WorldWideScience

Sample records for ramsey-borde atom interferometers

  1. Multiphoton- and simultaneous conjugate Ramsey-Borde atom interferometers

    International Nuclear Information System (INIS)

    Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven

    2008-01-01

    We report on our experiment to measure h/M, the ratio of the Planck constant to the mass of Cs atoms, and thereby the fine-structure constant. The target accuracy is 1 part per billion or better. We focus on two recent milestones: (i) The first realization of atom interferometers based on light-pulse beam splitters that transfer the momentum of up to 12 photon pairs, which increases the useful signal (matter wave phase shift) by a factor of 144 compared to the beam splitters used in the best present atom interferometers. Moreover, they lead to a cancellation of important systematic effects. (ii) The first realization of a simultaneous pair of conjugate Ramsey-Borde interferometers. In these, the relative sign of the inertial term is reversed so that it can be cancelled. Simultaneous operation means that this holds for a time-dependent inertial term (vibrations) too, which promises a substantial improvement in the signal to noise ratio

  2. Scalar Aharonov–Bohm Phase in Ramsey Atom Interferometry under Time-Varying Potential

    Directory of Open Access Journals (Sweden)

    Atsuo Morinaga

    2016-08-01

    Full Text Available In a Ramsey atom interferometer excited by two electromagnetic fields, if atoms are under a time-varying scalar potential during the interrogation time, the phase of the Ramsey fringes shifts owing to the scalar Aharonov–Bohm effect. The phase shift was precisely examined using a Ramsey atom interferometer with a two-photon Raman transition under the second-order Zeeman potential, and a formula for the phase shift was derived. Using the derived formula, the frequency shift due to the scalar Aharonov–Bohm effect in the frequency standards utilizing the Ramsey atom interferometer was discussed.

  3. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer

    International Nuclear Information System (INIS)

    Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Borde, C.J.

    1991-01-01

    A calcium atomic beam excited in an optical Ramsey geometry was rotated about an axis perpendicular to the plane defined by the laser beams and the atomic beam. A frequency shift of the Ramsey fringes of several kHz has been measured which is proportional to the rotation frequency of the apparatus and to the distance between the laser beams. The results can be interpreted in three equivalent ways as the Sagnac effect in a calcium-atomic-beam interferometer: in the rotating frame of the laser beams either along straight paths or along the curved trajectories of the atoms, or in the inertial atomic frame

  4. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    Science.gov (United States)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  5. 0.75 atoms improve the clock signal of 10,000 atoms

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K.; Peise, Jan

    2017-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case.......75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based...... on atomic squeezed vacuum....

  6. Ramsey interferometry with a two-level generalized Tonks-Girardeau gas

    International Nuclear Information System (INIS)

    Mousavi, S. V.; Campo, A. del; Lizuain, I.; Muga, J. G.

    2007-01-01

    We propose a solvable generalization of the Tonks-Girardeau model that describes a coherent one-dimensional (1D) gas of cold two-level bosons which interact with two external fields in a Ramsey interferometer. They also interact among themselves by idealized, infinitely strong contact potentials, with interchange of momentum and internal state. We study the corresponding Ramsey fringes and the quantum projection noise which, essentially unaffected by the interactions, remains that for ideal bosons. The dual system of this gas, an ideal gas of two-level fermions coupled by the interaction with the separated fields, produces the same fringes and noise fluctuations. The cases of time-separated and spatially separated fields are studied. For spatially separated fields the fringes may be broadened slightly by increasing the number of particles, but only for large particle numbers far from present experiments with Tonks-Girardeau gases. The uncertainty in the determination of the atomic transition frequency diminishes, essentially with the inverse root of the particle number. The difficulties to implement the model experimentally and possible shortcomings of strongly interacting 1D gases for frequency standards and atomic clocks are discussed

  7. Comparative Sensitivities of Gravitational Wave Detectors Based on Atom Interferometers and Light Interferometers

    Science.gov (United States)

    Baker, John G.; Thorpe, J. I.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.

  8. Gauss Sum Factorization with Cold Atoms

    International Nuclear Information System (INIS)

    Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M.; Jentsch, Ch.; Schleich, W. P.

    2008-01-01

    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193

  9. Comparison of Atom Interferometers and Light Interferometers as Space-Based Gravitational Wave Detectors

    Science.gov (United States)

    Baker, John G.

    2012-01-01

    We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.

  10. Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  11. Ramsey spectroscopy by direct use of resonant light on isotope atoms for single-photon detuning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hoon; Choi, Mi Hyun; Moon, Ye Lin; Kim, Seung Jin; Kim, Jung Bog [Korea National University of Education, Cheongwon (Korea, Republic of)

    2014-03-15

    We demonstrate Ramsey spectroscopy with cold {sup 87}Rb atoms via a two-photon Raman process. One laser beam has a cross-over resonant frequency on the {sup 85}Rb transition and the other beam has a 6.8 GHz shifted frequency. These two laser beams fulfill the two-photon Raman resonance condition, which involves a single-photon detuning of -2.6 GHz. By implementing these two lasers on cold {sup 87}Rb atoms, we demonstrate Ramsey spectroscopy with an interrogation time of the intermediate state by using π/2 Raman pulses. In our laser system, we can change the single-photon detuning to 1.2, 4.2 or -5.6 GHz by changing the {sup 85}Rb transition line used as a locking signal and an injected sideband. The laser system that directly uses resonant light on isotope atoms will be described in this paper.

  12. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  13. Atom Interferometry for Dark Contents of the Vacuum Searches

    Energy Technology Data Exchange (ETDEWEB)

    Burrow, O. [Liverpool U.; Carroll, A. [Liverpool U.; Chattopadhyay, S. [Northern Illinois U.; Coleman, J. [Liverpool U.; Elertas, G. [Teddington, Natl. Phys. Lab; Heffer, J. [Liverpool U.; Metelko, C. [Liverpool U.; Moore, R. [Teddington, Natl. Phys. Lab; Morris, D. [Liverpool U.; Perl, M. [SLAC; Ralph, J. [Liverpool U.; Tinsley, J. [Teddington, Natl. Phys. Lab

    2017-05-25

    A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus.

  14. Wave–particle duality in a Raman atom interferometer

    International Nuclear Information System (INIS)

    Jia Ai-Ai; Yang Jun; Yan Shu-Hua; Hu Qing-Qing; Luo Yu-Kun; Zhu Shi-Yao

    2015-01-01

    We theoretically investigate the wave–particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach–Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ − π − π/2 type of atom interferometer, we find that the visibility (V) and predictability (P) still satisfy the duality relation, P 2 + V 2 ≤ 1. (paper)

  15. 102(ℎ/2π)k Large Area Atom Interferometers

    International Nuclear Information System (INIS)

    Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A.

    2011-01-01

    We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102(ℎ/2π)k). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.

  16. Two-Particle Four-Mode Interferometer for Atoms

    Science.gov (United States)

    Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.

    2017-10-01

    We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.

  17. Mach-Zehnder atom interferometer inside an optical fiber

    Science.gov (United States)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  18. Self-alignment of a compact large-area atomic Sagnac interferometer

    International Nuclear Information System (INIS)

    Tackmann, G; Berg, P; Schubert, C; Abend, S; Gilowski, M; Ertmer, W; Rasel, E M

    2012-01-01

    We report on the realization of a compact atomic Mach-Zehnder-type Sagnac interferometer of 13.7 cm length, which covers an area of 19 mm 2 previously reported only for large thermal beam interferometers. According to Sagnac's formula, which holds for both light and atoms, the sensitivity for rotation rates increases linearly with the area enclosed by the interferometer. The use of cold atoms instead of thermal atoms enables miniaturization of Sagnac interferometers without sacrificing large areas. In comparison with thermal beams, slow atoms offer better matching of the initial beam velocity and the velocity with which the matter waves separate. In our case, the area is spanned by a cold atomic beam of 2.79 m s -1 , which is split, deflected and combined by driving a Raman transition between the two hyperfine ground states of 87 Rb in three spatially separated light zones. The use of cold atoms requires a precise angular alignment and high wave front quality of the three independent light zones over the cloud envelope. We present a procedure for mutually aligning the beam splitters at the microradian level by making use of the atom interferometer itself in different configurations. With this method, we currently achieve a sensitivity of 6.1×10 -7 rad s -1 Hz -1/2 . (paper)

  19. Atomic interferometers in an optical lattice

    International Nuclear Information System (INIS)

    Pelle, Bruno

    2013-01-01

    The aim of the ForCa-G project, for Casimir force and short range Gravitation, lies into the measurement of short range forces between atoms and a mirror using atomic interferometry techniques. Particularly, the Casimir-Polder force and the pursuit of short range gravitational tests in the frame of potential deviations of Newton's law are aimed. This experiment is based on the trapping of neutral atoms in a 1D vertical optical lattice, where the energy eigenvalues of the Hamiltonian describing this system is the so-called Wannier-Stark ladder of discrete energy states localized in each lattice well. This work constitutes a demonstration of principle of this project with atoms set far from the mirror. Each energy state is thus separated from the one of the adjacent well by the potential energy increment between those two wells, called the Bloch frequency ν B . Then, atomic interferometers are realized in the lattice using Raman or microwave pulses where the trapped atomic wave functions are placed, and then recombined, in a superposition of states between different energy states localized either in the same well, either in adjacent wells. This work presents the study of different kinds of atomic interferometers in this optical lattice, characterized in terms of sensibility and systematic effects on the Bloch frequency measurement. One of the studied interferometers accessed to a sensitivity on the Bloch frequency of σ δ ν B /ν B =9.0x10 -6 at 1∼s in relative, which integrates until σ δ ν B /ν B =1. 10 -7 in 2800∼s. This corresponds to a state-of-the-art measurement of the gravity acceleration g for a trapped atomic gravimeter. (author)

  20. Norman Ramsey. Nobel Prize Winner in Physics (1989); Norman Ramsey. Premio Nobel de fisica (1989)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Norman Ramsey (Washington 1915) received the Nobel Prize in Physics (shared with con H. G. Dehmelt and W. Paul) for the development of study techniques for Atomic Physics. This tireless researcher participated in the discovery of the Magnetic Resonance Method for Molecular Emission. He invented the hydrogen maser and the hydrogen atomic clock, in addition to being a profile author. (Author)

  1. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope

    Science.gov (United States)

    Yao, Zhan-Wei; Lu, Si-Bin; Li, Run-Bing; Luo, Jun; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose and demonstrate a method for calibrating atomic trajectories in a large-area dual-atom-interferometer gyroscope. The atom trajectories are monitored by modulating and delaying the Raman transition, and they are precisely calibrated by controlling the laser orientation and the bias magnetic field. To improve the immunity to the gravity effect and the common phase noise, the symmetry and the overlap of two large-area atomic interference loops are optimized by calibrating the atomic trajectories and by aligning the Raman-laser orientations. The dual-atom-interferometer gyroscope is applied in the measurement of the Earth's rotation. The sensitivity is 1.2 ×10-6 rad s -1 Hz-1/2, and the long-term stability is 6.2 ×10-8 rad/s at 2000 s.

