WorldWideScience

Sample records for random magnetic fields

  1. Magnetic field line random walk in non-axisymmetric turbulence

    International Nuclear Information System (INIS)

    Tautz, R.C.; Lerche, I.

    2011-01-01

    Including a random component of a magnetic field parallel to an ambient field introduces a mean perpendicular motion to the average field line. This effect is normally not discussed because one customarily chooses at the outset to ignore such a field component in discussing random walk and diffusion of field lines. A discussion of the basic effect is given, indicating that any random magnetic field with a non-zero helicity will lead to such a non-zero perpendicular mean motion. Several exact analytic illustrations are given of the effect as well as a simple numerical illustration. -- Highlights: → For magnetic field line random walk all magnetic field components are important. → Non-vanishing magnetic helicity leads to mean perpendicular motion. → Analytically exact stream functions illustrate that the novel transverse effect exists.

  2. Diffusion of charged particles in strong large-scale random and regular magnetic fields

    International Nuclear Information System (INIS)

    Mel'nikov, Yu.P.

    2000-01-01

    The nonlinear collision integral for the Green's function averaged over a random magnetic field is transformed using an iteration procedure taking account of the strong random scattering of particles on the correlation length of the random magnetic field. Under this transformation the regular magnetic field is assumed to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the scattered particles in the presence of a regular magnetic field are investigated. The transport coefficients are calculated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong random scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found for a power-law spectrum of the random field. The analytical results obtained are compared with the experimental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. As a result, the conditions for the propagation of cosmic rays in the interplanetary space and a more accurate idea of the structure of the interplanetary magnetic field are determined

  3. Properties of a random bond Ising chain in a magnetic field

    International Nuclear Information System (INIS)

    Landau, D.P.; Blume, M.

    1976-01-01

    The Ising chain with random bonds in a magnetic field H = -Σ/sub i/J/sub i/sigma/sub i/sigma/sub i + l/ - hΣ/sub i/sigma/sub i/, where J/sub i/ = +- 1 at random, and Σ/sub i/J/sub i/ = 0, represents a model of a magnetic glass, or of heteropolymer melting. Calculations of the thermodynamic properties of the chain as a function of field strength and temperature have been performed by Monte Carlo techniques. These results are compared with perturbation calculations for small and large values of h/T. The Monte Carlo results show, in agreement with the perturbation calculations, that the field-induced magnetization is generally smaller for the random bond model than for a chain of noninteracting spins. As T → 0 the magnetization approaches the result for noninteracting spins

  4. Statistical analysis of the ratio of electric and magnetic fields in random fields generators

    NARCIS (Netherlands)

    Serra, R.; Nijenhuis, J.

    2013-01-01

    In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for

  5. New constraints on modelling the random magnetic field of the MW

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Marcus C.; Nielaba, Peter [Department of Physics, University of Konstanz, Universitätsstr. 10, D-78457 Konstanz (Germany); Beck, Alexander M.; Dolag, Klaus [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Beck, Rainer [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Strong, Andrew W., E-mail: marcus.beck@uni-konstanz.de, E-mail: abeck@usm.uni-muenchen.de, E-mail: rbeck@mpifr-bonn.mpg.de, E-mail: dolag@usm.uni-muenchen.de, E-mail: aws@mpe.mpg.de, E-mail: peter.nielaba@uni-konstanz.de [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching (Germany)

    2016-05-01

    We extend the description of the isotropic and anisotropic random component of the small-scale magnetic field within the existing magnetic field model of the Milky Way from Jansson and Farrar, by including random realizations of the small-scale component. Using a magnetic-field power spectrum with Gaussian random fields, the NE2001 model for the thermal electrons and the Galactic cosmic-ray electron distribution from the current GALPROP model we derive full-sky maps for the total and polarized synchrotron intensity as well as the Faraday rotation-measure distribution. While previous work assumed that small-scale fluctuations average out along the line-of-sight or which only computed ensemble averages of random fields, we show that these fluctuations need to be carefully taken into account. Comparing with observational data we obtain not only good agreement with 408 MHz total and WMAP7 22 GHz polarized intensity emission maps, but also an improved agreement with Galactic foreground rotation-measure maps and power spectra, whose amplitude and shape strongly depend on the parameters of the random field. We demonstrate that a correlation length of 0≈22 pc (05 pc being a 5σ lower limit) is needed to match the slope of the observed power spectrum of Galactic foreground rotation-measure maps. Using multiple realizations allows us also to infer errors on individual observables. We find that previously-used amplitudes for random and anisotropic random magnetic field components need to be rescaled by factors of ≈0.3 and 0.6 to account for the new small-scale contributions. Our model predicts a rotation measure of −2.8±7.1 rad/m{sup 2} and 04.4±11. rad/m{sup 2} for the north and south Galactic poles respectively, in good agreement with observations. Applying our model to deflections of ultra-high-energy cosmic rays we infer a mean deflection of ≈3.5±1.1 degree for 60 EeV protons arriving from CenA.

  6. Magnetic field correlations in random flow with strong steady shear

    International Nuclear Information System (INIS)

    Kolokolov, I. V.; Lebedev, V. V.; Sizov, G. A.

    2011-01-01

    We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.

  7. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  8. Lifetime, turnover time, and fast magnetic field regeneration in random flows

    International Nuclear Information System (INIS)

    Tanner, S. E. M.

    2007-01-01

    The fast dynamo is thought to be relevant in the regeneration of magnetic fields in astrophysics where the value of the magnetic Reynolds number (Rm) is immense. The fast dynamo picture is one in which chaotic flows provide a mechanism for the stretching of magnetic field lines. Furthermore, a cascade of energy down to small scales results in intermittent regions of a small-scale, intense magnetic field. Given this scenario it is natural to invoke the use of kinematic random flows in order to understand field regeneration mechanisms better. Here a family of random flows is used to study the effects that L, the lifetime of the cell, and τ, the turnover time of the cell, may have on magnetic field regeneration. Defining the parameter Γ=L/τ, it has been varied according to Γ>1, Γ<1, Γ∼O(1). In the kinematic regime, dynamo growth rates and Lyapunov exponents are examined at varying values of Rm. The possibility of fast dynamo action is considered. In the nonlinear regime, magnetic and kinetic energies are examined. Results indicate that there does appear to be a relationship between Γ and dynamo efficiency. In particular, the most efficient dynamos seem to operate at lower values of Γ

  9. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  10. The Hanle effect in a random magnetic field. Dependence of the polarization on statistical properties of the magnetic field

    Science.gov (United States)

    Frisch, H.; Anusha, L. S.; Sampoorna, M.; Nagendra, K. N.

    2009-07-01

    Context: The Hanle effect is used to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming that the angular distribution is isotropic, the magnetic field strength constant, and that micro-turbulence holds, i.e. that the magnetic field correlation length is much less than a photon mean free path. Aims: To examine the sensitivity of turbulent magnetic field measurements to these assumptions, we study the dependence of Hanle effect on the magnetic field correlation length, its angular, and strength distributions. Methods: We introduce a fairly general random magnetic field model characterized by a correlation length and a magnetic field vector distribution. Micro-turbulence is recovered when the correlation length goes to zero and macro-turbulence when it goes to infinity. Radiative transfer equations are established for the calculation of the mean Stokes parameters and they are solved numerically by a polarized approximate lambda iteration method. Results: We show that optically thin spectral lines and optically very thick ones are insensitive to the correlation length of the magnetic field, while spectral lines with intermediate optical depths (around 10-100) show some sensitivity to this parameter. The result is interpreted in terms of the mean number of scattering events needed to create the surface polarization. It is shown that the single-scattering approximation holds good for thin and thick lines but may fail for lines with intermediate thickness. The dependence of the polarization on the magnetic field vector probability density function (PDF) is examined in the micro-turbulent limit. A few PDFs with different angular and strength distributions, but equal mean value of the magnetic field, are considered. It is found that the polarization is in general quite sensitive to the shape of the magnetic field strength PDF and somewhat to the angular distribution. Conclusions: The mean field derived from Hanle effect analysis of

  11. The phase diagrams of a ferromagnetic thin film in a random magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: m.kerouad@fs-umi.ac.ma

    2016-10-07

    In this paper, the magnetic properties and the phase diagrams of a ferromagnetic thin film with a thickness N in a random magnetic field (RMF) are investigated by using the Monte Carlo simulation technique based on the Metropolis algorithm. The effects of the RMF and the surface exchange interaction on the critical behavior are studied. A variety of multicritical points such as tricritical points, isolated critical points, and triple points are obtained. It is also found that the double reentrant phenomenon can appear for appropriate values of the system parameters. - Highlights: • Phase diagrams of a ferromagnetic thin film are examined by the Monte Carlo simulation. • The effect of the random magnetic field on the magnetic properties is studied. • Different types of the phase diagrams are obtained. • The dependence of the magnetization and susceptibility on the temperature are investigated.

  12. Random errors in the magnetic field coefficients of superconducting magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Wanderer, P.; Willen, E.

    1985-01-01

    Random errors in the multipole magnetic coefficients of superconducting magnet have been of continuing interest in accelerator research. The Superconducting Super Collider (SSC) with its small magnetic aperture only emphasizes this aspect of magnet design, construction, and measurement. With this in mind, we present a magnet model which mirrors the structure of a typical superconducting magnet. By taking advantage of the basic symmetries of a dipole magnet, we use this model to fit the measured multipole rms widths. The fit parameters allow us then to predict the values of the rms multipole errors expected for the SSC dipole reference design D, SSC-C5. With the aid of first-order perturbation theory, we then give an estimate of the effect of these random errors on the emittance growth of a proton beam stored in an SSC. 10 refs., 6 figs., 2 tabs

  13. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  14. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  15. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Anomalous diffusion and Levy random walk of magnetic field lines in three dimensional turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.; Veltri, P.; Basile, G.; Principato, S.

    1995-01-01

    The transport of magnetic field lines is studied numerically where three dimensional (3-D) magnetic fluctuations, with a power law spectrum, and periodic over the simulation box are superimposed on an average uniform magnetic field. The weak and the strong turbulence regime, δB∼B 0 , are investigated. In the weak turbulence case, magnetic flux tubes are separated from each other by percolating layers in which field lines undergo a chaotic motion. In this regime the field lines may exhibit Levy, rather than Gaussian, random walk, changing from Levy flights to trapped motion. The anomalous diffusion laws left-angle Δx 2 i right-angle ∝s α with α>1 and α<1, are obtained for a number of cases, and the non-Gaussian character of the field line random walk is pointed out by computing the kurtosis. Increasing the fluctuation level, and, therefore stochasticity, normal diffusion (α congruent 1) is recovered and the kurtoses reach their Gaussian value. However, the numerical results show that neither the quasi-linear theory nor the two dimensional percolation theory can be safely extrapolated to the considered 3-D strong turbulence regime. copyright 1995 American Institute of Physics

  17. Current distributions in superconducting wires subject to a random orientation magnetic field, and corresponding to the Tokamak usual conditions

    International Nuclear Information System (INIS)

    Artaud, J.F.

    1994-01-01

    The main themes of this thesis are: review of superconductivity principles; critical current in a random orientation magnetic field; the MHD model applied to superconductors (with comprehensive calculation of the field in a plate type conductor); the magnetization created by a variation of a random orientation magnetic field; the electric field in a superconductor in steady or quasi-steady state (MHD displacement, pinning and thermal effects). 145 figs., 166 refs

  18. Effect of magnetic helicity upon rectilinear propagation of charged particles in random magnetic fields

    Science.gov (United States)

    Earl, James A.

    1992-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by any random field components that are superposed on the guiding field. If the random field configuration embodies helicity, the scattering is asymmetrical with respect to a plane perpendicular to the guiding field, for particles moving into the forward hemisphere are scattered at different rates from those moving into the backward hemisphere. This asymmetry gives rise to new terms in the transport equations that describe propagation of charged particles. Helicity has virtually no impact on qualitative features of the diffusive mode of propagation. However, characteristic velocities of the coherent modes that appear after a highly anisotropic injection exhibit an asymmetry related to helicity. Explicit formulas, which embody the effects of helicity, are given for the anisotropies, the coefficient diffusion, and the coherent velocities. Predictions derived from these expressions are in good agreement with Monte Carlo simulations of particle transport, but the simulations reveal certain phenomena whose explanation calls for further analytical work.

  19. Random Interchange of Magnetic Connectivity

    Science.gov (United States)

    Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Wan, M.; Rappazzo, A. F.

    2015-12-01

    Magnetic connectivity, the connection between two points along a magnetic field line, has a stochastic character associated with field lines random walking in space due to magnetic fluctuations, but connectivity can also change in time due to dynamical activity [1]. For fluctuations transverse to a strong mean field, this connectivity change be caused by stochastic interchange due to component reconnection. The process may be understood approximately by formulating a diffusion-like Fokker-Planck coefficient [2] that is asymptotically related to standard field line random walk. Quantitative estimates are provided, for transverse magnetic field models and anisotropic models such as reduced magnetohydrodynamics. In heliospheric applications, these estimates may be useful for understanding mixing between open and close field line regions near coronal hole boundaries, and large latitude excursions of connectivity associated with turbulence. [1] A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio & M. Velli, ApJL, 758, L14 (2012) [2] D. Ruffolo & W. Matthaeus, ApJ, 806, 233 (2015)

  20. 3D vector distribution of the electro-magnetic fields on a random gold film

    Science.gov (United States)

    Canneson, Damien; Berini, Bruno; Buil, Stéphanie; Hermier, Jean-Pierre; Quélin, Xavier

    2018-05-01

    The 3D vector distribution of the electro-magnetic fields at the very close vicinity of the surface of a random gold film is studied. Such films are well known for their properties of light confinement and large fluctuations of local density of optical states. Using Finite-Difference Time-Domain simulations, we show that it is possible to determine the local orientation of the electro-magnetic fields. This allows us to obtain a complete characterization of the fields. Large fluctuations of their amplitude are observed as previously shown. Here, we demonstrate large variations of their direction depending both on the position on the random gold film, and on the distance to it. Such characterization could be useful for a better understanding of applications like the coupling of point-like dipoles to such films.

  1. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1980-03-01

    The 'ingredients' which control a phase transition in well defined system as well as in random ones (e.g. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' we find the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  2. Random magnetism

    International Nuclear Information System (INIS)

    Tsallis, C.

    1981-01-01

    The 'ingredients' which control a phase transition in well defined systems as well as in random ones (e.q. random magnetic systems) are listed and discussed within a somehow unifying perspective. Among these 'ingredients' the couplings and elements responsible for the cooperative phenomenon, the topological connectivity as well as possible topological incompatibilities, the influence of new degrees of freedom, the order parameter dimensionality, the ground state degeneracy and finally the 'quanticity' of the system are found. The general trends, though illustrated in magnetic systems, essentially hold for all phase transitions, and give a basis for connection of this area with Field theory, Theory of dynamical systems, etc. (Author) [pt

  3. Field-controlled randomness of colloidal paths on a magnetic bubble lattice

    International Nuclear Information System (INIS)

    Jungnickel, C; Fischer, Th M; Khattari, Z; Johansen, T H

    2011-01-01

    Paramagnetic colloidal particles move in the potential energy landscape of a magnetically modulated bubble lattice of a magnetic garnet film. The modulation causes the energy minima to alternate between positions above the centres of the bubbles and interstitial positions. The particles deterministically follow the time-dependent positions of the energy minima until the minima become unstable in one or several directions and allow the particles to hop to a new minimum. We control the time delay between instabilities of the minima in alternative directions by the angle of the external magnetic field with the crystallographic directions of the bubble lattice. When the time delay is large, the particles deterministically hop to the next minimum along the direction that becomes unstable first. When the time delay is short, diffusion of the particle in the marginal potential randomizes the choice of the hopping directions or the choice of the transport network. Gradual changes of the external field direction from 0 0 to 30 0 lead to a continuous crossover from a deterministic to a fully stochastic path of the colloids.

  4. MRI-related static magnetic stray fields and postural body sway: a double-blind randomized crossover study.

    Science.gov (United States)

    van Nierop, Lotte E; Slottje, Pauline; Kingma, Herman; Kromhout, Hans

    2013-07-01

    We assessed postural body sway performance after exposure to movement induced time-varying magnetic fields in the static magnetic stray field in front of a 7 Tesla (T) magnetic resonance imaging scanner. Using a double blind randomized crossover design, 30 healthy volunteers performed two balance tasks (i.e., standing with eyes closed and feet in parallel and then in tandem position) after standardized head movements in a sham, low exposure (on average 0.24 T static magnetic stray field and 0.49 T·s(-1) time-varying magnetic field) and high exposure condition (0.37 T and 0.70 T·s(-1)). Personal exposure to static magnetic stray fields and time-varying magnetic fields was measured with a personal dosimeter. Postural body sway was expressed in sway path, area, and velocity. Mixed-effects model regression analysis showed that postural body sway in the parallel task was negatively affected (P < 0.05) by exposure on all three measures. The tandem task revealed the same trend, but did not reach statistical significance. Further studies are needed to investigate the possibility of independent or synergetic effects of static magnetic stray field and time-varying magnetic field exposure. In addition, practical safety implications of these findings, e.g., for surgeons and others working near magnetic resonance imaging scanners need to be investigated. Copyright © 2012 Wiley Periodicals, Inc.

  5. The random field Blume-Capel model revisited

    Science.gov (United States)

    Santos, P. V.; da Costa, F. A.; de Araújo, J. M.

    2018-04-01

    We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.

  6. Magnetic field line random walk in two-dimensional dynamical turbulence

    Science.gov (United States)

    Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.

    2017-08-01

    The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.

  7. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  8. Magnetic nanoparticle imaging by random and maximum length sequences of inhomogeneous activation fields.

    Science.gov (United States)

    Baumgarten, Daniel; Eichardt, Roland; Crevecoeur, Guillaume; Supriyanto, Eko; Haueisen, Jens

    2013-01-01

    Biomedical applications of magnetic nanoparticles require a precise knowledge of their biodistribution. From multi-channel magnetorelaxometry measurements, this distribution can be determined by means of inverse methods. It was recently shown that the combination of sequential inhomogeneous excitation fields in these measurements is favorable regarding the reconstruction accuracy when compared to homogeneous activation . In this paper, approaches for the determination of activation sequences for these measurements are investigated. Therefor, consecutive activation of single coils, random activation patterns and families of m-sequences are examined in computer simulations involving a sample measurement setup and compared with respect to the relative condition number of the system matrix. We obtain that the values of this condition number decrease with larger number of measurement samples for all approaches. Random sequences and m-sequences reveal similar results with a significant reduction of the required number of samples. We conclude that the application of pseudo-random sequences for sequential activation in the magnetorelaxometry imaging of magnetic nanoparticles considerably reduces the number of required sequences while preserving the relevant measurement information.

  9. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...... on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation. © 1994 The American Physical Society...

  10. Electron dynamics in inhomogeneous magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, Alain, E-mail: A.R.Nogaret@bath.ac.u [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-06-30

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation. (topical review)

  11. Magnetic ordering at low temperatures in some random superconducting and insulating compounds

    International Nuclear Information System (INIS)

    Hueser, D.

    1985-01-01

    This thesis presents the results of some investigations on the magnetic ordering phenomena in some random superconducting and insulating materials. The results are described of an investigation of the coexistence of superconductivity and random magnetic freezing in (Th,Nd)Ru 2 . On the basis of various measurements as function of temperature and external magnetic field the author found that spin glass-like freezing can occur far below the superconductivity and even that a sample may re-enter the superconducting state below a freezing temperature. Associated with the isothermal remanent magnetization of a random magnetic material he observed strong anomalies in the critical field versus temperature curves. Also a magnetic field memory effect has been found. (Auth.)

