

  18. Effectiveness of multi-drug regimen chemotherapy treatment in osteosarcoma patients: a network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Wang, Xiaojie; Zheng, Hong; Shou, Tao; Tang, Chunming; Miao, Kun; Wang, Ping

    2017-03-29

    Osteosarcoma is the most common malignant bone tumour. Due to the high metastasis rate and drug resistance of this disease, multi-drug regimens are necessary to control tumour cells at various stages of the cell cycle, eliminate local or distant micrometastases, and reduce the emergence of drug-resistant cells. Many adjuvant chemotherapy protocols have shown different efficacies and controversial results. Therefore, we classified the types of drugs used for adjuvant chemotherapy and evaluated the differences between single- and multi-drug chemotherapy regimens using network meta-analysis. We searched electronic databases, including PubMed (MEDLINE), EmBase, and the Cochrane Library, through November 2016 using the keywords "osteosarcoma", "osteogenic sarcoma", "chemotherapy", and "random*" without language restrictions. The major outcome in the present analysis was progression-free survival (PFS), and the secondary outcome was overall survival (OS). We used a random effect network meta-analysis for mixed multiple treatment comparisons. We included 23 articles assessing a total of 5742 patients in the present systematic review. The analysis of PFS indicated that the T12 protocol (including adriamycin, bleomycin, cyclophosphamide, dactinomycin, methotrexate, cisplatin) plays a more critical role in osteosarcoma treatment (surface under the cumulative ranking (SUCRA) probability 76.9%), with a better effect on prolonging the PFS of patients when combined with ifosfamide (94.1%) or vincristine (81.9%). For the analysis of OS, we separated the regimens to two groups, reflecting the disconnection. The T12 protocol plus vincristine (94.7%) or the removal of cisplatinum (89.4%) is most likely the best regimen. We concluded that multi-drug regimens have a better effect on prolonging the PFS and OS of osteosarcoma patients, and the T12 protocol has a better effect on prolonging the PFS of osteosarcoma patients, particularly in combination with ifosfamide or vincristine

  19. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices

    Science.gov (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-12-01

    We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0 α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0world properties with the emergence of Lévy flights on large (infinite) lattices.

  20. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores

    Science.gov (United States)

    Alizadeh, Shima; Mani, Ali

    2014-11-01

    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  1. Random Network Models to Predict the Long-Term Impact of HPV Vaccination on Genital Warts

    Science.gov (United States)

    Díez-Domingo, Javier; Sánchez-Alonso, Víctor; Acedo, Luis; Villanueva-Oller, Javier

    2017-01-01

    The Human papillomaviruses (HPV) vaccine induces a herd immunity effect in genital warts when a large number of the population is vaccinated. This aspect should be taken into account when devising new vaccine strategies, like vaccination at older ages or male vaccination. Therefore, it is important to develop mathematical models with good predictive capacities. We devised a sexual contact network that was calibrated to simulate the Spanish epidemiology of different HPV genotypes. Through this model, we simulated the scenario that occurred in Australia in 2007, where 12–13 year-old girls were vaccinated with a three-dose schedule of a vaccine containing genotypes 6 and 11, which protect against genital warts, and also a catch-up program in women up to 26 years of age. Vaccine coverage were 73% in girls with three doses and with coverage rates decreasing with age until 52% for 20–26 year-olds. A fast 59% reduction in the genital warts diagnoses occurred in the model in the first years after the start of the program, similar to what was described in the literature. PMID:29035332

  2. A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms

    Science.gov (United States)

    Yang, Changju; Kim, Hyongsuk; Adhikari, Shyam Prasad; Chua, Leon O.

    2016-01-01

    A hybrid learning method of a software-based backpropagation learning and a hardware-based RWC learning is proposed for the development of circuit-based neural networks. The backpropagation is known as one of the most efficient learning algorithms. A weak point is that its hardware implementation is extremely difficult. The RWC algorithm, which is very easy to implement with respect to its hardware circuits, takes too many iterations for learning. The proposed learning algorithm is a hybrid one of these two. The main learning is performed with a software version of the BP algorithm, firstly, and then, learned weights are transplanted on a hardware version of a neural circuit. At the time of the weight transplantation, a significant amount of output error would occur due to the characteristic difference between the software and the hardware. In the proposed method, such error is reduced via a complementary learning of the RWC algorithm, which is implemented in a simple hardware. The usefulness of the proposed hybrid learning system is verified via simulations upon several classical learning problems. PMID:28025566

  3. Knowledge Discovery from Growing Social Networks

    Science.gov (United States)

    2009-12-24

    University, Aichi , Japan 4motoda@ar.sanken.osaka-u.ac.jp, Osaka Univesity, Osaka, Japan Abstract We address the problem of ranking influential nodes in...Computer Science Chubu University Aichi 487-8501, Japan nakano@cs.chubu.ac.jp Hiroshi Motoda Institute of Scientific and Industrial Research Osaka

  4. A Peer-Educator Network HIV Prevention Intervention Among Injection Drug Users: Results of a Randomized Controlled Trial in St. Petersburg, Russia

    Science.gov (United States)

    Latkin, Carl A.; Kukhareva, Polina V.; Malov, Sergey V.; Batluk, Julia V.; Shaboltas, Alla V.; Skochilov, Roman V.; Sokolov, Nicolay V.; Verevochkin, Sergei V.; Hudgens, Michael G.; Kozlov, Andrei P.

    2014-01-01

    We evaluated the efficacy of a peer-educator network intervention as a strategy to reduce HIV acquisition among injection drug users (IDUs) and their drug and/or sexual networks. A randomized controlled trial was conducted in St. Petersburg, Russia among IDU index participants and their risk network participants. Network units were randomized to the control or experimental intervention. Only the experimental index participants received training sessions to communicate risk reduction techniques to their network members. Analysis includes 76 index and 84 network participants who were HIV uninfected. The main outcome measure was HIV sero-conversion. The incidence rates in the control and experimental groups were 19.57 (95 % CI 10.74–35.65) and 7.76 (95 % CI 3.51–17.19) cases per 100 p/y, respectively. The IRR was 0.41 (95 % CI 0.15–1.08) without a statistically significant difference between the two groups (log rank test statistic X2 = 2.73, permutation p value = 0.16). Retention rate was 67 % with a third of the loss due to incarceration or death. The results show a promising trend that this strategy would be successful in reducing the acquisition of HIV among IDUs. PMID:23881187

  5. Melting ice, growing trade?

    National Research Council Canada - National Science Library

    Sami Bensassi; Julienne C. Stroeve; Inmaculada Martínez-Zarzoso; Andrew P. Barrett

    2016-01-01

    Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR...

  6. Impact of peer-led quality improvement networks on quality of inpatient mental health care: study protocol for a cluster randomized controlled trial.

    Science.gov (United States)

    Aimola, Lina; Jasim, Sarah; Tripathi, Neeraj; Tucker, Sarah; Worrall, Adrian; Quirk, Alan; Crawford, Mike J

    2016-09-21

    Quality improvement networks are peer-led programmes in which members of the network assess the quality of care colleagues provide according to agreed standards of practice. These networks aim to help members identify areas of service provision that could be improved and share good practice. Despite the widespread use of peer-led quality improvement networks, there is very little information about their impact. We are conducting a cluster randomized controlled trial of a quality improvement network for low-secure mental health wards to examine the impact of membership on the process and outcomes of care over a 12 month period. Standalone low secure units in England and Wales that expressed an interest in joining the quality improvement network were recruited for the study from 2012 to 2014. Thirty-eight units were randomly allocated to either the active intervention (participation in the network n = 18) or a control arm (delayed participation in the network n = 20). Using a 5 % significance level and 90 % power, it was calculated that a sample size of 60 wards was required taking into account a 10 % drop out. A total of 75 wards were assessed at baseline and 8 wards dropped out the study before the data collection at follow up. Researchers masked to the allocation status of the units assessed all study outcomes at baseline and follow-up 12 months later. The primary outcome is the quality of the physical environment and facilities on the wards. The secondary outcomes are: safety of the ward, patient-rated satisfaction with care and mental well-being, staff burnout, training and supervision. Relative to control wards, it is hypothesized that the quality of the physical environment and facilities will be higher on wards in the active arm of the trial 12 months after randomization. To our knowledge, this is the first randomized evaluation of a peer-led quality improvement network that has examined the impact of participation on both patient-level and

  7. Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy

    Science.gov (United States)

    Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank

    2018-02-01

    In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.

  8. Use of Hot Rolling for Generating Low Deviation Twins and a Disconnected Random Boundary Network in Inconel 600 Alloy

    Science.gov (United States)

    Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank

    2017-12-01

    In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.

  9. Design and methods of a social network isolation study for reducing respiratory infection transmission: The eX-FLU cluster randomized trial.

    Science.gov (United States)

    Aiello, Allison E; Simanek, Amanda M; Eisenberg, Marisa C; Walsh, Alison R; Davis, Brian; Volz, Erik; Cheng, Caroline; Rainey, Jeanette J; Uzicanin, Amra; Gao, Hongjiang; Osgood, Nathaniel; Knowles, Dylan; Stanley, Kevin; Tarter, Kara; Monto, Arnold S

    2016-06-01

    Social networks are increasingly recognized as important points of intervention, yet relatively few intervention studies of respiratory infection transmission have utilized a network design. Here we describe the design, methods, and social network structure of a randomized intervention for isolating respiratory infection cases in a university setting over a 10-week period. 590 students in six residence halls enrolled in the eX-FLU study during a chain-referral recruitment process from September 2012-January 2013. Of these, 262 joined as "seed" participants, who nominated their social contacts to join the study, of which 328 "nominees" enrolled. Participants were cluster-randomized by 117 residence halls. Participants were asked to respond to weekly surveys on health behaviors, social interactions, and influenza-like illness (ILI) symptoms. Participants were randomized to either a 3-Day dorm room isolation intervention or a control group (no isolation) upon illness onset. ILI cases reported on their isolation behavior during illness and provided throat and nasal swab specimens at onset, day-three, and day-six of illness. A subsample of individuals (N=103) participated in a sub-study using a novel smartphone application, iEpi, which collected sensor and contextually-dependent survey data on social interactions. Within the social network, participants were significantly positively assortative by intervention group, enrollment type, residence hall, iEpi participation, age, gender, race, and alcohol use (all Pimpact of isolation from social networks in a university setting. These data provide an unparalleled opportunity to address questions about isolation and infection transmission, as well as insights into social networks and behaviors among college-aged students. Several important lessons were learned over the course of this project, including feasible isolation durations, the need for extensive organizational efforts, as well as the need for specialized programmers

  10. A social network-based intervention stimulating peer influence on children's self-reported water consumption: A randomized control trial.

    Science.gov (United States)

    Smit, Crystal R; de Leeuw, Rebecca N H; Bevelander, Kirsten E; Burk, William J; Buijzen, Moniek

    2016-08-01

    The current pilot study examined the effectiveness of a social network-based intervention using peer influence on self-reported water consumption. A total of 210 children (52% girls; M age = 10.75 ± SD = 0.80) were randomly assigned to either the intervention (n = 106; 52% girls) or control condition (n = 104; 52% girls). In the intervention condition, the most influential children in each classroom were trained to promote water consumption among their peers for eight weeks. The schools in the control condition did not receive any intervention. Water consumption, sugar-sweetened beverage (SSB) consumption, and intentions to drink more water in the near future were assessed by self-report measures before and immediately after the intervention. A repeated measure MANCOVA showed a significant multivariate interaction effect between condition and time (V = 0.07, F(3, 204) = 5.18, p = 0.002, pη(2) = 0.07) on the dependent variables. Further examination revealed significant univariate interaction effects between condition and time on water (p = 0.021) and SSB consumption (p = 0.015) as well as water drinking intentions (p = 0.049). Posthoc analyses showed that children in the intervention condition reported a significant increase in their water consumption (p = 0.018) and a decrease in their SSB consumption (p  0.05). The children who were exposed to the intervention did not report a change in their water drinking intentions over time (p = 0.576) whereas the nonexposed children decreased their intentions (p = 0.026). These findings show promise for a social network-based intervention using peer influence to positively alter consumption behaviors. This RCT was registered in the Australian New Zealand Clinical Trials Registry (ACTRN12614001179628). Study procedures were approved by the Ethics Committee of the Faculty of Social Sciences at Radboud University (ECSW2014-1003-203). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Non-opioid analgesics in adults after major surgery: systematic review with network meta-analysis of randomized trials.

    Science.gov (United States)

    Martinez, V; Beloeil, H; Marret, E; Fletcher, D; Ravaud, P; Trinquart, L

    2017-01-01

    Morphine, and analgesics other than morphine (AOM), are commonly used to treat postoperative pain after major surgery. However, which AOM provides the best efficacy-safety profile remains unclear. Randomized trials of any AOM alone or any combination of AOM compared with placebo or another AOM in adults undergoing major surgery and receiving morphine patient-controlled analgesia were included in a network meta-analysis. The outcomes were morphine consumption, pain, incidence of nausea, vomiting at 24 h and severe adverse effects. 135 trials (13,287 patients) assessing 14 AOM alone or in combination were included. For all outcomes, comparisons with placebo were over-represented. Few trials assessed combinations of two AOM and none the combination of three or more. Network meta-analysis found morphine consumption reduction was greatest with the combination of two AOM (acetaminophen + nefopam, acetaminophen + NSAID, and tramadol + metamizol): -23.9 (95% CI -40;-7.7), -22.8 (-31.5;-14) and -19.8 (35.4;-4.2) mg per 24 h, respectively. For AOM used alone, morphine consumption reduction was greatest with α-2 agonists, NSAIDs, and COX-2 inhibitors. When considering the risk of nausea, NSAIDs, corticosteroids and α-2 agonists used alone were the most efficacious (OR 0.7 [95% CI: 0.6-0.8], 0.36 [0.18-0.79], 0.41 [0.15-.64], respectively). The paucity of severe adverse effects data did not allow assessment of efficacy-safety balance. A combination of aetaminophen with either an NSAID or nefopam was superior to most AOM used alone, in reducing morphine consumption. Efficacy was best with three AOM used alone (α-2 agonists, NSAIDs and COX-2 inhibitors) and least with tramadol and acetaminophen. There is insufficient trial data reporting adverse events. PROSPERO: CRD42013003912. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Growing Up in Germany: A National Report.