  2. Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks

    International Nuclear Information System (INIS)

    Tian Yuan; Gu Si-Hong; Tan Bo-Zhong; Yang Jing; Zhang Yi

    2015-01-01

    A method that obtains the Ramsey-coherent population trapping (CPT) spectrum with the Faraday effect is investigated. An experiment is implemented to detect the light polarization components generated from the Faraday effect. The experimental results agree with the theoretical calculations based on the Liouville equation. By comparing with the method without using the Faraday effect, the potential of this method for a CPT-based atomic clock is assessed. The results indicate that this method should improve the short-term frequency stability by several times. (paper)

  3. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P; Haine, S A; Hanna, T M; Anderson, R P

    2011-01-01

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10 6 Bose-condensed 87 Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m F =0)→|F=2, m F =0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10 6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  4. Atomic interferometry: construction, characterisation and optimisation of an interferometer. Application to precision measurements

    International Nuclear Information System (INIS)

    Buechner, Matthias

    2010-01-01

    This manuscript describes my research activity in atom interferometry. As an introduction to this domain, we have first described some atom interferometers and their applications. We then describe the atom interferometer we have developed in Toulouse. This is a Mach-Zehnder atom interferometer; the atom source is a thermal supersonic lithium beam and atom manipulation is based on laser diffraction in the Bragg regime. This two interferometer arms are spatially separated, with a maximum distance near 100 μm. The interferometer performances are excellent, with a fringe visibility as large as 84.5 % and a high output flux, thus providing a phase sensitivity of 15 mrad √(Hz). We have used this interferometer for several experiments, with a perturbation applied on only one interferometer arm. When the perturbation is an electric field, we thus measure the electric polarizability of lithium, with an uncertainty 3 times smaller than the best previous measurement. When the perturbation is a gas at low density, we measure the complex refraction index of this gas for lithium atomic waves. If the perturbation is a nano-grating, we measure the complex amplitude of the diffraction zeroth order and this amplitude is very sensitive to the van der Waals interaction of the lithium atom with the nano-grating surface. An important part of this manuscript concerns further developments of our activity. We discuss several improvements of the measurement of the electric polarizability of lithium atom and we hope to access to a precision comparable to the one of the best ab initio calculations of this quantity. We plan to detect a new topological phase, predicted by theory in 1993 but never observed. Finally, we are starting the construction of a second generation atom interferometer, with a slow and intense lithium beam. This new source will give a larger signal and a longer interaction time, thus enabling the detection of considerably weaker perturbations: a fascinating possibility

  5. Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations

    Science.gov (United States)

    Beloy, K.

    2018-03-01

    We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.

  6. Optically trapped atom interferometry using the clock transition of large {sup 87}Rb Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P [Department of Quantum Science, ARC Centre of Excellence for Quantum Atom Optics, the Australian National University, ACT 0200 (Australia); Haine, S A [School of Mathematics and Physics, ARC Centre of Excellence for Quantum-Atom Optics, The University of Queensland, Queensland 4072 (Australia); Hanna, T M [Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423 (United States); Anderson, R P, E-mail: paul.altin@anu.edu.au [School of Physics, Monash University, VIC 3800 (Australia)

    2011-06-15

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10{sup 6} Bose-condensed {sup 87}Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m{sub F}=0){yields}|F=2, m{sub F}=0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10{sup 6} condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  7. Does an atom interferometer test the gravitational redshift at the Compton frequency?

    International Nuclear Information System (INIS)

    Wolf, Peter; Borde, Christian J; Blanchet, Luc; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-01-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Mueller et al (2010 Nature 463 926-9) argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In this paper, we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of 'Compton phases' between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been

  8. Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science

    Science.gov (United States)

    Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan

    2015-05-01

    Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Atom Michelson interferometer on a chip using a Bose-Einstein condensate.

    Science.gov (United States)

    Wang, Ying-Ju; Anderson, Dana Z; Bright, Victor M; Cornell, Eric A; Diot, Quentin; Kishimoto, Tetsuo; Prentiss, Mara; Saravanan, R A; Segal, Stephen R; Wu, Saijun

    2005-03-11

    An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

  10. Atom Michelson interferometer on a chip using a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Wang Yingju; Anderson, Dana Z.; Cornell, Eric A.; Diot, Quentin; Kishimoto, Tetsuo; Segal, Stephen R.; Bright, Victor M.; Saravanan, R.A.; Prentiss, Mara; Wu Saijun

    2005-01-01

    An atom Michelson interferometer is implemented on an 'atom chip'. The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms

  11. Measurement of Local Gravity via a Cold Atom Interferometer

    International Nuclear Information System (INIS)

    Zhou Lin; Xiong Zong-Yuan; Yang Wei; Tang Biao; Peng Wen-Cui; Wang Yi-Bo; Xu Peng; Wang Jin; Zhan Ming-Sheng

    2011-01-01

    We demonstrate a precision measurement of local gravity acceleration g in Wuhan by a compact cold atom interferometer. The atom interferometer is in vertical Mach—Zehnder configuration realized using a π/2 - π - π/2 Raman pulse sequence. Cold atoms were prepared in a magneto-optical trap, launched upward to form an atom fountain, and then coherently manipulated to interfere by stimulated Raman transition. Population signal vs Raman laser phase was recorded as interference fringes, and the local gravity was deduced from the interference signal. We have obtained a resolution of 7 × 10 −9 g after an integration time of 236s under the best vibrational environment conditions. The absolute g value was derived from the chirp rate with a difference of 1.5 × 10 −7 g compared to the gravity reference value. The tidal phenomenon was observed by continuously monitoring the local gravity over 123 h. (atomic and molecular physics)

  12. Norman Ramsey. Nobel Prize Winner in Physics (1989)

    International Nuclear Information System (INIS)

    2003-01-01

    Norman Ramsey (Washington 1915) received the Nobel Prize in Physics (shared with con H. G. Dehmelt and W. Paul) for the development of study techniques for Atomic Physics. This tireless researcher participated in the discovery of the Magnetic Resonance Method for Molecular Emission. He invented the hydrogen maser and the hydrogen atomic clock, in addition to being a profile author. (Author)

  13. Ramsey theory on the integers

    CERN Document Server

    Landman, Bruce M

    2014-01-01

    Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and t...

  14. Ramsey theory on the integers

    CERN Document Server

    Landman, Bruce M

    2003-01-01

    Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity to begin pondering unsolved problems themselves. In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.

  15. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  16. Measurement of the fine-structure constant as a test of the Standard Model

    Science.gov (United States)

    Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2018-04-01

    Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10‑10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge ‑ 2 via the Standard Model of particle physics is now limited by the uncertainty in ge ‑ 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon’s magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.

  17. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  18. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  19. Ramsey theory for product spaces

    CERN Document Server

    Dodos, Pandelis

    2016-01-01

    Ramsey theory is a dynamic area of combinatorics that has various applications in analysis, ergodic theory, logic, number theory, probability theory, theoretical computer science, and topological dynamics. This book is devoted to one of the most important areas of Ramsey theory-the Ramsey theory of product spaces. It is a culmination of a series of recent breakthroughs by the two authors and their students who were able to lift this theory to the infinite-dimensional case. The book presents many major results and methods in the area, such as Szemerédi's regularity method, the hypergraph removal lemma, and the density Hales-Jewett theorem. This book addresses researchers in combinatorics but also working mathematicians and advanced graduate students who are interested in Ramsey theory. The prerequisites for reading this book are rather minimal: it only requires familiarity, at the graduate level, with probability theory and real analysis. Some familiarity with the basics of Ramsey theory would be beneficial, ...

  20. Ramsey numbers and adiabatic quantum computing.

    Science.gov (United States)

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  1. A double well interferometer on an atom chip

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Krüger, Peter; Hofferberth, S.

    2006-01-01

    Radio-Frequency coupling between magnetically trapped atomic states allows to create versatile adiabatic dressed state potentials for neutral atom manipulation. Most notably, a single magnetic trap can be split into a double well by controlling amplitude and frequency of an oscillating magnetic...... split BECs in time of flight expansion, we realize a matter wave interferometer. The observed interference pattern exhibits a stable relative phase of the two condensates, clearly indicating a coherent splitting process. Furthermore, we measure and control the deterministic phase evolution throughout...

  2. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  3. Experimental determination of Ramsey numbers.

    Science.gov (United States)

    Bian, Zhengbing; Chudak, Fabian; Macready, William G; Clark, Lane; Gaitan, Frank

    2013-09-27

    Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey numbers R(m,n). Here we present results of an experimental implementation of this algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(m,2) for 4≤m≤8. The R(8,2) computation used 84 qubits of which 28 were computational qubits. This computation is the largest experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been done to date.

  4. Path-fan Ramsey numbers

    NARCIS (Netherlands)

    Salman, M.; Broersma, Haitze J.

    2003-01-01

    For two given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the smallest positive integer $p$ such that for every graph $F$ on $p$ vertices the following holds: either $F$ contains $G$ as a subgraph or the complement of $F$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers

  5. Path-fan Ramsey numbers

    NARCIS (Netherlands)

    Salman, M.; Broersma, Haitze J.

    For two given graphs $F$ and $H$, the Ramsey number $R(F,H)$ is the smallest positive integer $p$ such that for every graph $G$ on $p$ vertices the following holds: either $G$ contains $F$ as a subgraph or the complement of $G$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers

  6. Path-kipas Ramsey numbers

    NARCIS (Netherlands)

    Salman, M.; Broersma, Haitze J.

    2007-01-01

    For two given graphs $F$ and $H$, the Ramsey number $R(F,H)$ is the smallest positive integer $p$ such that for every graph $G$ on $p$ vertices the following holds: either $G$ contains $F$ as a subgraph or the complement of $G$ contains $H$ as a subgraph. In this paper, we study the Ramsey numbers

  7. Assessment and Risk Mitigation Strategies for the Atom Interferometer Gravity Gradiometer Seed Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GSFC has been working on an ESTO IIP - Cold Atom Gravity Gradiometer (CAGG)/Atom Interferometer Gravity Gradiometer (AIGG) for Geodesy since 2014 (Saif/551 –...

  8. High data-rate atom interferometers through high recapture efficiency

    Science.gov (United States)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  9. On star-critical and upper size Ramsey numbers

    NARCIS (Netherlands)

    Zhang, Yanbo; Broersma, Haitze J.; Chen, Yaojun

    2016-01-01

    In this paper, we study the upper size Ramsey number u(G1,G2)u(G1,G2), defined by Erdős and Faudree, as well as the star-critical Ramsey number r∗(G1,G2)r∗(G1,G2), defined by Hook and Isaak. We define Ramsey-full graphs and size Ramsey good graphs, and perform a detailed study on these graphs. We

  10. Testing general relativity and alternative theories of gravity with space-based atomic clocks and atom interferometers

    Directory of Open Access Journals (Sweden)

    Bondarescu Ruxandra

    2015-01-01

    Full Text Available The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft’s reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth’s gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ∼ 10−16 in an elliptic orbit around the Earth would constrain the PPN parameters |β − 1|, |γ − 1| ≲ 10−6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.