  12. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  13. Magnetic vector field tag and seal

    Science.gov (United States)

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  14. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  15. Static magnetic field therapy for symptomatic diabetic neuropathy: a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Weintraub, Michael I; Wolfe, Gil I; Barohn, Richard A; Cole, Steven P; Parry, Gareth J; Hayat, Ghazala; Cohen, Jeffrey A; Page, Jeffrey C; Bromberg, Mark B; Schwartz, Sherwyn L

    2003-05-01

    To determine if constant wearing of multipolar, static magnetic (450G) shoe insoles can reduce neuropathic pain and quality of life (QOL) scores in symptomatic diabetic peripheral neuropathy (DPN). Randomized, placebo-control, parallel study. Forty-eight centers in 27 states. Three hundred seventy-five subjects with DPN stage II or III were randomly assigned to wear constantly magnetized insoles for 4 months; the placebo group wore similar, unmagnetized device. Nerve conduction and/or quantified sensory testing were performed serially. Daily visual analog scale scores for numbness or tingling and burning and QOL issues were tabulated over 4 months. Secondary measures included nerve conduction changes, role of placebo, and safety issues. Analysis of variance (ANOVA), analysis of covariance (ANCOVA), and chi-square analysis were performed. There were statistically significant reductions during the third and fourth months in burning (mean change for magnet treatment, -12%; for sham, -3%; P<.05, ANCOVA), numbness and tingling (magnet, -10%; sham, +1%; P<.05, ANCOVA), and exercise-induced foot pain (magnet, -12%; sham, -4%; P<.05, ANCOVA). For a subset of patients with baseline severe pain, statistically significant reductions occurred from baseline through the fourth month in numbness and tingling (magnet, -32%; sham, -14%; P<.01, ANOVA) and foot pain (magnet, -41%; sham, -21%; P<.01, ANOVA). Static magnetic fields can penetrate up to 20mm and appear to target the ectopic firing nociceptors in the epidermis and dermis. Analgesic benefits were achieved over time.

  16. Sharp Trapping Boundaries in the Random Walk of Interplanetary Magnetic Field Lines

    Science.gov (United States)

    Ruffolo, D.; Chuychai, P.; Meechai, J.; Pongkitiwanichkul, P.; Kimpraphan, N.; Matthaeus, W. H.; Rowlands, G.

    2004-05-01

    Although magnetic field lines in space are believed to undergo a diffusive random walk in the long-distance limit, observed dropouts of solar energetic particles, as well as computer simulations, indicate sharply defined filaments in which interplanetary magnetic field lines have been temporarily trapped. We identify mechanisms that can explain such sharp boundaries in the framework of 2D+slab turbulence, a model that provides a good explanation of solar wind turbulence spectra and the parallel transport of solar energetic particles. Local trapping boundaries (LTBs) are empirically defined as trajectories of 2D turbulence where the mean 2D field is a local maximum. In computer simulations, the filaments (or ``islands'' in the two dimensions perpendicular to the mean field) that are most resistant to slab diffusion correspond closely to the mathematically defined LTBs, that is, there is a mathematical prescription for defining the trapping regions. Furthermore, we provide computational evidence and a theoretical explanation that strong 2D turbulence can inhibit diffusion due to the slab component. Therefore, while these filaments are basically defined by the small-scale topology of 2D turbulence, there can be sharp trapping boundaries where the 2D field is strongest. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and NASA Grant NAG5-11603. G.R. thanks Mahidol University for its hospitality and the Thailand Commission for Higher Education for travel support.

  17. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations...... fluctuation corrections in the mean-field results is also discussed....

  18. Magnetic field errors tolerances of Nuclotron booster

    Science.gov (United States)

    Butenko, Andrey; Kazinova, Olha; Kostromin, Sergey; Mikhaylov, Vladimir; Tuzikov, Alexey; Khodzhibagiyan, Hamlet

    2018-04-01

    Generation of magnetic field in units of booster synchrotron for the NICA project is one of the most important conditions for getting the required parameters and qualitative accelerator operation. Research of linear and nonlinear dynamics of ion beam 197Au31+ in the booster have carried out with MADX program. Analytical estimation of magnetic field errors tolerance and numerical computation of dynamic aperture of booster DFO-magnetic lattice are presented. Closed orbit distortion with random errors of magnetic fields and errors in layout of booster units was evaluated.

  19. SYNTHETIC OBSERVATIONS OF MAGNETIC FIELDS IN PROTOSTELLAR CORES

    International Nuclear Information System (INIS)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R.

    2017-01-01

    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degrees of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.

  20. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma

    2017-02-15

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.

  1. Ultra high energy cosmic rays and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-07-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields.

  2. Ultra high energy cosmic rays and magnetic fields

    International Nuclear Information System (INIS)

    Stanev, Todor; Engel, Ralph; Alvarez-Muniz, Jaime; Seckel, David

    2002-01-01

    We follow the propagation of ultra high energy protons in the presence of random and regular magnetic fields and discuss some of the changes in the angular and energy distributions of these particles introduced by the scattering in the magnetic fields

  3. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  4. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  5. Evaluation of pulsing magnetic field effects on paresthesia in multiple sclerosis patients, a randomized, double-blind, parallel-group clinical trial.

    Science.gov (United States)

    Afshari, Daryoush; Moradian, Nasrin; Khalili, Majid; Razazian, Nazanin; Bostani, Arash; Hoseini, Jamal; Moradian, Mohamad; Ghiasian, Masoud

    2016-10-01

    Evidence is mounting that magnet therapy could alleviate the symptoms of multiple sclerosis (MS). This study was performed to test the effects of the pulsing magnetic fields on the paresthesia in MS patients. This study has been conducted as a randomized, double-blind, parallel-group clinical trial during the April 2012 to October 2013. The subjects were selected among patients referred to MS clinic of Imam Reza Hospital; affiliated to Kermanshah University of Medical Sciences, Iran. Sixty three patients with MS were included in the study and randomly were divided into two groups, 35 patients were exposed to a magnetic pulsing field of 4mT intensity and 15-Hz frequency sinusoidal wave for 20min per session 2 times per week over a period of 2 months involving 16 sessions and 28 patients was exposed to a magnetically inactive field (placebo) for 20min per session 2 times per week over a period of 2 months involving 16 sessions. The severity of paresthesia was measured by the numerical rating scale (NRS) at 30, 60days. The study primary end point was NRS change between baseline and 60days. The secondary outcome was NRS change between baseline and 30days. Patients exposing to magnetic field showed significant paresthesia improvement compared with the group of patients exposing to placebo. According to our results pulsed magnetic therapy could alleviate paresthesia in MS patients .But trials with more patients and longer duration are mandatory to describe long-term effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets

    International Nuclear Information System (INIS)

    McCallum, R. William

    2005-01-01

    For a uniaxial nanocrystalline magnetic material, the determination of the saturation magnetization, M s , requires measurements of the magnetization at fields which exceed the anisotropy field. For a typical RE-Tm compound, where RE=rare earth and Tm=transition metal, this may require fields above 7 T if the approach to saturation law is used. However for an isotropic material composed of a random distribution of non-interacting uniaxial grains, both M s and the anisotropy filed, H a , may be determined by fitting the Stoner-Wohlfarth (SW) model (Philos. Trans. Roy. Soc. 240 (1948) 599) to the reversible part of the demagnetization curve in the first quadrant. Furthermore, using the mean field interaction model of Callen, Liu and Cullen [2], a quantitative measure of the interaction strength for interacting particles may be determined. In conjunction with an analytical fit to the first quadrant demagnetization curve of the SW model, this allows M s , H a and the mean field interaction constant of a nanocrystalline magnet to be determined from measurements below 5 T. Furthermore, comparison of the model solution for the reversible magnetization with experimental data in the 2nd and 3rd quadrants allows the accurate determination of the switching field distribution. In many cases the hysteresis loop may be accurately described by a normal distribution of switching fields

  7. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, Gaetano

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed

  8. Magnetization relaxation of single molecule magnets after field cooling

    Science.gov (United States)

    Fernandez, Julio F.; Alonso, Juan J.

    2004-03-01

    Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_wrandom walk-like considerations for magnetic dipole field drift.

  9. Magnetization, critical current, and injection field harmonics in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Sampson, W.B.; Wanderer, P.

    1985-01-01

    The very large energy ratio of machines such as the SSC dictates rather low injection field (for 6T, 20 TeV it is approximately 0.3T). Since the harmonic content at such low fields is largely determined by magnetization currents in the superconductor, the random errors depend on the uniformity of the superconducting wire. In principle the magnitude of the residual fields can be reduced indefinitely by using finer filaments, but in practice there is a lower limit of a few microns. We have compared the injection field harmonics for a number of accelerator dipoles with magnetization measurements made on samples of the conductor used to wind the coils. In addition both the magnetization and harmonics have been compared with short sample critical current measurements made at 5T. The results indicated that an accurate estimate of the variation in injection field harmonics can only be obtained from direct measurements of the magnetization of the cable. It appears feasible to use such measurements to ''shuffle'' magnets for a large accelerator by predicting the low field properties of a magnet before actually winding the coils. 10 refs., 4 figs., 2 tabs

  10. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  11. Branched flow and caustics in random media with magnetic fields

    Science.gov (United States)

    Metzger, Jakob; Fleischmann, Ragnar; Geisel, Theo

    2009-03-01

    Classical particles as well as quantum mechanical waves exhibit complex behaviour when propagating through random media. One of the dominant features of the dynamics in correlated, weak disorder potentials is the branching of the flow. This can be observed in several physical systems, most notably in the electron flow in two-dimensional electron gases [1], and has also been used to describe the formation of freak waves [2]. We present advances in the theoretical understanding and numerical simulation of classical branched flows in magnetic fields. In particular, we study branching statistics and branch density profiles. Our results have direct consequences for experiments which measure transport properties in electronic systems [3].[1] e.g. M. A. Topinka et al., Nature 410, 183 (2001), M. P. Jura et al., Nature Physics 3, 841 (2007)[2] E. J. Heller, L. Kaplan and A. Dahlen, J. Geophys. Res., 113, C09023 (2008)[3] J. J. Metzger, R. Fleischmann and T. Geisel, in preparation

  12. On plasma stability under anisotropic random electric field influence

    International Nuclear Information System (INIS)

    Rabich, L.N.; Sosenko, P.P.

    1987-01-01

    The influence of anisotropic random field on plasma stability is studied. The thresholds and instability increments are obtained. The stabilizing influence of frequency missmatch and external magnetic field is pointed out

  13. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  14. Magnetic fields in the early solar system

    International Nuclear Information System (INIS)

    Strangway, D.W.

    1980-01-01

    Most of the terrestrial planets and the meteorites contain records of early magnetic fields. In the Allende meteorite some of the chondrules were magnetized in fields of about 10 Oe. When assembled into the meteorite, they remained randomly oriented but were partially remagnetized in a field of 1 Oe at temperatures of 200-300 0 C. They present dipole moment of Mercury and the weak dipole moment of Mars may be due to the cooling of a crust in the presence of early magnetic fields. The Earth on the other hand, has had an active dynamo for at least 3 Ga and probably longer, although there is no discernible record of earlier fields due to extensive reheating of the magnetic carriers. Venus has no dynamo field and its surface temperature is too high to carry a crustal remanence. The Moon has no dipole, but local islands of magnetization are believed to be the results of breccias cooling in the presence of an early field, possibly in itself a crustal memory. As we learn about the fields of the planets and the magnetic record contained in their samples we may be able to put sharp constraints on the earliest history of planet formation and evolution. (Auth.)

  15. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  16. Random magnetism

    International Nuclear Information System (INIS)

    Tahir-Kheli, R.A.

    1975-01-01

    A few simple problems relating to random magnetic systems are presented. Translational symmetry, only on the macroscopic scale, is assumed for these systems. A random set of parameters, on the microscopic scale, for the various regions of these systems is also assumed. A probability distribution for randomness is obeyed. Knowledge of the form of these probability distributions, is assumed in all cases [pt

  17. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  18. Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths.

    Science.gov (United States)

    Heinrich, Angela; Szostek, Anne; Meyer, Patric; Nees, Frauke; Rauschenberg, Jaane; Gröbner, Jens; Gilles, Maria; Paslakis, Georgios; Deuschle, Michael; Semmler, Wolfhard; Flor, Herta

    2013-01-01

    To establish the extent to which representative cognitive functions in subjects undergoing magnetic resonance (MR) imaging are acutely impaired by static magnetic fields of varying field strengths. This study was approved by the local ethics committee, and informed consent was obtained from all subjects. In this single-blind case-crossover study, 41 healthy subjects underwent an extensive neuropsychologic examination while in MR units of differing field strengths (1.5, 3.0, and 7.0 T), including a mock imager with no magnetic field as a control condition. Subjects were blinded to field strength. Tests were performed while subjects were lying still in the MR unit and while the examination table was moved. The tests covered a representative set of cognitive functions, such as memory, eye-hand coordination, attention, reaction time, and visual discrimination. Subjective sensory perceptions were also assessed. Effects were analyzed with a repeated-measures analysis of variance; the within-subject factors were field strength (0, 1.5, 3.0, and 7.0 T) and state (static, dynamic). Static magnetic fields were not found to have a significant effect on cognitive function at any field strength. However, sensory perceptions did vary according to field strength. Dizziness, nystagmus, phosphenes, and head ringing were related to the strength of the static magnetic field. Static magnetic fields as high as 7.0 T did not have a significant effect on cognition. RSNA, 2012

  19. Construction of Solar-Wind-Like Magnetic Fields

    Science.gov (United States)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  20. Diffusion coefficient and Kolmogorov entropy of magnetic field lines

    International Nuclear Information System (INIS)

    Zimbardo, G.; Veltri, P.; Malara, F.

    1984-01-01

    A diffusion equation for magnetic field lines of force in a turbulent magnetic field, which describes both the random walk of a single line and how two nearby lines separate from each other, has been obtained using standard statistical techniques. Starting from such an equation, a closed set of equations for the moments may be obtained, in general, with suitable assumptions. From such a set of equations the Kolmogorov entropy may be explicitly calculated. The results have been applied to the most interesting examples of magnetic field geometries. (author)

  1. Magnetic field line reconnection experiments

    International Nuclear Information System (INIS)

    Gekelman, W.; Stenzel, R.L.; Wild, N.

    1982-01-01

    A laboratory experiment concerned with the basic physics of magnetic field line reconnection is discussed. Stimulated by important processes in space plasmas and anomalous transport in fusion plasmas the work addresses the following topics: Dynamic magnetic fields in a high beta plasma, magnetic turbulence, plasma dynamics and energy transport. First, the formation of magnetic neutral sheets, tearing and island coalescence are shown. Nonstationary magnetic fluctuations are statistically evaluated displaying the correlation tensor in the #betta#-k domain for mode identification. Then, the plasma properties are analyzed with particular emphasis on transport processes. Although the classical fluid flow across the separatrix can be observed, the fluctuation processes strongly modify the plasma dynamics. Direct measurements of the fluid force density and ion acceleration indicate the presence of an anomalous scattering process characterized by an effective scattering tensor. Turbulence also enhances the plasma resistivity by one to two orders of magnitude. Measurements of the three-dimensional electron distribution function using a novel energy analyzer exhibit the formation of runaway electrons in the current sheet. Associated micro-instabilities are observed. Finally, a macroscopic disruptive instability of the current sheet is observed. Excess magnetic field energy is converted at a double layer into particle kinetic energy and randomized through beam-plasma instabilities. These laboratory results are compared with related observations in space and fusion plasmas. (Auth.)

  2. Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics

    KAUST Repository

    Kumar, Rohit

    2017-08-11

    It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.

  3. Contradictory results on the effects of magnetic fields

    International Nuclear Information System (INIS)

    Jokela, K.

    1994-01-01

    Magnetic fields are becoming a new problem for the authorities, because some studies indicate that they increase the risk of cancer. On the other hand, experimental studies with animals and cell cultures have not proved that magnetic fields can definitively cause cancer. The results of studies may, in fact, be misleading. The cancer risk seems to increase randomly, because there are usually no more than twenty or thirty people with cancer among the study population. Often the types of cancer vary even though the exposure conditions have been similar. It is also possible that some unknown factor associated with power lines and equipment increases the cancer risk. People are usually exposed to magnetic fields induced by the electricity network and electrical appliances in buildings. Magnetic fields can be reduced during the design of electrical installations and appliances; this is much easier than the reduction of existing fields. It is also relatively easy to limit magnetic fields caused by VDU's and many electrical appliances during the design phase. (orig.)

  4. Relative distribution of cosmic rays and magnetic fields

    Science.gov (United States)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  5. Specific heat of the Ising linear chain in a Random field

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1984-01-01

    Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt

  6. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  7. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  8. Cosmic Magnetic Fields

    Science.gov (United States)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  9. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  10. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    Science.gov (United States)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  11. Study of Landau spectrum for a two-dimensional random magnetic field; Etude du spectre de Landau pour un champ magnetique aleatoire en dimension deux

    Energy Technology Data Exchange (ETDEWEB)

    Furtlehner, C. [Paris-6 Univ., 75 (France)

    1997-09-24

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of `strong` mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author) 78 refs.

  12. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  13. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  14. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    Science.gov (United States)

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Dinh-Hoi [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Physics Department, Hue University’s College of Education, 34 Le Loi, Hue (Viet Nam); Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  16. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  17. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  18. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  19. Effects of the magnetic field on the structure of materials

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    1984-02-01

    This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)

  20. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  1. Survey of residential magnetic field sources interim report

    International Nuclear Information System (INIS)

    Dunlap, J.H.; Zaffanella, L.E.; Johnson, G.B.

    1993-01-01

    The Electric Power Research Institute (EPRI) has conducted a nationwide survey to collect engineering data on the sources and the levels of power frequency magnetic fields that exist in residences. The survey involves measurements at approximately 1,000 residences randomly selected in the service area of 25 utilities. The information in this paper contains data from approximately 700 homes measured. The goals of the survey are to identify all significant sources of 60 Hz magnetic field in residences, estimate with sufficient accuracy the fraction of residences in which magnetic field exceeds any specified level, determine the relation between field and source parameters, and characterize spatial and temporal variations and harmonic content of the field. The data obtained relate to the level of the 60 Hz magnetic field and the source of the field, and not to personal exposure to magnetic fields, which is likely to be different due to the activity patterns of people. Magnetic fields from electrical appliances were measured intentionally away from the influence of appliance fields, which is limited to an area close to the appliance. Special measuring techniques were used to determine how the field varied within the living space of the house and over a twenty-four hour period. The field from each source is expressed in terms of how frequently a given field level is exceeded. The following sources of 60 Hz residential magnetic fields were identified: electrical appliances, grounding system of residences, overhead and underground power distribution lines, overhead power transmission lines, ground connections at electrical subpanels, and special wiring situations. Data from the appliance measurements is in a report published by EPRI, open-quotes Survey of Residential Magnetic Field Sources - Interim Reportclose quotes, TR-100194, which also provides much more detailed information on all subjects outlined in this paper

  2. Random Fields

    Science.gov (United States)

    Vanmarcke, Erik

    1983-03-01

    Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.

  3. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  4. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  5. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-11-15

    A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  6. Misalignment of Magnetic Fields and Outflows in Protostellar Cores

    OpenAIRE

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erika; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.

    2013-01-01

    We present results of λ1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with ~2."5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotati...

  7. Magnetic field structures in active compact radio sources

    International Nuclear Information System (INIS)

    Jones, T.W.; Rudnick, L.; Fiedler, R.L.; Aller, H.D.; Aller, M.F.; Hodge, P.E.

    1985-01-01

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  8. Magnetoplasmons in gapped graphene in a periodically modulated magnetic field

    KAUST Repository

    Tahir, Muhammad

    2016-01-08

    Motivated by recent experiments on long-lived magnetoplasmons in the presence of a perpendicular magnetic field, we investigate the dynamical dielectric response function of graphene in contact with a substrate using the random phase approximation. We add a periodically modulated magnetic field within the graphene plane and address both the inter and intra Landau band magnetoplasmons. Verification of the predicted magnetic modulation effects is possible by experiments analogous to those for the zero gap limit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA.

  9. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  10. Omnigenous magnetic fields

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1982-01-01

    In omnigenous magnetic fields particles' drift surfaces coincide with plasma magnetic surfaces. In this paper we formulate equations of omnigenous magnetic fields in natural curvilinear coordinates. An analysis of fields which are omnigenous only in the paraxial approximation is presented. (author)

  11. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  12. Monte Carlo studies of two-dimensional random-anisotropy magnets

    Science.gov (United States)

    Denholm, D. R.; Sluckin, T. J.