    Science.gov (United States)

    Krappmann, Lothar

    1999-01-01

    Summarizes a Federal Ministry of Youth report on the conditions under which children grow up in Germany. Notes manifold problems that children face under today's living conditions. Presents recommendations and suggestions for providing a network of measures, relationships, and institutions to support children's development and education in family,…

  13. Growing Plants and Minds

    Science.gov (United States)

    Presser, Ashley Lewis; Kamdar, Danae; Vidiksis, Regan; Goldstein, Marion; Dominguez, Ximena; Orr, Jillian

    2017-01-01

    Many preschool classrooms explore plant growth. However, because many plants take a long time to grow, it is often hard to facilitate engagement in some practices (i.e., since change is typically not observable from one day to another, children often forget their prior predictions or cannot recall what plants looked like days or weeks earlier).…

  14. Growing Up with "1984."

    Science.gov (United States)

    Franza, August

    1983-01-01

    Relates changing student reaction to George Orwell's "1984" over 20 years of teaching. Finds present high school students' acceptance of Orwell's bleak world vision both a sign of student honesty and a frightening indication of the growing reality of the book. (MM)

  15. Growing through Literature.

    Science.gov (United States)

    Thomas, Barbara J.

    "Growing through Literature" is a curriculum using Joan M. and Erik H. Erikson's theory of the Life Cycle as a structure for selecting and teaching literature to inner-city high school students at Brighton High School in Massachusetts. The program consists of four component parts: Journals, Selected Stories, Discussion, and…

  16. Growing Old in Exile

    DEFF Research Database (Denmark)

    Liversage, Anika; Mirdal, Gretty Mizrahi

    2017-01-01

    Some studies on immigrants and ageing focus on the question of return; others focus on how immigrants, who grow old in their countries of destination, ‘age in place’, including whether they turn to their children or to public host country provisions for care and support. However, the issues of re...

  17. An Improved Ensemble of Random Vector Functional Link Networks Based on Particle Swarm Optimization with Double Optimization Strategy.

    Science.gov (United States)

    Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang

    2016-01-01

    For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.

  18. Comparing energy sources for surgical ablation of atrial fibrillation: a Bayesian network meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D

    2015-08-01

    Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Letter to the editor: Generation of self organized critical connectivity network map (SOCCNM of randomly situated water bodies during flooding process

    Directory of Open Access Journals (Sweden)

    B. S. Daya Sagar

    2001-01-01

    Full Text Available This letter presents a brief framework based on nonlinear morphological transformations to generate a self organized critical connectivity network map (SOCCNM in 2-dimensional space. This simple and elegant framework is implemented on a section that contains a few simulated water bodies to generate SOCCNM. This is based on a postulate that the randomly situated surface water bodies of various sizes and shapes self organize during flooding process.

  20. Adjustment of issue positions based on network strategies in a nelection campaign: A two-mode network autoregression model with cross-nested random effects

    NARCIS (Netherlands)

    Kleinnijenhuis, J.; de Nooy, W.

    2013-01-01

    During election campaigns, political parties deliver statements on salient issues in the news media, which are called issue positions. This article conceptualizes issue positions as a valued and longitudinal two-mode network of parties by issues. The network is valued because parties pronounce pro

  1. Adjustment of issue positions based on network strategies in an election campaign: a two-mode network autoregression model with cross-nested random effects

    NARCIS (Netherlands)

    Kleinnijenhuis, J.; de Nooy, W.

    2013-01-01

    During election campaigns, political parties deliver statements on salient issues in the news media, which are called issue positions. This article conceptualizes issue positions as a valued and longitudinal two-mode network of parties by issues. The network is valued because parties pronounce pro

  2. GRASP (Greedy Randomized Adaptive Search Procedures) applied to optimization of petroleum products distribution in pipeline networks; GRASP (Greedy Randomized Adaptative Search Procedures) aplicado ao 'scheduling' de redes de distribuicao de petroleo e derivados

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Viviane Cristhyne Bini; Arruda, Lucia Valeria Ramos de; Yamamoto, Lia [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Planning and scheduling of the pipeline network operations aim the most efficient use of the resources resulting in a better performance of the network. A petroleum distribution pipeline network is composed by refineries, sources and/or storage parks, connected by a set of pipelines, which operate the transportation of petroleum and derivatives among adjacent areas. In real scenes, this problem is considered a combinatorial problem, which has difficult solution, which makes necessary methodologies of the resolution that present low computational time. This work aims to get solutions that attempt the demands and minimize the number of batch fragmentations on the sent operations of products for the pipelines in a simplified model of a real network, through by application of the local search metaheuristic GRASP. GRASP does not depend of solutions of previous iterations and works in a random way so it allows the search for the solution in an ampler and diversified search space. GRASP utilization does not demand complex calculation, even the construction stage that requires more computational effort, which provides relative rapidity in the attainment of good solutions. GRASP application on the scheduling of the operations of this network presented feasible solutions in a low computational time. (author)

  3. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  4. Growing Timber Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Stasiuk, David

    2013-01-01

    The contemporary design of timber structures has to answer questions concerning structural stability, production impact and energy implications in ever earlier stages. The interrelation of these levels creates a complexity that is difficult to resolve through contemporary linear parametric...... to integrate the behaviour of networked systems into structures made from wooden material....

  5. Growing instead of confining

    Science.gov (United States)

    Sun, Yang-Kook; Yoon, Chong Seung

    2017-10-01

    Confining sulfur in high-surface-area carbon is a widely adapted approach in Li-S batteries, but it often results in low sulfur utilization and low energy density. Now, controlled nucleation of discrete Li2S particles on a network of low-surface-area carbon fibres provides a possible solution to the endemic problems of Li-S batteries.

  6. Hotel Crowdfunding Grows Up

    OpenAIRE

    Joshua Bowman

    2015-01-01

    Hotel crowdfunding is gaining momentum. Many of the largest real estate crowdfunding sites (such as Realty Mogul, Fundriser, Real Crowd and Prodigy Networks) frequently have hotel private placements mixed in with offerings for other types of real estate. In addition, a few crowdfunding sites that specifically focus on hotel crowdfunding have been created. The first hotel crowdfunding website dedicated solely to the hospitality industry was Hotel Innvestor, although others sites have recently ...

  7. Growing unculturable bacteria.

    Science.gov (United States)

    Stewart, Eric J

    2012-08-01

    The bacteria that can be grown in the laboratory are only a small fraction of the total diversity that exists in nature. At all levels of bacterial phylogeny, uncultured clades that do not grow on standard media are playing critical roles in cycling carbon, nitrogen, and other elements, synthesizing novel natural products, and impacting the surrounding organisms and environment. While molecular techniques, such as metagenomic sequencing, can provide some information independent of our ability to culture these organisms, it is essentially impossible to learn new gene and pathway functions from pure sequence data. A true understanding of the physiology of these bacteria and their roles in ecology, host health, and natural product production requires their cultivation in the laboratory. Recent advances in growing these species include coculture with other bacteria, recreating the environment in the laboratory, and combining these approaches with microcultivation technology to increase throughput and access rare species. These studies are unraveling the molecular mechanisms of unculturability and are identifying growth factors that promote the growth of previously unculturable organisms. This minireview summarizes the recent discoveries in this area and discusses the potential future of the field.

  8. Accumulated Growing Degree Days, Contiguous United States, 1981 - Current Year

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USA National Phenology Network has available a series of gridded products enabling researchers to analyze current year Accumulated Growing Degree Days (AGDD)...

  9. Hotel Crowdfunding Grows Up

    Directory of Open Access Journals (Sweden)

    Joshua Bowman

    2015-08-01

    Full Text Available Hotel crowdfunding is gaining momentum. Many of the largest real estate crowdfunding sites (such as Realty Mogul, Fundriser, Real Crowd and Prodigy Networks frequently have hotel private placements mixed in with offerings for other types of real estate. In addition, a few crowdfunding sites that specifically focus on hotel crowdfunding have been created. The first hotel crowdfunding website dedicated solely to the hospitality industry was Hotel Innvestor, although others sites have recently been created such as iCrowdHotels and Equity Roots.

  10. Combination of Deep Recurrent Neural Networks and Conditional Random Fields for Extracting Adverse Drug Reactions from User Reviews

    National Research Council Canada - National Science Library

    Elena Tutubalina; Sergey Nikolenko

    2017-01-01

    .... Text reviews, either on specialized web sites or in general-purpose social networks, may lead to a data source of unprecedented size, but identifying ADRs in free-form text is a challenging natural...

  11. Comparative Effectiveness of Nonoperative Treatments for Chronic Calcific Tendinitis of the Shoulder: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Wu, Yi-Cheng; Tsai, Wen-Chung; Tu, Yu-Kung; Yu, Tung-Yang

    2017-08-01

    To investigate the effectiveness of various nonoperative treatments for chronic calcific tendinitis of the shoulder, a systematic review and network meta-analysis of randomized trials was performed to evaluate changes in pain reduction, functional improvements in patients with calcific tendinitis, and the ratio of complete resolution of calcific deposition. Studies were comprehensively searched, without language restrictions, on PubMed, Embase, Cochrane Controlled Trials Register, the Cochrane, and other databases. The reference lists of articles and reviews were cross-checked for possible studies. Randomized controlled trials from before August 2016 were included. Study selection was conducted by 2 reviewers independently. The quality of studies was assessed and data extracted by 2 independent reviewers. Disagreements were settled by consulting a third reviewer to reach a consensus. Fourteen studies with 1105 participants were included in the network meta-analysis that used a random-effect model to investigate the mean difference of pooled effect sizes of the visual analog scale, Constant-Murley score, and the ratio of complete resolution of calcific deposition on native radiographs. The present network meta-analysis demonstrates that ultrasound-guided needling (UGN), radial extracorporeal shockwave therapy (RSW), and high-energy focused extracorporeal shockwave therapy (H-FSW) alleviate pain and achieve complete resolution of calcium deposition. Compared with low-energy focused extracorporeal shockwave therapy, transcutaneous electrical nerve stimulation, and ultrasound therapy, H-FSW is the best therapy for providing functional recovery. Physicians should consider UGN, RSW, and H-FSW as alternative effective therapies for chronic calcific tendinitis of the shoulder when initial conservative treatment fails. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Multi-channel Dual Clocks three-dimensional probability Random Multiple Access protocol for Wireless Public Bus Networks based on RTS/CTS mechanism

    Directory of Open Access Journals (Sweden)

    Zhou Sheng Jie

    2016-01-01

    Full Text Available A MAC protocol for public bus networks, called Bus MAC protocol, designed to provide high quality Internet service for bus passengers. The paper proposed a multi-channel dual clocks three-demission probability random multiple access protocol based on RTS/CTS mechanism, decreasing collisions caused by multiple access from multiple passengers. Use the RTS/CTS mechanism increases the reliability and stability of the system, reducing the collision possibility of the information packets to a certain extent, improves the channel utilization; use the multi-channel mechanism, not only enables the channel load balancing, but also solves the problem of the hidden terminal and exposed terminal. Use the dual clocks mechanism, reducing the system idle time. At last, the different selection of the three-dimensional probabilities can make the system throughput adapt to the network load which could realize the maximum of the system throughput.

  13. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  14. Pilot study of a social network intervention for heroin users in opiate substitution treatment: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Day, Edward; Copello, Alex; Seddon, Jennifer L; Christie, Marilyn; Bamber, Deborah; Powell, Charlotte; George, Sanju; Ball, Andrew; Frew, Emma; Freemantle, Nicholas

    2013-08-19

    Research indicates that 3% of people receiving opiate substitution treatment (OST) in the UK manage to achieve abstinence from all prescribed and illicit drugs within 3 years of commencing treatment, and there is concern that treatment services have become skilled at engaging people but not at helping them to enter a stage of recovery and drug abstinence. The National Treatment Agency for Substance Misuse recommends the involvement of families and wider social networks in supporting drug users' psychological treatment, and this pilot randomized controlled trial aims to evaluate the impact of a social network-focused intervention for patients receiving OST. In this two-site, early phase, randomized controlled trial, a total of 120 patients receiving OST will be recruited and randomized to receive one of three treatments: 1) Brief Social Behavior and Network Therapy (B-SBNT), 2) Personal Goal Setting (PGS) or 3) treatment as usual. Randomization will take place following baseline assessment. Participants allocated to receive B-SBNT or PGS will continue to receive the same treatment that is routinely provided by drug treatment services, plus four additional sessions of either intervention. Outcomes will be assessed at baseline, 3 and 12 months. The primary outcome will be assessment of illicit heroin use, measured by both urinary analysis and self-report. Secondary outcomes involve assessment of dependence, psychological symptoms, social satisfaction, motivation to change, quality of life and therapeutic engagement. Family members (n = 120) of patients involved in the trial will also be assessed to measure the level of symptoms, coping and the impact of the addiction problem on the family member at baseline, 3 and 12 months. This study will provide experimental data regarding the feasibility and efficacy of implementing a social network intervention within routine drug treatment services in the UK National Health Service. The study will explore the impact of the

  15. A comparison of various approaches to the exponential random graph model : A reanalysis of 102 student networks in school classes

    NARCIS (Netherlands)

    Lubbers, Miranda J.; Snijders, Tom A. B.