  11. Toward a High-Stability Coherent Population Trapping Cs Vapor-Cell Atomic Clock Using Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe

    2018-06-01

    Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.

  12. A compact micro-wave synthesizer for transportable cold-atom interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l’Observatoire, 75014 Paris (France)

    2014-06-15

    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in the order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

  13. Atom interferometry with lithium atoms: theoretical analysis and design of an interferometer, applications; Interferometrie atomique avec l'atome de lithium: analyse theorique et construction d'un interferometre, applications

    Energy Technology Data Exchange (ETDEWEB)

    Champenois, C

    1999-12-01

    This thesis is devoted to studies which prepared the construction of an atom Mach-Zehnder interferometer. In such an interferometer, the propagating waves are spatially separated, and the internal state of the atom is not modified. The beam-splitters are diffraction gratings, consisting of standing optical waves near-resonant with an atomic transition. We use the Bloch functions to define the atom wave inside the standing wave grating and thus explain the diffraction process in different cases. We developed a nearly all-analytical model for the propagation of an atom wave inside a Mach-Zehnder interferometer. The contrast of the signal is studied for many cases: phase or amplitude gratings, effects of extra paths, effects of the main mismatches, monochromatic or lightly polychromatic sources. Finally, we discuss three interferometric measurements we think very interesting. The first, the index of refraction of gas for atomic waves, is studied in detail, with numerical simulations. The other measures we propose deal with the electrical properties of lithium. We discuss the ultimate limit for the measure of the static electric polarizability of lithium by atomic interferometry. Then, we discuss how one could measure the possible charge of the lithium atom. We conclude that an optically cooled and collimated atom beam would improve precision. (author)

  14. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    1999-01-01

    Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  15. Atom Wave Interferometers

    National Research Council Canada - National Science Library

    Pritchard, David

    2000-01-01

    Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...

  16. Role of associativity in Ramsey algebras

    Indian Academy of Sciences (India)

    Andrew Rajah

    2017-11-02

    Nov 2, 2017 ... Z2 → Z is defined by −(x, y) = y − x, is not a Ramsey algebra .... A function μ : V → G will be known as an assignment on V to abstract the idea of μ ... The concept of a reduction is central to the notion of a Ramsey algebra.

  17. Indigenous processing methods and raw materials of borde , an ...

    African Journals Online (AJOL)

    A flow chart of borde production was constructed showing four major processing stages. The short shelf life of borde and the seasonal variations in production volume were identified as major problems for the vendors in the study areas. Keywords: indigenous methods; cereal fermentation; borde; beverage; Ethiopia J Food ...

  18. Les FAQs du tableau de bord - Mythes et réalités du tableau de bord à l'ère de la mondialisation

    OpenAIRE

    Van Caillie, Didier

    2013-01-01

    Ce document synthétise en 8 questions clés l'état de notre expérience en matière de conception et d'implémentation d'un tableau de bord dans une organisation, privée ou publique, grande ou petite. Les 8 questions abordées sont : 1. Qu’est-ce qu’un tableau de bord ? 2. Quelle est son utilité pour une organisation à l’ère de la mondialisation ? 3. Quels sont les prérequis à l’utilisation d’un tableau de bord ? 4. Faut-il un tableau de bord unique ou plusieurs tableaux de bord ? 5. Quels indicat...

  19. Contribution to the theory of atom interferometers

    International Nuclear Information System (INIS)

    Antoine, Ch.

    2004-12-01

    This work deals with the study of atom interferometers. It consists of theoretical developments and more practical parts (modeling). As regards modeling, this work explains how to obtain a general analytical expression of the fringes signal, which particularly accounts for the simultaneous action of all the inertial and gravitational fields whose representative potential is at most quadratic in position and momentum (rotations, accelerations, gradients of acceleration, gravitational waves...), as well as the dispersive structuring due to atomic beam splitters in the presence of such external fields (velocity selection, anomalous dispersion and Borrmann effect). From a theoretical point of view, this thesis develops new tools of atom optics. They deal with the propagation of matter waves in unspecified inertial and gravitational fields (extension of the ABCD formalism using first integral operators), the study of laser beam splitters in the presence of some of these fields (generalized ttt scheme, strong fields ttt modeling, generalized Borrmann effect...), as well as the highlight of symplectic invariants which are very useful for the interpretation and the simplification of the phase shift expression ('homologous paths' and 'four end points theorem'). (author)

  20. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  1. DID RAMSEY EVER ENDORSE A REDUNDANCY THEORY OF TRUTH?

    Directory of Open Access Journals (Sweden)

    María J. Frápolli

    2013-11-01

    Full Text Available This paper deals with Ramsey´s theory of truth and its aim is twofold: on the one hand, it will explain what position about truth Ramsey actually defended, and, on the other hand, we will pursue Ramsey’s insight in the XXth century. When the name of Frank Ramsey is mentioned, one of the things that comes to mind is the theory of truth as redundancy. In the following pages we will argue that Ramsey never supported such a theory, but rather an analysis of truth noticeably similar to the prosentential account. In fact, the very word “pro-sentence” appears for the first time in the XXth Century in Ramsey´s unfinished work “The nature of truth”, written around 1929. Besides, we will show that the prosentential account of truth is a neglected trend throughout the history of analytic philosophy, even though relevant analytic philosophers, such as Prior, Strawson, Williams, Grover and Brandom, have endorsed it.

  2. A hierarchy of Ramsey-like cardinals

    OpenAIRE

    Holy, Peter; Schlicht, Philipp

    2017-01-01

    We introduce a hierarchy of large cardinals between weakly compact and measurable cardinals, that is closely related to the Ramsey-like cardinals introduced by Victoria Gitman, and is based on certain infinite filter games, however also has a range of equivalent characterizations in terms of elementary embeddings. The aim of this paper is to locate the Ramsey-like cardinals studied by Gitman, and other well-known large cardinal notions, in this hierarchy.

  3. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    Science.gov (United States)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  4. Monopoly, Pareto and Ramsey mark-ups

    OpenAIRE

    Ten Raa, T.

    2009-01-01

    Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear demand or, even within the constant elasticity framework, dependence is introduced. The analysis provides a single Generalized Inverse Elasticity Rule for the problems of monopoly, Pareto and Ramsey.

  5. The Ramsey Numbers of Paths Versus Fans

    NARCIS (Netherlands)

    Salman, M.; Broersma, Haitze J.; Faigle, U.; Hurink, Johann L.; Pickl, Stefan; Woeginger, Gerhard

    2003-01-01

    For two given graphs G and H, the Ramsey number R(G,H) is the smallest positive integer p such that for every graph F on p vertices the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn,Fm), where Pn is

  6. Computing Hypergraph Ramsey Numbers by Using Quantum Circuit

    OpenAIRE

    Qu, Ri; Li, Zong-shang; Wang, Juan; Bao, Yan-ru; Cao, Xiao-chun

    2012-01-01

    Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently shown a quantum algorithm for the computation of the Ramsey numbers using adiabatic quantum evolution. We present a quantum algorithm to compute the two-color Ramsey numbers for r-uniform hypergraphs by using the quantum counting circuit.

  7. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV.

    Science.gov (United States)

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R

    2015-02-23

    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  8. Collisional shifts in optical-lattice atom clocks

    International Nuclear Information System (INIS)

    Band, Y. B.; Vardi, A.

    2006-01-01

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of π between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts

  9. Historical overview of Ramsey spectroscopy and its relevance on Time and Frequency Metrology

    International Nuclear Information System (INIS)

    Amaral, M M; Tarelho, L V G; De Souza, M A; Baratto, A C; Garcia, G A; Muller, S T; De Martin, J Jr; Rodriguez, A S; Bebeachibuli, A; Magalhães, D V

    2016-01-01

    A brief overview of the historical evolution of the method of successive oscillatory fields developed by Norman Ramsey, and some different implementations of the decurrent methodology are presented. We use time and frequency standards, from Cs atomic beams to optical standards, as examples. The scientific progress and the technological implementation achieved through a partnership between USP-SC and INMETRO are shown on the characterization of each time and frequency standard. (paper)

  10. Localizing gravitational wave sources with single-baseline atom interferometers

    Science.gov (United States)

    Graham, Peter W.; Jung, Sunghoon

    2018-02-01

    Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.

  11. Multiloop atom interferometer measurements of chameleon dark energy in microgravity

    Science.gov (United States)

    Chiow, Sheng-wey; Yu, Nan

    2018-02-01

    Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.

  12. Ramsey interferometry of Rydberg ensembles inside microwave cavities

    Science.gov (United States)

    Sommer, Christian; Genes, Claudiu

    2018-06-01

    We study ensembles of Rydberg atoms in a confined electromagnetic environment such as is provided by a microwave cavity. The competition between standard free space Ising type and cavity-mediated interactions leads to the emergence of different regimes where the particle‑particle couplings range from the typical van der Waals r ‑6 behavior to r ‑3 and to r-independence. We apply a Ramsey spectroscopic technique to map the two-body interactions into a characteristic signal such as intensity and contrast decay curves. As opposed to previous treatments requiring high-densities for considerable contrast and phase decay (Takei et al 2016 Nat. Comms. 7 13449; Sommer et al 2016 Phys. Rev. A 94 053607), the cavity scenario can exhibit similar behavior at much lower densities.

  13. The Ramsey numbers of large cycles versus small wheels

    NARCIS (Netherlands)

    Surahmat,; Baskoro, E.T.; Broersma, H.J.

    2004-01-01

    For two given graphs G and H, the Ramsey number R(G;H) is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey number R(Cn;Wm) for m = 4

  14. Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field

    Science.gov (United States)

    Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.

    2016-12-01

    In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.

  15. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  16. Connected size Ramsey number for matchings vs. small stars or ...

    Indian Academy of Sciences (India)

    2017-11-20

    Nov 20, 2017 ... determine the connected size Ramsey number ˆrc(nK2, K1,3)forn ≥ 2 ... concerning the size Ramsey number for many pairs of graphs can be seen in [3]. ... Then, color all edges incident to x by red and the other edges of F by.

  17. Características sensoriais do vinho Bordô Sensory characteristics of Bordô wine

    Directory of Open Access Journals (Sweden)

    Francine Maria Tecchio

    2007-06-01

    Full Text Available Avaliaram-se as características sensoriais dos vinhos Bordô varietalmente puros e elaborados segundo a tecnologia própria a cada vinícola. A avaliação sensorial foi conduzida por um grupo de nove painelistas devidamente treinados. Os resultados revelaram que, dos 26 descritores avaliados, nove caracterizaram o vinho Bordô como sensorialmente marcante. Os descritores analisados foram a cor relativamente intensa e matiz violeta; aromas foxado e frutado; corpo relativamente pouco estruturado, mais ou menos ácido, sabores foxado e frutado predominantes e forte tipicidade.Varietal wines made according to the technology used in each winery were evaluated and their sensory characteristics were determined. A panel of nine experimented painelists performed sensory analysis. The results show that out of the 26 descriptors analyzed, nine markedly characterized this wine, i.e., they presented intense color and violet hue; foxy and fruity aroma; body with a medium structure, somewhat acid, foxy and fruity flavor, and strong tipicity.