    1993-07-01

    We have carried out a systematic set of Monte Carlo simulations of the Harris-Plischke-Zuckermann lattice model of random magnetic anisotropy on a two-dimensional square lattice, using the classical Metropolis algorithm. We have considered varying temperature T, external magnetic field H (both in the reproducible and irreproducible limits), time scale of the simulation τ in Monte Carlo steps and anisotropy ratio D/J. In the absence of randomness this model reduces to the XY model in two dimensions, which possesses the familiar Kosterlitz-Thouless low-temperature phase with algebraic but no long-range order. In the presence of random anisotropy we find evidence of a low-temperature phase with some disordered features, which might be identified with a spin-glass phase. The low-temperature Kosterlitz-Thouless phase survives at intermediate temperatures for low randomness, but is no longer present for large D/J. We have also studied the high-H approach to perfect order, for which there are theoretical predictions due to Chudnovsky.

  13. Estimating and Adjusting Field Quality in Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1996-02-01

    The experience with estimating and adjusting field quality in RHIC and SSC magnets is discussed. An alternative approach which makes a better estimate for systematic and random values of harmonics is presented.

  14. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  15. Numerical solution of field theories using random walks

    International Nuclear Information System (INIS)

    Barnes, T.; Daniell, G.J.

    1985-01-01

    We show how random walks in function space can be employed to evaluate field theoretic vacuum expectation values numerically. Specific applications which we study are the two-point function, mass gap, magnetization and classical solutions. This technique offers the promise of faster calculations using less computer memory than current methods. (orig.)

  16. Modeling of random geometric errors in superconducting magnets with applications to the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    P. Ferracin

    2000-12-01

    Full Text Available Estimates of random field-shape errors induced by cable mispositioning in superconducting magnets are presented and specific applications to the Large Hadron Collider (LHC main dipoles and quadrupoles are extensively discussed. Numerical simulations obtained with Monte Carlo methods are compared to analytic estimates and are used to interpret the experimental data for the LHC dipole and quadrupole prototypes. The proposed approach can predict the effect of magnet tolerances on geometric components of random field-shape errors, and it is a useful tool to monitor the obtained tolerances during magnet production.

  17. Magnetic and magnetoelastic properties of the random anisotropy amorphous magnets Tb2(FexNi1-x)

    International Nuclear Information System (INIS)

    De la Fuente, C.; Arnaudas, J.I.; Del Moral, A.; Ciria, M.

    1996-01-01

    Amorphous Tb 2 (Fe x Ni 1-x ) compounds show the strongest random anisotropy known: D/J≅5.2, between crystal field and exchange strengths, separately obtained. The magnetic phase diagram shows two speri-magnetic phases. The effective magnetic moment is reduced, μ eff. (5 K, 12 T)≅7.2 μ B /Tb 3+ . Magnetostriction is very large and constant, λ t (5 K, 12 T)≅4.1.10 -3 . The local distribution of Tb 3+ ions is aspherical. (orig.)

  18. Magnetic static and scaling properties of the weak random-axis magnet (DyxY1-x)Al2

    International Nuclear Information System (INIS)

    Gehring, P.M.; Salamon, M.B.; del Moral, A.; Arnaudas, J.I.

    1990-01-01

    The effects of a random component of the magnetocrystalline anisotropy on the magnetic properties and critical behavior of polycrystalline DyAl 2 have been investigated using dc magnetic measurements. Random magnetic anisotropy (RMA) is produced by site-diluting ferromagnetic DyAl 2 with the nonmagnetic, isomorphic intermetallic YAl 2 . Dilution distorts the cubic Laves-phase unit cell because of a slight lattice mismatch thereby lowering the local crystal symmetry in a random fashion. Additional contributions to the RMA come from spin-orbit scattering by the conduction electrons. Hysteresis loops display little remanence and very small coercive fields, suggesting a weak RMA. This is consistent with estimates of the RMA strength D obtained using an approach of Chudnovsky et al. The magnetization at high temperatures (T>4T c ) is well described by a Curie-Weiss law. The paramagnetic Curie temperatures are positive, implying an average ferromagnetic exchange coupling between Dy ions, and increase with x. The paramagnetic moment shows no evidence of quenching across the series, thus confirming the well-localized nature of the 4f electronic orbitals. Low-field thermal scans of the bulk dc magnetization show no sign of a spontaneous moment for Dy concentrations 0.10≤x≤0.90, yet a sharp increase in the magnetization occurs at a temperature T c that increases with x. A ferromagnetic scaling analysis applied to the line of transitions at T c results in a surprisingly good collapse of the magnetization data. By extension of prior theoretical work of Aharony and Pytte, a direct connection can be made between pure and RMA exponents, which gives remarkable agreement with the experimental values

  19. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  20. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  1. Survey of residential magnetic field sources

    International Nuclear Information System (INIS)

    Zaffanella, L.E.

    1992-09-01

    A nationwide survey of 1000 residences is underway to determine the sources and characteristics of magnetic fields in the home. This report describes the goals, statistical sampling methods, measurement protocols, and experiences in measuring the first 707 residences of the survey. Some preliminary analysis of the data is also included. Investigators designed a sampling method to randomly select the participating utilities as well as the residential customers for the study. As a first step in the project, 18 utility employee residences were chosen to validate a relatively simple measurement protocol against the results of a more complete and intrusive method. Using the less intrusive measurement protocol, researchers worked closely with representatives from EPRI member utilities to enter customer residences and measure the magnetic fields found there. Magnetic field data were collected in different locations inside and around the residences. Twenty-four-hour recorders were left in the homes overnight. Tests showed that the simplified measurement protocol is adequate for achieving the goals of the study. Methods were developed for analyzing the field caused by a residence's ground current, the lateral field profiles of field lines, and the field measured around the periphery of the residences. Methods of residential source detection were developed that allow identification of sources such as ground connections at an electrical subpanel, two-wire multiple-way switches, and underground or overhead net currents exiting the periphery of a residence

  2. Universal properties of strongly frustrated quantum magnets in high magnetic fields

    International Nuclear Information System (INIS)

    Richter, J.

    2007-01-01

    For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)

  3. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    Science.gov (United States)

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  4. Magnetic Fields Versus Gravity

    Science.gov (United States)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal

  5. On the formation of a random color magnetic quantum liquid in QCD

    International Nuclear Information System (INIS)

    Amjoern, J.; Olesen, P.

    1979-11-01

    It is shown that a quantum state consisting of a condensate of color magnetic flux tubes is formed in QCD for a rather weak coupling g 2 /4π=0.37. This result is obtained in a systematic search for energy minimalizing forms of the QCD unstable magnetic mode. The magnetic field is argued to be of a 'random' type with =0 and 2 > not= 0 in any point. (Auth.)

  6. Post-processing scheme for modelling the lithospheric magnetic field

    Directory of Open Access Journals (Sweden)

    V. Lesur

    2013-03-01

    Full Text Available We investigated how the noise in satellite magnetic data affects magnetic lithospheric field models derived from these data in the special case where this noise is correlated along satellite orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled independently for each orbit, where the scaling factor is a random variable, normally distributed with zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric models generated by the correlated satellite data noise. Unless the perturbation field is known, estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore proposed an iterative post-processing technique to estimate both the lithospheric field model and its associated noise model. The technique has been successfully applied to derive a lithospheric field model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement with other existing models. The technique can, in principle, be extended to all sorts of potential field data with "along-track" correlated errors.

  7. Trapped field recovery of bulk superconductor magnets by static field magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2011-11-01

    Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.

  8. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  9. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    International Nuclear Information System (INIS)

    Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru

    2010-01-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  10. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    Science.gov (United States)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  11. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  12. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  13. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1985-02-01

    The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined

  14. Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model

    Science.gov (United States)

    Paga, Pierre; Kühn, Reimer

    2017-08-01

    We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.

  15. Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial.

    Science.gov (United States)

    Taradaj, Jakub; Ozon, Marcin; Dymarek, Robert; Bolach, Bartosz; Walewicz, Karolina; Rosińczuk, Joanna

    2018-03-23

    Interdisciplinary physical therapy together with pharmacological treatment constitute conservative treatment strategies related to low back pain (LBP). There is still a lack of high quality studies aimed at an objective evaluation of physiotherapeutic procedures according to their effectiveness in LBP. The aim of this study is to carry out a prospective, randomized, single-blinded, and placebocontrolled clinical trial to evaluate the effectiveness of magnetic fields in discopathy-related LBP. A group of 177 patients was assessed for eligibility based on inclusion and exclusion criteria. In the end, 106 patients were randomly assigned into 5 comparative groups: A (n = 23; magnetic therapy: 10 mT, 50 Hz); B (n = 23; magnetic therapy: 5 mT, 50 Hz); C (n = 20; placebo magnetic therapy); D (n = 20; magnetic stimulation: 49.2 μT, 195 Hz); and E (n = 20; placebo magnetic stimulation). All patients were assessed using tests for pain intensity, degree of disability and range of motion. Also, postural stability was assessed using a stabilographic platform. In this study, positive changes in all clinical outcomes were demonstrated in group A (p 0.05). It was determined that the application of magnetic therapy (10 mT, 50 Hz, 20 min) significantly reduces pain symptoms and leads to an improvement of functional ability in patients with LBP.

  16. Response of dairy cattle to transient voltages and magnetic fields

    International Nuclear Information System (INIS)

    Reinemann, D.J.; Laughlin, N.K.; Stetson, L.E.

    1995-01-01

    Stray voltages in dairy facilities have been studied since the 1970's. Previous research using steady-state ac and dc voltages has defined cow-contact voltage levels which may cause behavior and associated production problems. This research was designed to address concerns over possible effects of transient voltages and magnetic fields on dairy cows. Dairy cows response to transient voltages and magnetic fields was measured. The waveforms of the transient voltages applied were: 5 cycles of 60-Hz ac with a total pulse time of 83 ms, 1 cycle of 60-Hz ac with a total pulse time of 16 ms, and 1 cycle of an ac square wave (spiking positive and negative) of 2-ms duration. Alternating magnetic fields were produced by passing 60-Hz ac fundamental frequency with 2nd and 3rd harmonic and random noise components in metal structures around the cows. The maximum magnetic field associated with this current flow was in excess of 4 G. A wide range of sensitivity to transient voltages was observed among cows. Response levels from 24 cows to each transient exposure were normally distributed. No responses to magnetic fields were observed

  17. Magnetoplasmons in gapped graphene in a periodically modulated magnetic field

    KAUST Repository

    Tahir, Muhammad; Schwingenschlö gl, Udo

    2016-01-01

    Motivated by recent experiments on long-lived magnetoplasmons in the presence of a perpendicular magnetic field, we investigate the dynamical dielectric response function of graphene in contact with a substrate using the random phase approximation

  18. Magnetic fluid bridge in a non-uniform magnetic field

    International Nuclear Information System (INIS)

    Pelevina, D.A.; Naletova, V.A.; Turkov, V.A.

    2017-01-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  19. Magnetic fluid bridge in a non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pelevina, D.A., E-mail: pelevina.daria@gmail.com; Naletova, V.A.; Turkov, V.A.

    2017-06-01

    The shape of a magnetic fluid bridge between a horizontal ferrite rod of circular cross-section and a horizontal plate above the rod in a vertical applied uniform magnetic field is studied. Various static shapes of the bridges are obtained theoretically and experimentally for the same magnetic field value. Abrupt changes and the hysteresis of the bridge shape in alternating magnetic fields are observed experimentally. - Highlights: • Magnetic fluid bridge between rod and horizontal plate in magnetic field is studied. • Magnetic field is created by a ferrite rod in a uniform vertical magnetic field. • Various static bridge shapes for fixed field are obtained in theory and experiment. • A good agreement of experimental and theoretical results is obtained. • Hysteresis of the bridge shape in alternating field is observed experimentally.

  20. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  1. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    International Nuclear Information System (INIS)

    Giacalone, J.; Jokipii, J. R.

    2004-01-01

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration

  2. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  3. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  4. The Galactic magnetic fields

    International Nuclear Information System (INIS)

    Han Jinlin

    2006-01-01

    A good progress has been made on studies of Galactic magnetic fields in last 10 years. I describe what we want to know about the Galactic magnetic fields, and then review we current knowledge about magnetic fields in the Galactic disk, the Galactic halo and the field strengths. I also listed many unsolved problems on this area

  5. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  6. Phase diagrams of a spin-1/2 transverse Ising model with three-peak random field distribution

    International Nuclear Information System (INIS)

    Bassir, A.; Bassir, C.E.; Benyoussef, A.; Ez-Zahraouy, H.

    1996-07-01

    The effect of the transverse magnetic field on the phase diagrams structures of the Ising model in a random longitudinal magnetic field with a trimodal symmetric distribution is investigated within a finite cluster approximation. We find that a small magnetizations ordered phase (small ordered phase) disappears completely for a sufficiently large value of the transverse field or/and large value of the concentration of the disorder of the magnetic field. Multicritical behaviour and reentrant phenomena are discussed. The regions where the tricritical, reentrant phenomena and the small ordered phase persist are delimited as a function of the transverse field and the concentration p. Longitudinal magnetizations are also presented. (author). 33 refs, 6 figs

  7. Propagation of magnetoacoustic waves in the solar atmosphere with random inhomogeneities of density and magnetic fields

    International Nuclear Information System (INIS)

    Ryutova, M.

    1990-08-01

    Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves

  8. Kinetic Theory of Electronic Transport in Random Magnetic Fields

    Science.gov (United States)

    Lucas, Andrew

    2018-03-01

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .

  9. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  10. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  11. Behaviour of magnetic superconductors in a magnetic field

    International Nuclear Information System (INIS)

    Buzdin, A.I.

    1984-01-01

    The behaviour of magnetic superconductors with close ferromagnetic and superconducting transition temperatures in a magnetic field is considered. It is shown that on lowering of the temperature the superconducting transition changes from a second to first order transition. The respective critical fields and dependence of the magnetization on the magnetic field and temperature are found. The magnetization discontinuity in the vortex core in magnetic superconductors is noted. Due to this property and the relatively large scattering cross section, magnetic superconductors are convenient for studying the superconducting vortex lattice by neutron diffraction techniques

  12. Method of regulating magnetic field of magnetic pole center

    International Nuclear Information System (INIS)

    Watanabe, Masao; Yamada, Teruo; Kato, Norihiko; Toda, Yojiro; Kaneda, Yasumasa.

    1978-01-01

    Purpose: To provide the subject method comprising using a plurality of magnetic metal pieces having different thicknesses, regulating very easily symmetry of the field of the magnetic pole center depending upon the combination of said metal pieces, thereby obtaining a magnetic field of high precision. Method: The regulation of magnetic field at the central part of the magnetic field is not depending only upon processing of the center plug, axial movement of trim coil and ion source but by providing a magnetic metal piece such as an iron ring, primary higher harmonics of the field at the center of the magnetic field can be regulated simply while the position of the ion source slit is on the equipotential surface in the field. (Yoshihara, H.)

  13. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  14. Magnetic fields at Neptune

    International Nuclear Information System (INIS)

    Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.

    1989-01-01

    The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator

  15. Coronal Heating Topology: The Interplay of Current Sheets and Magnetic Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Rappazzo, A. F.; Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095 (United States); Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S., E-mail: rappazzo@ucla.edu [Dipartimento di Fisica, Università della Calabria, Cosenza I-87036 (Italy)

    2017-07-20

    The magnetic topology and field line random walk (FLRW) properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, called current sheet connected (CSC) regions, which extend around them. CSC FLRW is strongly anisotropic, with preferential diffusion along the current sheets’ in-plane length. CSC FLRW properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind, and for solar moss formation are discussed.

  16. Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops

    Directory of Open Access Journals (Sweden)

    Fei Sun

    2015-09-01

    Full Text Available A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.

  17. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  18. Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

    Science.gov (United States)

    Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.

    2017-11-01

    In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.

  19. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    International Nuclear Information System (INIS)

    Pereira, A.R.; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C.

    2004-01-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10 17 particle/cm 3 was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields

  20. Self-generation of magnetic fields

    International Nuclear Information System (INIS)

    Dolan, T.J.

    2000-01-01

    The stars generate self-magnetic fields on large spatial scales and long time scales,and laser-produced plasmas generate intense self-magnetic fields on very short spatial and time scales. Two questions are posed : (1) Could a self-magnetic field be generated in a laboratory plasma with intermediate spatial and time scales? (2) If a self-magnetic field were generated,would it evolve towards a minimum energy state? If the answers turned out to be affirmative,then self-magnetic fields could possibly have interesting applications

  1. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  2. High field magnetization process of (Sm, Nd)2Fe17Ny compounds

    International Nuclear Information System (INIS)

    Yu, M.J.; Tang, N.; Liu, Y.L.; Tegus, O.; Lu, Y.; Kuang, J.P.; Yang, F.M.; Li, X.; Zhou, G.F.; Boer, F.R. de

    1992-01-01

    The crystal structure and high-field magnetization process of (Sm 1-x Nd x ) 2 Fe 17 N y compounds (x = 0.0, 0.1, ..., 1.0, 2 1-x Nd x ) 2 Fe 17 N y compounds were found to crystallize in the rhombohedral Th 2 Zn 17 structure. As x increases, the Curie temperature decreases. The anisotropy fields and easy magnetization direction were investigated from 1.5 K to room temperature by means of high-field magnetization measurements and AC-susceptibility measurements, combined with X-ray diffraction on random and magnetically aligned powder samples. The anisotropy field decreases with increasing x and approaches a minimum value at about x = 0.6, then increases again. A tentative spin phase diagram for the (Sm 1-x Nd x ) 2 Fe 17 N y series is presented. At room temperature, the easy magnetization direction remains along the c-axis up to x = 0.6. (orig.)

  3. Theoretical study of in-plane response of magnetic field sensor to magnetic beads magnetized by the sensor self-field

    DEFF Research Database (Denmark)

    Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas

    2010-01-01

    We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...

  4. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    Science.gov (United States)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  5. Improved methods for the measurement and analysis of stellar magnetic fields

    Science.gov (United States)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  6. Topological signatures of interstellar magnetic fields - I. Betti numbers and persistence diagrams

    Science.gov (United States)

    Makarenko, Irina; Shukurov, Anvar; Henderson, Robin; Rodrigues, Luiz F. S.; Bushby, Paul; Fletcher, Andrew

    2018-04-01

    The interstellar medium (ISM) is a magnetized system in which transonic or supersonic turbulence is driven by supernova explosions. This leads to the production of intermittent, filamentary structures in the ISM gas density, whilst the associated dynamo action also produces intermittent magnetic fields. The traditional theory of random functions, restricted to second-order statistical moments (or power spectra), does not adequately describe such systems. We apply topological data analysis (TDA), sensitive to all statistical moments and independent of the assumption of Gaussian statistics, to the gas density fluctuations in a magnetohydrodynamic simulation of the multiphase ISM. This simulation admits dynamo action, so produces physically realistic magnetic fields. The topology of the gas distribution, with and without magnetic fields, is quantified in terms of Betti numbers and persistence diagrams. Like the more standard correlation analysis, TDA shows that the ISM gas density is sensitive to the presence of magnetic fields. However, TDA gives us important additional information that cannot be obtained from correlation functions. In particular, the Betti numbers per correlation cell are shown to be physically informative. Magnetic fields make the ISM more homogeneous, reducing the abundance of both isolated gas clouds and cavities, with a stronger effect on the cavities. Remarkably, the modification of the gas distribution by magnetic fields is captured by the Betti numbers even in regions more than 300 pc from the mid-plane, where the magnetic field is weaker and correlation analysis fails to detect any signatures of magnetic effects.

  7. EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, A. P. [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Matthaeus, W. H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-08-20

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  8. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  9. High-field magnetization behavior in random anisotropy amorphous Co-Er alloys

    Science.gov (United States)

    Lassri, H.; Driouch, L.; Krishnan, R.

    1994-05-01

    Amorphous Co1-xErx ribbons with x=55 and 65 were prepared by the melt-spinning technique. Magnetization measurements were carried out in the temperature range 4-100 K under high magnetic fields up to 20 T. Even at 20 T the saturation is not fully attained. Assuming that Co has no moment in the alloy with x=65 the Er moment is found to be 7.0μB which indicates a speromagnetic spin structure. The Co moment in the alloy with x=55 is then found to be 0.1μB, which is negligibly small. By analyzing the approach to saturation using Chudnovsky's theory we have extracted some fundamental parameters.

  10. Magnetic viscosity, susceptibility and fluctuation fields in sintered NdFeB

    International Nuclear Information System (INIS)

    Tomka, G.J.; Bissell, P.R.; O'Grady, K.; Chantrell, R.W.