    2007-01-01

    This paper describes an empirical comparison of four specifications of the exponential family of random graph models (ERGM), distinguished by model specification (dyadic independence, Markov, partial conditional dependence) and, for the Markov model, by estimation method (Maximum Pseudolikelihood,

  16. Growing old at home – A randomized controlled trial to investigate the effectiveness and cost-effectiveness of preventive home visits to reduce nursing home admissions: study protocol [NCT00644826

    Directory of Open Access Journals (Sweden)

    Riedel-Heller Steffi G

    2008-05-01

    Full Text Available Abstract Background Regarding demographic changes in Germany it can be assumed that the number of elderly and the resulting need for long term care is increasing in the near future. It is not only an individual's interest but also of public concern to avoid a nursing home admission. Current evidence indicates that preventive home visits can be an effective way to reduce the admission rate in this way making it possible for elderly people to stay longer at home than without home visits. As the effectiveness and cost-effectiveness of preventive home visits strongly depends on existing services in the social and health system existing international results cannot be merely transferred to Germany. Therefore it is necessary to investigate the effectiveness and cost-effectiveness of such an intervention in Germany by a randomized controlled trial. Methods The trial is designed as a prospective multi-center randomized controlled trial in the cities of Halle and Leipzig. The trial includes an intervention and a control group. The control group receives usual care. The intervention group receives three additional home visits by non-physician health professionals (1 geriatric assessment, (2 consultation, (3 booster session. The nursing home admission rate after 18 months will be defined as the primary outcome. An absolute risk reduction from a 20% in the control-group to a 7% admission rate in the intervention group including an assumed drop out rate of 30% resulted in a required sample size of N = 320 (n = 160 vs. n = 160. Parallel to the clinical outcome measurement the intervention will be evaluated economically. The economic evaluation will be performed from a society perspective. Discussion To the authors' knowledge for the first time a trial will investigate the effectiveness and cost-effectiveness of preventive home visits for people aged 80 and over in Germany using the design of a randomized controlled trial. Thus, the trial will contribute to

  17. Growing for different ends.

    Science.gov (United States)

    Catts, Oron; Zurr, Ionat

    2014-11-01

    Tissue engineering and regenerative biology are usually discussed in relation to biomedical research and applications. However, hand in hand with developments of this field in the biomedical context, other approaches and uses for non-medical ends have been explored. There is a growing interest in exploring spin off tissue engineering and regenerative biology technologies in areas such as consumer products, art and design. This paper outlines developments regarding in vitro meat and leather, actuators and bio-mechanic interfaces, speculative design and contemporary artistic practices. The authors draw on their extensive experience of using tissue engineering for non-medical ends to speculate about what lead to these applications and their possible future development and uses. Avoiding utopian and dystopian postures and using the notion of the contestable, this paper also mentions some philosophical and ethical consideration stemming from the use of non-medical approaches to tissue constructs. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. Copyright © 2014. Published by Elsevier Ltd.

  18. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  19. Effects of Charcoal Inclusion on the Performance of Growing Rabbits ...

    African Journals Online (AJOL)

    An experiment was carried out to study the effects of charcoal inclusion in the diet of growing rabbits fed Acacia pod meal (APM) diet. Eighteen (18) growing rabbits of mixed breeds (give the crosses) and sexes with an average initial weight of 5202±0.25g were used for this study in a completely randomized design, ...

  20. Performance and carcass characteristics of growing rabbits fed ...

    African Journals Online (AJOL)

    In an 84 days feeding trial, the effect of feeding bacterial protein meal (BPM) either as a replacement for fish meal or for groundnut cake meal in growing rabbits was examined. A total of 20 growing rabbits having an initial body weight of 617.2 (standard error 25) g were randomly assigned to five dietary treatments. A control ...

  1. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  2. Wireless Networks

    OpenAIRE

    Samaka, Mohammed; Khan, Khaled M.D.

    2007-01-01

    Wireless communication is the fastest-growing field in the telecommunication industry. Wireless networks have grown significantly as an important segment of the communications industry. They have become popular networks with the potential to provide high-speed, high-quality information exchange between two or more portable devices without any wire or conductors. Wireless networks can simply be characterized as the technology that provides seamless access to information, anywhere, anyplace, an...

  3. Network maintenance

    CERN Multimedia

    IT Department

    2009-01-01

    A site wide network maintenance has been scheduled for Saturday 28 February. Most of the network devices of the General Purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites along this day. This upgrade will not affect: the Computer centre itself, building 613, the Technical Network and the LHC experiments dedicated networks at the pits. Should you need more details on this intervention, please contact Netops by phone 74927 or email mailto:Netops@cern.ch. IT/CS Group

  4. Network maintenance

    CERN Multimedia

    GS Department

    2009-01-01

    A site-wide network maintenance operation has been scheduled for Saturday 28 February. Most of the network devices of the general purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites throughout the day. This upgrade will not affect the Computer Centre itself, Building 613, the Technical Network and the LHC experiments, dedicated networks at the pits. For further details of this intervention, please contact Netops by phone 74927 or e-mail mailto:Netops@cern.ch. IT/CS Group

  5. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  6. A network meta-analysis on randomized trials focusing on the preventive effect of statins on contrast-induced nephropathy

    DEFF Research Database (Denmark)

    Peruzzi, Mariangela; De Luca, Leonardo; Thomsen, Henrik S

    2014-01-01

    Contrast-induced nephropathy is a common complication of iodinated contrast administration. Statins may reduce the risk of contrast-induced nephropathy, but data remain inconclusive. We summarized the evidence based on statins for the prevention of contrast-induced nephropathy with a network meta...

  7. On the Packet Delay Characteristics for Serially-Connected Links using Random Linear Network Coding with and without Recoding

    DEFF Research Database (Denmark)

    Tömösközi, Máté; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    decoding of the packets on the receiver side while playing out the video recording contained in the payload. Our solutions are implemented and evaluated on serially connected Raspberry Pi devices and a network (de)coding enabled software running on a regular PC. We find that the recoding relays work...

  8. Percolation in clustered networks

    OpenAIRE

    Miller, Joel C

    2009-01-01

    The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied clustered networks, but the networks often contain preferential mixing between high degree nodes. We introduce a class of random clustered networks and another class of random unclustered networks with the same prefer...

  9. A systematic review and Bayesian network meta-analysis of randomized clinical trials on non-surgical treatments for peri-implantitis.

    Science.gov (United States)

    Faggion, Clovis M; Listl, Stefan; Frühauf, Nadine; Chang, Huei-Ju; Tu, Yu-Kang

    2014-10-01

    It remains unclear which type of non-surgical treatment is most appropriate as first-line intervention against peri-implantitis. This systematic review and Bayesian network meta-analysis aimed to compare the clinical effect of various non-surgical peri-implantitis therapies. The PubMed, SCOPUS, CINAHL, DARE and Web of Knowledge databases were searched in duplicate for randomized controlled trials (RCTs) up to and including 01 January 2014. Additional relevant literature was identified using handsearching of reference lists within published systematic reviews, and screenings of OpenGrey, ClinicalTrials.gov and Controlled-Trials.com. Probing pocket depth (PPD) was the outcome measure assessed. Multilevel mixed modelling was used to perform the network meta-analysis, and Markov Chain Monte Carlo simulation to obtain random effects. Eleven studies were included in the network meta-analysis. Debridement in conjunction with antibiotics achieved the greatest additional PPD reduction in comparison to debridement only (0.490 mm; 95% credible interval: -0.647;1.252). The highest probabilities of being the most effective interventions were achieved by Vector system (p = 20.60%), debridement plus periochip (p = 20.00%) and photodynamic therapy (p = 18.90%). The differences between various non-surgical treatments were relatively small with large credible intervals. On the basis of currently available RCTs, there is insufficient evidence to support that any particular non-surgical treatment for peri-implantitis showed better performance than debridement alone. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Spatial Scaling of Land Cover Networks

    CERN Document Server

    Small, Christopher

    2015-01-01

    Spatial networks of land cover are well-described by power law rank-size distributions. Continuous field proxies for human settlements, agriculture and forest cover have similar spatial scaling properties spanning 4 to 5 orders of magnitude. Progressive segmentation of these continuous fields yields spatial networks with rank-size distributions having slopes near -1 for a wide range of thresholds. We consider a general explanation for this scaling that does not require different processes for each type of land cover. The same conditions that give rise to scale-free networks in general can produce power law distributions of component sizes for bounded spatial networks confined to a plane or surface. Progressive segmentation of a continuous field naturally results in growth of the network while the increasing perimeters of the growing components result in preferential attachment to the larger components with the longer perimeters. Progressive segmentation of two types of random continuous field results in progr...

  11. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Dias, Sofia; Sutton, Alex J; Ades, A E; Welton, Nicky J

    2013-07-01

    We set out a generalized linear model framework for the synthesis of data from randomized controlled trials. A common model is described, taking the form of a linear regression for both fixed and random effects synthesis, which can be implemented with normal, binomial, Poisson, and multinomial data. The familiar logistic model for meta-analysis with binomial data is a generalized linear model with a logit link function, which is appropriate for probability outcomes. The same linear regression framework can be applied to continuous outcomes, rate models, competing risks, or ordered category outcomes by using other link functions, such as identity, log, complementary log-log, and probit link functions. The common core model for the linear predictor can be applied to pairwise meta-analysis, indirect comparisons, synthesis of multiarm trials, and mixed treatment comparisons, also known as network meta-analysis, without distinction. We take a Bayesian approach to estimation and provide WinBUGS program code for a Bayesian analysis using Markov chain Monte Carlo simulation. An advantage of this approach is that it is straightforward to extend to shared parameter models where different randomized controlled trials report outcomes in different formats but from a common underlying model. Use of the generalized linear model framework allows us to present a unified account of how models can be compared using the deviance information criterion and how goodness of fit can be assessed using the residual deviance. The approach is illustrated through a range of worked examples for commonly encountered evidence formats.

  12. A morphological and structural approach to evaluate the electromagnetic performances of composites based on random networks of carbon nanotubes

    Science.gov (United States)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.

    2014-04-01

    Small quantities of carbon nanotubes (CNTs) in polymer resins allow to obtain new lightweight nanocomposites suitable for microwave applications, such as efficient electromagnetic shielding or radar absorbing materials. The availability of appropriate simulation models taking into account the morphological and physical features of such very interesting composites is very important for design and performance optimization of devices and systems. In this study, a 3-dimensional (3D) numerical structure modeling the morphology of a CNT-based composite is considered in order to carry out a computational analysis of their electromagnetic performances. The main innovative features of the proposed model consists in the identification of a resistance and capacitance network whose values depend on the filler geometry and loading and whose complexity is associated with the percolation paths. Tunneling effect and capacitive interactions between the individual conductive particles are properly taken into account. The obtained network allows an easy calculation in a wide frequency range of the complex permittivity and others electromagnetic parameters. Moreover, a reliable sensitivity analysis concerning the impact of some crucial parameters, such as the CNTs properties and the dielectric permittivity of the neat resin, on the electromagnetic features of the resulting composites can be carried out. The model predictions are in good agreement with existing experimental data, suggesting that the proposed model can be a useful tool for their design and performance optimization in the microwave range.

  13. Complex Network for Solar Active Regions

    Science.gov (United States)

    Daei, Farhad; Safari, Hossein; Dadashi, Neda

    2017-08-01

    In this paper we developed a complex network of solar active regions (ARs) to study various local and global properties of the network. The values of the Hurst exponent (0.8-0.9) were evaluated by both the detrended fluctuation analysis and the rescaled range analysis applied on the time series of the AR numbers. The findings suggest that ARs can be considered as a system of self-organized criticality (SOC). We constructed a growing network based on locations, occurrence times, and the lifetimes of 4227 ARs recorded from 1999 January 1 to 2017 April 14. The behavior of the clustering coefficient shows that the AR network is not a random network. The logarithmic behavior of the length scale has the characteristics of a so-called small-world network. It is found that the probability distribution of the node degrees for undirected networks follows the power law with exponents of about 3.7-4.2. This indicates the scale-free nature of the AR network. The scale-free and small-world properties of the AR network confirm that the system of ARs forms a system of SOC. Our results show that the occurrence probability of flares (classified by GOES class C> 5, M, and X flares) in the position of the AR network hubs takes values greater than that obtained for other nodes.

  14. The origin of the criticality in meme popularity distribution on complex networks

    OpenAIRE

    Yup Kim; Seokjong Park; Soon-Hyung Yook

    2016-01-01

    Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust p...

  15. A network-based method using a random walk with restart algorithm and screening tests to identify novel genes associated with Menière's disease.

    Science.gov (United States)

    Li, Lin; Wang, YanShu; An, Lifeng; Kong, XiangYin; Huang, Tao

    2017-01-01

    As a chronic illness derived from hair cells of the inner ear, Menière's disease (MD) negatively influences the quality of life of individuals and leads to a number of symptoms, such as dizziness, temporary hearing loss, and tinnitus. The complete identification of novel genes related to MD would help elucidate its underlying pathological mechanisms and improve its diagnosis and treatment. In this study, a network-based method was developed to identify novel MD-related genes based on known MD-related genes. A human protein-protein interaction (PPI) network was constructed using the PPI information reported in the STRING database. A classic ranking algorithm, the random walk with restart (RWR) algorithm, was employed to search for novel genes using known genes as seed nodes. To make the identified genes more reliable, a series of screening tests, including a permutation test, an interaction test and an enrichment test, were designed to select essential genes from those obtained by the RWR algorithm. As a result, several inferred genes, such as CD4, NOTCH2 and IL6, were discovered. Finally, a detailed biological analysis was performed on fifteen of the important inferred genes, which indicated their strong associations with MD.