  18. BATAS ATAS BILANGAN RAMSEY UNTUK GRAF BINTANG DAN GRAF BIPARTIT LENGKAP

    OpenAIRE

    Rosyida, Isnaini

    2008-01-01

    Misal G dan H dua buah graf sebarang, bilangan Ramsey R(G,H) adalah bilangan asli terkecil n sehingga untuk setiap graf F dengan n titik akan memuat G atau komplemen dari F memuat H. Makalah ini akan membahas batas atas dari bilangan Ramsey untuk graf bintang Sn dan graf bipartit lengkap Kp,q. Khususnya, kita akan menunjukkan batas atas dari R(Sn, K2,q) serta batas atas dari R(Sn, Kp,q) untuk n ≥ 5, 3 ≤ p ≤ n-1 dan q ≤ 2.Kata Kunci : Bilangan Ramsey, Graf Bintang dan Bipartit

  19. A pulsed neutron Ramsey's method

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Muto, S. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan); Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna (Russian Federation); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801 (Japan)

    2005-02-15

    A Ramsey's method with pulsed neutrons is proposed. A Ramsey signal, which is a neutron spin rotation about a static magnetic field for a time interval between two separated oscillatory fields, is observed as a function of a neutron time of flight (TOF) in this method. The neutron spin rotation or the RF oscillation is used as a clock of the neutron velocity measurement which ranges from cold to epithermal neutron energies. This method together with the TOF measurement can be used for neutron inelastic scattering experiments. In addition, this method can be applied to the measurement of magnetic and pseudomagnetic fields in matter, and also to neutron spin manipulation for spin dependent scattering.

  20. TABLEAU DE BORD: PROPOSAL OF APPLICATION IN BRAZILIAN AGRIBUSINESS

    OpenAIRE

    Rodniski, Cleber Marcos; Diehl, Carlos Alberto; Zwirtes, Adir

    2013-01-01

    The objective of this work is to develop a model of Tableau de Bord to be applied to the industrial area of an agro-industry of pigs and chickens slaughtering and industrialization. Due to business growth, with the creation of various organizational levels, and the large amount of information daily received and analyzed by managers, the developed management strategy does not always echo in all hierarchical levels generating the desired effect. In this regard, the Tableau de Bord is seen as an...

  1. Prototyping method for Bragg-type atom interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Benton, Brandon; Krygier, Michael; Heward, Jeffrey; Edwards, Mark [Department of Physics, Georgia Southern University, Statesboro, Georgia 30460-8031 (United States); Clark, Charles W. [Joint Quantum Insitute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899 (United States)

    2011-10-15

    We present a method for rapid modeling of new Bragg ultracold atom-interferometer (AI) designs useful for assessing the performance of such interferometers. The method simulates the overall effect on the condensate wave function in a given AI design using two separate elements. These are (1) modeling the effect of a Bragg pulse on the wave function and (2) approximating the evolution of the wave function during the intervals between the pulses. The actual sequence of these pulses and intervals is then followed to determine the approximate final wave function from which the interference pattern can be calculated. The exact evolution between pulses is assumed to be governed by the Gross-Pitaevskii (GP) equation whose solution is approximated using a Lagrangian variational method to facilitate rapid estimation of performance. The method presented here is an extension of an earlier one that was used to analyze the results of an experiment [J. E. Simsarian et al., Phys. Rev. Lett. 85, 2040 (2000)], where the phase of a Bose-Einstein condensate was measured using a Mach-Zehnder-type Bragg AI. We have developed both 1D and 3D versions of this method and we have determined their validity by comparing their predicted interference patterns with those obtained by numerical integration of the 1D GP equation and with the results of the above experiment. We find excellent agreement between the 1D interference patterns predicted by this method and those found by the GP equation. We show that we can reproduce all of the results of that experiment without recourse to an ad hoc velocity-kick correction needed by the earlier method, including some experimental results that the earlier model did not predict. We also found that this method provides estimates of 1D interference patterns at least four orders-of-magnitude faster than direct numerical solution of the 1D GP equation.

  2. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  3. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  4. The history of the French tableau de bord (1885-1975): evidence from the archives

    OpenAIRE

    Anne Pezet

    2009-01-01

    International audience; The history of the tableau de bord in France has never really been written. This paper sets out to draw up a history using the archives of three large industrial companies - Lafarge, Pechiney, and Saint-Gobain – as source material. This paper seeks to revisit the myth of the French tableau de bord as presented in a great many comparative management studies (typically, Tableau de bord vs. Balanced ScoreCard). This myth rests on more or less implicit assumptions regardin...

  5. Monopoly, Pareto and Ramsey mark-ups

    NARCIS (Netherlands)

    Ten Raa, T.

    2009-01-01

    Monopoly prices are too high. It is a price level problem, in the sense that the relative mark-ups have Ramsey optimal proportions, at least for independent constant elasticity demands. I show that this feature of monopoly prices breaks down the moment one demand is replaced by the textbook linear

  6. Ramsey, redundancia y correspondencia

    OpenAIRE

    Horenstein, Silvia

    2000-01-01

    En Fats and Propositions (1990) Ramsey formula y defiende la teoría redundandista de la verdad: 'p es verdadero' y 'p' son, sino idénticos, por lo menos, equivalentes. Su compromiso con la teoría de la redundancia se mantiene en On Truth (manuscrito publicado en 1991), aunque parece advertirse en el nuevo planteo - de temas tratados con anterioridad - una evolución en su pensamiento que lo lleva a asignar mayor peso a la compatibilidad entre redundancia y correspondencia. Da ahí que interese ...

  7. An Atomic Gravitational Wave Interferometric Sensor (AGIS)

    OpenAIRE

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; Rajendran, Surjeet

    2008-01-01

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10 m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with ba...

  8. How Christian ethics became medical ethics: the case of Paul Ramsey.

    Science.gov (United States)

    Hauerwas, Stanley

    1995-03-01

    Over the last century Christian ethics has moved from an attempt to Christianize the social order to a quandary over whether being Christian unduly biases how medical ethics is done. This movement can be viewed as the internal development of protestant liberalism to its logical conclusion, and Paul Ramsey can be taken as one of the last great representatives of that tradition. By reducing the Christian message to the 'ethical upshot' of neighbour love, Ramsey did not have the resources to show how Christian practice might make a difference for understanding or forming the practice of medicine. Instead, medicine became the practice that exemplified the moral commitments of Christian civilization, and the goal of the ethicist was to identify the values that were constitutive of medicine. Ramsey thus prepared the way for the Christian ethicist to become a medical ethicist with a difference, and the difference simply involved vague theological presumptions that do no serious intellectual work other than explaining, perhaps, the motivations of the ethicist.

  9. MARGEANDO ARTIVISMOS GLOBALIZADOS: NAS BORDAS DO MUJERES AL BORDE

    Directory of Open Access Journals (Sweden)

    Glauco B. Ferreira

    2015-03-01

    Full Text Available Este ensaio aborda as produções artísticas de um coletivo colombiano chamado Mujeres Al Borde e busca descrever algumas de suas atividades e as maneiras como produzem e articulam relações entre arte, ativismo e produção audiovisual, abordando aí gênero, sexualidade e questões étnico-raciais. O trabalho trata das relações transnacionais desse coletivo com um grupo queer ativista estadunidense, Queer Women of Color Media Arts Project, para a criação de seu próprio programa de treinamento cinematográfico, a Escuela Audiovisual Al Borde; reflete sobre as possibilidades de pensarmos sobre ativismo queer no contexto latinoamericano; e, por fim, analisa algumas das produções audiovisuais do Mujeres Al Borde, naquilo que compreendem como seu artivismo, neologismo que articula arte e ativismo. Enfocam-se as maneiras pelas quais esses coletivos produzem redes de colaboração transnacionais em contextos geopolíticos globalizados dissidentes, ao mesmo tempo em que buscam, através da relação que criam entre arte e política, promover transformação social e meios de expressão visual para comunidades LGBTQ, cultivando queer artivismos feministas no sul e no norte globais.

  10. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  11. THE IMPLEMENTATION OF THE TABLEAU DE BORD AT S.C. TURBOMECANICA S.A.

    OpenAIRE

    Dragos Ionut IONESCU

    2014-01-01

    This paper presents the positive aspects of the usage of the tableau de bord as a management instrument, being known for having beneficial effects on the efficiency of the managers’ working processes and on the rationalization of the managerial information system. These aspects are highlighted through the creation of the tableau de bord for the general manager of S.C. Turbomecanica S.A.

  12. On-line Ramsey Numbers for Paths and Stars

    Directory of Open Access Journals (Sweden)

    Jaroslaw Grytczuk

    2008-08-01

    Full Text Available We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter: in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly is the on-line Ramsey number r(H of the graph H. We determine exact values of r(H for a few short paths and obtain a general upper bound r(Pn ≤ 4n-7. We also study asymmetric version of this parameter when one of the target graphs is a star Sn with n edges. We prove that r(Sn,H≤n ·e(H when H is any tree, cycle or clique.

  13. How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle

    Energy Technology Data Exchange (ETDEWEB)

    Varoquaux, G; Nyman, R A; Geiger, R; Cheinet, P; Bouyer, P [Laboratoire Charles Fabry de l' Institut d' Optique, Campus Polytechnique, RD 128, 91127 Palaiseau (France); Landragin, A [LNE-SYRTE, UMR8630, UPMC, Observatoire de Paris, 61 avenue de l' Observatoire, 75014 Paris (France)], E-mail: philippe.bouyer@institutoptique.fr

    2009-11-15

    We propose a scheme for testing the weak equivalence principle (universality of free-fall (UFF)) using an atom-interferometric measurement of the local differential acceleration between two atomic species with a large mass ratio as test masses. An apparatus in free fall can be used to track atomic free-fall trajectories over large distances. We show how the differential acceleration can be extracted from the interferometric signal using Bayesian statistical estimation, even in the case of a large mass and laser wavelength difference. We show that this statistical estimation method does not suffer from acceleration noise of the platform and does not require repeatable experimental conditions. We specialize our discussion to a dual potassium/rubidium interferometer and extend our protocol with other atomic mixtures. Finally, we discuss the performance of the UFF test developed for the free-fall (zero-gravity) airplane in the ICE project (http://www.ice-space.fr)

  14. How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle

    International Nuclear Information System (INIS)

    Varoquaux, G; Nyman, R A; Geiger, R; Cheinet, P; Bouyer, P; Landragin, A

    2009-01-01

    We propose a scheme for testing the weak equivalence principle (universality of free-fall (UFF)) using an atom-interferometric measurement of the local differential acceleration between two atomic species with a large mass ratio as test masses. An apparatus in free fall can be used to track atomic free-fall trajectories over large distances. We show how the differential acceleration can be extracted from the interferometric signal using Bayesian statistical estimation, even in the case of a large mass and laser wavelength difference. We show that this statistical estimation method does not suffer from acceleration noise of the platform and does not require repeatable experimental conditions. We specialize our discussion to a dual potassium/rubidium interferometer and extend our protocol with other atomic mixtures. Finally, we discuss the performance of the UFF test developed for the free-fall (zero-gravity) airplane in the ICE project (http://www.ice-space.fr).