    1990-01-01

    Magnetic viscosity and irreversible susceptibility of a sample of anisotropic sintered NdFeB have been measured using a vibrating sample magnetometer. The fluctuation field as a function of local field is found to decrease with increasing demagnetizing field with a dip at the coercivity. This behavior is compared with an existing computer model based on a non-interacting system of fine, uniaxial, randomly oriented particles

  11. The reversal of the Sun’s magnetic field in cycle 24

    Directory of Open Access Journals (Sweden)

    Mordvinov A.V.

    2016-03-01

    Full Text Available Analysis of synoptic data from the Vector Spectromagnetograph (VSM of the Synoptic Optical Long-term Investigations of the Sun (SOLIS and the NASA/NSO Spectromagnetograph (SPM at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between Northern and Southern hemispheres. The presence of such irregularities makes the modeling and prediction of polar field reversals extremely hard if possible. In a classical model of solar activity cycle, the unipolar magnetic regions (UMRs of predominantly following polarity fields are transported polewards due to meridional flows and diffusion. The UMRs gradually cancel out the polar magnetic field of the previous cycle, and rebuild the polar field of opposite polarity setting the stage for the next cycle. We show, however, that this deterministic picture can be easily altered by the developing of a strong center of activity, or by the emergence of an extremely large active region, or by a ‘strategically placed’ coronal hole. We demonstrate that the activity occurring during the current cycle 24 may be the result of this randomness in the evolution of the solar surface magnetic field.

  12. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  13. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  14. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  15. Cosmological magnetic fields - V

    Indian Academy of Sciences (India)

    Magnetic fields seem to be everywhere that we can look in the universe, from our own ... The field tensor is observer-independent, while the electric and magnetic .... based on string theory [11], in which vacuum fluctuations of the field are ...

  16. High-field superferric MR magnet

    International Nuclear Information System (INIS)

    Huson, F.R.; Carcagno, R.; Colvin, J.

    1987-01-01

    Current large-bore (>20 cm), high-field (2-T) MR magnets have major implementation disadvantages, mostly related to the extensive stray field of traditional air-core superconducting magnets. To circumvent this problem, the authors designed, constructed, and tested a 30-cm prototype superconducting, self-shielded, high field magnet. This unshimmed superferric magnet can operate between 0.5 and 4 T with a field quality of about one part per million over one quarter of its aperture. The magnet can be ramped from one field strength to another in approximately 10 minutes. The 5-Gauss line extends less than 1 meter outside the magnet structure. Further details, including MR measurements and images, are demonstrated, as well as 1-meter bore scale-up projections

  17. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  18. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  19. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  20. Magnetic resonance imaging: effects of magnetic field strength

    International Nuclear Information System (INIS)

    Crooks, L.E.; Arakawa, M.; Hoenninger, J.; McCarten, B.; Watts, J.; Kaufman, L.

    1984-01-01

    Magnetic resonance images of the head, abdomen, and pelvis of normal adult men were obtained using varying magnetic field strength, and measurements of T1 and T2 relaxations and of signal-to-noise (SN) ratios were determined. For any one spin echo sequence, gray/white matter contrast decreases and muscle/fat contrast increases with field. SN levels rise rapidly up to 3.0 kgauss and then change more slowly, actually dropping for muscle. The optimum field for magnetic resonance imaging depends on tissue type, body part, and imaging sequence, so that it does not have a unique value. Magnetic resonance systems that operate in the 3.0-5.0 kgauss range achieve most or all of the gains that can be achieved by higher magnetic fields

  1. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  2. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  3. Random magnetic anisotropy in thin films of amorphous Mn48B52

    International Nuclear Information System (INIS)

    Kistenmacher, T.J.; Bryden, W.A.; Moorjani, K.

    1989-01-01

    While crystalline MnB is a ferromagnet (T c =573 K), rf diode-sputtered thin films of composition Mn 48 B 52 are amorphous as ascertained by x-ray scattering and exhibit a low-field, hysteretic, static magnetization peak characteristic of a spin glass. High-field (up to 44 kG) static magnetization data at temperatures ranging between 6 and 200 K are analyzed within the random anisotropy model of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)]. In this model, the field-dependent magnetization at a given temperature is expressed as M(H)=M(0)(1-CH -1/2 )+χ'H, where the lead term follows from the analysis of a ferromagnet with a wandering axis (FWA) and the second term accounts for contributions from induced moments. The T 3/2 dependence of the saturation magnetization of the FWA contribution, M(0), at low temperatures is suggestive of spin-wave excitations, while the temperature dependence of the fitting parameters C and χ' consistently identify several characteristic temperatures associated with the magnetic behavior of a-Mn 48 B 52 , including the low-field spin-glass transition temperature and Curie temperature and the curvature crossover temperature (established from a classical Arrott plot) that separates the FWA state and a pseudoparamagnetic limit

  4. Magnetic fields in cosmology

    International Nuclear Information System (INIS)

    Madsen, M.S.

    1989-01-01

    The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)

  5. Structure and magnetic field of periodic permanent magnetic focusing system with open magnetic rings

    International Nuclear Information System (INIS)

    Peng Long; Li Lezhong; Yang Dingyu; Zhu Xinghua; Li Yuanxun

    2011-01-01

    The magnetic field along the central axis for an axially magnetized permanent magnetic ring was investigated by analytical and finite element methods. For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. A new structure of periodic permanent magnet focusing system with open magnetic rings is proposed. The structure provides a satisfactory magnetic field with a stable peak value of 120 mT for a traveling wave tube system. - Research highlights: → For open magnetic rings, both calculated and measured results show that the existence of the radial magnetic field creates a remarkable cosine distribution field along the central axis. → A new structure of periodic permanent magnet (PPM) focusing system with open magnetic rings is proposed. → The new PPM focusing system with open magnetic rings meets the requirements for TWT system.

  6. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  7. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  8. Portfolio optimization and the random magnet problem

    Science.gov (United States)

    Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.

    2002-08-01

    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.

  9. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  10. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  11. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  12. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  13. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  14. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  15. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  16. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  17. On the equivalence of dilute antiferromagnets and ferromagnets in random external fields: Curie-Weiss models

    International Nuclear Information System (INIS)

    Perez, J.F.; Pontin, L.F.; Segundo, J.A.B.

    1985-01-01

    Using a method proposed by van Hemmen the free energy of the Curie-Weiss version of the site-dilute antiferromagnetic Ising model is computed, in the presence of an uniform magnetic field. The solution displays an exact correspondence between this model and the Curie-Weiss version of the Ising model in the presence of a random magnetic field. The phase diagrams are discussed and a tricritical point is shown to exist. (Author) [pt

  18. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  19. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  20. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  1. Split-Field Magnet facility upgraded

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  2. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  3. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Shalchi, A. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Negrea, M.; Petrisor, I. [Department of Physics, University of Craiova, Association Euratom-MEdC, 13A.I.Cuza Str, 200585 Craiova (Romania)

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficients and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.

  4. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    International Nuclear Information System (INIS)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-01-01

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficients and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.

  5. Controlling magnetic field profiles

    International Nuclear Information System (INIS)

    Freeman, J.R.

    1979-04-01

    A method for designing solenoid magnets with controlled field profiles is discussed. The method, originated by D.B. Montgomery, minimizes both the field errors and the power consumption. An NOS time-sharing computer program for the CDC-6600, entitled MAGCOR, was constructed to provide an interactive magnet design capability. Results obtained during the design of magnets for a radial line electron accelerator are presented. 9 figures

  6. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    Science.gov (United States)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu

    2017-07-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  7. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    International Nuclear Information System (INIS)

    Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya

    2017-01-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length) 2 , the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  8. Field dependent shape variation of magnetic fluid droplets on magnetic dots

    International Nuclear Information System (INIS)

    Lee, Chiun-Peng; Yang, Shu-Ting; Wei, Zung-Hang

    2012-01-01

    The morphology of magnetic fluid droplets on magnetic thin film dots is studied experimentally, including the aspect ratio and the contact angle variation of the droplets. Under a uniform external magnetic field, the droplet's aspect ratio increases with the external field and with the diameter of the magnetic dot due to the concentrated magnetic flux inside the magnetic fluid droplet. Similar to the electrical wetting phenomenon, the induced magnetic dipoles in the magnetic film and in the magnetic fluid near the solid–liquid interface change the solid–liquid interfacial tension, and in consequence reduce the apparent contact angle of the magnetic fluid droplet. - Highlights: ► Morphology of ferrofluid droplets on magnetic thin film dots was studied experimentally. ► Aspect ratio of ferrofluid droplets was found to increase with increasing of magnetic field. ► Liquid–solid contact angle of ferrofluid droplets was found to vary with magnetic field. ► Relationship between magnetic field and the liquid–solid interfacial tension was modeled.

  9. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  10. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  11. The dynamic behavior of magnetic fluid adsorbed to small permanent magnet in alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.j [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Asano, Daisaku [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Takana, Hidemasa; Nishiyama, Hideya [Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Aobaku, Sendai 980-8577 (Japan)

    2011-05-15

    The dynamic behavior of a magnetic fluid adsorbed to a small NdFeB permanent magnet subjected to an alternating magnetic field was studied with a high speed video camera system. The directions of alternating magnetic field are parallel and opposite to that of the permanent magnet. It was found that the surface of magnetic fluid responds to the external alternating magnetic field in elongation and contraction with a lot of spikes. Generation of a capillary magnetic fluid jet was observed in the neighbourhood of a specific frequency of alternating field. The effect of gravitational force on surface phenomena of magnetic fluid adsorbed to the permanent magnet was revealed. - Research Highlights: Magnetic fluid of the system responds to alternating magnetic field with higher frequencies. Large-amplitude surface motions of magnetic fluid occur at the specific frequencies of the external field. Capillary jets of magnetic fluid are generated at the natural frequency of the system.

  12. TFTR magnetic field design analyses

    International Nuclear Information System (INIS)

    Davies, K.; Iwinski, E.; McWhirter, J.M.

    1975-11-01

    The three main magnetic field windings for the TFTR are the toroidal field (TF) windings, the ohmic heating (OH) winding, and the equilibrium field (EF) winding. The following information is provided for these windings: (1) descriptions, (2) functions, (3) magnetic designs, e.g., number and location of turns, (4) design methods, and (5) descriptions of resulting magnetic fields. This report does not deal with the thermal, mechanical support, or construction details of the windings

  13. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  14. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  15. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    Science.gov (United States)

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  16. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  17. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    Science.gov (United States)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  18. Random-field induced memory effects in inhomogeneously diluted antiferromagnets K2NixZn1−xF4

    DEFF Research Database (Denmark)

    Dikken, B. J.; Arts, A. F. M.; de Wijn, H. W.

    1986-01-01

    Using neutron diffraction a random-field generated memory is observed in K2NixZn1−xF4 with x = 0.96, 0.85, and 0.75. The intensities and profiles of magnetic Bragg reflections are found to follow unique trajectories determined by switching the external magnetic field on and off while cooling...

  19. Dynamics of collisional particles in a fluctuating magnetic field

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.

    1995-01-01

    The equations of motion of a test particle in a stochastic magnetic field and interacting through collisions with a plasma are Langevin-type equations. Under reasonable assumptions on the statistical properties of the random processes (field and collisional velocity fluctuations), we perform an analytical calculation of the mean-square displacement (MSD) of the particle. The basic nonlinearity in the problem (Lagrangian argument of the random field) yields complicated averages, which we carry out using a functional formalism. The result is expressed as a series, and we find the conditions for its convergence, i.e. the limits of validity of our approach (essentially, we must restrict attention to non-chaotic regimes). Further, employing realistic bounds (spectral cut-off and limited time of observation), we derive an explicit formula for the MSD. We show that from this unique expression, we can obtain several previously known results. (author)

  20. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  1. Tukey g-and-h Random Fields

    KAUST Repository

    Xu, Ganggang

    2016-07-15

    We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States.

  2. Observing Interstellar and Intergalactic Magnetic Fields

    Science.gov (United States)

    Han, J. L.

    2017-08-01

    Observational results of interstellar and intergalactic magnetic fields are reviewed, including the fields in supernova remnants and loops, interstellar filaments and clouds, Hii regions and bubbles, the Milky Way and nearby galaxies, galaxy clusters, and the cosmic web. A variety of approaches are used to investigate these fields. The orientations of magnetic fields in interstellar filaments and molecular clouds are traced by polarized thermal dust emission and starlight polarization. The field strengths and directions along the line of sight in dense clouds and cores are measured by Zeeman splitting of emission or absorption lines. The large-scale magnetic fields in the Milky Way have been best probed by Faraday rotation measures of a large number of pulsars and extragalactic radio sources. The coherent Galactic magnetic fields are found to follow the spiral arms and have their direction reversals in arms and interarm regions in the disk. The azimuthal fields in the halo reverse their directions below and above the Galactic plane. The orientations of organized magnetic fields in nearby galaxies have been observed through polarized synchrotron emission. Magnetic fields in the intracluster medium have been indicated by diffuse radio halos, polarized radio relics, and Faraday rotations of embedded radio galaxies and background sources. Sparse evidence for very weak magnetic fields in the cosmic web is the detection of the faint radio bridge between the Coma cluster and A1367. Future observations should aim at the 3D tomography of the large-scale coherent magnetic fields in our Galaxy and nearby galaxies, a better description of intracluster field properties, and firm detections of intergalactic magnetic fields in the cosmic web.

  3. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  4. Five years of magnetic field management

    International Nuclear Information System (INIS)

    Durkin, C.J.; Fogarty, R.P.; Halleran, T.M.; Mark, Dr. D.A.; Mukhopadhyay, A.

    1995-01-01

    The extensive publicity of epidemiological studies inferring correlation between 60 Hz magnetic fields and childhood leukemia prompted world wide research programs that have as a goal to determine if low frequency magnetic fields represent any risk for the general population, children or utility workers. While supporting this research effort through EPRI, Con Edison embarked on a technical research program aimed to: characterize magnetic fields as to intensity and variation in time; and investigate practical means to manage these magnetic fields through currently known methods. The final goal of these research projects is to establish viable methods to reduce magnetic field intensity to desired values at reasonable distances from the sources. This goal was pursued step by step, starting with an inventory of the main sources of magnetic fields in substations, distribution and transmission facilities and generating plants. The characterization of the sources helped to identify typical cases and select specific cases, far practical applications. The next step was to analyze the specific cases and develop design criteria for managing the magnetic fields in new installations. These criteria included physical arrangement of equipment based oil calculation of magnetic fields, cancellation effect, desired maximum field intensity at specific points and shielding with high magnetic permeability metals (mu-metal and steel). This paper summarizes the authors' experiences and shows the results of the specific projects completed in recent years

  5. Magnetic field line Hamiltonian

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1984-03-01

    The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained

  6. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  7. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  8. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  9. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  10. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  11. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    Connerney, J.E.P.; Ness, N.F.

    1988-01-01

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  12. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  13. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    Science.gov (United States)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  14. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength

    International Nuclear Information System (INIS)

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-01-01

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems

  15. Magnetic Fields in the Early Universe

    CERN Document Server

    Grasso, D; Grasso, D

    2001-01-01

    This review concerns the origin and the possible effects of magnetic fields in the early Universe. We start by providing to the reader with a short overview of the current state of art of observations of cosmic magnetic fields. We then illustrate the arguments in favour of a primordial origin of magnetic fields in the galaxies and in the clusters of galaxies. We argue that the most promising way to test this hypothesis is to look for possible imprints of magnetic fields on the temperature and polarization anisotropies of the cosmic microwave background radiation (CMBR). With this purpose in mind, we provide a review of the most relevant effects of magnetic fields on the CMBR. A long chapter of this review is dedicated to particle physics inspired models which predict the generation of magnetic fields during the early Universe evolution. Although it is still unclear if any of these models can really explain the origin of galactic and intergalactic magnetic fields, we show that interesting effects may arise any...

  16. Fields on a random lattice

    International Nuclear Information System (INIS)

    Itzykson, C.

    1983-10-01

    We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case

  17. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  18. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  19. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  20. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  1. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  2. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  3. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  4. Variational Infinite Hidden Conditional Random Fields

    NARCIS (Netherlands)

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin

    2015-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of

  5. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  6. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  7. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  8. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  9. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    Science.gov (United States)

    Voorhies, C.

    1998-01-01

    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  10. Theorem on magnet fringe field

    International Nuclear Information System (INIS)

    Wei, Jie; Talman, R.

    1995-01-01

    Transverse particle motion in particle accelerators is governed almost totally by non-solenoidal magnets for which the body magnetic field can be expressed as a series expansion of the normal (b n ) and skew (a n ) multipoles, B y + iB x = summation(b n + ia n )(x + iy) n , where x, y, and z denote horizontal, vertical, and longitudinal (along the magnet) coordinates. Since the magnet length L is necessarily finite, deflections are actually proportional to ''field integrals'' such as bar BL ≡ ∫ B(x,y,z)dz where the integration range starts well before the magnet and ends well after it. For bar a n , bar b n , bar B x , and bar B y defined this way, the same expansion Eq. 1 is valid and the ''standard'' approximation is to neglect any deflections not described by this expansion, in spite of the fact that Maxwell's equations demand the presence of longitudinal field components at the magnet ends. The purpose of this note is to provide a semi-quantitative estimate of the importance of |Δp ∝ |, the transverse deflection produced by the ion-gitudinal component of the fringe field at one magnet end relative to |Δp 0 |, the total deflection produced by passage through the whole magnet. To emphasize the generality and simplicity of the result it is given in the form of a theorem. The essence of the proof is an evaluation of the contribution of the longitudinal field B x from the vicinity of one magnet end since, along a path parallel to the magnet axis such as path BC

  11. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  12. Magnetic field on board

    International Nuclear Information System (INIS)

    Estevez Radio, H.; Fernandez Arenal, C.A.

    1995-01-01

    Here, the calculation of the magnetic field on board ships is performed, using matrix calculus, in a similar way as when the magnetic field in matter is studied. Thus the final formulas are written in a more compact form and they are obtained through a simpler way, more suitable for the university education. (Author)

  13. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    International Nuclear Information System (INIS)

    Whang, Y. C.

    2010-01-01

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma β-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  14. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley; Goodman, Alyssa A.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girart, Josep M. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Cortés, Paulo C. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Lai, Shih-Ping, E-mail: chat.hull@cfa.harvard.edu [Institute of Astronomy and Department of Physics, National Tsing Hua University, 101 Section 2 Kuang Fu Road, 30013 Hsinchu, Taiwan (China)

    2017-06-20

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations with four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.

  15. Establishment of magnetic coordinates for a given magnetic field

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1981-04-01

    A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas

  16. Magnetic field effect on growth, arsenic uptake, and total amylolytic activity on mesquite (Prosopis juliflora x P. velutina) seeds

    Science.gov (United States)

    Flores-Tavizón, Edith; Mokgalaka-Matlala, Ntebogeng S.; Elizalde Galindo, José T.; Castillo-Michelle, Hiram; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2012-04-01

    Magnetic field is closely related to the cell metabolism of plants [N. A. Belyavskaya, Adv. Space Res. 34, 1566 (2004)]. In order to see the effect of magnetic field on the plant growth, arsenic uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina) seeds, ten sets of 80 seeds were selected to be oriented with the long axis parallel or randomly oriented to an external magnetic field. The external magnetic field magnitude was 1 T, and the exposition time t = 30 min. Then, the seeds were stored for three days in a plastic bag and then sown on paper towels in a modified Hoagland's nutrient solution. After three days of germination in the dark and three days in light, seedlings were grown hydroponically in modified Hoagland's nutrient solution (high PO42-) containing 0, 10, or 20 ppm of arsenic as As (III) and (V). The results show that the germination ratios, growth, elongation, arsenic uptake, and total amylolytic activity of the long axis oriented mesquite seeds were much higher than those of the randomly oriented seeds. Also, these two sets of seeds showed higher properties than the ones that were not exposed to external magnetic field.

  17. Inertial fusion reactors and magnetic fields

    International Nuclear Information System (INIS)

    Cornwell, J.B.; Pendergrass, J.H.

    1985-01-01

    The application of magnetic fields of simple configurations and modest strengths to direct target debris ions out of cavities can alleviate recognized shortcomings of several classes of inertial confinement fusion (ICF) reactors. Complex fringes of the strong magnetic fields of heavy-ion fusion (HIF) focusing magnets may intrude into reactor cavities and significantly affect the trajectories of target debris ions. The results of an assessment of potential benefits from the use of magnetic fields in ICF reactors and of potential problems with focusing-magnet fields in HIF reactors conducted to set priorities for continuing studies are reported. Computational tools are described and some preliminary results are presented

  18. Magnetic field considerations in fusion power plant environs

    International Nuclear Information System (INIS)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions

  19. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  20. Line formation in microturbulent magnetic fields

    International Nuclear Information System (INIS)

    Domke, H.; Pavlov, G.G.