  16. Many-body localization and new critical phenomena in regular random graphs and constrained Erd\\H{o}s-Renyi networks

    CERN Document Server

    Avetisov, V; Nechaev, S; Valba, O

    2016-01-01

    We consider from the localization perspective the new critical behavior discovered recently for the regular random graphs (RRG) and constrained Erd\\H{o}s-Renyi networks (CERN). The diagonal disorder for standard models, we replace by the fugacity $\\mu$ of triads in the RRG and CERN. At some critical value of $\\mu$ the network decays into the maximally possible number of almost full graphs, and the adjacency matrix acquires the two-gapped structure. We find that the eigenvalue statistics corresponds to delocalized states in the central zone, and to the localized states in the side one. The mobility edge lies between zones. We apply these findings to the many-body localization assuming the approximation of the hierarchical structure of the Fock space (for some interacting many-body system) by the RGG and by CERN with some vertex degree. We allow the 3-cycles in the Fock space and identify particles in the many-body system above the phase transition with clusters in the RRG. We discuss the controversial issue of...

  17. Variations of petrophysical properties and spectral induced polarization in response to drainage and imbibition: a study on a correlated random tube network

    Science.gov (United States)

    Maineult, Alexis; Jougnot, Damien; Revil, André

    2018-02-01

    We implement a procedure to simulate the drainage and imbibition in random, 2-D, square networks. We compute the resistivity index, the relative permeability and the characteristic lengths of a correlated network at various saturation states, under the assumption that the surface conductivity can be neglected. These parameters exhibit a hysteretic behaviour. Then, we calculate the spectral induced polarization (SIP) response of the medium, under the assumption that the electrical impedance of each tube follows a local Warburg conductivity model, with identical DC conductivity and chargeability for all the tubes. We evidence that the shape of the SIP spectra depends on the saturation state. The analysis of the evolution of the macroscopic Cole-Cole parameters of the spectra in function of the saturation also behaves hysteretically, except for the Cole-Cole exponent. We also observe a power-law relationship between the macroscopic DC conductivity and time constant and the relative permeability. We also show that the frequency peak of the phase spectra is directly related to the characteristic length and to the relative permeability, underlining the potential interest of SIP measurements for the estimation of the permeability of unsaturated media.

  18. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  19. Delay-Optimal Scheduling for Two-Hop Relay Networks with Randomly Varying Connectivity: Join the Shortest Queue-Longest Connected Queue Policy

    Directory of Open Access Journals (Sweden)

    Seung Jun Baek

    2017-01-01

    Full Text Available We consider a scheduling problem for a two-hop queueing network where the queues have randomly varying connectivity. Customers arrive at the source queue and are later routed to multiple relay queues. A relay queue can be served only if it is in connected state, and the state changes randomly over time. The source queue and relay queues are served in a time-sharing manner; that is, only one customer can be served at any instant. We propose Join the Shortest Queue-Longest Connected Queue (JSQ-LCQ policy as follows: (1 if there exist nonempty relay queues in connected state, serve the longest queue among them; (2 if there are no relay queues to serve, route a customer from the source queue to the shortest relay queue. For symmetric systems in which the connectivity has symmetric statistics across the relay queues, we show that JSQ-LCQ is strongly optimal, that is, minimizes the delay in the stochastic ordering sense. We use stochastic coupling and show that the systems under coupling exist in two distinct phases, due to dynamic interactions among source and relay queues. By careful construction of coupling in both phases, we establish the stochastic dominance in delay between JSQ-LCQ and any arbitrary policy.

  20. Strategies to Make Ramadan Fasting Safer in Type 2 Diabetics: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials and Observational Studies.

    Science.gov (United States)

    Lee, Shaun Wen Huey; Lee, Jun Yang; Tan, Christina San San; Wong, Chee Piau

    2016-01-01

    Ramadan is the holy month for Muslims whereby they fast from predawn to after sunset and is observed by all healthy Muslim adults as well as a large population of type 2 diabetic Muslims.To determine the comparative effectiveness of various strategies that have been used for type 2 diabetic Muslim who fast during Ramadan.A systematic review and network meta-analysis of randomized controlled studies (RCT) as well as observational studies for patients with type 2 diabetes who fasted during Ramadan was conducted. Eight databases were searched from January 1980 through October 2015 for relevant studies. Two reviewers independently screened and assessed study for eligibility, assessed the risk of bias, and extracted relevant data. A network meta-analysis for each outcome was fitted separately, combining direct and indirect evidence for each comparison.Twenty-nine studies, 16 RCTs and 13 observational studies each met the inclusion criteria. The most common strategy used was drug changes during the Ramadan period, which found that the use of DPP-4 (Dipeptidyl peptidase inhibitor -4) inhibitors were associated with a reduction in incidence of experiencing hypoglycemia during Ramadan in both RCTs (pooled relative risk: 0.56; 95% confidence interval: 0.44-0.72) as well as in observational studies (pooled relative risk: 0.27; 0.09-0.75). Ramadan-focused education was shown to be beneficial in reducing hypoglycemia in observational studies but not RCTs (0.25 versus 1.00). Network meta-analyses suggest that incretin mimetics can reduce the risk of hypoglycemia by nearly 1.5 times.The newer antidiabetic agents appear to lower the risk of hypoglycemia and improved glycemic control when compared with sulfonylureas. Ramadan-focused education shows to be a promising strategy but more rigorous examination from RCTs are required.

  1. Efficacy of Supplementation with B Vitamins for Stroke Prevention: A Network Meta-Analysis of Randomized Controlled Trials.

    Directory of Open Access Journals (Sweden)

    Hongli Dong

    Full Text Available Supplementation with B vitamins for stroke prevention has been evaluated over the years, but which combination of B vitamins is optimal for stroke prevention is unclear. We performed a network meta-analysis to assess the impact of different combinations of B vitamins on risk of stroke.A total of 17 trials (86 393 patients comparing 7 treatment strategies and placebo were included. A network meta-analysis combined all available direct and indirect treatment comparisons to evaluate the efficacy of B vitamin supplementation for all interventions.B vitamin supplementation was associated with reduced risk of stroke and cerebral hemorrhage. The risk of stroke was lower with folic acid plus vitamin B6 as compared with folic acid plus vitamin B12 and was lower with folic acid plus vitamin B6 plus vitamin B12 as compared with placebo or folic acid plus vitamin B12. The treatments ranked in order of efficacy for stroke, from higher to lower, were folic acid plus vitamin B6 > folic acid > folic acid plus vitamin B6 plus vitamin B12 > vitamin B6 plus vitamin B12 > niacin > vitamin B6 > placebo > folic acid plus vitamin B12.B vitamin supplementation was associated with reduced risk of stroke; different B vitamins and their combined treatments had different efficacy on stroke prevention. Folic acid plus vitamin B6 might be the optimal therapy for stroke prevention. Folic acid and vitamin B6 were both valuable for stroke prevention. The efficacy of vitamin B12 remains to be studied.

  2. Pathfinding to an optimal strategy of revascularization in primary coronary intervention in patients with multivessel disease: a network meta-analysis of randomized trials.

    Science.gov (United States)

    Komócsi, András; Kehl, Dániel; d'Ascenso, Fabrizio; DiNicolantonio, James; Vorobcsuk, András

    2017-03-01

    In ST-segment elevation myocardial infarction (STEMI), current guidelines discourage treatment of the non-culprit lesions at the time of the primary intervention. Latest trials have challenged this strategy suggesting benefit of early complete revascularization. We performed a Bayesian multiple treatment network meta-analysis of randomized clinical trials (RCTs) in STEMI on culprit-only intervention (CO) versus different timing multivessel revascularization, including immediate (IM), same hospitalization (SH) or later staged (ST). Outcome parameters were pooled with a random-effects model. For multiple-treatment meta-analysis, a Bayesian Markov chain Monte Carlo method was used. Eight RCTs involving 2077 patients were identified. ST and IM revascularization was associated with a decrease in major adverse cardiac events (MACEs) compared to culprit-only approach (risk ratio [RR]: 0.43 credible interval [CrI]: 0.22-0.77 and RR: 0.36 CrI: 0.24-0.54, respectively). IM was superior to SH (RR: 0.49 CrI: 0.29-0.80). With regards to myocardial infarction IM was superior to SH (RR: 0.18 CrI: 0.02-0.99). The posterior probability of being the best choice of treatment regarding the frequency of MACEs was 71.2% for IM, 28.5% for ST, 0.3% for SH and 0.05% for culprit-only approach. Results from RCTs indicate that immediate or staged revascularization of non-culprit lesions reduces major adverse events in patients after primary percutaneous coronary intervention. Differences in MACEs suggest superiority of the immediate or staged intervention; however, further randomized trials are needed to determine the optimal timing of revascularization of the non-culprit lesions.

  3. Variational perturbation and extended Plefka approaches to dynamics on random networks: the case of the kinetic Ising model

    Science.gov (United States)

    Bachschmid-Romano, L.; Battistin, C.; Opper, M.; Roudi, Y.

    2016-10-01

    We describe and analyze some novel approaches for studying the dynamics of Ising spin glass models. We first briefly consider the variational approach based on minimizing the Kullback-Leibler divergence between independent trajectories and the real ones and note that this approach only coincides with the mean field equations from the saddle point approximation to the generating functional when the dynamics is defined through a logistic link function, which is the case for the kinetic Ising model with parallel update. We then spend the rest of the paper developing two ways of going beyond the saddle point approximation to the generating functional. In the first one, we develop a variational perturbative approximation to the generating functional by expanding the action around a quadratic function of the local fields and conjugate local fields whose parameters are optimized. We derive analytical expressions for the optimal parameters and show that when the optimization is suitably restricted, we recover the mean field equations that are exact for the fully asymmetric random couplings (Mézard and Sakellariou 2011 J. Stat. Mech. 2011 L07001). However, without this restriction the results are different. We also describe an extended Plefka expansion in which in addition to the magnetization, we also fix the correlation and response functions. Finally, we numerically study the performance of these approximations for Sherrington-Kirkpatrick type couplings for various coupling strengths and the degrees of coupling symmetry, for both temporally constant but random, as well as time varying external fields. We show that the dynamical equations derived from the extended Plefka expansion outperform the others in all regimes, although it is computationally more demanding. The unconstrained variational approach does not perform well in the small coupling regime, while it approaches dynamical TAP equations of (Roudi and Hertz 2011 J. Stat. Mech. 2011 P03031) for strong couplings.

  4. Complete or Culprit-Only Revascularization for Patients With Multivessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Pairwise and Network Meta-Analysis of Randomized Trials.

    Science.gov (United States)

    Elgendy, Islam Y; Mahmoud, Ahmed N; Kumbhani, Dharam J; Bhatt, Deepak L; Bavry, Anthony A

    2017-02-27

    The authors sought to compare the effectiveness of the different revascularization strategies in ST-segment elevation myocardial infarction (STEMI) patients with multivessel coronary artery disease undergoing primary percutaneous coronary intervention (PCI). Recent randomized trials have suggested that multivessel complete revascularization at the time of primary percutaneous coronary intervention (PCI) is associated with better outcomes, however; the optimum timing for nonculprit PCI is unknown. Trials that randomized STEMI patients with multivessel disease to any combination of the 4 different revascularization strategies (i.e., complete revascularization at the index procedure, staged procedure during the hospitalization, staged procedure after discharge or culprit-only revascularization) were included. Random effect risk ratios (RRs) were conducted. Network meta-analysis was constructed using mixed treatment comparison models, and the 4 revascularization strategies were compared. A total of 10 trials with 2,285 patients were included. In the pairwise meta-analysis, complete revascularization (i.e., at the index procedure or as a staged procedure) was associated with a lower risk of major adverse cardiac events (MACE) (RR: 0.57; 95% confidence interval [CI]: 0.42 to 0.77), due to lower risk of urgent revascularization (RR: 0.44; 95% CI: 0.30 to 0.66). The risk of all-cause mortality (RR: 0.76; 95% CI: 0.52 to 1.12), and spontaneous reinfarction (RR: 0.54; 95% CI: 0.23 to 1.27) was similar. The reduction in the risk of MACE was observed irrespective of the timing of nonculprit artery revascularization in the mixed treatment model. Current evidence from randomized trials suggests that the risk of all-cause mortality and spontaneous reinfarction is not different among the various revascularization strategies for multivessel disease. Complete revascularization at the index procedure or as a staged procedure (either during the hospitalization or after discharge

  5. Growing Concerns With Workplace Incivility.

    Science.gov (United States)

    Collins, Natasha Renee; Rogers, Bonnie

    2017-11-01

    Workplace incivility (WPI) is a growing issue across all public and private sectors. Occupational and environmental health nurses can educate employees and management about WPI, its risk factors and characteristics, and ways to reduce incidents of WPI.

  6. Impact of school-based vegetable garden and physical activity coordinated health interventions on weight status and weight-related behaviors of ethnically diverse, low-income students: Study design and baseline data of the Texas, Grow! Eat! Go! (TGEG cluster-randomized controlled trial

    Directory of Open Access Journals (Sweden)

    A. Evans

    2016-09-01

    Full Text Available Abstract Background Coordinated, multi-component school-based interventions can improve health behaviors in children, as well as parents, and impact the weight status of students. By leveraging a unique collaboration between Texas AgriLife Extension (a federal, state and county funded educational outreach organization and the University of Texas School of Public Health, the Texas Grow! Eat! Go! Study (TGEG modeled the effectiveness of utilizing existing programs and volunteer infrastructure to disseminate an enhanced Coordinated School Health program. The five-year TGEG study was developed to assess the independent and combined impact of gardening, nutrition and physical activity intervention(s on the prevalence of healthy eating, physical activity and weight status among low-income elementary students. The purpose of this paper is to report on study design, baseline characteristics, intervention approaches, data collection and baseline data. Methods The study design for the TGEG study consisted of a factorial group randomized controlled trial (RCT in which 28 schools were randomly assigned to one of 4 treatment groups: (1 Coordinated Approach to Child Health (CATCH only (Comparison, (2 CATCH plus school garden intervention [Learn, Grow, Eat & Go! (LGEG], (3 CATCH plus physical activity intervention [Walk Across Texas (WAT], and (4 CATCH plus LGEG plus WAT (Combined. The outcome variables include student’s weight status, vegetable and sugar sweetened beverage consumption, physical activity, and sedentary behavior. Parents were assessed for home environmental variables including availability of certain foods, social support of student health behaviors, parent engagement and behavior modeling. Results Descriptive data are presented for students (n = 1369 and parents (n = 1206 at baseline. The sample consisted primarily of Hispanic and African American (53 % and 18 %, respectively and low-income (i.e., 78 % eligible for Free and

  7. Impact of school-based vegetable garden and physical activity coordinated health interventions on weight status and weight-related behaviors of ethnically diverse, low-income students: Study design and baseline data of the Texas, Grow! Eat! Go! (TGEG) cluster-randomized controlled trial.