  15. A Precise Threshold for Quasi-Ramsey Numbers

    NARCIS (Netherlands)

    Kang, R.J.; Pach, J.; Patel, V.; Regts, G.

    2015-01-01

    We consider the variation of Ramsey numbers introduced by Erdös and Pach [J. Graph Theory, 7 (1983), pp. 137--147], where instead of seeking complete or independent sets we only seek a $t$-homogeneous set, a vertex subset that induces a subgraph of minimum degree at least $t$ or the complement of

  16. Study on talbot pattern for grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)

    2015-04-15

    One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.

  17. Contribution to the theory of atom interferometers; Contribution a la theorie des interferometres atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, Ch

    2004-12-01

    This work deals with the study of atom interferometers. It consists of theoretical developments and more practical parts (modeling). As regards modeling, this work explains how to obtain a general analytical expression of the fringes signal, which particularly accounts for the simultaneous action of all the inertial and gravitational fields whose representative potential is at most quadratic in position and momentum (rotations, accelerations, gradients of acceleration, gravitational waves...), as well as the dispersive structuring due to atomic beam splitters in the presence of such external fields (velocity selection, anomalous dispersion and Borrmann effect). From a theoretical point of view, this thesis develops new tools of atom optics. They deal with the propagation of matter waves in unspecified inertial and gravitational fields (extension of the ABCD formalism using first integral operators), the study of laser beam splitters in the presence of some of these fields (generalized ttt scheme, strong fields ttt modeling, generalized Borrmann effect...), as well as the highlight of symplectic invariants which are very useful for the interpretation and the simplification of the phase shift expression ('homologous paths' and 'four end points theorem'). (author)

  18. Reducing the first-order Doppler shift in a Sagnac interferometer

    NARCIS (Netherlands)

    Hannemann, S.; Salumbides, E.J.; Ubachs, W.M.G.

    2007-01-01

    We demonstrate a technique to reduce first-order Doppler shifts in crossed atomic/molecular and laser beam setups by aligning two counterpropagating laser beams as part of a Sagnac interferometer. Interference fringes on the exit port of the interferometer reveal minute deviations from perfect

  19. Freins et leviers pour l’installation de jardins en bord de voies

    OpenAIRE

    Chelkoff, Grégoire; Paris, Magali

    2016-01-01

    Prenant le contre-pied d’une posture visant à « réparer » les territoires détruits par les infrastructures de transport, nous investiguons les potentiels de développement urbain inhérents aux situations routes/jardins. Les territoires de bord de route possèdent leurs propres règles qui pourraient informer une manière de produire autrement la ville. Perçue depuis un véhicule personnel ou un transport en commun la nature en bord de voie, et en particulier la nature domestiquée des collectifs de...

  20. A note on Ramsey numbers for fans

    NARCIS (Netherlands)

    Zhang, Yanbo; Broersma, Haitze J.; Chen, Yaojun

    For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that, for any graph G of order N, either G contains G1 as a subgraph or the complement of G contains G2 as a subgraph. A fan Fl is l triangles sharing exactly one vertex. In this note, it is shown that R(Fn,

  1. Ramsey prices in the Italian electricity market

    International Nuclear Information System (INIS)

    Bigerna, Simona; Bollino, Carlo Andrea

    2016-01-01

    In this paper, we derive optimal zonal prices in the Italian day-ahead electricity market using estimation of a complete system of hourly demand in 2010–2011. In Italy, the hourly equilibrium price for all buyers is computed as a uniform average of supply zonal prices, resulting from market splitting due to line congestion. We model ex-ante individual bids expressed by heterogeneous consumers, which are distinguished by geographical zones. Using empirical estimations, we compute demand elasticity values and new zonal prices, according to a Ramsey optimal scheme. This is a new approach in the wholesale electricity market literature, as previous studies have discussed the relative merit of zonal prices, considering only the issue of line congestion. Our results show that the optimal pricing scheme can improve welfare in the day-ahead Italian electricity market, with respect to both the existing uniform price scheme and the proposal to charge the existing supply zonal prices to the demand side. - Highlights: • We model and estimate the demand of heterogeneous buyers in the electricity market. • Transmission line congestion creates welfare distortions in the market. • We derive optimal Ramsey prices in the Italian day-ahead electricity market. • We compare optimal prices with historical ones showing how to improve welfare.

  2. Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp [Osaka University, Department of Physics (Japan); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka University, RCNP (Japan); Jeong, S. C.; Kawasaki, S. [High Energy Accelerator Research Organization (KEK) (Japan); Matsumiya, R. [Osaka University, RCNP (Japan); Mihara, M. [Osaka University, Department of Physics (Japan); Watanabe, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Nishimura, D. [Tokyo University of Science, Department of Physics (Japan); Morita, Y. [Osaka University, Department of Physics (Japan); Asahi, K. [Tokyo Institute of Technology (Japan); Adachi, T. [High Energy Accelerator Research Organization (KEK) (Japan); Martin, J. [University of Winnipeg, Department of Physics (Canada); Konaka, A.; Miller, A. [TRIUMF (Canada); Bidinosti, C.; Dawson, T. [University of Winnipeg, Department of Physics (Canada); Lee, L.; Davis, C.; Ramsay, D. [TRIUMF (Canada); and others

    2013-05-15

    Polarized UCNs have been created by selecting only one spin state passing through a magnetized Fe foil. Typical degree of polarization was about 90 %. The polarization relaxation time in the prototype Ramsey cell was T{sub 1} =1100{sup +800}{sub -400} s. Clear Ramsey resonance spectra have been observed for two precession time settings, t{sub c} = 100 ms and 30 s. The transverse relaxation time T{sub 2} was about 50 s.

  3. Crab spiders (Araeneae: Philodromidae, Thomisidae) of Ramsey County, Minnesota.

    Science.gov (United States)

    Daniel. T. Jennings; Bruce Cutler

    1996-01-01

    Crab spiders of 2 families, 10 genera, and 35 species were collected over a 31-year period in Ramsey County, Minnesota. Rarely collected species included Philodromus keyserlingi, Xysticus pellax, X. chippewa, X. banksi and X. alboniger. Identification source(s), season and collection frequency, and biology are summarized for each species.

  4. Leggett-Garg tests of macrorealism for bosonic systems including double-well Bose-Einstein condensates and atom interferometers

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; He, Q. Y.; Reid, M. D.

    2018-04-01

    We construct quantifiable generalizations of Leggett-Garg tests for macro- and mesoscopic realism and noninvasive measurability that apply when not all outcomes of measurement can be identified as arising from one of two macroscopically distinguishable states. We show how quantum mechanics predicts a negation of the Leggett-Garg premises for strategies involving ideal negative-result, weak, and minimally invasive ("nonclumsy") projective measurements on dynamical entangled systems, as might be realized with Bose-Einstein condensates in a double-well potential, path-entangled NOON states, and atom interferometers. Potential loopholes associated with each strategy are discussed.

  5. Le bord de la solitude

    Directory of Open Access Journals (Sweden)

    Jean-Paul Galibert

    2010-04-01

    Full Text Available La solitude a un bord, et non un seuil, parce que sinon, ce ne serait pas la solitude. Car le seuil a ceci de merveilleux qu’il sépare un dedans et un dehors, en sorte qu’il reste franchissable, et que l’on peut toujours sortir, et rentrer à sa guise. De ce fait, où que soient les autres, le seuil garantit donc que je pourrais les rejoindre, et me délasser, en changeant de lieu, des inconvénients croisés de l’intérieur et de l’extérieur. Dans le seuil, la métaphore implicite de la maison nous...

  6. Design and Construction of an Atomic Clock on an Atom Chip

    International Nuclear Information System (INIS)

    Reinhard, Friedemann

    2009-01-01

    We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)

  7. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  8. Advanced Gouy phase high harmonics interferometer

    Science.gov (United States)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  9. Local and global dynamics of Ramsey model: From continuous to discrete time.

    Science.gov (United States)

    Guzowska, Malgorzata; Michetti, Elisabetta

    2018-05-01

    The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.

  10. Problemas asociados al equilibrio en estructuras de membrana con bordes rígidos y cables

    Directory of Open Access Journals (Sweden)

    Viglialoro, G.

    2011-12-01

    Full Text Available This paper presents the equilibrium analysis of a membrane with rigid and cable boundaries for the so called prestressing phase. The idea of using membranes in Civil Engineering applications such as footbridges, a new technology being developed in Spain, implies higher structural responsibility and more accurate analysis procedure. The membrane and its boundary are respectively identified to a regular and negative gaussian curvature surface and a set of regular curves whose curvature depends on the structural elements, rigid or cable. Equilibrium is directly expressed by means of boundary differential problems, in terms of the membrane shape and its stress tensor. We must outline that membrane-cable interface equilibrium leads to take into account a singular condition that makes the problem more difficult. Therefore, starting from the equilibrium equations, two dual problems can be considered namely direct problem and dual problem. Both problems will be defined and analyzed, studying their principal qualitative aspects. Particularly, for the direct problem a numerical resolution procedure is proposed, in order to obtain practical results.

    Este trabajo aborda el análisis del equilibrio de una membrana con bordes rígidos y cables de borde para la fase de pretensado. La idea de utilizar las membranas en aplicaciones como las pasarelas, una nueva tecnología que está siendo desarrollada en España, implica niveles más altos de responsabilidad y de esfuerzos, requiriendo así un anáisis estructural ajustado. La membrana y sus bordes se identifican, respectivamente, a una superficie con curvatura de Gauss negativa y a curvas cuya curvatura depende de las características estructurales de los bordes. El equilibrio se expresa mediante problemas de contorno con ecuaciones en derivadas parciales, en términos de la forma de la membrana y de su tensor de esfuerzos, así como de la forma y las cargas de los bordes. En particular, el equilibrio

  11. 76 FR 20034 - Calvin Ramsey, M.D.; Revocation of Registration

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 10-25] Calvin Ramsey, M.D.; Revocation of Registration On December 18, 2009, the Deputy Assistant Administrator, Office of Diversion... constitutional right to appointed counsel in a proceeding under 21 U.S.C. 824(a). See Goldberg v. Kelly, 397 U.S...

  12. An Atomic Gravitational Wave Interferometric Sensor (AGIS)

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.; Rajendran, Surjeet; /SLAC /Stanford U., Phys. Dept.

    2008-08-01

    We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. Each configuration compares two widely separated atom interferometers run using common lasers. The signal scales with the distance between the interferometers, which can be large since only the light travels over this distance, not the atoms. The terrestrial experiment with baseline {approx} 1 km can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment with baseline {approx} 1000 km can probe the same frequency spectrum as LISA with comparable strain sensitivity {approx} 10{sup -20}/{radical}Hz. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations, acceleration noise, and significantly reduces spacecraft control requirements. We analyze the backgrounds in this configuration and discuss methods for controlling them to the required levels.