    1979-01-01

    The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)

  1. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  2. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  3. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  4. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  5. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  6. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  7. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  8. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  9. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  10. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  11. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  12. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  13. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  14. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  15. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  16. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  17. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  18. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  19. Numerical analysis of magnetic field in superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Kanamaru, Y.; Amemiya, Y.

    1991-01-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method

  20. Initial magnetic field decay of the superconducting magnet in persistent current mode

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yanada, T.

    1988-01-01

    The initial magnetic field decay in the persistent current mode of a magnetic resonance imaging magnet has been studied experimentally. The field decay is greater than the steady field decay due to joint resistances of conductors. Imaging experiments cannot be carried out during the periods, which last ten or more hours. The current distribution in the multifilamentory conductor is non-uniform just after the energization. It is suggested that the change of the current distribution causes the initial magnetic field decay. A 6th order superconducting magnet was prepared for experiments (central field = 0.35 T, inner diameters = 1 m, length = 1.86 m). The steady state magnetic field decay was 7*10/sup -8//hr. The initial magnetic field decay was 3*10/sup -6//hr. Overshoot currents (101 and 105 percent of the rated current) were applied to the magnet and the current reduced to the rated current to improve the initial decay. The energizing and de-energizing rate of the field was 1.8 gauss/second. No initial decay was observed when 105 percent current pattern was applied to the magnet

  1. Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2005-01-01

    The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory

  2. Investigation of magnetic drift on transport of plasma across magnetic field

    International Nuclear Information System (INIS)

    Hazarika, Parismita; Chakraborty, Monojit; Das, Bidyut; Bandyopadhyay, Mainak

    2015-01-01

    When a metallic body is inserted inside plasma chamber it is always associated with sheath which depends on plasma and wall condition. The effect of sheath formed in the magnetic drift and magnetic field direction on cross field plasma transport has been investigated in a double Plasma device (DPD). The drifts exist inside the chamber in the transverse magnetic field (TMF) region in a direction perpendicular to both magnetic field direction and axis of the DPD chamber. The sheath are formed in the magnetic drift direction in the experimental chamber is due to the insertion of two metallic plates in these directions and in the magnetic field direction sheath is formed at the surface of the TMF channels. These metallic plates are inserted in order to obstruct the magnetic drift so that we can minimised the loss of plasma along drift direction and density in the target region is expected to increase due to the obstruction. It ultimately improves the negative ion formation parameters. The formation of sheath in the transverse magnetic field region is studied by applying electric field both parallel and antiparallel to drift direction. Data are acquired by Langmuir probe in source and target region of our chamber. (author)

  3. Generation of magnetic fields for accelerators with permanent magnets

    International Nuclear Information System (INIS)

    Meinander, T.

    1994-01-01

    Commercially available permanent magnet materials and their properties are reviewed. Advantages and disadvantages of using permanent magnets as compared to electromagnets for the generation of specific magnetic fields are discussed. Basic permanent magnet configurations in multipole magnets and insertion devices are presented. (orig.)

  4. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  5. Minimizing magnetic fields for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S., E-mail: stefan.stuiber@ph.tum.de; Sturm, M.; Taggart Singh, J.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Rohrer, H. K. [Rohrer GmbH, D-80667 München (Germany); Schläpfer, U. [IMEDCO AG, CH-4614 Hägendorf (Switzerland)

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  6. Minimizing magnetic fields for precision experiments

    International Nuclear Information System (INIS)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application

  7. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  9. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  10. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  11. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  12. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  13. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  14. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  15. Principles of power frequency magnetic field management

    International Nuclear Information System (INIS)

    Fugate, D.; Feero, W.

    1995-01-01

    At the most general level, magnetic field management is the creation, elimination, or modification of sources in order to alter the spatial distribution of magnetic fields over some region of space. The two main options for magnetic field management are source modification (elimination or modification of original sources) and cancellation (creation of new sources). Source modification includes any changes in the layout or location of field sources, elimination of ground paths, or any options that increase the distance between sources and regions of interest. Cancellation involves the creation of new magnetic field sources, passive and/or active that produce magnetic fields that are opposite to the original fields in the region of interest. Shielding using materials of high conductivity and/or high permeability falls under the cancellation option. Strategies for magnetic field management, whether they are source modification or cancellation, typically vary on a case to case basis depending on the regions of interest, the types of sources and resulting complexity of the field structure, the field levels, and the attenuation requirements. This paper gives an overview of magnetic field management based on fundamental concepts. Low field design principles are described, followed by a structured discussion of cancellation and shielding. The two basic material shielding mechanisms, induced current shielding, and flux-shunting are discussed

  16. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  17. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    Science.gov (United States)

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  18. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  19. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    Jackson, D.J.; Beard, D.B.

    1977-01-01

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  20. Fabrication of crystal-oriented barium-bismuth titanate ceramics in high magnetic field and subsequent reaction sintering

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Tomita, Yusuke; Furushima, Ryoichi; Uematsu, Keizo; Shimizu, Hiroyuki; Doshida, Yutaka

    2009-01-01

    High magnetic field was applied to fabricate novel lead-free piezoelectric ceramics with a textured structure. A compact of crystallographically oriented grains was prepared by dry forming in a high magnetic field from a mixed slurry of bismuth titanate and barium titanate powders. Bismuth titanate particles with a size of about 1 μ m were used as the host material. In the forming process, the slurry was poured into a mold and set in a magnetic field of 10 T until completely dried. Bismuth titanate particles were highly oriented in the slurry under the magnetic field. The dried powder compact consisted of highly oriented bismuth titanate particles and randomly oriented barium titanate particles. Barium bismuth titanate ceramics with a- and b-axis orientations were successfully produced from the dried compact by sintering at temperatures above 1100 deg. C.

  1. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  2. Electromagnetic fields of rotating magnetized NUT stars

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.

    2004-01-01

    Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit

  3. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  4. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  5. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  6. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  7. Finite temperature simulation studies of spin-flop magnetic random access memory devices

    International Nuclear Information System (INIS)

    Chui, S.T.; Chang, C.-R.

    2006-01-01

    Spin-flop structures are currently being developed for magnetic random access memory devices. We report simulation studies of this system. We found the switching involves an intermediate edge-pinned domain state, similar to that observed in the single layer case. This switching scenario is quite different from that based on the coherent rotation picture. A significant temperature dependence of the switching field is observed. Our result suggests that the interplane coupling and thus the switching field has to be above a finite threshold for the spin-flop switching to be better than conventional switching methods

  8. Theoretical study of in-plane response of magnetic field sensor to magnetic beads in an in-plane homogeneous field

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Hansen, Mikkel Fougt

    2008-01-01

    We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...

  9. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields

    Science.gov (United States)

    Fradin, Cécile

    2013-01-01

    Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185

  10. Magnetic behavior of the diluted antiferromagnet Mn0.39Zn0.61F2 at strong fields

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Ferreira, J.M.; Montenegro, F.C.; Ramos, C.A.

    2001-01-01

    The magnetic phase boundaries of the random-field Ising model (RFIM) system Mn 0.39 Zn 0.61 F 2 are determined using magnetization measurements, under finite DC applied fields (H). At low fields (H<12 kOe), our results support a critical phase boundary, separating an ordered antiferromagnetic (AF) phase from the paramagnetic (P) one. For intermediate fields (12< H<18 kOe), the AF ordering coexists with a spin-flop (SF) clustering. For higher H, a spin-flop phase dominates the upper part of the (H,T) phase diagram

  11. High-field magnetization curve of random-anisotropy amorphous magnet: Observation of a crossover and link to structural short-range order

    Science.gov (United States)

    Filippi, J.; Amaral, V. S.; Barbara, B.

    1991-08-01

    High-field magnetization curves of the series of amorphous alloys DyxGd1-xNi have been measured up to 15 tesla and interpreted in the framework of the theory of Chudnovsky et al. The results show several features (high-field crossovers, correlation volume of local-anisotropy directions, ferromagnetic correlation length) all consistent with each other and in agreement with theoretical predictions.

  12. High-field magnetization curve of random-anisotropy amorphous magnet: Observation of a crossover and link to structural short-range order

    International Nuclear Information System (INIS)

    Filippi, J.; Amaral, V.S.; Barbara, B.

    1991-01-01

    High-field magnetization curves of the series of amorphous alloys Dy x Gd 1-x Ni have been measured up to 15 tesla and interpreted in the framework of the theory of Chudnovsky et al. The results show several features (high-field crossovers, correlation volume of local-anisotropy directions, ferromagnetic correlation length) all consistent with each other and in agreement with theoretical predictions

  13. Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    International Nuclear Information System (INIS)

    Delande, Dominique; Zakrzewski, Jakub

    2003-01-01

    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution

  14. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  15. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  16. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  17. Random scalar fields and hyperuniformity

    Science.gov (United States)

    Ma, Zheng; Torquato, Salvatore

    2017-06-01

    Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.

  18. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  19. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  20. Magnetic field line diffusion at the onset of stochasticity

    International Nuclear Information System (INIS)

    Elsaesser, K.; Deeskow, P.

    1987-01-01

    The Hamiltonian equations of a particle in a random set of waves just above the stochasticity threshold are considered both theoretically and numerically. First we derive the diffusion coefficient and the autocorrelation time perturbatively without using the thermodynamic limit, and we discuss the relevance of the Hamiltonian problem for particle acceleration and magnetic field line flow. Then we integrate the equations for an ensemble of magnetic field lines numerically for a model problem and show the time evolution of moments and correlations. Twice above the threshold we observe diffusive behaviour from the beginning, but the diffusion coefficient includes also the non-resonant modes. Just at threshold we find first a short phase of free acceleration, later a diffusion which is lower than predicted by the theoretical formula. The best way to analyze the problem is in terms of cumulants, but a reliable comparison with any theory requires also a time integration of the corresponding kinetic equations. (orig.)

  1. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  2. Conductance of auroral magnetic field lines

    International Nuclear Information System (INIS)

    Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.

    1986-01-01

    DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references

  3. High-Field Accelerator Magnets

    International Nuclear Information System (INIS)

    Rijk, G de

    2014-01-01

    In this lecture an overview is given of the present technology for high field accelerator magnets. We indicate how to get high fields and what are the most important parameters. The available conductors and their limitations are presented followed by the most relevant types of coils and support structures. We conclude by showing a number of recent examples of development magnets which are either pure R&D objects or models for the LHC luminosity upgrade

  4. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    Albertazzi, Bruno

    2014-01-01

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author) [fr

  5. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  6. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  7. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  8. Super-high magnetic fields in spatially inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nastoyashchiy, Anatoly F.

    2012-01-01

    The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining. The considered magnetic fields may play an important role in thermal insulation of the plasma. (author)

  9. Levitation of a magnet by an alternating magnetic field

    International Nuclear Information System (INIS)

    Gough, W; Hunt, M O; Summerskill, W S H

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism. (paper)

  10. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  11. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  12. Seminal magnetic fields from inflato-electromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)

    2012-10-15

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)

  13. Seminal magnetic fields from inflato-electromagnetic inflation

    Science.gov (United States)

    Membiela, Federico Agustín; Bellini, Mauricio

    2012-10-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance.

  14. Seminal magnetic fields from inflato-electromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2012-01-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)

  15. Taylor-Couette flow stability with toroidal magnetic field

    International Nuclear Information System (INIS)

    Shalybkov, D

    2005-01-01

    The linear stability of the dissipative Taylor-Couette flow with imposed azimuthal magnetic field is considered. Unlike to ideal flow, the magnetic field is fixed function of radius with two parameters only: a ratio of inner to outer cylinder radii and a ratio of the magnetic field values on outer and inner cylinders. The magnetic field with boundary values ratio greater than zero and smaller than inverse radii ratio always stabilizes the flow and called stable magnetic field below. The current free magnetic field is the stable magnetic field. The unstable magnetic field destabilizes every flow if the magnetic field (or Hartmann number) exceeds some critical value. This instability survives even without rotation (for zero Reynolds number). For the stable without the magnetic field flow, the unstable modes are located into some interval of the vertical wave numbers. The interval length is zero for critical Hartmann number and increases with increasing Hartmann number. The critical Hartmann numbers and the length of the unstable vertical wave numbers interval is the same for every rotation law. There are the critical Hartmann numbers for m = 0 sausage and m = 1 kink modes only. The critical Hartmann numbers are smaller for kink mode and this mode is the most unstable mode like to the pinch instability case. The flow stability do not depend on the magnetic Prandtl number for m = 0 mode. The same is true for critical Hartmann numbers for m = 0 and m = 1 modes. The typical value of the magnetic field destabilizing the liquid metal Taylor-Couette flow is order of 100 Gauss

  16. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  17. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  18. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  19. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  20. Magnetic fields of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected

  1. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    Science.gov (United States)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are

  2. Magnetic field dosimeter development

    International Nuclear Information System (INIS)

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation

  3. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  4. Electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Itzykson, C.

    1985-05-01

    We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited

  5. Study on magnetic field distribution in superconducting magnetic systems with account of magnetization of a superconducting winding

    International Nuclear Information System (INIS)

    Shakhtarin, V.N.; Koshurnikov, E.K.

    1977-01-01

    A method for investigating a magnetic field in a superconducting magnetic system with an allowance for magnetization of the superconducting winding material is described. To find the field, use was made of the network method for solving a nonlinear differential equation for the scalar magnetic potential of the magnetization field with adjustment of the boundary conditions by the boundary relaxation method. It was assumed that the solenoid did not pass into the normal state, and there were no flow jumps. The calculated dependences for the magnetization field of a superconducting solenoid with an inner diameter of 43 mm, an outer diameter of 138 mm, and a winding of 159 mm length are presented. The solenoid is wound with a 37-strand niobium-titanium wire. The magnetization field gradient in the area of the geometrical centre with a magnetic field strength of 43 kOe was equal to 1 Oe/cm, this meaning that within a sphere of 1 cm radius the inhomogeneity of the magnetization field was 2.5 x 10 -5

  6. Motions and solar magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Krat, V A [AN SSSR, Leningrad. Glavnaya Astronomicheskaya Observatoriya

    1977-02-01

    Fine structure of magnetic fields in the Sun has been investigated. The data of the Soviet solar stratospheric observatory (SSO) with the telescope with a mirror first of 50 and then 100 cm in diameter obtained for the period of 1970-1973 served as material for research. The experiments give evidence of the presence of photospheric granulation with the characteristic dimension of granules below 150 km. The angular resolution of instruments does not make it possible to realize direct measurements of magnetic fields of such sizes. The indirect estimates indicate the fact that the magnetic fields of photosphere cannot be less than 10/sup 2/ Oe. A comparison of Hsub(..cap alpha..) lines with lines of metals and with the continuous spectrum shows that the least dimensions of chromosphere elements account for 500 km. Since in chromosphere density decreases drastically, than in order to suppress hydrodynamic flows fields should be of the order of 10/sup 3/ Oe. It has been concluded that the problem of the origin and evolution of the magnetic field of the Sun should be also solved by applying data on other stars.

  7. Fallback accretion onto magnetized neutron stars and the hidden magnetic field model

    International Nuclear Information System (INIS)

    Torres, A; Cerdá-Durán, P; Font, J A

    2015-01-01

    The observation of several neutron stars with relatively low values of the surface magnetic field found in supernova remnants has led in recent years to controversial interpretations. A possible explanation is the slow rotation of the proto-neutron star at birth which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, seems to be favoured over the previous one due to the observation of three low magnetic field magnetars. This scenario considers the accretion of the fallback of the supernova debris onto the neutron star as the responsible for the observed low magnetic field. In this work, we have studied under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting fluid. We have considered a simplified toy model in general relativity to estimate the balance between the incoming accretion flow an the magnetosphere. We conclude that the burial is possible for values of the surface magnetic field below 10 13 G. The preliminary results reported in this paper for simplified polytropic models should be confirmed using a more realistic thermodynamical setup. (paper)

  8. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  9. Magnetic fields in noninvasive brain stimulation.

    Science.gov (United States)

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  10. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  11. Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields

    Directory of Open Access Journals (Sweden)

    Martin Schlather

    2015-02-01

    Full Text Available Modeling of and inference on multivariate data that have been measured in space, such as temperature and pressure, are challenging tasks in environmental sciences, physics and materials science. We give an overview over and some background on modeling with cross- covariance models. The R package RandomFields supports the simulation, the parameter estimation and the prediction in particular for the linear model of coregionalization, the multivariate Matrn models, the delay model, and a spectrum of physically motivated vector valued models. An example on weather data is considered, illustrating the use of RandomFields for parameter estimation and prediction.

  12. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: yangmei@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Kang, Wen; Deng, Changdong [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Sun, Xianjing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Li; Wu, Xi [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Gong, Lingling; Cheng, Da [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Yingshun; Chen, Fusan [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  13. The application of moving average control charts for evaluating magnetic field quality on an individual magnet basis

    International Nuclear Information System (INIS)

    Pollock, D.A.; Gunst, R.F.; Schucany, W.R.

    1994-01-01

    SSC Collider Dipole Magnet field quality specifications define limits of variation for the population mean (Systematic) and standard deviation (RMS deviation) of allowed and unallowed multipole coefficients generated by the full collection of dipole magnets throughout the Collider operating cycle. A fundamental Quality Control issue is how to determine the acceptability of individual magnets during production, in other words taken one at a time and compared to the population parameters. Provided that the normal distribution assumptions hold, the random variation of multipoles for individual magnets may be evaluated by comparing the measured results to ± 3 x RMS tolerance, centered on the design nominal. To evaluate the local and cumulative systematic variation of the magnets against the distribution tolerance, individual magnet results need to be combined with others that come before it. This paper demonstrates a Statistical Quality Control method (the Unweighted Moving Average control chart) to evaluate individual magnet performance and process stability against population tolerances. The DESY/HERA Dipole cold skew quadrupole measurements for magnets in production order are used to evaluate non-stationarity of the mean over time for the cumulative set of magnets, as well as for a moving sample

  14. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  15. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Science.gov (United States)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  16. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  17. Magnetic field decay in model SSC dipoles

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs

  18. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy; Bontemps, P.; Rikken, Geert L J A

    2011-01-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  19. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  20. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  1. Working in the magnetic field of ultrahigh field MRI

    International Nuclear Information System (INIS)

    Leitgeb, N.; Gombotz, H.

    2013-01-01

    Development of magnetic resonance imaging (MRI) device technology continues to increase the static magnetic flux densities applied and consequently leads to considerably increased occupational exposure. This has already made it necessary to review limits of occupational exposure and to postpone European legal regulations for occupational exposure to electromagnetic fields. This raises the question whether and if so which adverse health effects and health risks might be associated with occupational exposure to MRI ultra-high static magnetic fields. Based on a survey on interaction mechanisms recommendations and safety rules are presented to help minimize adverse health effects of emerging ultra-high field MRI. (orig.) [de

  2. Magnetic Phase Transitions of CeSb. II: Effects of Applied Magnetic Fields

    DEFF Research Database (Denmark)

    Meier, G.; Fischer, P.; Hälg, W.

    1978-01-01

    For pt.I see ibid., vol.11, p.345 (1978). The metamagnetic phase transition and the associated phase diagram of the anomalous antiferromagnet CeSb were determined in a neutron diffraction study of the magnetic ordering of CeSb single crystals in applied magnetic fields parallel to the (001...... magnetic fields. The observed magnetic structures do not correspond to the stable configurations expected from the molecular field theory of the face-centred cubic lattice. The change from a first-order transition at the Neel temperature in zero field to second-order transition at high fields points...

  3. Magnetic field transfer device and method

    Science.gov (United States)

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  4. On the helicity of open magnetic fields

    International Nuclear Information System (INIS)

    Prior, C.; Yeates, A. R.

    2014-01-01

    We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice. For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field. However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there always exists a possible untwisted reference field.

  5. The Strongest Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  6. Magnetic field gradients and their uses in the study of the earth's magnetic field

    Science.gov (United States)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  7. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Pu, Shengli, E-mail: shlpu@usst.edu.cn [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [The Key Lab of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Laboratory L.P.S., Department of Physics, Faculty of Sciences, Badji-Mokhtar Annaba University, Annaba 23000 (Algeria)

    2016-09-07

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previously similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.