    Science.gov (United States)

    Evans, A; Ranjit, N; Hoelscher, D; Jovanovic, C; Lopez, M; McIntosh, A; Ory, M; Whittlesey, L; McKyer, L; Kirk, A; Smith, C; Walton, C; Heredia, N I; Warren, J

    2016-09-13

    Coordinated, multi-component school-based interventions can improve health behaviors in children, as well as parents, and impact the weight status of students. By leveraging a unique collaboration between Texas AgriLife Extension (a federal, state and county funded educational outreach organization) and the University of Texas School of Public Health, the Texas Grow! Eat! Go! Study (TGEG) modeled the effectiveness of utilizing existing programs and volunteer infrastructure to disseminate an enhanced Coordinated School Health program. The five-year TGEG study was developed to assess the independent and combined impact of gardening, nutrition and physical activity intervention(s) on the prevalence of healthy eating, physical activity and weight status among low-income elementary students. The purpose of this paper is to report on study design, baseline characteristics, intervention approaches, data collection and baseline data. The study design for the TGEG study consisted of a factorial group randomized controlled trial (RCT) in which 28 schools were randomly assigned to one of 4 treatment groups: (1) Coordinated Approach to Child Health (CATCH) only (Comparison), (2) CATCH plus school garden intervention [Learn, Grow, Eat & Go! (LGEG)], (3) CATCH plus physical activity intervention [Walk Across Texas (WAT)], and (4) CATCH plus LGEG plus WAT (Combined). The outcome variables include student's weight status, vegetable and sugar sweetened beverage consumption, physical activity, and sedentary behavior. Parents were assessed for home environmental variables including availability of certain foods, social support of student health behaviors, parent engagement and behavior modeling. Descriptive data are presented for students (n = 1369) and parents (n = 1206) at baseline. The sample consisted primarily of Hispanic and African American (53 % and 18 %, respectively) and low-income (i.e., 78 % eligible for Free and Reduced Price School Meals program and 43

  8. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  9. Growth and containment of a hierarchical criminal network

    Science.gov (United States)

    Marshak, Charles Z.; Rombach, M. Puck; Bertozzi, Andrea L.; D'Orsogna, Maria R.

    2016-02-01

    We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn seek out other affiliates. New recruits are linked to established criminals according to a probability distribution that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global details of the organization are unknown to law enforcement, who must explore the hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first eradication, and related costs. Within the context of this model, we find that eradication becomes increasingly costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the early stages of network formation. We discuss our results in the context of dark network disruption and their implications on possible law enforcement strategies.

  10. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial.

    Science.gov (United States)

    Tarazona-Santabalbina, Francisco José; Gómez-Cabrera, Mari Carmen; Pérez-Ros, Pilar; Martínez-Arnau, Francisco Miguel; Cabo, Helena; Tsaparas, Konstantina; Salvador-Pascual, Andrea; Rodriguez-Mañas, Leocadio; Viña, José

    2016-05-01

    Frailty can be an important clinical target to reduce rates of disability. To ascertain if a supervised-facility multicomponent exercise program (MEP) when performed by frail older persons can reverse frailty and improve functionality; cognitive, emotional, and social networking; as well as biological biomarkers of frailty, when compared with a controlled population that received no training. This is an interventional, controlled, simple randomized study. Researchers responsible for data gathering were blinded for this study. Participants from 2 primary rural care centers (Sollana and Carcaixent) of the same health department in Spain were enrolled in the study between December 2013 and September 2014. We randomized a volunteer sample of 100 men and women who were sedentary, with a gait speed lower than 0.8 meters per second and frail (met at least 3 of the frailty phenotype criteria). Participants were randomized to a supervised-facility MEP (n = 51, age = 79.5, SD 3.9) that included proprioception, aerobic, strength, and stretching exercises for 65 minutes, 5 days per week, 24 weeks, or to a control group (n = 49, age = 80.3, SD 3.7). The intervention was performed by 8 experienced physiotherapists or nurses. Protein-calorie and vitamin D supplementation were controlled in both groups. Our MEP reverses frailty (number needed to treat to recover robustness in subjects with attendance to ≥50% of the training sessions was 3.2) and improves functional measurements: Barthel (trained group 91.6 SD 8.0 vs 82.0 SD 11.0 control group), Lawton and Brody (trained group 6.9 SD 0.9 vs 5.7 SD 2.0 control group), Tinetti (trained group 24.5 SD 4.4 vs 21.7 SD 4.5 control group), Short Physical Performance Battery (trained group 9.5 SD 1.8 vs 7.1 SD 2.8 control group), and physical performance test (trained group 23.5 SD 5.9 vs 16.5 SD 5.1 control group) as well as cognitive, emotional, and social networking determinations: Mini-Mental State Examination (trained

  11. A systematic comparison of flat and standard cascade-correlation using a student-teacher network approximation task

    Science.gov (United States)

    Dandurand, F.; Berthiaume, V.; Shultz, T. R.

    2007-09-01

    Cascade-correlation (cascor) networks grow by recruiting hidden units to adjust their computational power to the task being learned. The standard cascor algorithm recruits each hidden unit on a new layer, creating deep networks. In contrast, the flat cascor variant adds all recruited hidden units on a single hidden layer. Student-teacher network approximation tasks were used to investigate the ability of flat and standard cascor networks to learn the input-output mapping of other, randomly initialized flat and standard cascor networks. For low-complexity approximation tasks, there was no significant performance difference between flat and standard student networks. Contrary to the common belief that standard cascor does not generalize well due to cascading weights creating deep networks, we found that both standard and flat cascor generalized well on problems of varying complexity. On high-complexity tasks, flat cascor networks had fewer connection weights and learned with less computational cost than standard networks did.

  12. The Building Wealth and Health Network: methods and baseline characteristics from a randomized controlled trial for families with young children participating in temporary assistance for needy families (TANF

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2016-07-01

    Full Text Available Abstract Background Families with children under age six participating in the Temporary Assistance for Needy Families Program (TANF must participate in work-related activities for 20 h per week. However, due to financial hardship, poor health, and exposure to violence and adversity, families may experience great difficulty in reaching self-sufficiency. The purpose of this report is to describe study design and baseline findings of a trauma-informed financial empowerment and peer support intervention meant to mitigate these hardships. Methods We conducted a randomized controlled trial of a 28-week intervention called Building Wealth and Health Network to improve financial security and maternal and child health among caregivers participating in TANF. Participants, recruited from County Assistance offices in Philadelphia, PA, were randomized into two intervention groups (partial and full and one control group. Participants completed questionnaires at baseline to assess career readiness, economic hardship, health and wellbeing, exposure to adversity and violence, and interaction with criminal justice systems. Results Baseline characteristics demonstrate that among 103 participants, there were no significant differences by group. Mean age of participants was 25 years, and youngest child was 30 months. The majority of participants were women (94.2 %, never married (83.5 %, unemployed (94.2 %, and without a bank account (66.0 %. Many reported economic hardship (32.0 % very low household food secure, 65.0 % housing insecure, and 31.1 % severe energy insecure, and depression (57.3 %. Exposure to adversity was prevalent, where 38.8 % reported four or more Adverse Childhood Experiences including abuse, neglect and household dysfunction. In terms of community violence, 64.7 % saw a seriously wounded person after an incident of violence, and 27.2 % had seen someone killed. Finally, 14.6 % spent time in an adult correctional institution, and 48

  13. The Building Wealth and Health Network: methods and baseline characteristics from a randomized controlled trial for families with young children participating in temporary assistance for needy families (TANF).

    Science.gov (United States)

    Sun, Jing; Patel, Falguni; Kirzner, Rachel; Newton-Famous, Nijah; Owens, Constance; Welles, Seth L; Chilton, Mariana

    2016-07-16

    Families with children under age six participating in the Temporary Assistance for Needy Families Program (TANF) must participate in work-related activities for 20 h per week. However, due to financial hardship, poor health, and exposure to violence and adversity, families may experience great difficulty in reaching self-sufficiency. The purpose of this report is to describe study design and baseline findings of a trauma-informed financial empowerment and peer support intervention meant to mitigate these hardships. We conducted a randomized controlled trial of a 28-week intervention called Building Wealth and Health Network to improve financial security and maternal and child health among caregivers participating in TANF. Participants, recruited from County Assistance offices in Philadelphia, PA, were randomized into two intervention groups (partial and full) and one control group. Participants completed questionnaires at baseline to assess career readiness, economic hardship, health and wellbeing, exposure to adversity and violence, and interaction with criminal justice systems. Baseline characteristics demonstrate that among 103 participants, there were no significant differences by group. Mean age of participants was 25 years, and youngest child was 30 months. The majority of participants were women (94.2 %), never married (83.5 %), unemployed (94.2 %), and without a bank account (66.0 %). Many reported economic hardship (32.0 % very low household food secure, 65.0 % housing insecure, and 31.1 % severe energy insecure), and depression (57.3 %). Exposure to adversity was prevalent, where 38.8 % reported four or more Adverse Childhood Experiences including abuse, neglect and household dysfunction. In terms of community violence, 64.7 % saw a seriously wounded person after an incident of violence, and 27.2 % had seen someone killed. Finally, 14.6 % spent time in an adult correctional institution, and 48.5 % of the fathers of the youngest child spent

  14. The Impact of Aerobic Exercise on Fronto-Parietal Network Connectivity and Its Relation to Mobility: An Exploratory Analysis of a 6-Month Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Chun L. Hsu

    2017-06-01

    Full Text Available Impaired mobility is a major concern for older adults and has significant consequences. While the widely accepted belief is that improved physical function underlies the effectiveness of targeted exercise training in improving mobility and reducing falls, recent evidence suggests cognitive and neural benefits gained through exercise may also play an important role in promoting mobility. However, the underlying neural mechanisms of this relationship are currently unclear. Thus, we hypothesize that 6 months of progressive aerobic exercise training would alter frontoparietal network (FPN connectivity during a motor task among older adults with mild subcortical ischemic vascular cognitive impairment (SIVCI—and exercise-induced changes in FPN connectivity would correlate with changes in mobility. We focused on the FPN as it is involved in top-down attentional control as well as motor planning and motor execution. Participants were randomized either to usual-care (CON, which included monthly educational materials about VCI and healthy diet; or thrice-weekly aerobic training (AT, which was walking outdoors with progressive intensity. Functional magnetic resonance imaging was acquired at baseline and trial completion, where the participants were instructed to perform bilateral finger tapping task. At trial completion, compared with AT, CON showed significantly increased FPN connectivity strength during right finger tapping (p < 0.05. Across the participants, reduced FPN connectivity was associated with greater cardiovascular capacity (p = 0.05. In the AT group, reduced FPN connectivity was significantly associated with improved mobility performance, as measured by the Timed-Up-and-Go test (r = 0.67, p = 0.02. These results suggest progressive AT may improve mobility in older adults with SIVCI via maintaining intra-network connectivity of the FPN.

  15. Randomized controlled trial of mindfulness-based stress reduction versus aerobic exercise: effects on the self-referential brain network in social anxiety disorder.

    Science.gov (United States)

    Goldin, Philippe; Ziv, Michal; Jazaieri, Hooria; Gross, James J

    2012-01-01

    Social anxiety disorder (SAD) is characterized by distorted self-views. The goal of this study was to examine whether mindfulness-based stress reduction (MBSR) alters behavioral and brain measures of negative and positive self-views. Fifty-six adult patients with generalized SAD were randomly assigned to MBSR or a comparison aerobic exercise (AE) program. A self-referential encoding task was administered at baseline and post-intervention to examine changes in behavioral and neural responses in the self-referential brain network during functional magnetic resonance imaging. Patients were cued to decide whether positive and negative social trait adjectives were self-descriptive or in upper case font. Behaviorally, compared to AE, MBSR produced greater decreases in negative self-views, and equivalent increases in positive self-views. Neurally, during negative self versus case, compared to AE, MBSR led to increased brain responses in the posterior cingulate cortex (PCC). There were no differential changes for positive self versus case. Secondary analyses showed that changes in endorsement of negative and positive self-views were associated with decreased social anxiety symptom severity for MBSR, but not AE. Additionally, MBSR-related increases in dorsomedial prefrontal cortex (DMPFC) activity during negative self-view versus case were associated with decreased social anxiety related disability and increased mindfulness. Analysis of neural temporal dynamics revealed MBSR-related changes in the timing of neural responses in the DMPFC and PCC for negative self-view versus case. These findings suggest that MBSR attenuates maladaptive habitual self-views by facilitating automatic (i.e., uninstructed) recruitment of cognitive and attention regulation neural networks. This highlights potentially important links between self-referential and cognitive-attention regulation systems and suggests that MBSR may enhance more adaptive social self-referential processes in patients with

  16. Randomized controlled trial of Mindfulness-Based Stress Reduction versus aerobic exercise: effects on the self-referential brain network in social anxiety disorder

    Directory of Open Access Journals (Sweden)