  13. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  14. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-01-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes. (paper)

  15. The complexity of proving that a graph is Ramsey

    Czech Academy of Sciences Publication Activity Database

    Lauria, M.; Pudlák, Pavel; Rödl, V.; Thapen, Neil

    2017-01-01

    Roč. 37, č. 2 (2017), s. 253-268 ISSN 0209-9683 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : complexity * c-Ramsey graphs Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.048, year: 2016 http://link.springer.com/article/10.1007%2Fs00493-015-3193-9

  16. A note on Ramsey and Corlett-Hague rules

    OpenAIRE

    Ley, Eduardo

    1992-01-01

    Ramsey-type results dictate that an optimal pattern of taxes must tax more heavily those goods which have a more inelastic(compensated)demand. Corlett and Hague (1953) investigated the optimal revenue-neutral movements from an initial uniform tax. They obtained that the goods (relatively) more complementary to the untaxed good (leisure)should see their taxes increased-which in a revenue-neutral seeting implies that the other goods see their taxes disminished. In a three-good economy (with on...

  17. Obras y noticias de Paris Bordón en España

    Directory of Open Access Journals (Sweden)

    Ruiz Manero, José María

    2004-06-01

    Full Text Available Si dejamos a un lado el «Retrato de una joven» de la Colección Thyssen-Bomemisza —desde hace poco en nuestro país y creído por la crítica de su mano— las otras dos obras que hasta el momento se han relacionado en España con Paris Bordón a mi juicio no le pertenecen; se trata de un supuesto «Autorretrato» (Museo del Prado y de una «Psiquis» (Palacio de Liria, considerada por Tormo obra notable. En cuanto al supuesto «Autorretrato» (L. 104 X 76 (Fig. 1, fueron Allende-Salazar y Sánchez Cantón quienes identificaron al retratado con París Bordón basándose en el parecido que sin duda tiene con…

  18. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  19. Los sistemas aluviales miocenos del borde noreste de la Cuenca de Madrid: sector Cifuentes - Las Inviernas (Guadalajara)

    OpenAIRE

    Alonso-Zarza, Ana María; Calvo Sorando, José Pedro; García del Cura, M. Ángeles; Hoyos,, M.

    1990-01-01

    El relleno mioceno en el borde noreste de la Cuenca de Madrid aparece constituido por varios complejos detríticos que se desarrollan a partir de los relieves mesozoicos de la Cordillera Ibérica, que constituye en este área el borde de la cuenca terciaria. Se definen esencialmente dos tipos de sistemas deposicionales dentro de las áreas marginales de la cuenca: abanicos aluviales y depósitos de ladera. Dentro de los primeros, que constituyen los elementos de mayor envergadura y los contribu...

  20. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  1. Fundamental limitations of cavity-assisted atom interferometry

    Science.gov (United States)

    Dovale-Álvarez, M.; Brown, D. D.; Jones, A. W.; Mow-Lowry, C. M.; Miao, H.; Freise, A.

    2017-11-01

    Atom interferometers employing optical cavities to enhance the beam splitter pulses promise significant advances in science and technology, notably for future gravitational wave detectors. Long cavities, on the scale of hundreds of meters, have been proposed in experiments aiming to observe gravitational waves with frequencies below 1 Hz, where laser interferometers, such as LIGO, have poor sensitivity. Alternatively, short cavities have also been proposed for enhancing the sensitivity of more portable atom interferometers. We explore the fundamental limitations of two-mirror cavities for atomic beam splitting, and establish upper bounds on the temperature of the atomic ensemble as a function of cavity length and three design parameters: the cavity g factor, the bandwidth, and the optical suppression factor of the first and second order spatial modes. A lower bound to the cavity bandwidth is found which avoids elongation of the interaction time and maximizes power enhancement. An upper limit to cavity length is found for symmetric two-mirror cavities, restricting the practicality of long baseline detectors. For shorter cavities, an upper limit on the beam size was derived from the geometrical stability of the cavity. These findings aim to aid the design of current and future cavity-assisted atom interferometers.

  2. Técnicas para revelar el borde de grano austenítico en aceros microaleados

    Directory of Open Access Journals (Sweden)

    García de Andrés, Carlos

    2001-08-01

    Full Text Available The prior austenite grain size (PAGS exerts an important influence on the microstructures forged by continuous cooling in the steel and on their mechanical properties. Since microalloyed steels have received considerable attention in the last years and enormous difficulties have been repetitively to reveal the austenite grain boundaries in these steels, this work analyzes the different techniques effective in that sense, which enable thus an accurate determination of the PAGS. This paper presents results obtained applying different conventional techniques such us chemical etching of quenched microstructures, the application of thermal cycles that enable the formation of phases around the prior austenite grain boundaries or oxidation etching which reveals the austenite grain boundaries by the preferential accumulation of oxides. Finally, an innovative and effective technique to reveal the prior austenite grain boundaries is presented. This technique is based on the preferential transfer of matter from the grain boundaries to the surrounding austenite by complicated mechanisms such as evaporation-condensation and volume and surface diffusion of atoms.

    El tamaño de grano austenítico (TGA tiene una gran influencia sobre la microestructura final y sobre las propiedades mecánicas de los productos obtenidos por transformación anisotérmica del acero. Debido a la considerable atención que se está prestando a los aceros microaleados en los últimos años y a las dificultades que se encuentran en muchos casos para poder revelar los bordes de grano austenítico de estos aceros, en este trabajo se han analizado las técnicas que lo hacen posible, permitiendo así la determinación fiable del TGA. En este sentido, se presentan los resultados obtenidos al aplicar aislada y combinadamente distintas técnicas tradicionales, como el ataque químico de microestructuras obtenidas directamente por temple, la aplicación de diferentes tipos de ciclos t

  3. First Ramsey-type mass measurements with ISOLTRAP and design studies of the new PENTATRAP project

    International Nuclear Information System (INIS)

    George, Sebastian

    2009-01-01

    The application of Penning traps for mass spectrometry has led to a major step in the mass precision. Consequently, atomic masses became more and more important as input parameters in different research fields. This exploitation is still ongoing in line with a steady development of Penning trap mass spectrometers to even higher accuracies. Penning trap mass spectrometry is based on the determination of the free cyclotron frequency ν c =qB/(2πm) of an ion confined in a homogeneous magnetic field B. In principle two different measurement techniques are available: By applying the destructive time-of-flight detection method (TOF-ICR) the trap content is lost after the measurement. Since it is a fast measurement method it is usually used for mass determinations of short-lived radionuclides, whereas a relative mass uncertainty δm/m of a few parts in 10 -9 is routinely reached even for nuclides with half-lives well below 500 ms. This has been achieved by the implementation of the Ramsey method in Penning trap mass spectrometry within this work. By contrast the non-destructive Fourier Transform-Ion Cyclotron Resonance detection method (FT-ICR) determines the frequency of the image current introduced in the trap electrodes by the ion motion. Thus, the ion remains in the trap and can be used for further measurement cycles. This method is often applied for measurements of stable nuclides reaching a relative mass uncertainty of less than δm/m=10 -11 . One part of this thesis was the application of time-separated oscillatory fields, called Ramsey method, for resonant ion motion excitation in order to improve the time-of-flight detection method. It was used to measure the nuclides 26,27 Al and 38,39 Ca with the Penning trap mass spectrometer ISOLTRAP. The mass values have been included in the ''Atomic Mass Evaluation'' (AME). Furthermore, the nuclides 26 Al and 38 Ca serve as input parameters for stringent tests of the Standard Model. Additionally, damping effects in a

  4. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    of frequency L . This problem can be found in many standard quantum optics textbooks e.g [6]. In textbooks , the two states are usually ground and...imprinted” on the atom. Taking into account all three laser pulses, the phase difference then becomes )2()(2)0( TtTtt   , (4a

  5. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  6. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  7. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  8. Manipulation of Zeeman coherence in solids at room temperature: Ramsey interference in the coherent-population-trapping spectrum of ruby

    International Nuclear Information System (INIS)

    Kolesov, Roman; Scully, Marlan O.; Kocharovskaya, Olga

    2006-01-01

    Coherent population trapping (CPT) in a three-level atomic medium pumped by two subsequent short optical pulses is considered under the condition of negligible population decay from the excited optical state. It is shown that the amount of atomic population transferred to the excited state by the combined action of the pulses strongly depends on the phase of the ground-state coherence excited by the first pulse at the arrival time of the second pulse. Oscillatory behavior of optical excitation efficiency on the time delay between the pulses is predicted. It is also shown that saturating optical pulses can produce population inversion in a resonantly pumped quasi-two-level system. A class of solid materials in which the predicted phenomena can be observed at room temperature is found. It includes some rare-earth and transition-metal doped dielectric crystals where Orbach relaxation between ground-state Zeeman states is suppressed: ruby, alexandrite, and several others. On the basis of the theoretical predictions, experimental observation of Ramsey fringes in CPT spectrum of ruby is reported

  9. The Ramsey method in high-precision mass spectrometry with Penning traps Experimental results

    CERN Document Server

    George, S; Herfurth, F; Herlert, A; Kretzschmar, M; Nagy, S; Schwarz, S; Schweikhard, L; Yazidjian, C

    2007-01-01

    The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times, pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at ISOLDE/CERN fo...

  10. Coherent matter wave optics on an atom chip

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Schumm, Thorsten

    2006-01-01

    Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip.......Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip....

  11. The three-grating Mach-Zehnder optical interferometer: a tutorial approach using particle optics

    International Nuclear Information System (INIS)

    Miffre, A; Delhuille, R; Viaris Lesegno, B de; Buechner, M; Rizzo, C; Vigue, J

    2002-01-01

    In this paper, we present a tutorial set-up based on an optical three-grating Mach-Zehnder interferometer. As this apparatus is very similar in its principle to the Mach-Zehnder interferometers used with matter waves (neutrons, atoms and molecules), it can be used to familiarize students with particle optics, and in our explanations, we use the complementary points of view of wave optics and particle optics. Finally, we have used this interferometer to measure the index of refraction of BK7 glass for red light at 633 nm, with a technique equivalent to the one used to measure the index of refraction of solid matter for thermal neutrons. The dimensions of this interferometer and its cost make it very interesting for laboratory courses and the experiment described here can be reproduced by students

  12. Construcción de hábitats sustentables en paisajes transformados de borde. Caso: Quiba-Arborizadora Alta, Bogotá-Colombia

    Directory of Open Access Journals (Sweden)

    Mayerling Sanabria Buitrago

    2018-01-01

    Full Text Available La investigación que da pie a este artículo se basa en el estudio de los modos de habitar en zonas de borde sometidas a notables transformaciones de paisaje. Esto con el fin de reconocer la viabilidad sistémica de un espacio de transición urbano-rural usando como herramienta metodológica un modelo relacional conceptual que permita identificar la complejidad de su situación. Con dicha implementación se pretende identificar de manera directa y ágil oportunidades alternas de intervención en este tipo de entornos que promuevan la construcción de hábitats de borde sustentable. En este proceso se describirá, entonces, un contexto particular de ocupación y uso del territorio en el sector Quiba-Arborizadora Alta, en la localidad de Ciudad Bolívar en Bogotá, Colombia; donde, con la ayuda de un modelo dinámico conceptual semi-cuantificado, se identificaron aquellas relaciones que se establecen de manera cotidiana en este sector de borde. Con dicho modelo se pudo señalar la posible tendencia de dicho paisaje complejo frente a cambios inducidos, lo que permitió distinguir aquellas acciones que fomentarían efectivamente cambios sustanciales hacia la sustentabilidad de las áreas de borde en grandes centros urbanos como la Ciudad de Bogotá.