  8. Stoked nondynamos: sustaining field in magnetically non-closed systems

    International Nuclear Information System (INIS)

    Byington, B M; Brummell, N H; Stone, J M; Gough, D O

    2014-01-01

    Much effort has gone into identifying and classifying systems that might be capable of dynamo action, i.e. capable of generating and sustaining magnetic field indefinitely against dissipative effects in a conducting fluid. However, it is difficult, if not almost technically impossible, to derive a method of determining in both an absolutely conclusive and a pragmatic manner whether a system is a dynamo or not in the nonlinear regime. This problem has generally been examined only for closed systems, despite the fact that most realistic situations of interest are not strictly closed. Here we examine the even more complex problem of whether a known nondynamo closed system can be distinguished pragmatically from a true dynamo when a small input of magnetic field to the system is allowed. We call such systems ‘stoked nondynamos’ owing to the ‘stoking’ or augmentation of the magnetic field in the system. It may seem obvious that magnetic energy can be sustained in such systems since there is an external source, but crucial questions remain regarding what level is maintained and whether such nondynamo systems can be distinguished from a true dynamo. In this paper, we perform 3D nonlinear numerical simulations with time-dependent ABC forcing possessing known dynamo properties. We find that magnetic field can indeed be maintained at a significant stationary level when stoking a system that is a nondynamo when not stoked. The maintained state results generally from an eventual rough balance of the rates of input and decay of magnetic field. We find that the relevance of this state is dictated by a parameter κ representing the correlation of the resultant field with the stoking forcing function. The interesting regime is where κ is small but non-zero, as this represents a middle ground between a state where the stoking has no effect on the pre-existing nondynamo properties and a state where the effect of stoking is easily detectable. We find that in this regime, (a

  9. Time evolution of primordial magnetic fields and present day extragalactic magnetism

    International Nuclear Information System (INIS)

    Saveliev, Andrey

    2014-05-01

    The topic of the present thesis is the time evolution of Primordial Magnetic Fields which have been generated in the Early Universe. Assuming this so-called Cosmological Scenario of magnetogenesis to be true, it is shown in the following that this would account for the present day Extragalactic Magnetic Fields. This is particularly important in light of recent gamma ray observations which are used to derive a lower limit for the corresponding magnetic field strength, even though also an alternative approach, claiming instead that these observations are due to interactions with the Intergalactic Medium, is possible and will be tested here with Monte Carlo simulations. In order to describe the aforementioned evolution of Primordial Magnetic Fields, a set of general Master Equations for the spectral magnetic, kinetic and helical components of the system are derived and then solved numerically for the Early Universe. This semianalytical method allows it to perform a full quantitative study for the time development of the power spectra, in particular by fully taking into account the backreaction of the turbulent medium onto the magnetic fields. Applying the formalism to non-helical Primordial Magnetic Fields created on some characteristic length measure, it is shown that on large scales L their spectrum 5 builds up a slope which behaves as B∝L -(5)/(2) and governs the evolution of the coherence (or integral) scale. In addition, the claim of equipartition between the magnetic and the kinetic energy is found to be true. Extending the analysis to helical magnetic fields, it is observed that the time evolution changes dramatically, hence confirming quantitatively that an Inverse Cascade, i.e. an efficient transport of energy from small to large scales, as predicted in previous works, indeed does take place.

  10. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  11. Magnetic fields in laser heated plasmas

    International Nuclear Information System (INIS)

    Amiranoff, F.; Brackbill, J.; Colombant, D.; Grandjouan, N.

    1984-01-01

    With a fixed-ion code for the study of self-generated magentic fields in laser heated plasmas, the inhibition of thermal transport and the effect of the Nernst term are modeled for a KrF laser. For various values of the flux limiter, the response of a foil to a focused laser is calculated without a magnetic field and compared with the response calculated with a magnetic field. The results are: The Nernst term convects the magnetic field to densities above critical as found by Nishiguchi et al. (1984), but the field does not strongly inhibit transport into the foil. The field is also transported to sub-critical densities, where it inhibits thermal diffusion and enhance lateral transport by convection

  12. Magnetic domain structure, crystal orientation, and magnetostriction of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} solidified in various high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pengfei [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Yuan, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-03-01

    In this paper, we studied how applying a high magnetic field during solidification of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95} alloys affected their magnetic domain structure, crystal orientation, and magnetostriction. We observed the morphology of the magnetic domain during solidification, finding it change with the applied field: from fiber like (0 T) to dot like and closure mixed (4.4 T) to fiber like (8.8 T) to fishbone like (11.5 T). The alloy solidified at 4.4 T showed the best contrast of light and dark in its domain image, widest magnetic domain, fastest magnetization, and highest magnetostriction; this alloy is followed in descending order by the alloys solidified at 11.5 T, 8.8 T, and 0 T. The orientation of the (Tb, Dy)Fe{sub 2} phase changed with magnetic field from random (0 T) to 〈111〉 (4.4 T) to 〈113〉 (8.8 T) to 〈110〉 (11.5 T). The improvement in magnetostriction was likely caused by modification of both the magnetization process and the alloy microstructure. - Highlights: • We present how magnetic field affects magnetic domain structure of Tb{sub 0.27}Dy{sub 0.73}Fe{sub 1.95}. • Morphology and width of magnetic domain change with increasing magnetic field. • Magnetization and magnetostriction of alloy change with increasing magnetic field. • A transformation of random–〈111〉–〈113〉–〈110〉 for (Tb, Dy)Fe{sub 2} orientation forms.

  13. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-15

    Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  14. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  15. Magnetic Thermometer: Thermal effect on the Agglomeration of Magnetic Nanoparticles by Magnetic field

    Science.gov (United States)

    Jin, Daeseong; Kim, Hackjin

    2018-03-01

    We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.

  16. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  17. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  18. Orienting Paramecium with intense static magnetic fields

    Science.gov (United States)

    Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl

    2004-03-01

    Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).

  19. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  20. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  1. Bell inequalities for random fields

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Peter [Physics Department, Yale University, CT 06520 (United States)

    2006-06-09

    The assumptions required for the derivation of Bell inequalities are not satisfied for random field models in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  2. Bell inequalities for random fields

    OpenAIRE

    Morgan, Peter

    2004-01-01

    The assumptions required for the derivation of Bell inequalities are not usually satisfied for random fields in which there are any thermal or quantum fluctuations, in contrast to the general satisfaction of the assumptions for classical two point particle models. Classical random field models that explicitly include the effects of quantum fluctuations on measurement are possible for experiments that violate Bell inequalities.

  3. Separation of magnetic field lines

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2012-01-01

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor σ, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e 2σ , and the ratio of the longer distance to the initial radius increases as e σ . Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/ω pe , which is about 10 cm in the solar corona, and reconnection must be triggered if σ becomes sufficiently large. The radius of the sun, R ⊙ =7×10 10 cm is about e 23 times larger, so when σ≳23, two lines separated by c/ω pe at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, σ, are derived, and the importance of exponentiation is discussed.

  4. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  5. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  6. Representation of magnetic fields with toroidal topology in terms of field-line invariants

    International Nuclear Information System (INIS)

    Lewis, H.R.

    1990-01-01

    Beginning with Boozer's representation of magnetic fields with toroidal topology [Phys. Fluids 26, 1288 (1983)], a general formalism is presented for the representation of any magnetic field with toroidal topology in terms of field-line invariants. The formalism is an application to the magnetic field case of results developed recently by Lewis et al. (submitted for publication to J. Phys. A) for arbitrary time-dependent Hamiltonian systems with one degree of freedom. Every magnetic field with toroidal topology can be associated with time-dependent Hamiltonian systems with one degree of freedom and every time-dependent Hamiltonian system with one degree of freedom can be associated with magnetic fields with toroidal topology. In the Hamiltonian context, given any particular function I(q,p,t), Lewis et al. derived those Hamiltonians for which I(q,p,t) is an invariant. In addition, for each of those Hamiltonians, they derived a function canonically conjugate to I(q,p,t) that is also an invariant. They applied this result to the case where I(q,p,t) is expressed as a function of two canonically conjugate functions. This general Hamiltonian formalism provides a basis for representing magnetic fields with toroidal topology in terms of field-line invariants. The magnetic fields usually contain plasma with flow and anisotropic pressure. A class of fields with or without rotational symmetry is identified for which there are magnetic surfaces. The formalism is developed for application to the case of vacuum magnetic fields

  7. Magnetic field in expanding quark-gluon plasma

    Science.gov (United States)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  8. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  9. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  10. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  11. Tensor of effective susceptibility in random magnetic composites: Application to two-dimensional and three-dimensional cases

    Science.gov (United States)

    Posnansky, Oleg P.

    2018-05-01

    The measuring of dynamic magnetic susceptibility by nuclear magnetic resonance is used for revealing information about the internal structure of various magnetoactive composites. The response of such material on the applied external static and time-varying magnetic fields encodes intrinsic dynamic correlations and depends on links between macroscopic effective susceptibility and structure on the microscopic scale. In the current work we carried out computational analysis of the frequency dependent dynamic magnetic susceptibility and demonstrated its dependence on the microscopic architectural elements while also considering Euclidean dimensionality. The proposed numerical method is efficient in the simulation of nuclear magnetic resonance experiments in two- and three-dimensional random magnetic media by choosing and modeling the influence of the concentration of components and internal hierarchical characteristics of physical parameters.

  12. Hamiltonian description of toroidal magnetic fields in vacuum

    International Nuclear Information System (INIS)

    Lewis, H.R.; Bates, J.W.

    1996-01-01

    An investigation of vacuum magnetic fields in toroidal geometry has been initiated. Previously, the general form of the magnetic scalar potential for fields regular at the poloidal axis was given. Here, these results have been expanded to obtain the magnetic scalar potential in a vacuum region that may surround a toroidal current distribution. Using this generalized magnetic scalar potential in conjunction with Boozer's canonical representation of a magnetic field, a field-line Hamiltonian for nonaxisymmetric vacuum fields has been derived. These fields axe being examined using a novel, open-quotes time-dependentclose quotes perturbation theory, which permits the iterative construction of invariants associated with magnetic field-line Hamiltonians that consist of an axisymmetric zeroth-order term, plus a nonaxisymmetric perturbation. By choosing appropriate independent variables, an explicit constructive procedure is developed which involves only a single canonical transformation. Such invariants are of interest because they provide a means of investigating the topology of magnetic field lines. Our objective is to elucidate the existence of magnetic surfaces for nonaxisymmetric vacuum configurations, as well as to provide an approach for studying the onset of stochastic behavior

  13. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  14. On field line resonances of hydromagnetic Alfven waves in dipole magnetic field

    International Nuclear Information System (INIS)

    Chen, Liu; Cowley, S.C.

    1989-07-01

    Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs

  15. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  16. Magnetic fields in an expanding universe

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie

    2014-01-01

    We find a solution to 4D Einstein–Maxwell theory coupled to a massless dilaton field, for all values of the dilaton coupling, describing a Melvin magnetic field in an expanding universe with ‘stiff matter’ equation of state parameter w = +1. As the universe expands, magnetic flux becomes more concentrated around the symmetry axis for dilaton coupling a<1/√3 and more dispersed for a>1/√3. An electric field circulates around the symmetry axis in the direction determined by Lenz's law. For a = 0 the magnetic flux through a disc of fixed comoving radius is proportional to the proper area of the disc. This result disagrees with the usual expectation based on a test magnetic field that this flux should be constant, and we show why this difference arises. We also find a Melvin solution in an accelerating universe with w = −7/9 for a dilaton field with a certain exponential potential. (paper)

  17. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  18. Magnetic resonance in medicine occupational exposure to static magnetic field and radiofrequency radiation

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.; Ivanovic, C.

    1997-01-01

    Medical personnel working with magnetic resonance imaging (MRI) devices could be exposed to static magnetic (M) field, time-varying M fields and radiofrequency (RF) radiation. The aim of work was to investigate the density of magnetic flux of static magnetic field and the power density of RF radiation which appear in the working environment around the 0.5 T MRI unit in one hospital. The density of magnetic flux of static magnetic field was measured with Hall Effect Gauss meter - Magnetech (Great Britain), and the power density of RF radiation was measured with broadband isotropic meter - The Narda Microwave Corp. (USA). The results of measurement show that the density of magnetic flux of static M field on working places are below threshold limit of exposure and the intensities of RF radiation are far below maximum permissible level. (author)

  19. Effect of a nighttime magnetic field exposure on sleep patterns in young women.

    Science.gov (United States)

    Tworoger, Shelley S; Davis, Scott; Emerson, Scott S; Mirick, Dana K; Lentz, Martha J; McTiernan, Anne

    2004-08-01

    Since poor sleep quality is associated with multiple health problems, it is important to understand factors that may affect sleep patterns. The purpose of this study was to determine the effect of a continuous, 60-Hz, nighttime magnetic field exposure on sleep outcomes in young women sleeping at home. The study was a randomized crossover trial, comparing intervention (0.5-1.0 micro T above ambient levels) with ambient magnetic field levels, during two 5-night measurement periods. Subjects lived in the Seattle, Washington, area and were 20-40 years of age, had regular menstrual cycles, were not taking oral contraceptives, and had not breastfed or been pregnant during the previous year. The study was conducted between March and September of 2001. Sleep outcomes were measured via actigraphy. The range of magnetic field exposure was 0.001-0.50 micro T during the ambient period and 0.41-1.21 micro T during the intervention period. Sleep outcomes were not significantly different between the intervention and the ambient measurement periods. The intervention magnetic field had no effect on sleep patterns, suggesting that this exposure may not be an important factor in predicting sleep of young women who sleep at home.

  20. Measurement of the magnetic field coefficients of particle accelerator magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab

  1. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field

    Science.gov (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.

    2017-04-01

    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  2. Geminate free radical processes and magnetic field effects

    International Nuclear Information System (INIS)

    Eveson, Robert W.

    2000-01-01

    This thesis is concerned with the study of the dynamics of radical pair recombination reactions in solution by flash photolysis Electron Spin Resonance (ESR) and the influence of low static external magnetic fields upon them (MFE). An outline of the concepts of ESR is presented, followed by the theories of Chemically Induced Dynamic Electron Polarisation (CIDEP) of transient radical pairs. This is then followed by a brief review of the flash photolysis ESR apparatus and application of the Bloch equations to solve the equations of time-resolved ESR. Completing the theory section is an overview of the mechanisms by which magnetic fields alter the course of a geminate radical pair reaction in solution. Experimental CIDEP observations of the radical pair produced on photolysis of 1,3-dihydroxypropanone are simulated using polarisation theory and applied to a random-walk diffusion model to find, for the first time, the geminate reaction probability in solutions of varying viscosity. CIDEP spectra of the radical pair formed on photolysis of hydroxypropanone in contrast are not accounted for by current polarisation theory. The discrepancy is due to moderately fast relaxation of the acyl radical, CH 3 CO·, which alters the relative intensities in the ST 0 RPM pattern of the counter radical. Calculations taking into account this now provide an adequate basis for simulation of the spectrum. This method also, in principle, represents a new method for the measurement of phase relaxation times. Concluding the ESR work is a CIDEP study of 2,4,6-trimethylbenzoyl diphenylphosphine oxide. Unusual spin polarisation phenomena are found. The time-resolved optical absorption spectroscopy technique used for detecting low magnetic field effects on neutral radical pair reactions is described. Various improvements to the experiment are discussed which result in the observation of the low field effect for a neutral radical pair produced by Norrish type II chemistry. This is followed by an

  3. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  4. A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G

    2006-12-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.

  5. A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR

    Science.gov (United States)

    Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.

    2007-01-01

    We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306

  6. Energy of magnetic moment of superconducting current in magnetic field

    International Nuclear Information System (INIS)

    Gurtovoi, V.L.; Nikulov, A.V.

    2015-01-01

    Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment

  7. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  8. Magnetic field measurements of superconducting magnets for the colliding beam accelerator

    International Nuclear Information System (INIS)

    Herrera, J.; Kirk, H.; Prodell, A.; Willen, E.

    1983-01-01

    An important aspect of the development and production of superconducting magnets for the Colliding Beam Accelerator is the measurement of the magnetic field in the aperture of these magnets. The measurements have the three-fold purpose of determining the field quality as compared to the lattice requirements of the CBA, of obtaining the survey data necessary to position the magnets in the CBA tunnel, and lastly, of characterizing the magnetic fields for use in initial and future orbit studies of the CBA proton beams. Since for a superconducting storage accelerator it is necessary to carry out these detailed measurements on many (approx. 1000) magnets and at many current values (approx. 1000), we have chosen, in agreement with previous experience, to develop a system which Fourier analyses the voltages induced in a number of rotating windings and thereby obtains the multipole field components. The important point is that such a measuring system can be fast and precise. It has been used for horizontal measurements of the CBA ring dipoles

  9. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  10. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  11. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  12. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  13. Nuclear magnetic resonance of randomly diluted magnetic materials; Ressonancia nuclear magnetica em materiais magneticos diluidos aleatoriamente

    Energy Technology Data Exchange (ETDEWEB)

    Magon, C J

    1986-12-31

    The temperature dependence of the nuclear relaxation rates and line shapes of the F{sub O} resonance in the diluted antiferromagnet Fe{sub x} Zn{sub 1-x} F{sub 2} and Mn{sub x} Zn{sub 1-x} F{sub 2} are studied over a large temperature range T{sub N} < {approx} T {<=} 300 K. The high (room) temperature spin-lattice relaxation rates (1/T{sub 1}) of the F{sub O} nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 {<=} x {<=} 0.8. The temperature dependence of 1/T{sub 1} for T{sub N}Random Field Effects on the critical behavior of Mn{sub .65} Zn{sub .}3{sub 5} F{sub 2}, for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T{sub N} depressed substantially with field only for H{sub o} || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F{sub O} NMR was studied in Fe{sub .6} Zn{sub .4} F{sub 2} above T{sub N}. The experimental results agree with Heller`s calculation of the NMR line broadening by Random Field Effects. With H{sub o} || C the line shape changes from Gaussian towards Lozentzian for t < {approx} 10{sup -2} and below T{sub N} its line width increase qualitatively following the increase in the sublattice magnetization. (author).

  14. An evaluation of Tsyganenko magnetic field model

    International Nuclear Information System (INIS)

    Fairfield, D.H.

    1991-01-01

    A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R E regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration

  15. A model of the magnetosheath magnetic field during magnetic clouds

    Directory of Open Access Journals (Sweden)

    L. Turc

    2014-02-01

    Full Text Available Magnetic clouds (MCs are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection. We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  17. Magnetic field screens

    International Nuclear Information System (INIS)

    Mansfield, P.; Turner, R.; Chapman, B.L.W.; Bowley, R.M.

    1990-01-01

    A screen for a magnetic coil, for producing, for example, a homogeneous, gradient or RF field in nuclear magnetic resonance imaging, is described. It is provided by surround the coil with a set of electrical conductors. The currents within the conductors are controlled in such a manner that the field is neutralised in a specific region of space. The current distribution within the conductors is determined by calculating the current within a hypothetical superconductive shield which would have the effect of neutralising the field, the current through the conductors thereby being a substitute for the superconductive shield. The conductors may be evenly spaced and connected in parallel, their resistances being determined by thickness or composition to provide the desired current, or they may carry equal currents but be differently spaced. A further set or sets of controlled conductors outside the first set may ensure that the first set does not upset the field from the NMR coil. The shield may selectively reflect certain fields while transmitting others and may prevent acoustic vibration e.g. when switching gradient fields. An RF coil arrangement may consist of two orthogonal coils, one coil within the other for use as a transmit/receive set or as a double resonance transmitter; a shield between the coils is in series with, and formed from the same winding as, the inner coil. (author)

  18. Magnetic field decay in black widow pulsars

    Science.gov (United States)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  19. Analysis of magnetic field measurement results for the AGS Booster magnets

    International Nuclear Information System (INIS)

    Bleser, E.; Thern, R.