    Philippe eGoldin

    2012-11-01

    Full Text Available Background: Social Anxiety Disorder (SAD is characterized by distorted self-views. The goal of this study was to examine whether Mindfulness-Based Stress Reduction (MBSR alters behavioral and brain measures of negative and positive self-views. Methods: 56 adult patients with generalized SAD were randomly assigned to MBSR or a comparison aerobic exercise (AE program. A self-referential encoding task was administered at baseline and post-intervention to examine changes in behavioral and neural responses in the self-referential brain network during functional magnetic resonance imaging. Patients were cued to decide whether positive and negative social trait adjectives were self-descriptive or in upper case font. Results: Behaviorally, compared to AE, MBSR produced greater decreases in negative self-views, and equivalent increases in positive self-views. Neurally, during negative self vs. case, compared to AE, MBSR led to increased brain responses in the posterior cingulate cortex (PCC. There were no differential changes for positive self vs. case. Secondary analyses showed that changes in endorsement of negative and positive self-views were associated with decreased social anxiety symptom severity for MBSR, but not AE. Additionally, MBSR-related increases in DMPFC activity during negative self-view vs. case were associated with decreased social anxiety-related disability and increased mindfulness. Analysis of neural temporal dynamics revealed MBSR-related changes in the timing of neural responses in the DMPFC and PCC for negative self-view vs. case.Conclusions: These findings suggest that MBSR attenuates maladaptive habitual self-views by facilitating automatic (i.e., uninstructed recruitment of cognitive and attention regulation neural networks. This highlights potentially important links between self-referential and cognitive-attention regulation systems and suggests that MBSR may enhance more adaptive social self-referential processes in

  17. Induction regimens for transplant-eligible patients with newly diagnosed multiple myeloma: a network meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Zeng ZH

    2017-07-01

    Full Text Available Zi-Hang Zeng,1,2 Jia-Feng Chen,1,2 Yi-Xuan Li,1,2 Ran Zhang,1,2 Ling-Fei Xiao,1,2 Xiang-Yu Meng1,2 1Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, 2Department of Evidence-Based Medicine and Clinical Epidemiology, Second Clinical College of Wuhan University, Wuhan, People’s Republic of China Objective: The aim of this study was to compare the early efficacy and survivals of induction regimens for transplant-eligible patients with untreated multiple myeloma. Materials and methods: A comprehensive literature search in electronic databases was conducted for relevant randomized controlled trials (RCTs. Eligible studies were selected according to the predefined selection criteria, before they were evaluated for methodological quality. Basic characteristics and data for network meta-analysis (NMA were extracted from included trials and pooled in our meta-analysis. The end points were the overall response rate (ORR, progression-free survival (PFS, and overall survival (OS. Results: A total of 14 RCTs that included 4,763 patients were analyzed. The post-induction ORR was higher with bortezomib plus thalidomide plus dexamethasone (VTD regimens, and VTD was better than the majority of other regimens. For OS, VTD plus cyclophosphamide (VTDC regimens showed potential superiority over other regimens, but the difference was not statistically significant. The PFS was longer with thalidomide plus doxorubicin plus dexamethasone (TAD regimens for transplant-eligible patients with newly diagnosed multiple myeloma (NDMM. Conclusion: The NMA demonstrated that the VTD, VTDC, and TAD regimens are most beneficial in terms of ORR, OS, and PFS for transplant-eligible patients with NDMM, respectively. Keywords: multiple myeloma, newly diagnosed, transplant-eligible, induction therapies, network meta-analysis

  18. Single-agent maintenance therapy for advanced non-small cell lung cancer (NSCLC): a systematic review and Bayesian network meta-analysis of 26 randomized controlled trials.

    Science.gov (United States)

    Wang, Qinxue; Huang, Haobin; Zeng, Xiaoning; Ma, Yuan; Zhao, Xin; Huang, Mao

    2016-01-01

    The benefit of maintenance therapy has been confirmed in patients with non-progressing non-small cell lung cancer (NSCLC) after first-line therapy by many trials and meta-analyses. However, since few head-to-head trials between different regimens have been reported, clinicians still have little guidance on how to select the most efficacious single-agent regimen. Hence, we present a network meta-analysis to assess the comparative treatment efficacy of several single-agent maintenance therapy regimens for stage III/IV NSCLC. A comprehensive literature search of public databases and conference proceedings was performed. Randomized clinical trials (RCTs) meeting the eligible criteria were integrated into a Bayesian network meta-analysis. The primary outcome was overall survival (OS) and the secondary outcome was progression free survival (PFS). A total of 26 trials covering 7,839 patients were identified, of which 24 trials were included in the OS analysis, while 23 trials were included in the PFS analysis. Switch-racotumomab-alum vaccine and switch-pemetrexed were identified as the most efficacious regimens based on OS (HR, 0.64; 95% CrI, 0.45-0.92) and PFS (HR, 0.54; 95% CrI, 0.26-1.04) separately. According to the rank order based on OS, switch-racotumomab-alum vaccine had the highest probability as the most effective regimen (52%), while switch-pemetrexed ranked first (34%) based on PFS. Several single-agent maintenance therapy regimens can prolong OS and PFS for stage III/IV NSCLC. Switch-racotumomab-alum vaccine maintenance therapy may be the most optimal regimen, but should be confirmed by additional evidence.

  19. Growing Oppression, Growing Resistance : LGBT Activism and Europeanisation in Macedonia

    NARCIS (Netherlands)

    Miškovska Kajevska, A.; Bilić, B.

    2016-01-01

    This chapter provides one of the first socio-historical overviews of the LGBT groups in Macedonia and argues that an important impetus for the proliferation of LGBT activities has been the growing state-endorsed homophobia starting from 2008. The homophobic rhetoric of the ruling parties was clearly

  20. Classes of antihypertensive agents and mortality in hypertensive patients with type 2 diabetes-Network meta-analysis of randomized trials.

    Science.gov (United States)

    Remonti, Luciana R; Dias, Sofia; Leitão, Cristiane B; Kramer, Caroline K; Klassman, Lucas P; Welton, Nicky J; Ades, A E; Gross, Jorge L

    2016-08-01

    The aim of this study was to evaluate the effects of antihypertensive drug classes in mortality in patients with type 2 diabetes. MEDLINE, EMBASE, Clinical Trials and Cochrane Library were searched for randomized trials comparing thiazides, beta-blockers, calcium channel blockers (CCBs), angiotensin-converting inhibitors (ACEi) and angiotensin-receptor blockers (ARBs), alone or in combination for hypertension treatment in patients with type 2 diabetes. Outcomes were overall and cardiovascular mortality. Network meta-analysis was used to obtain pooled effect estimate. A total of 27 studies, comprising 49,418 participants, 5647 total and 1306 cardiovascular deaths were included. No differences in total or cardiovascular mortality were observed with isolated antihypertensive drug classes compared to each other or placebo. The ACEi and CCB combination showed evidence of reduction in cardiovascular mortality comparing to placebo [median HR, 95% credibility intervals: 0.16, 0.01-0.82], betablockers (0.20, 0.02-0.98), CCBs (0.21, 0.02-0.97) and ARBs (0.18, 0.02-0.91). In included trials, this combination was the treatment that most consistently achieved both lower systolic and diastolic end of study blood pressure. There is no benefit of a single antihypertensive class in reduction of mortality in hypertensive patients with type 2 diabetes. Reduction of cardiovascular mortality observed in patients treated with ACEi and CCB combination may be related to lower blood pressure levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of chemopreventive agents on the incidence of recurrent colorectal adenomas: a systematic review with network meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Veettil SK

    2017-05-01

    Full Text Available Sajesh K Veettil,1 Nattawat Teerawattanapong,2 Siew Mooi Ching,3,4 Kean Ghee Lim,5 Surasak Saokaew,6–9 Pochamana Phisalprapa,10 Nathorn Chaiyakunapruk7,8,11,12 1School of Pharmacy/School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia; 2Division of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand; 3Department of Family Medicine, Faculty of Medicine and Health Sciences, 4Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, 5Clinical School, Department of Surgery, International Medical University, Seremban, Negeri Sembilan, 6Center of Health Outcomes Research and Therapeutic Safety (Cohorts, School of Pharmaceutical Sciences, University of Phayao, Phayao, 7School of Pharmacy, Monash University Malaysia, Selangor, Malaysia; 8Centre of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; 9Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Thailand; 10Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 11School of Pharmacy, University of Wisconsin, Madison, USA; 12Health and Well-being Cluster, Global Asia Platform in the 21st Century (GA21 Platform, Monash University Malaysia, Selangor, Malaysia Background: Protective effects of several chemopreventive agents (CPAs against colorectal adenomas have been well documented in randomized controlled trials (RCTs; however, there is uncertainty regarding which agents are the most effective.Methods: We searched for RCTs published up until September 2016. Retrieved trials were evaluated using risk of bias. We performed both pairwise analysis and network meta-analysis (NMA of RCTs to compare the effects of CPAs on the recurrence of colorectal adenomas (primary outcome. Using NMA, we

  2. Exploring Classroom Hydroponics. Growing Ideas.

    Science.gov (United States)

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  3. Growing Patterns: Seeing beyond Counting

    Science.gov (United States)

    Markworth, Kimberly A.

    2012-01-01

    Over the past two decades, mathematical patterns have been acknowledged as important early components of children's development of algebraic reasoning (NCTM 2000). In particular, growing patterns have attracted significant attention as a context that helps students develop an understanding of functional relationships (Lee and Freiman 2006; Moss et…

  4. Growth And Some Carcass Characteristics Of Growing Pigs Fed Full ...

    African Journals Online (AJOL)

    Thirty-six Large White X Landrace growing pigs were randomly allotted in a 3 x 3 factorial arrangement. The two dietary variables were protein source (Fish meal - FM, Chicken offal meal-COM and full·fat soybean - FFSB) and processing time of FFSB (30, 60, 90 minutes). Pigs on 90 minutes processed FFSB performed ...

  5. A random matrix analysis

    Indian Academy of Sciences (India)

    chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by pro- viding a new dimension to complex systems research. We show that in spite of huge differences ... as mentioned earlier, different types of networks can be constructed based on the nature of connections. For example,.

  6. Practice network-based care management for patients with type 2 diabetes and multiple comorbidities (GEDIMAplus): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Bozorgmehr, Kayvan; Szecsenyi, Joachim; Ose, Dominik; Besier, Werner; Mayer, Manfred; Krisam, Johannes; Jacke, Christian O; Salize, Hans-Joachim; Brandner, Ralf; Schmitt, Sandra; Kiel, Marion; Kamradt, Martina; Freund, Tobias

    2014-06-21

    Care management interventions in the German health-care system have been evaluated with promising results, but further research is necessary to explore their full potential in the context of multi-morbidity. Our aim in this trial is to assess the efficacy of a primary care practice network-based care management intervention in improving self-care behaviour among patients with type 2 diabetes mellitus and multiple co-occurring chronic conditions. The study is designed as a prospective, 18-month, multicentre, investigator-blinded, two-arm, open-label, individual-level, randomized parallel-group superiority trial. We will enrol 582 patients with type 2 diabetes mellitus and at least two severe chronic conditions and one informal caregiver per patient. Data will be collected at baseline (T0), at the primary endpoint after 9 months (T1) and at follow-up after 18 months (T2). The primary outcome will be the differences between the intervention and control groups in changes of diabetes-related self-care behaviours from baseline to T1 using a German version of the revised Summary of Diabetes Self-Care Activities (SDSCA-G). The secondary outcomes will be the differences between the intervention and control groups in: changes in scores on the SDSCA-G subscales, glycosylated haemoglobin A level, health-related quality of life, self-efficacy, differences in (severe) symptomatic hypoglycaemia, cost-effectiveness and financial family burden. The intervention will be delivered by trained health-care assistants as an add-on to usual care and will consist of three main elements: (1) three home visits, including structured assessment of medical and social needs; (2) 24 structured telephone monitoring contacts; and (3) self-monitoring of blood glucose levels after T1 in 3-month intervals. The control group will receive usual care. The confirmatory primary analysis will be performed following the intention-to-treat (ITT) principle. The efficacy of the intervention will be quantified

  7. Community Pharmacist Training-and-Communication Network and Drug-Related Problems in Patients With CKD: A Multicenter, Cluster-Randomized, Controlled Trial.