  13. First Ramsey-type mass measurements with ISOLTRAP and design studies of the new PENTATRAP project

    Energy Technology Data Exchange (ETDEWEB)

    George, Sebastian

    2009-07-09

    The application of Penning traps for mass spectrometry has led to a major step in the mass precision. Consequently, atomic masses became more and more important as input parameters in different research fields. This exploitation is still ongoing in line with a steady development of Penning trap mass spectrometers to even higher accuracies. Penning trap mass spectrometry is based on the determination of the free cyclotron frequency {nu}{sub c}=qB/(2{pi}m) of an ion confined in a homogeneous magnetic field B. In principle two different measurement techniques are available: By applying the destructive time-of-flight detection method (TOF-ICR) the trap content is lost after the measurement. Since it is a fast measurement method it is usually used for mass determinations of short-lived radionuclides, whereas a relative mass uncertainty {delta}m/m of a few parts in 10{sup -9} is routinely reached even for nuclides with half-lives well below 500 ms. This has been achieved by the implementation of the Ramsey method in Penning trap mass spectrometry within this work. By contrast the non-destructive Fourier Transform-Ion Cyclotron Resonance detection method (FT-ICR) determines the frequency of the image current introduced in the trap electrodes by the ion motion. Thus, the ion remains in the trap and can be used for further measurement cycles. This method is often applied for measurements of stable nuclides reaching a relative mass uncertainty of less than {delta}m/m=10{sup -11}. One part of this thesis was the application of time-separated oscillatory fields, called Ramsey method, for resonant ion motion excitation in order to improve the time-of-flight detection method. It was used to measure the nuclides {sup 26,27}Al and {sup 38,39}Ca with the Penning trap mass spectrometer ISOLTRAP. The mass values have been included in the ''Atomic Mass Evaluation'' (AME). Furthermore, the nuclides {sup 26}Al and {sup 38}Ca serve as input parameters for stringent

  14. Digital holographic amplification of interferograms in the Michelson interferometer using the phase-only LCOS modulator

    Science.gov (United States)

    Balbekin, Nikolay; Petrov, Nikolay; Pul'kin, Sergey; Shoev, Vladislav; Sevryugin, Alexander; Tursunov, Ibrohim; Venediktov, Dmitrii; Venediktov, Vladimir

    2017-10-01

    The method of amplification of hologram was applied to the so-called Rozhdestvenskiy hooks, that were obtained in the Rozhdestvenskiy interferometer (Michelson interferometer, combined with a grating spectrograph). In such a device the absorption lines reveal themselves as specific "hooks", whose curvature provides the information about the atomic oscillator force. The holographic amplification "smoothes" the hooks and thus makes their analysis much simpler.

  15. X-ray film interferometer as an instrument for semiconductor heterostructure investigation

    CERN Document Server

    Vasilenko, A P; Nikitenko, S G; Fedorov, A A; Sokolov, L V; Nikiforov, A I; Trukhanov, E M

    2001-01-01

    Translation Moire pictures were first observed in interference topographs obtained using Synchrotron radiation. A film interferometer was prepared on the base of the GeSi heterosystem. Another film interferometer, which presents the heterosystem of epitaxial Si/ porous Si/ substrate Si, permitted us to observe a decrease in the bending of the film atomic planes at annealing of the heterosystem. This bend smoothing was calculated with the sensitivity better than 1 A with the use of X-ray interference topographs. Contrast peculiarities in Moire pictures are discussed for nondiffracting layers and crystal quantum wells.

  16. Middle-to-Upper Palaeolithic site formation processes at the Bordes-Fitte rockshelter (Central France)

    DEFF Research Database (Denmark)

    Aubry, Thierry; Dimuccio, Luca Antonio; Buylaert, Jan-Pieter

    2014-01-01

    . In this article we use the Middle and Early Upper Palaeolithic archaeo-stratigraphic record from the Bordes-Fitte rockshelter (les Roches d'Abilly site, Central France), a Bayesian analysis of the ages obtained by accelerator mass spectrometry radiocarbon on ultrafiltered collagen and by luminescence on quartz...

  17. Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Anderson, R. P. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); School of Physics, Monash University, Victoria 3800 (Australia)

    2011-08-15

    We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.

  18. Fox grape cv. Bordô (Vitis labrusca L. and grapevine cv. Chardonnay (Vitis vinifera L. cultivated in vitro under different carbohydrates, amino acids and 6-Benzylaminopurine levels

    Directory of Open Access Journals (Sweden)

    Dayse Cristina de Carvalho

    2013-04-01

    Full Text Available The aim of this work was to study the influence of sucrose and glucose, amino acids and BAP (6-Benzylaminopurine levels on in vitro shoot regeneration of fox grape cv. Bordô and grapevine cv. Chardonnay. The nodal segments from micropropagated material were used as explants and half-strength MS medium as the basal medium. Sucrose and glucose at 15, 30 and 45 g.L-1 were tested as a carbon source and the supplementation of adenine, asparagine, alanine, glycine, cysteine, glutamine, arginine was tested at 40 g.L-1. The BAP levels (1 and 5 μM in solid and double-phase media were evaluated and compared with a control medium without BAP. Bordô had best in vitro growth than Chardonnay. Sucrose was a better carbohydrate source than glucose for both the cultivars. Bordô and Chardonnay had different amino acid preferences for some parameters. In conclusion, for in vitro shoot regeneration from the nodal segments, culture on solid medium with 5 μM BAP, 15 g.L-1 sucrose for Bordô and 45 g.L-1 sucrose for Chardonnay showed better results. Similarly, the supplementation of 40 g.L-1 arginine for Bordô and 40 g.L-1 arginine or glycine for Chardonnay showed better results.

  19. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  20. Determine the need to research the time-related stability decay of bord and pillar systems

    CSIR Research Space (South Africa)

    Oberholzer, JW

    1997-07-01

    Full Text Available in decisions regarding research work that could be conducted to investigate the time related decay of bord and pillar workings. As the working consist of pillars of varying shapes and sizes the study concentrated mainly on the aspects of pillar decay...

  1. Precision Gravity Tests with Atom Interferometry in Space

    Energy Technology Data Exchange (ETDEWEB)

    Tino, G.M.; Sorrentino, F. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Aguilera, D. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Battelier, B.; Bertoldi, A. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Università di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bongs, K. [Midlands Ultracold Atom Research Centre School of Physics and Astronomy University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Bouyer, P. [Laboratoire Photonique, Numérique et Nanosciences, LP2N - UMR5298 - IOGS - CNRS Université Bordeaux 1, Bâtiment A30 351 cours de la Libération F-33405 TALENCE Cedex France (France); Braxmaier, C. [Institute of Space Systems, German Aerospace Center, Robert-Hooke-Strasse 7, 28359 Bremen (Germany); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Gaaloul, N. [Institute of Quantum Optics, Leibniz Universitaet Hannover, Welfengarten 1, D 30167 Hannover (Germany); Gürlebeck, N. [University of Bremen, Centre of Applied Space Technology and Microgravity (ZARM), Am Fallturm, D - 29359 Bremen (Germany); Hauth, M. [Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); and others

    2013-10-15

    Atom interferometry provides extremely sensitive and accurate tools for the measurement of inertial forces. Operation of atom interferometers in microgravity is expected to enhance the performance of such sensors. This paper presents two possible implementations of a dual {sup 85}Rb-{sup 87}Rb atom interferometer to perform differential gravity measurements in space, with the primary goal to test the Weak Equivalence Principle. The proposed scheme is in the framework of two projects of the European Space Agency, namely Q-WEP and STE-QUEST. The paper describes the baseline experimental configuration, and discusses the technology readiness, noise and error budget for the two proposed experiments.

  2. RESISTIVIDAD INDUCIDA PRO SCATTERING ELECTRON-SUPERFICIE RUGOSA Y SCATTERING ELECTRON BORDE DE GRANO EN PELICULAS DELGADAS DE ORO DEPOSITADAS SOBRE MICA

    OpenAIRE

    HENRIQUEZ CORREA, RICARDO ANDRES; HENRIQUEZ CORREA, RICARDO ANDRES

    2010-01-01

    En este trabajo se presenta un método experimental que permite separar el efecto de las colisiones electrón-borde de grano y electrón-superficie sobre la resistividad eléctrica en películas delgadas de oro evaporadas sobre mica. Cuando el efecto de las colisiones electrón-borde de grano es dominante, la resistividad no depende del espesor de la muestra, el camino libre medio a 4 K es el diámetro medio de grano, la dependencia de la resistividad con temperatura puede ser descrita mediant...

  3. RESISTIVIDAD INDUCIDA POR SCATTERING ELECTRON-SUPERFICIE RUGOSA Y SCATTERING ELECTRON BORDE DE GRANO EN PELICULAS DELGADAS DE ORO DEPOSITADAS SOBRE MICA

    OpenAIRE

    HENRIQUEZ CORREA; RICARDO ANDRES; HENRIQUEZ CORREA; RICARDO ANDRES

    2010-01-01

    En este trabajo se presenta un método experimental que permite separar el efecto de las colisiones electrón-borde de grano y electrón-superficie sobre la resistividad eléctrica en películas delgadas de oro evaporadas sobre mica. Cuando el efecto de las colisiones electrón-borde de grano es dominante, la resistividad no depende del espesor de la muestra, el camino libre medio a 4 K es el diámetro medio de grano, la dependencia de la resistividad con temperatura puede ser descrit...

  4. Japanese large-scale interferometers

    CERN Document Server

    Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K

    2002-01-01

    The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.

  5. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    Science.gov (United States)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  6. Fast phase stabilization of a low frequency beat note for atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Oh, E.; Horne, R. A.; Sackett, C. A., E-mail: sackett@virginia.edu [Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714 (United States)

    2016-06-15

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the {sup 87}Rb recoil frequency.

  7. Temporal characterization of short-pulse third-harmonic generation in an atomic gas by a transmission-grating Michelson interferometer.

    Science.gov (United States)

    Papadogiannis, N A; Nersisyan, G; Goulielmakis, E; Rakitzis, T P; Hertz, E; Charalambidis, D; Tsakiris, G D; Witte, K

    2002-09-01

    By use of a transmission-grating-based Michelson interferometer, second-order interferometric as well as intensity autocorrelation traces of the third harmonic of a Ti:sapphire 50-fs laser beam produced in Ar have been measured. The duration of the harmonic is found to be that expected from lowest-order perturbation theory. At this wavelength, the performance of the interferometer with respect to pulse-front distortion and dispersion is found to be satisfactory. This result is a first step toward the use of the interferometer for the temporal characterization of higher harmonics or harmonic superposition forming attosecond pulse trains.