    1991-01-01

    Magnetic field measurements have been made on nearly 200 conventional magnets that have been installed in the AGS Booster and its associated transfer lines. The measurements were intended to monitor the quality of the magnets being produced and to check the performance of each magnet before installation. The magnetic measurements effort led to certain improvements in the manufacturing process, which ten subsequently produced very good, very uniform magnets. The integrated dipole fields of the 36 booster dipoles are uniform to 1.5 parts in ten thousand. The magnetic measurements indicate that the quadrupoles were manufactured to an accuracy of 3 ten thousandths of an inch, which is better than we can physically measure. 3 refs., 2 figs., 4 tabs

  20. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  1. Shear-induced inflation of coronal magnetic fields

    International Nuclear Information System (INIS)

    Klimchuk, J.A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs

  2. Introduction to magnetic random-access memory

    CERN Document Server

    Dieny, Bernard; Lee, Kyung-Jin

    2017-01-01

    Magnetic random-access memory (MRAM) is poised to replace traditional computer memory based on complementary metal-oxide semiconductors (CMOS). MRAM will surpass all other types of memory devices in terms of nonvolatility, low energy dissipation, fast switching speed, radiation hardness, and durability. Although toggle-MRAM is currently a commercial product, it is clear that future developments in MRAM will be based on spin-transfer torque, which makes use of electrons’ spin angular momentum instead of their charge. MRAM will require an amalgamation of magnetics and microelectronics technologies. However, researchers and developers in magnetics and in microelectronics attend different technical conferences, publish in different journals, use different tools, and have different backgrounds in condensed-matter physics, electrical engineering, and materials science. This book is an introduction to MRAM for microelectronics engineers written by specialists in magnetic mat rials and devices. It presents the bas...

  3. TANGLED MAGNETIC FIELDS IN SOLAR PROMINENCES

    International Nuclear Information System (INIS)

    Van Ballegooijen, A. A.; Cranmer, S. R.

    2010-01-01

    Solar prominences are an important tool for studying the structure and evolution of the coronal magnetic field. Here we consider so-called hedgerow prominences, which consist of thin vertical threads. We explore the possibility that such prominences are supported by tangled magnetic fields. A variety of different approaches are used. First, the dynamics of plasma within a tangled field is considered. We find that the contorted shape of the flux tubes significantly reduces the flow velocity compared to the supersonic free fall that would occur in a straight vertical tube. Second, linear force-free models of tangled fields are developed, and the elastic response of such fields to gravitational forces is considered. We demonstrate that the prominence plasma can be supported by the magnetic pressure of a tangled field that pervades not only the observed dense threads but also their local surroundings. Tangled fields with field strengths of about 10 G are able to support prominence threads with observed hydrogen density of the order of 10 11 cm -3 . Finally, we suggest that the observed vertical threads are the result of Rayleigh-Taylor instability. Simulations of the density distribution within a prominence thread indicate that the peak density is much larger than the average density. We conclude that tangled fields provide a viable mechanism for magnetic support of hedgerow prominences.

  4. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    International Nuclear Information System (INIS)

    Blackwell, J.J.; O'Grady, K.; Nelson, N.K.; Sharrock, M.P.

    2003-01-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements

  5. The characterisation of magnetic pigment dispersions using pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, J.J.; O' Grady, K. E-mail: kog1@york.ac.uk; Nelson, N.K.; Sharrock, M.P

    2003-10-01

    In this work, we describe the application of pulsed field magnetometry techniques for the characterisation of magnetic pigment dispersions. Magnetic pigment dispersions are important technological materials as in one form they are the material which are used to coat base film in order to make magnetic recording tape. It is these materials that have been evaluated. In this work, we describe the use of two pulsed field magnetometers, one being a low-field instrument with a maximum field of 750 Oe and the other a high-field instrument with a maximum field of 4.1 kOe. Using inductive sensing, the magnetisation is monitored in real time as the pulse is applied. We find that using these techniques we can successfully monitor the progress of the dispersion process, the effects of different resin systems and the effect of different processing conditions. We find that our results are consistent with rheological and other measurements.

  6. Design of a magnetic field alignment diagnostic for the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Deadrick, F.J.; House, P.A.; Frye, R.W.

    1985-01-01

    Magnet alignment in tandem mirror fusion machines plays a crucial role in achieving and maintaining plasma confinement. Various visual alignment tools have been described by Post et al. to align the Tara magnet system. We have designed and installed a remotely operated magnetic field alignment (MFA) diagnostic system as a part of the Mirror Fusion Test Facility (MFTF-B). It measures critical magnetic field alignment parameters of the MFTF-B coil set while under full-field operating conditions. The MFA diagnostic employs a pair of low-energy, electron beam guns on a remotely positionable probe to trace and map selected magnetic field lines. An array of precision electrical detector paddles locates the position of the electron beam, and thus the magnetic field line, at several critical points. The measurements provide a means to compute proper compensating currents to correct for mechanical misalignments of the magnets with auxiliary trim coils if necessary. This paper describes both the mechanical and electrical design of the MFA diagnostic hardware

  7. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    Science.gov (United States)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  8. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  9. Validation of Wendelstein 7-X fabrication and assembly stages by magnetic field calculations

    International Nuclear Information System (INIS)

    Andreeva, T.; Kislinger, J.

    2005-01-01

    The Wendelstein 7-X stellarator, which is currently under construction in Greifswald, is a 5-period machine, and many of the planned operational plasma scenarios are characterized by a rotational transform t/2p =1 at the plasma boundary. Such magnetic configurations are very sensitive to the symmetry breaking perturbations caused by fabrication and assembly errors, which can occur at different stages of the device construction. As a consequence, new islands at any periodicity can be produced, existing islands can be modified, stochastic regions can be enhanced and power load onto the divertor plates can be increased. Therefore the high precision of the machine construction is a very important issue, and evaluation of the magnetic field is necessary for the continuous validation of the fabrication and assembly stages with respect to their impact on the magnetic field perturbation. Analysis of the first fabricated winding packs (WPs) has shown that the fabrication errors can be divided into the systematical and statistical parts [1]. The systematic deviations add only negligible field components and don't perturb 5-fold symmetry of the machine, whilst the statistical deviations cause the disturbance of the machine periodicity. For that estimation of the magnetic field perturbation the numerical procedure has been developed [2], which describes statistically the randomly distributed errors, taken within the given tolerances or uses the actual measurements available as an input parameter. Since the construction of the magnet system of W7-X is subdivided into two main phases fabrication of components by industrial contractors and assembly of these components into the magnet system at the Greifswald site, the analysis of the magnetic field perturbation starts from the consideration of the impact of the WPs geometry deviations during the manufacturing stage. (Author)

  10. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  11. DIFFUSION OF MAGNETIC FIELD AND REMOVAL OF MAGNETIC FLUX FROM CLOUDS VIA TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Lazarian, A.; Cho, J.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  12. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  13. Volume-based Representation of the Magnetic Field

    CERN Document Server

    Amapane, N; Drollinger, V; Karimäki, V; Klyukhin, V; Todorov, T

    2005-01-01

    Simulation and reconstruction of events in high-energy experiments require the knowledge of the value of the magnetic field at any point within the detector. The way this information is extracted from the actual map of the magnetic field and served to simulation and reconstruction applications has a large impact on accuracy and performance in terms of speed. As an example, the CMS high level trigger performs on-line tracking of muons within the magnet yoke, where the field is discontinuous and largely inhomogeneous. In this case the high level trigger execution time is dominated by the time needed to access the magnetic field map.For this reason, an optimized approach for the access to the CMS field was developed, based on a dedicated representation of thedetector geometry. The detector is modeled in terms of volumes, constructed in such a way that their boundaries correspond to the fiel d discontinuities due to changes in the magnetic permeability of the materials. The field within each volume is therefore c...

  14. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.

    2006-01-01

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  15. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  16. Magnetic fields, velocity fields and brightness in the central region of the Solar disk

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, T T

    1978-01-01

    The longitudinal magnetic fields, velocity fields and brightness at the center of the Solar disk are studied. Observations of the magnetic field, line-of-sight velocities and brightness have been made with the doublemagnetograph of the Crimean astrophysical observatory. It is found that the average magnetic field strength recorded in the iron line lambda 5233 A is 18 Gs for the elements of N-polarity and 23 Gs for the elements of S-polarity. The magnetic elements with the field strength more than 200 Gs are observed in some of the cases. There is a close correlation between the magnetic field distribution in the lambda 5250 A FeI and D/sub 1/ Na I lines and between the magnetic field in the lambda 5250 A and brightness in the K/sub 3/CaII line. The dimensions of the magnetic elements in the lambda and D/sub 1/NaI lines are equal. The comparison of the magnetic field with the radial velocity recorded in the lambda 5250 and 5233 A lines has shown that radial velocities are close to zero in the regions of maximum longitudinal magnetic field. The chromospheric network-like pattern is observed in the brightness distribution of ten different spectral lines.

  17. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  18. Theoretical validation for changing magnetic fields of systems of permanent magnets of drum separators

    Science.gov (United States)

    Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.

    2018-03-01

    This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.

  19. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  20. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in [Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India)

    2016-05-06

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.

  1. DC magnetic field sensing based on the nonlinear magnetoelectric effect in magnetic heterostructures

    International Nuclear Information System (INIS)

    Burdin, Dmitrii; Chashin, Dmitrii; Ekonomov, Nikolai; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail

    2016-01-01

    Recently, highly sensitive magnetic field sensors using the magnetoelectric effect in composite ferromagnetic-piezoelectric layered structures have been demonstrated. However, most of the proposed concepts are not useful for measuring dc magnetic fields, because the conductivity of piezoelectric layers results in a strong decline of the sensor’s sensitivity at low frequencies. In this paper, a novel functional principle of magnetoelectric sensors for dc magnetic field measurements is described. The sensor employs the nonlinear effect of voltage harmonic generation in a composite magnetoelectric structure under the simultaneous influence of a strong imposed ac magnetic field and a weak dc magnetic field to be measured. This physical effect arises due to the nonlinear dependence of the magnetostriction in the ferromagnetic layer on the magnetic field. A sensor prototype comprising of a piezoelectric fibre transducer sandwiched between two layers of the amorphous ferromagnetic Metglas ® alloy was fabricated. The specifications regarding the magnetic field range, frequency characteristics, and noise level were studied experimentally. The prototype showed the responsivity of 2.5 V mT −1 and permitted the measurement of dc magnetic fields in the range of ∼10 nT to about 0.4 mT. Although sensor operation is based on the nonlinear effect, the sensor response can be made linear with respect to the measured magnetic field in a broad dynamic range extending over 5 orders of magnitude. The underlying physics is explained through a simplified theory for the proposed sensor. The functionality, differences and advantages of the magnetoelectric sensor compare well with fluxgate magnetometers. The ways to enhance the sensor performance are considered. (paper)

  2. Magnetic fields of Herbig Ae/Be stars

    Directory of Open Access Journals (Sweden)

    Hubrig S.

    2014-01-01

    Full Text Available We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.

  3. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  4. The approximation of anomalous magnetic field by array of magnetized rods

    Science.gov (United States)

    Denis, Byzov; Lev, Muravyev; Natalia, Fedorova

    2017-07-01

    The method for calculation the vertical component of an anomalous magnetic field from its absolute value is presented. Conversion is based on the approximation of magnetic induction module anomalies by the set of singular sources and the subsequent calculation for the vertical component of the field with the chosen distribution. The rods that are uniformly magnetized along their axis were used as a set of singular sources. Applicability analysis of different methods of nonlinear optimization for solving the given task was carried out. The algorithm is implemented using the parallel computing technology on the NVidia GPU. The approximation and calculation of vertical component is demonstrated for regional magnetic field of North Eurasia territories.

  5. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  6. Relaxed plasmas in external magnetic fields

    International Nuclear Information System (INIS)

    Spies, G.O.; Li, J.

    1991-08-01

    The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)

  7. A variable-field permanent-magnet dipole for accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.; Barlow, D.B.; Meyer, R.

    1992-01-01

    A new concept for a variable-field permanent-magnet dipole has been developed and fabricated at Los Alamos. The application requires an extremely uniform dipole field in the magnet aperture and precision variability over a large operating range. An iron-core permanent- magnet design using a shunt that was specially shaped to vary the field in a precise and reproducible fashion with shunt position. The key to this design is in the shape of the shunt. The field as a function of shunt position is very linear from 90% of the maximum field to 20% of the minimum field. The shaped shunt also results in a small maximum magnetic force attracting the shunt to the yoke allowing a simple mechanical design. Calculated and measured results agree well for the magnet

  8. Magnetic field saturation in the Riga dynamo experiment.

    Science.gov (United States)

    Gailitis, A; Lielausis, O; Platacis, E; Dement'ev, S; Cifersons, A; Gerbeth, G; Gundrum, T; Stefani, F; Christen, M; Will, G

    2001-04-02

    After the dynamo experiment in November 1999 [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000)] had shown magnetic field self-excitation in a spiraling liquid metal flow, in a second series of experiments emphasis was placed on the magnetic field saturation regime as the next principal step in the dynamo process. The dependence of the strength of the magnetic field on the rotation rate is studied. Various features of the saturated magnetic field are outlined and possible saturation mechanisms are discussed.

  9. The decay properties of the trapped magnetic field in HTS bulk superconducting actuator by AC controlled magnetic field

    International Nuclear Information System (INIS)

    Kim, S.B.; Uwani, Y.; Joo, J.H.; Kawamoto, R.; Jo, Y.S.

    2011-01-01

    The electric device applications of a high temperature superconducting (HTS) bulk magnet, having stable levitation and suspension properties according to their strong flux pinning force, have been proposed and developed. We have been investigating a three-dimensional (3-D) superconducting actuator using HTS bulks to develop a non-contract transportation device which moves freely in space. It is certain for our proposed 3-D superconducting actuator to be useful as a transporter used in a clean room where silicon wafers, which do not like mechanical contact and dust, are manufactured. The proposed actuator consists of the trapped HTS bulk as a mover and two-dimensionally arranged electromagnets as a stator. Up to now, the electromagnets consisted with iron core and copper coil were used as a stator, and each electromagnet was individually controlled using DC power supplies. In our previous work, the unstable movement characteristics of HTS bulk were observed under the DC operation, and the AC electromagnets driven with AC controlled current was proposed to solve these problems. In general, the trapped magnetic field in HTS bulk was decayed by a time-varying external magnetic field. Thus, it needs to optimize the shapes of AC electromagnets and operating patterns, the decay properties of the trapped magnetic field in the HTS bulk mover by the AC magnetic field should be cleared. In this paper, the influences of the frequency, the overall operating time, the strength of magnetization field and drive current against the decay of trapped magnetic field were experimentally studied using the fabricated AC electromagnets.

  10. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  11. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  12. Electron heating in the exhaust of magnetic reconnection with negligible guide field

    Science.gov (United States)

    Wang, Shan; Chen, Li-Jen; Bessho, Naoki; Kistler, Lynn M.; Shuster, Jason R.; Guo, Ruilong

    2016-03-01

    Electron heating in the magnetic reconnection exhaust is investigated with particle-in-cell simulations, space observations, and theoretical analysis. Spatial variations of the electron temperature (Te) and associated velocity distribution functions (VDFs) are examined and understood in terms of particle energization and randomization processes that vary with exhaust locations. Inside the electron diffusion region (EDR), the electron temperature parallel to the magnetic field (Te∥) exhibits a local minimum and the perpendicular temperature (Te⊥) shows a maximum at the current sheet midplane. In the intermediate exhaust downstream from the EDR and far from the magnetic field pileup region, Te⊥/Te∥ is close to unity and Te is approximately uniform, but the VDFs are structured: close to the midplane, VDFs are quasi-isotropic, whereas farther away from the midplane, VDFs exhibit field-aligned beams directed toward the midplane. In the far exhaust, Te generally increases toward the midplane and the pileup region, and the corresponding VDFs show counter-streaming beams. A distinct population with low v∥ and high v⊥ is prominent in the VDFs around the midplane. Test particle results show that the magnetic curvature near the midplane produces pitch angle scattering to generate quasi-isotropic distributions in the intermediate exhaust. In the far exhaust, electrons with initial high v∥ (v⊥) are accelerated mainly through curvature (gradient-B) drift opposite to the electric field, without significant pitch angle scattering. The VDF structures predicted by simulations are observed in magnetotail reconnection measurements, indicating that the energization mechanisms captured in the reported simulations are applicable to magnetotail reconnection with negligible guide field.

  13. Dynamo generation of a magnetic field by decaying Lehnert waves in a highly conducting plasma

    Science.gov (United States)

    Mizerski, Krzysztof A.; Moffatt, H. K.

    2018-03-01

    Random waves in a uniformly rotating plasma in the presence of a locally uniform seed magnetic field and subject to weak kinematic viscosity ? and resistivity ? are considered. These "Lehnert" waves may have either positive or negative helicity, and it is supposed that waves of a single sign of helicity are preferentially excited by a symmetry-breaking mechanism. A mean electromotive force proportional to ? is derived, demonstrating the conflicting effects of the two diffusive processes. Attention is then focussed on the situation ?, relevant to conditions in the universe before and during galaxy formation. An ?-effect, axisymmetric about the rotation vector, is derived, decaying on a time-scale proportional to ?; this amplifies a large-scale seed magnetic field to a level independent of ?, this field being subsequently steady and having the character of a "fossil field". Subsequent evolution of this fossil field is briefly discussed.

  14. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  15. Isotope separation by magnetic fields

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1978-01-01

    One of the isotopes of an element having several isotopes can be separated from the others in a dense, neutral plasma. Thus initially a neutral plasma is prepared including the element in question. This may consist of positive ions and negative electrons or alternatively of positive and negative ions, or else of a mixture of positive ions, negative ions and electrons. The plasma may then be injected into a magnetic field or may be generated in the field where more energy is imparted to a selected isotope than to the others. Finally, the isotopes are separated from each other on the basis of their differential energies. For example, the selected isotope may be given more energy than the others by stimulating it within the plasma at its resonant frequency which may be close to the cyclotron frequency, either by an electric field or by a magnetic field. In order to excite the other isotope, a different resonant frequency is required which depends on the plasma density, the relative concentration of electrons if the plasma contains electrons, the strength of the magnetic field, the ratio of charge to mass of the isotope, and possibly on the physical parameters of the plasma apparatus itself, such as the ratio of the length of the plasma column to its radius. The more energetic isotope may be separated by energy dependent chemical reactions, it may be collected by a positively biased probe or else the isotopes may be separated from each other by magnetic fields or in various other ways

  16. Ablation acceleration of macroparticle in spiral magnetic fields

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1981-05-01

    The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)

  17. Green urea synthesis catalyzed by hematite nanowires in magnetic field

    Science.gov (United States)

    Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong

    2017-04-01

    The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.

  18. Nonlinear physics of twisted magnetic field lines

    International Nuclear Information System (INIS)

    Yoshida, Zensho

    1998-01-01

    Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)

  19. Motion and magnetic field structure of the Earth's magnetic tail near 30 R/sub E/

    International Nuclear Information System (INIS)

    Bowling, S.B.

    1975-01-01

    The analysis of data taken by the NASA-GSFC magnetometer experiment on the Explorer 34 spacecraft has shown that the diurnal wobble of the geomagnetic dipole axis measurably influences the position of the magnetotail near 30 R/sub E/ (earth radii). Viewed in the solar-ecliptic coordinate system, the dipole wobble resolves into components of motion perpendicular and parallel to the earth-sun line. The perpendicular component exerts a torque on the magnetotail and causes the neutral sheet (the midplane of the magnetotail) to pivot about an axis approximately parallel to the solar-wind flow direction. The parallel component encourages the neutral sheet to move above and below the solar-magnetospheric equatorial plane with an amplitude of 1 R/sub E/, as if the neutral sheet were hinged at a geocentric distance of 5.25 R/sub E/. The motion of the neutral sheet is also characterized by a random flapping in the solar-ecliptic Z-direction at a velocity of 100 km/sec and an amplitude of +- 2 R/sub E/. Results suggest the existence of a layer of nearly uniform cross-tail electric current that is about 2.3 R/sub E/ thick and envelops the neutral sheet. The magnetic field, whose average geometry resembles a flattened and extended dipole, gradually reverses direction within this current layer. The field is perpendicular to the neutral sheet where it has a value of 2 γ (1γ = 10 -5 Gauss). The analysis does not suggest a strong dependence of the magnetic-field configuration on the geomagnetic index Kp, although the field may intermittently disrupt into localized and short-lived magnetic loops during periods of enhanced geomagnetic activity

  20. Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device

    International Nuclear Information System (INIS)

    Toepfer, J.; Pawlowski, B.; Beer, H.; Ploetner, K.; Hofmann, P.; Herrfurth, J.