    Science.gov (United States)

    Lalonde, Lyne; Quintana-Bárcena, Patricia; Lord, Anne; Bell, Robert; Clément, Valérie; Daigneault, Anne-Marie; Legris, Marie-Ève; Letendre, Sara; Mouchbahani, Marie; Jouini, Ghaya; Azar, Joëlle; Martin, Élisabeth; Berbiche, Djamal; Beaulieu, Stephanie; Beaunoyer, Sébastien; Bertin, Émilie; Bouvrette, Marianne; Charbonneau-Séguin, Noémie; Desrochers, Jean-François; Desforges, Katherine; Dumoulin-Charette, Ariane; Dupuis, Sébastien; El Bouchikhi, Maryame; Forget, Roxanne; Guay, Marianne; Lemieux, Jean-Phillippe; Morin-Bélanger, Claudia; Noël, Isabelle; Ricard, Stephanie; Sauvé, Patricia; Ste-Marie Paradis, François

    2017-09-01

    Appropriate training for community pharmacists may improve the quality of medication use. Few studies have reported the impact of such programs on medication management for patients with chronic kidney disease (CKD). Multicenter, cluster-randomized, controlled trial. Patients with CKD stage 3a, 3b, or 4 from 6 CKD clinics (Quebec, Canada) and their community pharmacies. Each cluster (a pharmacy and its patients) was randomly assigned to either ProFiL, a training-and-communication network program, or the control group. ProFiL pharmacists completed a 90-minute interactive web-based training program on use of medications in CKD and received a clinical guide, patients' clinical summaries, and facilitated access to the CKD clinic. Drug-related problems (primary outcome), pharmacists' knowledge and clinical skills, and patients' clinical attributes (eg, blood pressure and glycated hemoglobin concentration). Drug-related problems were evaluated the year before and after the recruitment of patients using a validated set of significant drug-related problems, the Pharmacotherapy Assessment in Chronic Renal Disease (PAIR) criteria. Pharmacists' questionnaires were completed at baseline and after 1 year. Clinical attributes were documented at baseline and after 1 year using available information in medical charts. 207 community pharmacies, 494 pharmacists, and 442 patients with CKD participated. After 1 year, the mean number of drug-related problems per patient decreased from 2.16 to 1.60 and from 1.70 to 1.62 in the ProFiL and control groups, respectively. The difference in reduction of drug-related problems per patient between the ProFiL and control groups was -0.32 (95% CI, -0.63 to -0.01). Improvements in knowledge (difference, 4.5%; 95% CI, 1.6%-7.4%) and clinical competencies (difference, 7.4%; 95% CI, 3.5%-11.3%) were observed among ProFiL pharmacists. No significant differences in clinical attributes were observed across the groups. High proportion of missing data

  8. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  9. Tracheotomy in growing rats: histological aspects

    Directory of Open Access Journals (Sweden)

    Manna Mônica Cecília Bochetti

    2003-01-01

    Full Text Available PURPOSE: To compare morphologically three different types of tracheotomy in growing rats, applying microsurgical technique. METHODS: EPM-1 Wistar growing rats (n=57 weighing 88gm and aged 35 days were randomized in four groups, according tracheotomy incision type (longitudinal, transverse and tracheal segment excision, and sham group. Following intramuscular anesthesia with ketamine and xylazine, the trachea was exposed and incised, according to the group, and a hand-made endotracheal cannula was inserted into the organ, under sterile conditions. This cannula was removed after 7 days, and animals have been sacrificed 30 days later. Tracheas samples were submitted to histological study, stained by hematoxylin-eosin and Masson trichrome, evaluating fibrosis, inflammatory infiltrate and epidermoid metaplasia. RESULTS: There was more frequency of inflammatory infiltrate at the tracheal epithelium in the tracheal segment excision group (87% compared to the longitudinal (40% and transverse (36% incision groups (p=0.009. Evaluating epidermoid metaplasia, tracheal segment excision and the longitudinal groups presented 33% and 40%, respectively, compared to 0% of the transverse group (p=0.03. Concerning to fibrosis, in a global comparison (p=0.1 among the three groups there was no difference, however, compared to the longitudinal group the transverse group showed lower level of fibrosis (p=0.04. Sham group did not present any relevant morphologic alterations and it was used as reference pattern. CONCLUSION: Taken together, our data show that tracheal segment excision promotes more epithelium aggression and transverse tracheal incision shows less morphologic alterations.

  10. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  11. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial protocol: a randomized, blinded, efficacy trial of standard vs. intensive hyperglycemia management in acute stroke.

    Science.gov (United States)

    Bruno, Askiel; Durkalski, Valerie L; Hall, Christiana E; Juneja, Rattan; Barsan, William G; Janis, Scott; Meurer, William J; Fansler, Amy; Johnston, Karen C

    2014-02-01

    Patients with acute ischemic stroke and hyperglycemia have worse outcomes than those without hyperglycemia. Intensive glucose control during acute stroke is feasible and can be accomplished safely but has not been fully assessed for efficacy. The Stroke Hyperglycemia Insulin Network Effort trial aims to determine the safety and efficacy of standard vs. intensive glucose control with insulin in hyperglycemic acute ischemic stroke patients. This is a randomized, blinded, multicenter, phase III trial of approximately 1400 hyperglycemic patients who receive either standard sliding scale subcutaneous insulin (blood glucose range 80-179 mg/dL, 4·44-9·93 mmol/L) or continuous intravenous insulin (target blood glucose 80-130 mg/dL, 4·44-7·21 mmol/L) for up to 72 h, starting within 12 h of stroke symptom onset. The acute treatment phase is single blind (for the patients), but the final outcome assessment is double blind. The study is powered to detect a 7% absolute difference in favorable outcome at 90 days. The primary outcome is a baseline severity adjusted 90-day modified Rankin Scale score, defined as 0, 0-1, or 0-2, if the baseline National Institutes of Health Stroke Scale score is 3-7, 8-14, or 15-22, respectively. The primary safety outcome is the rate of severe hypoglycemia (hyperglycemia. It will determine the potential benefits and risks of intensive glucose control during acute stroke. © 2013 The Authors. International Journal of Stroke © 2013 World Stroke Organization.

  12. Effect of exogenous pulmonary surfactants on mortality rate in neonatal respiratory distress syndrome: A network meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Zhang, Liang; Cao, Hong-Yi; Zhao, Shuang; Yuan, Li-Jie; Han, Dan; Jiang, Hong; Wu, Song; Wu, Hong-Min

    2015-10-01

    The utilization of multiple natural and synthetic products in surfactant replacement therapies in treatment of neonatal respiratory distress syndrome (NRDS) prompted us to take a closer looks at these various therapeutic options and their efficacies. The purpose of our study was to evaluate the effects of six exogenous pulmonary surfactants (EPS) (Survanta, Alveofact, Infasurf, Curosurf, Surfaxin and Exosurf) on mortality rate in NRDS by a network meta-analysis. An exhaustive search of electronic databases was performed in PubMed, Ovid, EBSCO, Springerlink, Wiley, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang and VIP databases (last updated search in October 2014) to retrieve randomized controlled trials (RCTs) relevant to our study topic. Published clinical trials were screened based on the following inclusion criteria: (1) study design: RCTs; (2) interventions: treatment with Survanta, Alveofact, Infasurf, Curosurf, Surfaxin or Exosurf for NRDS; (3) study subject: infants with NRDS confirmed by clinical diagnosis; (4) outcome: the mortality rate of infants with NRDS. Statistical analysis was performed using Stata 12.0 software (Stata Corporation, College Station, TX, USA) and Comprehensive Meta-analysis (CMA 2.0) software. From the 1840 studies initially retrieved through database searches, a total of 17 high quality RCTs were selected for this network meta-analysis. The selected studies included a combined total of 57,223 infants with NRDS treated with various EPS (Survanta, 27,017; Alveofact, 159; Infasurf, 20,377; Curosurf, 20,911; Surfaxin, 646; Exosurf, 1640). Network meta-analysis results showed that the mortality rates in NRDS infants treated with Alveofact, Infasurf, Curosurf, Surfaxin, Exosurf were not significantly different compared to Survanta (Alveofact: OR = 1.163, 95% CI = 0.645-2.099, P = 0.616; Infasurf: OR = 0.985, 95% CI = 0.777-1.248, P = 0.897; Curosurf: OR = 0.789, 95% CI = 0.619-1.007, P = 0

  13. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social...... and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...

  14. Prevention of Venous Thromboembolism in Major Orthopedic Surgery: Bayesian Network Meta-Analysis of 21 Randomized Trials Evaluating Unfractionated Heparins, Low-Molecular Weight Heparins, and New Oral Anticoagulants

    Directory of Open Access Journals (Sweden)

    Andrea Messori

    2014-09-01

    Full Text Available Background: In major orthopedic surgery, prevention of venous thromboembolism has been based on Unfractionated Heparins (UFHs over the past decades, then on Low-Molecular Weight Heparins (LMWHs, and on New Oral Anticoagulants (NOACs more recently. To summarize the comparative effectiveness of UFHs, LMWHs, and NOACs in this clinical indication, we applied Bayesian network meta-analysis to the clinical material (randomized studies published in two previous reviews focused on this issue.. Objectives: Our end-point was a composite of venous thromboembolism and pulmonary embolism.. Materials and Methods: Our analysis was based on standard Bayesian network meta-analysis (random-effect model.. Results: The analysis included 21 randomized trials for a total of 21,805 patients. Our results showed that the degree of effectiveness did not differ among UFHs, LMWHs, and NOACs. Although some trends emerged from an in-depth analysis of these data (e.g. according to the histogram of rankings, no significant differences were found (P > 0.05. Moreover, two agents among LMWHs proved to be adequately supported by randomized trials (enoxaparin and dalteparin, while limited evidence was available for other agents of this class.. Conclusions: Our synthesis of the effectiveness data can be useful as an overall reference in this area and can also contribute to defining the place of further innovative treatments for this clinical indication..

  15. Robustness Envelopes of Networks

    NARCIS (Netherlands)

    Trajanovski, S.; Martín-Hernández, J.; Winterbach, W.; Van Mieghem, P.

    2013-01-01

    We study the robustness of networks under node removal, considering random node failure, as well as targeted node attacks based on network centrality measures. Whilst both of these have been studied in the literature, existing approaches tend to study random failure in terms of average-case

  16. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach.

    Science.gov (United States)

    Wang, Wenhui; Nunez-Iglesias, Juan; Luan, Yihui; Sun, Fengzhu

    2009-09-03

    Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  17. Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Directory of Open Access Journals (Sweden)

    Luan Yihui

    2009-09-01

    Full Text Available Abstract Background Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks. Results Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks. Conclusion Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.

  18. Network patterns in exponentially growing two-dimensional biofilms

    Science.gov (United States)

    Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos

    2017-10-01

    Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.

  19. Wireless Local Area Network (WLAN) Vulnerability Assessment and Security

    National Research Council Canada - National Science Library

    Kessel, Adam; Goodwin, Shane

    2005-01-01

    The proliferation of wireless computer equipment and Local Area Networks (LANs) create an increasingly common and growing threat to Marine Corps Network infrastructure and communication security (COMSEC...

  20. Comparison of efficacy of treatments for early syphilis: A systematic review and network meta-analysis of randomized controlled trials and observational studies.

    Directory of Open Access Journals (Sweden)

    Hong-Ye Liu

    Full Text Available Parenteral penicillin is the first-line regimen for treating syphilis, but unsuitable for some patients due to penicillin allergy and lacking health resources. Unfortunately, the efficacy of penicillin alternatives remains poorly understood. This study aimed to assess the efficacy of ceftriaxone and doxycycline/tetracycline in treating early syphilis relative to that of penicillin, and thereby to determine which antibiotic is a better replacement for penicillin.By searching literature from PubMed, Cochrane Central Register of Controlled Trials, Embase, the Web of Science, and ClinicalTrials.gov and systematically screening relevant studies, eligible randomized controlled trials (RCTs and observational studies on treatments with penicillin, doxycycline/tetracycline, and ceftriaxone for early syphilis were identified and combined in this systematic review. Estimated risk ratios (RRs and 95% confidence intervals (CIs were utilized to compare their serological response and treatment failure rates. At 12-month follow up, serological response rates were compared by a direct meta-analysis and network meta-analysis (NMA, while treatment failure rates were compared with a direct meta-analysis.Three RCTs and seven cohort studies were included in this research. The results of NMA demonstrated that no significant differences existed in serological response rate at 12-month follow-up between any two of the three treatments (doxycycline/tetracycline vs. penicillin RR = 1.01, 95%CI 0.89-1.14; ceftriaxone vs. penicillin RR = 1.00, 95%CI 0.89-1.13; ceftriaxone vs. doxycycline/tetracycline RR = 0.99, 95%CI 0.96-1.03, which was consistent with the outcomes of the direct meta-analysis. In addition, the direct meta-analysis indicated that, at 12-month follow-up, penicillin and ceftriaxone treatment groups had similar treatment failure rates (RR = 0.92, 95%CI 0.12-6.93, while treatment failure rate was significantly lower among penicillin recipients than among

  1. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  2. Measuring information networks

    Indian Academy of Sciences (India)

    of governance (CEO) defined by company executives in the USA where two CEOs are connected by a link if they are members of the same board [9]. One sees that IS > IS(random) for most networks, except for the fly network. Thus most networks have a topology that tends to hide nodes. In fact this can be quantified.

  3. Growing the Blockchain information infrastructure

    DEFF Research Database (Denmark)

    Jabbar, Karim; Bjørn, Pernille

    2017-01-01

    In this paper, we present ethnographic data that unpacks the everyday work of some of the many infrastructuring agents who contribute to creating, sustaining and growing the Blockchain information infrastructure. We argue that this infrastructuring work takes the form of entrepreneurial actions......, which are self-initiated and primarily directed at sustaining or increasing the initiator’s stake in the emerging information infrastructure. These entrepreneurial actions wrestle against the affordances of the installed base of the Blockchain infrastructure, and take the shape of engaging...... or circumventing activities. These activities purposefully aim at either influencing or working around the enablers and constraints afforded by the Blockchain information infrastructure, as its installed base is gaining inertia. This study contributes to our understanding of the purpose of infrastructuring, seen...

  4. Growing Vertical in the Flatland.

    Science.gov (United States)

    Robinson, Joshua A

    2016-01-26

    The world of two-dimensional (2D) heterostructures continues to expand at a rate much greater than anyone could have predicted 10 years ago, but if we are to make the leap from science to technology, many materials challenges must still be overcome. Recent advances, such as those by Liu et al. in this issue of ACS Nano, demonstrate that it is possible to grow rotationally commensurate 2D heterostructures, which could pave the way toward single crystal van der Waals solids. In this Perspective, I provide some insight into a few of the challenges associated with growth of heterostructures, and discuss some of the recent works that help us better understand synthetic realization of 2D heterostructures.

  5. Growing bubbles rising in line

    Directory of Open Access Journals (Sweden)

    John F. Harper

    2001-01-01

    Full Text Available Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is boiling, or is a supersaturated solution of a gas, or simply because the pressure decreases with height. That omission is now addressed, for spherical bubbles rising at high Reynolds numbers. As the flow is then nearly irrotational, Lagrange's equations can be used with Rayleigh's dissipation function. The theory also works for bubbles shrinking as they rise because they dissolve.