    2004-01-01

    Multi-pole magnetization of NdFeB plate magnets of thickness between 0.25 and 2 mm with a stripe pattern and a pole pitch of 2 or 1 mm was performed by pulse magnetization. The experimental conditions of the magnetization process were optimized to give a maximum surface flux density at the poles. The magnetic field distribution above the magnets was measured with a field mapping device that automatically scans the surface of the magnet with a Hall probe. It is demonstrated for different magnet geometries that the field mapping system is a useful device to study the magnetic surface pole structure. The characterization of the pole flux density of multi-pole NdFeB flat magnets is an important prerequisite for the application of these magnets in miniature actuators

  1. Use of along-track magnetic field differences in lithospheric field modelling

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2015-01-01

    . Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...

  2. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Directory of Open Access Journals (Sweden)

    Peng Shang

    2012-12-01

    Full Text Available The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g, 1 g, 1.56 g and 1.96 g in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  3. Evaporation rate of water as a function of a magnetic field and field gradient.

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  4. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  5. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    The magnetic fields associated with plasmas frequently exhibit small amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity

  6. Ohm's law for mean magnetic fields

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-01-01

    The magnetic fields associated with plasmas frequently exhibit small-amplitude MHD fluctuations. It is useful to have equations for the magnetic field averaged over these fluctuations, the so-called mean field equations. Under very general assumptions, it is shown that the effect of MHD fluctuations on a force-free plasma can be represented by one parameter in Ohm's law, which is effectively the coefficient of electric current viscosity. (author)

  7. Performance of silicon drift detectors in a magnetic field

    International Nuclear Information System (INIS)

    Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P.

    1997-01-01

    A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle α relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.)

  8. Supercold technique duplicates magnetic field in second superconductor

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    A superconductor cylinder, charged with a high magnetic field, can be used to create a similar field in a larger cylinder. The uncharged cylinder is precooled, lowered into a helium dewar system, and fitted around the cylinder with the magnetic field. Magnetic flux lines pass through the two cylinders.

  9. Trapped magnetic field of a mini-bulk magnet using YBaCuO at 77 K

    Science.gov (United States)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    2001-09-01

    Melt-processed rare earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field. Solidification processes for producing (L)RE123 superconductors and pinning centers in the (L)RE123 matrix are effective for obtaining high Jc, leading to high-field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated train. We fabricated a mini-superconducting bulk magnet of 200×100 mm2, consisting of 18 bulks, which are a square 33 mm on a side and 10 mm in thickness, and magnetized the mini-magnet by field cooling. The mini-magnet showed the trapped magnetic field of larger than 0.1 T on the surface of the outer vessel of the magnet. The present preliminary study discusses trapped magnetic field properties of the mini-bulk magnet using YBaCuO superconductors at 77 K.

  10. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    International Nuclear Information System (INIS)

    Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen Duxing

    2011-01-01

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  11. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  12. Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube

    International Nuclear Information System (INIS)

    Hogan, K; Fagnard, J-F; Wéra, L; Vanderheyden, B; Vanderbemden, P

    2015-01-01

    Bulk type-II irreversible superconductors can act as excellent passive magnetic shields, with a strong attenuation of low frequency magnetic fields. Up to now, the performances of superconducting magnetic shields have mainly been studied in a homogenous magnetic field, considering only immunity problems, i.e. when the field is applied outside the tube and the inner field should ideally be zero. In this paper, we aim to investigate experimentally and numerically the magnetic response of a high-T c bulk superconducting hollow cylinder at 77 K in an emission problem, i.e. when subjected to the non-uniform magnetic field generated by a source coil placed inside the tube. A bespoke 3D mapping system coupled with a three-axis Hall probe is used to measure the magnetic flux density distribution outside the superconducting magnetic shield. A finite element model is developed to understand how the magnetic field penetrates into the superconductor and how the induced superconducting shielding currents flow inside the shield in the case where the emitting coil is placed coaxially inside the tube. The finite element modelling is found to be in excellent agreement with the experimental data. Results show that a concentration of the magnetic flux lines occurs between the emitting coil and the superconducting screen. This effect is observed both with the modelling and the experiment. In the case of a long tube, we show that the main features of the field penetration in the superconducting walls can be reproduced with a simple analytical 1D model. This model is used to estimate the maximum flux density of the emitting coil that can be shielded by the superconductor. (paper)

  13. A comparison of the heating effect of magnetic fluid between the alternating and rotating magnetic field

    International Nuclear Information System (INIS)

    Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Hamler, Anton

    2014-01-01

    Magnetic fluids are distinct magnetic materials that have recently been the subject of extensive research precisely because of their unique properties. One of them is the heating effect when exposed to alternating magnetic fields, wherein the objective is to use this property in medicine as an alternative method for the treatment of tumors in the body. In this paper, we focus on two methods of magnetizing magnetic fluids, firstly using the alternating magnetic field (AMF), and secondly with the rotational magnetic field (RMF). The effects of the first are scientifically well-established, whilst the impact of RMF has not as yet been investigated as presented in this article. So far the effects of RMF have only been studied at low frequencies and high amplitudes, or vice versa. This article presents the results of heating at high frequencies and high magnetic field amplitudes, and the results compared with AMF. This paper presents the construction and implementation of a measuring system which is suitable both types of magnetic field. - Highlights: • Development of a new measurement system for the characterization of magnetic fluids. • System enables pulsed magnetic field, or a rotary magnetic field. • Analysis of the conditions to create a rotational magnetic field by means of a double power supply. • Good agreement between the analytical and numerical calculation of magnetic field and measurements. • Increase of the heating power when sample is exposed to rotating field compared to pulsating field

  14. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  15. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  16. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  17. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  18. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  19. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  20. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    Science.gov (United States)

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  1. Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Li, Donggang, E-mail: lidonggang@smm.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lou, Changsheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Zhao, Yue; Gao, Yang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2016-10-15

    A high magnetic field (up to 12 T) has been used to anneal 2.6-µm-thick Co{sub 50}Ni{sub 40}P{sub 10} films formed by pulse electrodeposition. The effects of high magnetic field annealing on the microstructure and magnetic properties of CoNiP thin films have been investigated. It was found that a high magnetic field accelerated a phase transformation from fcc to hcp and enhanced the preferred hcp-(002) orientation during annealing. Compared with the films annealed without a magnetic field, annealing at 12 T decreased the surface particle size, roughness, and coercivity, but increased the saturation magnetization and remanent magnetization of CoNiP films. The out-of-plane coercivity was higher than that the in-plane for the as-deposited films. After annealing without a magnetic field, the out-of-plane coercivity was equal to that of the in-plane. However, the out-of-plane coercivity was higher than that of the in-plane when annealing at 12 T. These results indicate that high magnetic field annealing is an effective method for tuning the microstructure and magnetic properties of thin films. - Highlights: • High magnetic field annealing accelerated phase transformation from γ to ε. • High magnetic field annealing enhanced preferred hcp-(002) orientation. • High magnetic field annealing decreased particle size, roughness and coercivity. • High magnetic field annealing increased the saturation and remanent magnetization.

  2. Influence of interdiffusion on the magnetic properties of Co/Si (100) films after high magnetic field annealing

    International Nuclear Information System (INIS)

    Zhao, Yue; Wang, Kai; Wang, Qiang; Li, Guojian; Lou, Changsheng; Pang, Hongxuan; He, Jicheng

    2015-01-01

    The influence of interdiffusion on the magnetic properties of Co/Si (100) films after thermal annealing in the presence of a strong magnetic field was investigated. The interdiffusion coefficients of films that were annealed at temperatures of 380 °C and 420 °C in the presence of high magnetic fields were not affected. However, the interdiffusion coefficient of films annealed at 400 °C in the presence of a high magnetic field decreased significantly. The change in the interdiffusion coefficient, caused by high magnetic field annealing, increased the content of the magnetic phase. This increase in the magnetic phase improved the saturation magnetization. A new method of high magnetic field annealing is presented that can modulate the diffusion and magnetic properties of thin films. - Highlights: • Interdiffusion of Co/Si (100) films by high magnetic field annealing was studied. • Thickness of the diffusion layer was reduced by magnetic field annealing at 400 °C. • Interdiffusion coefficient decreased following magnetic field annealing at 400 °C. • Saturation magnetization increased after high magnetic field annealing at 400 °C

  3. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G.; Pernambuco-Wise, P.

    1996-01-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ

  4. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  5. A multifunctional energy-saving magnetic field generator

    Science.gov (United States)

    Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua

    2018-03-01

    To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.

  6. Dilute Potts chain in a magnetic field

    International Nuclear Information System (INIS)

    Chaves, C.M.; Riera, R.

    1983-03-01

    The Potts lattice gas in presence of a uniform magnetic field is solved exactly in one dimension. For negative values of the exchange parameter, the magnetization curve exhibits two or three steps, depending on the concentration of vacancies. These steps arise as a result of the competition between the exchange interaction and the magnetic field, being associated to different structural distribution of vacancies and to the magnetic ordering of one or both sublattices. (Author) [pt

  7. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  8. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Yamamoto, Kazuki; Ishimoto, Yukitaka; Nix, Stephanie

    2017-01-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  9. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)

    2017-06-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  10. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  11. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  12. Electric field-navigated transcranial magnetic stimulation for chronic tinnitus: a randomized, placebo-controlled study.

    Science.gov (United States)

    Sahlsten, Hanna; Virtanen, Juuso; Joutsa, Juho; Niinivirta-Joutsa, Katri; Löyttyniemi, Eliisa; Johansson, Reijo; Paavola, Janika; Taiminen, Tero; Sjösten, Noora; Salonen, Jaakko; Holm, Anu; Rauhala, Esa; Jääskeläinen, Satu K

    2017-09-01

    Repetitive transcranial magnetic stimulation (rTMS) may alleviate tinnitus. We evaluated effects of electric field (E-field) navigated rTMS targeted according to tinnitus pitch. No controlled studies have investigated anatomically accurate E-field-rTMS for tinnitus. Effects of E-field-rTMS were evaluated in a prospective randomised placebo-controlled 6-month follow-up study on parallel groups. Patients received 10 sessions of 1 Hz rTMS or placebo targeted to the left auditory cortex corresponding to tonotopic representation of tinnitus pitch. Effects were evaluated immediately after treatment and at 1, 3 and 6 months. Primary outcome measures were visual analogue scores (VAS 0-100) for tinnitus intensity, annoyance and distress, and the Tinnitus Handicap Inventory (THI). Thirty-nine patients (mean age 50.3 years). The mean tinnitus intensity (F 3  = 15.7, p tinnitus, differences between active and placebo groups remained non-significant, due to large placebo-effect and wide inter-individual variation.

  13. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    Science.gov (United States)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  14. Magnetization reversal of Co-based amorphous wires induced by longitudinal AC magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Perov, N.S.; Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B. E-mail: granov@magn.ru; Iakubov, I.T.; Kartashov, M.A.; Rakhmanov, A.A

    2004-05-01

    The remagnetization process in CoFeSiB amorphous wires under influence of a high-amplitude AC longitudinal magnetic field is studied. The frequency spectra of the voltage at the wire ends are measured as a function of a longitudinal DC magnetic field and the AC field amplitude. A high sensitivity of the voltage harmonics to the DC magnetic field is demonstrated. The experimental results are interpreted within a simple rotational model.

  15. Magnetization reversal of Co-based amorphous wires induced by longitudinal AC magnetic field

    International Nuclear Information System (INIS)

    Perov, N.S.; Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Kartashov, M.A.; Rakhmanov, A.A.

    2004-01-01

    The remagnetization process in CoFeSiB amorphous wires under influence of a high-amplitude AC longitudinal magnetic field is studied. The frequency spectra of the voltage at the wire ends are measured as a function of a longitudinal DC magnetic field and the AC field amplitude. A high sensitivity of the voltage harmonics to the DC magnetic field is demonstrated. The experimental results are interpreted within a simple rotational model

  16. Neutron stars velocities and magnetic fields

    Science.gov (United States)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  17. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  18. A design proposal for high field dipole magnet

    International Nuclear Information System (INIS)

    Hirabayashi, H.; Kobayashi, M.; Shintomi, T.; Tsuchiya, K.; Wake, M.

    1981-06-01

    A design of the high field dipole magnet which is going to be constructed in the KEK-Fermilab collaboration program is proposed. The central field of the magnet is meant to achieve 10 T by the use of ternary alloy conductor in the 1.8 K superfluid environment under atmospheric pressure. Since the electro-magnetic force in such a high field region is strong enough to give a fatal problem, a careful calculation is necessary for the magnet design. The program POISSON and LINDA were used for the magnetic field calculation. The computer code ISAS which is originated from NASTRAN developed at NASA was applied to calculate the stress and the deformation. A horizontal cryostat desigh for the operation of the 10 T dipole magnet is also proposed. (author)

  19. Pose control of the chain composed of magnetic particles using external uniform and gradient magnetic fields

    International Nuclear Information System (INIS)

    Zhou, J. F.; Shao, C. L.; Gu, B. Q.

    2016-01-01

    Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient

  20. Analytical Calculation of the Magnetic Field distribution in a Flux-Modulated Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2015-01-01

    This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided...... into several regions, i.e., magnet, air-gaps, slot-openings, and slots. The numerical solution could be obtained by applying the boundary constraints on the interfaces between these regions. The accuracy of the proposed analytical model is verified by comparing the no-load magnetic field and armature reaction...... magnetic field with those calculated by finite element method....

  1. Upper critical magnetic field of superconducting films with magnetic impurities

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1978-01-01

    The upper critical magnetic field, H/sub c2/(T), of In-Mn and Pb-Mn alloy films was measured. H/sub c2/ was determined from the resistance of the films. The results were compared with the theory of Fulde and Maki. This theory assumes that the electron-phonon coupling is weak, and that the interaction between the impurity spins and the conduction electron spins is weak. The theory predicts that the pair-breaking effect of the magnetic impurities is temperature-independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. Furthermore, it predicts explicitly the temperature dependence of H/sub c2/. The temperature dependence of H/sub c2/ for the In-Mn alloy films is well described by the Fulde-Maki theory, despite the moderately strong electron-phonon coupling and the strong interaction between the impurity spins and the conduction electron spins. The temperature dependence of H/sub c2/ for the Pb-Mn alloy films is not well described by the Fulde-Maki theory, probably due to the strong electron-phonon coupling in Pb. However, even without a quantitatively correct theory, one can conclude from the Pb-Mn data that the pair-breaking effect of the magnetic impurities is temperature independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. For some of the Pb-Mn alloy films, there was a region of positive curvature in H/sub c2/(T) near the zero-field transition temperature. This positive curvature is not understood

  2. Two dimensional magnetic field calculations for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Krefta, M.P.; Pavlik, D.

    1991-01-01

    In this work two-dimensional methods are used to calculate the magnetic fields throughout the cross section of a SSC dipole magnet. Analytic techniques, which are based on closed form solutions to the defining field equations, are used to calculate the multipole content for any specified conductor positioning. The method is extended to investigate the effects of radial slots or keyways in the iron yoke. The multipole components of field, directly attributable to the slots or keyways, are examined as a function of size and location. It is shown that locating the slots or keyways at the magnet pole centers has a large effect on the multipole components; whereas, locating the keyways between the magnet poles has little effect on any of the multipoles. The investigation of nonlinear effects such as ferromagnetic saturation or superconductor magnetization relies on the use of numerical methods such as the finite element method. The errors associated with these codes are explained in terms of numerical round-off, spatial discretization error and the representation of distant boundaries. A method for increasing the accuracy of the multipole calculation from finite element solutions is set forth. It is shown that calculated multipole coefficients are sensitive to boundary conditions external to the cold mass during conditions of magnetic saturation

  3. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shashi, E-mail: shashisharma1984@gmail.com; Singh, Uaday; Katiyar, V.K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results. - Highlights: • Effect of magnetic field on flow parameters of blood and magnetic particles is studied. • The velocity of blood and magnetic particles is appreciably reduced under a magnetic field. • Experimental results of the velocity of magnetic particles within blood support the mathematical model results.

  4. Graphene spin capacitor for magnetic field sensing

    OpenAIRE

    Semenov, Y. G.; Zavada, J. M.; Kim, K. W.

    2010-01-01

    An analysis of a novel magnetic field sensor based on a graphene spin capacitor is presented. The proposed device consists of graphene nanoribbons on top of an insulator material connected to a ferromagnetic source/drain. The time evolution of spin polarized electrons injected into the capacitor can be used for an accurate determination at room temperature of external magnetic fields. Assuming a spin relaxation time of 100 ns, magnetic fields on the order of $\\sim 10$ mOe may be detected at r...

  5. Magnetic field aberration induced by cycle stress

    International Nuclear Information System (INIS)

    Yang En; Li Luming; Chen Xing

    2007-01-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method-the potential possibility of quantitative measurement

  6. Superconducting Sphere in an External Magnetic Field Revisited

    Science.gov (United States)

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  7. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-01-01

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H c2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H c2 . This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  8. Regulation of fields excited by permanent magnets

    International Nuclear Information System (INIS)

    Savchenko, I.S.

    1989-01-01

    Two methods of fast regulation of fields excited by permanent magnets in salient-pole electron-optical lenses are described: 1)the hybrid method realized using the additional electromagnet introduced to a magnetic chain sequentially its field being composed or substracted with magnetosolid exciter field; 2)the method with saturation of a part of a magnetic circuit, with saturation being achievable at the begining or in the end of a regulation cycle. In the second method it is proposed to direct orthogonally the main flux excited by permanent magnets and the flux in the saturated part of the magnetic circuit excited using an electromagnet. It is shown that the second method allows one to reduce the required ampere-coils by more than an order as compared to the first method at one and the same regulation range and other equal conditions. The frequency of field regulation in the experimental mock-up was 10 kHz. 3 refs.; 2 figs

  9. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  10. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  11. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  12. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  13. Mechanics of magnetic fluid column in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  14. Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Science.gov (United States)

    Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.

    2018-04-01

    Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.

  15. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)

    2017-06-10

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  16. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    International Nuclear Information System (INIS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-01-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  17. Symplectic tracking using point magnets in the presence of a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Parzen, G.

    1993-09-01

    In the absence of a longitudinal magnetic field, symplectic tracking can be achieved by replacing the magnets by a series of point magnets and drift spaces. To treat the case when a longitudinal magnetic field is also present, this procedure is modified in this paper by replacing the drift space by a solenoidal drift, which is defined as the motion of a particle in a uniform longitudinal magnetic field. A symplectic integrator can be obtained by subdividing each magnet into pieces and replacing each magnet piece by point magnets, with only transverse fields, and solenoidal drift spaces. The reference orbit used here is made up of arcs of circles and straight lines which join smoothly with each other. For this choice of reference orbit, the required results are obtained to track particles, which are the transfer functions, and the transfer time for the different elements. It is shown that these results provide a symplectic integrator, and they are exact in the sense that as the number of magnet pieces is increased, the particle motion will converge to the particle motion of the exact equations of motion

  18. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    magnetized in the direction of the Earth’s magnetic field at that time. As seafloor spreading pulls the new oceanic crust apart, stripes of approximately the same size gets carried away from the ridge on each side. The basaltic oceanic crust formed...

  19. Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field

    International Nuclear Information System (INIS)

    Vagin, Dmitry V.; Polyakov, Oleg P.

    2008-01-01

    Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems

  20. Survey of magnetic fields near BPA 230-kV and 500-kV transmission lines

    International Nuclear Information System (INIS)

    Perrin, N.; Aggarwal, R.P.

    1991-01-01

    The purpose of this study was to characterize typical levels and variability of 60Hz magnetic fields at the centerline and edge of right-of-way of Bonneville Power Administration (BPA) 230-kV and 500-kV transmission lines. This was accomplished by taking magnetic field measurements at over 800 spans in Oregon and Washington. The spans were sampled using a stratified random sampling procedure with region (East vs. West), voltage (230-kV vs 500-kV), and circuit configuration as strata. There were five different circuit configuration groups for each region/voltage category requiring a total of 200 strata. Magnetic field measurements were taken at 13 locations under each span using an EMDEX-C as a survey meter. Additional information recorded for each span included conductor height (at 10 locations), right-of-way width, longitudinal and lateral slope, time of day, vegetation, terrain, weather conditions, temperature, wind speed, span length and presence of other lines in the corridor. 9 refs., 17 figs., 26 tabs