  6. Morphogenesis of Growing Soft Tissues

    Science.gov (United States)

    Dervaux, Julien; Ben Amar, Martine

    2008-08-01

    Recently, much attention has been given to a noteworthy property of some soft tissues: their ability to grow. Many attempts have been made to model this behavior in biology, chemistry, and physics. Using the theory of finite elasticity, Rodriguez has postulated a multiplicative decomposition of the geometric deformation gradient into a growth-induced part and an elastic one needed to ensure compatibility of the body. In order to fully explore the consequences of this hypothesis, the equations describing thin elastic objects under finite growth are derived. Under appropriate scaling assumptions for the growth rates, the proposed model is of the Föppl von Kármán type. As an illustration, the circumferential growth of a free hyperelastic disk is studied.

  7. On the Delay Characteristics for Point-to-Point links using Random Linear Network Coding with On-the-fly Coding Capabilities

    DEFF Research Database (Denmark)

    Tömösközi, Máté; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2014-01-01

    . This metric captures the elapsed time between (network) encoding RTP packets and completely decoding the packets in-order on the receiver side. Our solutions are implemented and evaluated on a point-to-point link between a Raspberry Pi device and a network (de)coding enabled software running on a regular PC...

  8. The Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) study

    National Research Council Canada - National Science Library

    Paul, Ian M; Williams, Jennifer S; Anzman-Frasca, Stephanie; Beiler, Jessica S; Makova, Kateryna D; Marini, Michele E; Hess, Lindsey B; Rzucidlo, Susan E; Verdiglione, Nicole; Mindell, Jodi A; Birch, Leann L

    2014-01-01

    .... The Intervention Nurses Starting Infants Growing on Healthy Trajectories (INSIGHT). Study is a longitudinal, randomized, controlled trial evaluating a responsive parenting intervention designed for the primary prevention of obesity...

  9. Growing plants on atoll soils

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    Many years ago people living on atolls depended entirely on foods gathered from the sea and reefs and grown on land. Only a few plants, such as coconut (ni), Pandanus (bob), and arrowroot (mok-mok), could be grown on the lower rainfall atolls, although adequate groundwater conditions also allowed taro (iaraj, kotak, wot) to be cultivated. On higher rainfall atolls, breadfruit (ma) was a major food source, and banana (binana, kepran), lime (laim), and taros (iaraj, kotak, wot) could be grown. The early atoll populations were experts in growing plants that were vital to sustaining their nutrition requirements and to providing materials for thatch, basketry, cordage, canoe construction, flowers, and medicine. They knew which varieties of food plants grew well or poorly on their atolls, how to propagate them, and where on their atoll they grew best. They knew the uses of most native plants and what the various woods were well suited for. Many varieties of Pandanus (bob) and breadfruit (ma) grew well with high rainfall, but only a few produced well on drier atolls. Such information had been passed down through the generations although some of it has been lost in the last century. Today there are new plants and new varieties of existing plants that can be grown on atolls. There are also new materials and information on how to grow both the old and new plants more effectively. However, there are also introduced weeds and pests to control. Today, there is also an acute need to grow more of the useful plants adapted to atolls. Increasing numbers of people living on an atoll without an equal increase in income or food production stretches the available food supplies. Much has been written about the poor conditions for plant growth on atolls. As compared with many places in the world where crops are grown, however, atolls can provide some highly favorable conditions. For instance, the driving force for plant growth is sunlight, and on atolls light is abundant throughout the

  10. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  11. Growing and evolving soft robots.

    Science.gov (United States)

    Rieffel, John; Knox, Davis; Smith, Schuyler; Trimmer, Barry

    2014-01-01

    Completely soft and flexible robots offer to revolutionize fields ranging from search and rescue to endoscopic surgery. One of the outstanding challenges in this burgeoning field is the chicken-and-egg problem of body-brain design: Development of locomotion requires the preexistence of a locomotion-capable body, and development of a location-capable body requires the preexistence of a locomotive gait. This problem is compounded by the high degree of coupling between the material properties of a soft body (such as stiffness or damping coefficients) and the effectiveness of a gait. This article synthesizes four years of research into soft robotics, in particular describing three approaches to the co-discovery of soft robot morphology and control. In the first, muscle placement and firing patterns are coevolved for a fixed body shape with fixed material properties. In the second, the material properties of a simulated soft body coevolve alongside locomotive gaits, with body shape and muscle placement fixed. In the third, a developmental encoding is used to scalably grow elaborate soft body shapes from a small seed structure. Considerations of the simulation time and the challenges of physically implementing soft robots in the real world are discussed.

  12. Pediatric Ovarian Growing Teratoma Syndrome

    Directory of Open Access Journals (Sweden)

    Rebecca M. Rentea

    2017-01-01

    Full Text Available Ovarian immature teratoma is a germ cell tumor that comprises less than 1% of ovarian cancers and is treated with surgical debulking and chemotherapy depending on stage. Growing teratoma syndrome (GTS is the phenomenon of the growth of mature teratoma elements with normal tumor markers during or following chemotherapy for treatment of a malignant germ cell tumor. These tumors are associated with significant morbidity and mortality due to invasive and compressive growth as well as potential for malignant transformation. Current treatment modality is surgical resection. We discuss a 12-year-old female who presented following resection of a pure ovarian immature teratoma (grade 3, FIGO stage IIIC. Following chemotherapy and resection of a pelvic/liver recurrence demonstrating mature teratoma, she underwent molecular genetics based chemotherapeutic treatment. No standardized management protocol has been established for the treatment of GTS. The effect of chemotherapeutic agents for decreasing the volume of and prevention of expansion is unknown. We review in detail the history, diagnostic algorithm, and previous reported pediatric cases as well as treatment options for pediatric patients with GTS.

  13. [Growing old differently: Transdisciplinary perspective].

    Science.gov (United States)

    Zimmermann, H-P

    2015-04-01

    Growing old differently: the phrase is intended to call something other to mind than merely the fact that images and forms of old age and aging have multiplied and diversified to an enormous extent. The suggestion put forward here is that otherness (as opposed to mere differences) should be positively reinforced. In other words, it is not just a matter of noting different forms of old age and aging but more than this, of seeking out opportunities for aging differently. In order to explore this, the article follows an older strand of theory, which has recently come to be frequently quoted in gerontology: the phenomenology of difference as reasoned analytically by Lévinas and Sartre and applied to gerontology by Améry and de Beauvoir. Here, opportunities for aging crucially depend on the way we look at it, how we observe and describe it and not least, how gerontology frames it. A distinction is made between two perspectives and their associated consequences for old age: alienation and alterity. Alienation means looking at old age above all as a disconcerting "other", as a perplexing, problematic deviation from the norm of vitality. Alterity, by contrast, refers to different options for living life in old age: options to be explored and opened up in contradistinction to cultural or academic alienation. Not least, the article appeals for diversity in scholarly approaches and for cross-disciplinary perspectives.

  14. Critical percolation phase and thermal Berezinskii-Kosterlitz-Thouless transition in a scale-free network with short-range and long-range random bonds.

    Science.gov (United States)

    Berker, A Nihat; Hinczewski, Michael; Netz, Roland R

    2009-10-01

    Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic [Berezinskii-Kosterlitz-Thouless (BKT)] geometric order, occurs in the phase diagram in addition to the ordinary (compact) percolating phase and the nonpercolating phase. It is found that no connection exists between, on the one hand, the onset of this geometric BKT behavior and, on the other hand, the onsets of the highly clustered small-world character of the network and of the thermal BKT transition of the Ising model on this network. Nevertheless, both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is expected, namely, at low bond probability and high temperature, respectively. This may be a general property of long-range networks.

  15. Assessment of contamination and misclassification biases in a randomized controlled trial of a social network peer education intervention to reduce HIV risk behaviors among drug users and risk partners in Philadelphia, PA and Chiang Mai, Thailand.

    Science.gov (United States)

    Simmons, Nicole; Donnell, Deborah; Ou, San-San; Celentano, David D; Aramrattana, Apinun; Davis-Vogel, Annet; Metzger, David; Latkin, Carl

    2015-10-01

    Controlled trials of HIV prevention and care interventions are susceptible to contamination. In a randomized controlled trial of a social network peer education intervention among people who inject drugs and their risk partners in Philadelphia, PA and Chiang Mai, Thailand, we tested a contamination measure based on recall of intervention terms. We assessed the recall of test, negative and positive control terms among intervention and control arm participants and compared the relative odds of recall of test versus negative control terms between study arms. The contamination measures showed good discriminant ability among participants in Chiang Mai. In Philadelphia there was no evidence of contamination and little evidence of diffusion. In Chiang Mai there was strong evidence of diffusion and contamination. Network structure and peer education in Chiang Mai likely led to contamination. Recall of intervention materials can be a useful method to detect contamination in experimental interventions.

  16. Menopausal women's positive experience of growing older

    DEFF Research Database (Denmark)

    Hvas, Lotte

    2006-01-01

    This paper aims to describe menopausal women's positive experience of growing older and becoming middle-aged.......This paper aims to describe menopausal women's positive experience of growing older and becoming middle-aged....

  17. Vijana Vijiweni II: a cluster-randomized trial to evaluate the efficacy of a microfinance and peer health leadership intervention for HIV and intimate partner violence prevention among social networks of young men in Dar es Salaam.

    Science.gov (United States)

    Kajula, Lusajo; Balvanz, Peter; Kilonzo, Mrema Noel; Mwikoko, Gema; Yamanis, Thespina; Mulawa, Marta; Kajuna, Deus; Hill, Lauren; Conserve, Donaldson; Reyes, Heathe Luz McNaughton; Leatherman, Sheila; Singh, Basant; Maman, Suzanne

    2016-02-03

    Intimate partner violence (IPV) and sexually transmitted infections (STIs), including HIV, remain important public health problems with devastating health effects for men and women in sub-Saharan Africa. There have been calls to engage men in prevention efforts, however, we lack effective approaches to reach and engage them. Social network approaches have demonstrated effective and sustained outcomes on changing risk behaviors in the U.S. Our team has identified and engaged naturally occurring social networks comprised mostly of young men in Dar es Salaam in an intervention designed to jointly reduce STI incidence and the perpetration of IPV. These stable networks are locally referred to as "camps." In a pilot study we demonstrated the feasibility and acceptability of a combined microfinance and peer health leadership intervention within these camp-based peer networks. We are implementing a cluster-randomized trial to evaluate the efficacy of an intervention combining microfinance with health leadership training in 60 camps in Dar es Salaam, Tanzania. Half of the camps have been randomized to the intervention arm, and half to a control arm. The camps in the intervention arm will receive a combined microfinance and health leadership intervention for a period of two years. The camps in the control arm will receive a delayed intervention. We have enrolled 1,258 men across the 60 study camps. Behavioral surveys will be conducted at baseline, 12-months post intervention launch and 30-month post intervention launch and biological samples will be drawn to test for Neisseria gonorrhea (NG), Chlamydia trachomatis (CT), and Trichomonas vaginalis (TV) at baseline and 30-months. The primary endpoints for assessing intervention impact are IPV perpetration and STI incidence. This is the first cluster-randomized trial targeting social networks of men in sub-Saharan Africa that jointly addresses HIV and IPV perpetration and has both biological and behavioral endpoints. Effective

  18. Do Treatment Improvements in PTSD Severity Affect Substance Use Outcomes? A Secondary Analysis From a Randomized Clinical Trial in NIDA's Clinical Trials Network

    National Research Council Canada - National Science Library

    Hien, Denise A; Jiang, Huiping; Campbell, Aimee N.C; Hu, Mei-Chen; Miele, Gloria M; Cohen, Lisa R; Brigham, Gregory S; Capstick, Carrie; Kulaga, Agatha; Robinson, James; Suarez-Morales, Lourdes; Nunes, Edward V

    2010-01-01

    ...) and substance use disorder among women in outpatient substance abuse treatment. MethodParticipants were 353 women randomly assigned to 12 sessions of either trauma-focused or health education group treatment...

  19. Bariatric amputee: A growing problem?

    Science.gov (United States)

    Kulkarni, Jai; Hannett, Dominic P; Purcell, Steven

    2015-06-01

    This study reviewed prevalence of patients with lower limb amputations with above normal weight profile, with body mass index over 25, in seven disablement services centres managing their amputee rehabilitation in the United Kingdom. To review two clinical standards of practice in amputee rehabilitation. Ambulant lower limb amputees should have their body weight recorded on an electronic information system, with identification of cohort with body weight >100 kg. Lower limb amputees to be provided with suitable weight-rated prosthesis. Observational study of clinical practice. Data were collected from the Clinical Information Management Systems. Inclusion criteria--subjects were ambulant prosthetic users with some prosthetic intervention in the last 5 years and had at least one lower limb amputation. In 96% of patients, the weight record profile was maintained. In addition, 86% were under 100 kg, which is the most common weight limit of prosthetic componentry. Of 15,204 amputation levels, there were 1830 transfemoral and transtibial sites in users with body weight over 100 kg. In 60 cases, the prosthetic limb build was rated to be below the user body weight. In 96% of our patients, body weight was documented, and in 97%, the prosthetic limb builds were within stated body weight limits, but this may not be the case in all the other disablement services centres in the United Kingdom. Also, the incidence of obesity in the United Kingdom is a growing problem, and the health issues associated with obesity are further compounded in the amputee population. Prosthetic componentry has distinct weight limits which must be considered during prescription. As people with amputation approach the limits of specific components, clinicians are faced with the challenge of continued provision in a safe and suitable manner. This article reviews the amputee population and the current national profile to consider trends in provision and the incidence of these challenges. © The

  20. Cisco Networking Essentials

    CERN Document Server

    McMillan, Troy

    2011-01-01

    An engaging approach for anyone beginning a career in networking As the world leader of networking products and services, Cisco products are constantly growing in demand. Yet, few books are aimed at those who are beginning a career in IT--until now. Cisco Networking Essentials provides a solid foundation on the Cisco networking products and services with thorough coverage of fundamental networking concepts. Author Troy McMillan applies his years of classroom instruction to effectively present high-level topics in easy-to-understand terms for beginners. With this indispensable full-color resour