  8. Special relativity and interferometers

    Science.gov (United States)

    Han, D.; Kim, Y. S.

    1988-01-01

    A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.

  9. A One-Dimensional Quantum Interface between a Few Atoms and Weak Light

    DEFF Research Database (Denmark)

    Béguin, Jean-Baptiste Sylvain

    Quantum interfaces between light and the collective degrees of freedom of an ensemble of identical atoms have been proposed as a valuable and promising alternative to cavity quantum electrodynamics enhanced interaction with single particles. Many features of the quantum world (e. g. multipartite...... entanglement, squeezed states), which are central to the future developments of Quantum Information Science and Metrology, can be explored with mesoscopic collective states of atoms. An efficient quantum interface needs a high optical depth for the atomic ensemble and a measurement sensitivity limited by both...... the intrinsic quantum noise of light and the quantum projection noise of atoms. This was achieved in the past in a free space optical dipole trap ensemble of Nat ∼ 10^6 atoms, which triggered the operation of a collective Ramsey atomic clock assisted by entanglement. We have characterized and prepared non...

  10. Entanglement of atomic beams: Tests of complementarity and other applications

    International Nuclear Information System (INIS)

    Bogar, P.; Bergou, J.A.

    1996-01-01

    It is shown that distinct atomic beams can be entangled when they interact with quantum superpositions of macroscopically separated micromaser fields. Experimentally feasible tests of complementarity are proposed, detecting Ramsey interference (or not) in one and open-quote open-quote Welcher Weg close-quote close-quote information (or not) in the other entangled beam. Available information and fringe contrast can be manipulated using classical and quantum fields. The open-quote open-quote quantum eraser close-quote close-quote is realized in the former case, while it is only a special feature in the latter one. Other applications of entangled atoms are also suggested. copyright 1996 The American Physical Society

  11. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  12. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  13. A universal matter-wave interferometer with optical gratings

    International Nuclear Information System (INIS)

    Haslinger, P.

    2013-01-01

    Quantum mechanics was initially developed to describe microscopic processes but scientists quickly came to far-reaching predictions, such as the wave-particle dualism of matter [1,2] or the entanglement of particles [3,4], which often contradict our classical intuition. However, not even a single experiment could falsify any theoretical prediction of quantum mechanics. Today it is the most tested theory in physics. The question of the range and limits of its validity arises. To which extend can systems be macroscopic, complex and massive while retaining their quantum features? Is there a spatial and temporal restriction to the separation of wave functions? Which decoherence mechanisms force systems at macroscopic scales to appear classical? During my thesis I focused theoretically as well as experimentally on matter-wave interferometry with atoms, molecules and molecular clusters. During my 3 month exchange stay in the group of Prof. Müller at the University of California at Berkeley we have carried out an experiment to show the largest space-time area interferometer at that time [5]. Here, matter waves of caesium atoms have been coherently split and recombined up to 8.8 mm and for 500 ms. Key to run this experiment was to compensate for earth´s rotation. Without this compensation the Coriolis force would have prevented the split matter-waves from a precise recombination. The main subject of my thesis at the University of Vienna was the experimental realization of the (first) all Optical Time-domain Ionizing Matter-wave (OTIMA) interferometer [6,7]. It consists of three pulsed nanosecond standing light waves which act on the particles with a well-defined timing sequence. Interference in the time-domain is independent of the particles’ velocities and of their de Broglie wavelengths. This has been demonstrated earlier for atoms by addressing laser light to certain atomic levels [8]. In contrast to that, the OTIMA interferometer uses optical ionization gratings [9

  14. Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.

    Science.gov (United States)

    Xu, Yande; Sasaki, Osami; Suzuki, Takamasa

    2003-10-01

    We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.

  15. Self-calibrating interferometer

    International Nuclear Information System (INIS)

    Nussmeier, T.A.

    1982-01-01

    A self-calibrating interferometer is disclosed which forms therein a pair of Michelson interferometers with one beam length of each Michelson interferometer being controlled by a common phase shifter. The transfer function measured from the phase shifter to either of a pair of detectors is sinusoidal with a full cycle for each half wavelength of phase shifter travel. The phase difference between these two sinusoidal detector outputs represents the optical phase difference between a path of known distance and a path of unknown distance

  16. Enhancement of fiber-optic low-coherence Fabry-Pérot interferometer with ZnO ALD films

    Science.gov (United States)

    Hirsch, Marzena; Listewnik, Paulina; Jedrzejewska-Szczerska, Małgorzata

    2018-04-01

    In this paper investigation of the enhanced fiber-optic low coherence Fabry-Pérot interferometer with zinc oxide (ZnO) film deposited by atomic layer deposition (ALD) was presented. Model of the interferometer, which was constructed of single-mode optical fiber with applied ZnO ALD films, was built. The interferometer was also examined by means of experiment. Measurements were performed for both reflective and transmission modes, using wavelengths of 1300 nm and 1500 nm. The measurements with the air cavity showed the best performance in terms of a visibility of the interference signal can be achieved for small cavity lengths ( 50μm) in both configurations. Combined with the enhancement of reflectance of the interferometer mirrors due to the ALD film, proposed construction could be successfully applied in refractive index (RI) sensor that can operate with improved visibility of the signal even in 1.3-1.5 RI range as well as with small volume samples, as shown by the modeling.

  17. Dissipative optomechanics in a Michelson-Sagnac interferometer.

    Science.gov (United States)

    Xuereb, André; Schnabel, Roman; Hammerer, Klemens

    2011-11-18

    Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

  18. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    Science.gov (United States)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  19. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  20. Quantum measurements of atoms using cavity QED

    International Nuclear Information System (INIS)

    Dada, Adetunmise C.; Andersson, Erika; Jones, Martin L.; Kendon, Vivien M.; Everitt, Mark S.

    2011-01-01

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  1. Initial wavefunction dependence on atom interferometry phases

    NARCIS (Netherlands)

    Jansen, M.A.H.M.; Leeuwen, van K.A.H.

    2008-01-01

    In this paper we present a mathematical procedure to analytically calculate the output signal of a pulsed atom interferometer in an inertial field. Using the wellknown ABCD¿ method we take into account the full wave dynamics of the atoms with a first order treatment of the wavefront distortion by

  2. Fidelity of quantum interferometers

    International Nuclear Information System (INIS)

    Bahder, Thomas B.; Lopata, Paul A.

    2006-01-01

    For a generic interferometer, the conditional probability density distribution p(φ|m), for the phase φ given measurement outcome m will generally have multiple peaks. Therefore, the phase sensitivity of an interferometer cannot be adequately characterized by the standard deviation, such as Δφ∼1/√(N) (the standard limit), or Δφ∼1/N (the Heisenberg limit). We propose an alternative measure of phase sensitivity--the fidelity of an interferometer--defined as the Shannon mutual information between the phase shift φ and the measurement outcomes m. As an example application of interferometer fidelity, we consider a generic optical Mach-Zehnder interferometer, used as a sensor of a classical field. For the case where there exists no a priori information on the phase shift, we find the surprising result that maximally entangled state input leads to a lower fidelity than Fock state input, for the same photon number

  3. Precision measurement with atom interferometry

    International Nuclear Information System (INIS)

    Wang Jin

    2015-01-01

    Development of atom interferometry and its application in precision measurement are reviewed in this paper. The principle, features and the implementation of atom interferometers are introduced, the recent progress of precision measurement with atom interferometry, including determination of gravitational constant and fine structure constant, measurement of gravity, gravity gradient and rotation, test of weak equivalence principle, proposal of gravitational wave detection, and measurement of quadratic Zeeman shift are reviewed in detail. Determination of gravitational redshift, new definition of kilogram, and measurement of weak force with atom interferometry are also briefly introduced. (topical review)

  4. Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps

    International Nuclear Information System (INIS)

    Lesanovsky, Igor; Klitzing, Wolf von

    2007-01-01

    We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers

  5. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  6. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  7. Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps

    International Nuclear Information System (INIS)

    Yavuz, D.D.; Kulatunga, P.B.; Urban, E.; Johnson, T.A.; Proite, N.; Henage, T.; Walker, T.G.; Saffman, M.

    2006-01-01

    We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87 Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 μm at the level of 10 -3 . Ramsey spectroscopy is used to measure a dephasing time of 870 μs, which is ≅5000 times longer than the time for a π/2 pulse

  8. Concept of an ionizing time-domain matter-wave interferometer

    OpenAIRE

    Nimmrichter, Stefan; Haslinger, Philipp; Hornberger, Klaus; Arndt, Markus

    2011-01-01

    We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Optical gratings may have periods as ...

  9. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  10. Noncombatant Imnmunity and Military Necessity: Ethical Conflict in the Just War Ethics of William V. O'Brien and Paul Ramsey

    National Research Council Canada - National Science Library

    Gibbs, Jonathan

    1997-01-01

    William V. O'Brien and Paul Ramsey are two modern just war theorists who have opposite views on the relationship between the jus in bello principle of discrimination and the international law principle of military necessity...

  11. The Ramsey numbers of fans versus a complete graph of order five

    Directory of Open Access Journals (Sweden)

    Yanbo Zhang

    2014-04-01

    Full Text Available For two given graphs $F$ and $H$, the Ramsey number $R(F,H$ is the smallest integer $N$ such that for any graph $G$ of order $N$, either $G$ contains $F$ or the complement of $G$ contains $H$. Let $F_l$ denote a fan of order $2l+1$, which is $l$ triangles sharing exactly one vertex, and $K_n$ a complete graph of order $n$. Surahmat et al. conjectured that $R(F_l,K_n=2l(n-1+1$ for $l\\geq n\\geq 5$. In this paper, we show that the conjecture is true for n=5.

  12. Phase Locking a Clock Oscillator to a Coherent Atomic Ensemble

    Directory of Open Access Journals (Sweden)

    R. Kohlhaas

    2015-04-01

    Full Text Available The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval [-π/2,π/2]; going beyond it introduces an ambiguity in the readout, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence-preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks limited by local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.

  13. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  14. Identificación de patrones espaciales del borde urbano mediante mapas Auto-Organizados de la centralidad de la red viaria.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Abarca-Alvarez

    2017-11-01

    Full Text Available La caracterización morfológica del borde urbano es un ejercicio que reviste un interés especial porque, por una parte, ayuda a entender los crecimientos urbanos que tienen lugar en las zonas periféricas y, por otra, permite descifrar las claves de las relaciones de continuidad o discontinuidad que existen entre la ciudad y su entorno. En este contexto, son muchos los enfoques desde el análisis. En este artículo, se exploran en concreto las posibilidades que ofrece la utilización de mapas auto-organizados, elaborados a partir de los resultados de la aplicación de medidas de centralidad de la red viaria mixta que forman los sistemas de calles, los viarios metropolitanos y los caminos agrarios. La aplicación de diferentes medidas de centralidad en una red viaria mixta, supone en sí un ejercicio innovador, ya que, normalmente, los análisis de centralidad se aplican en el ámbito más puramente intraurbanos. La base espacial de los perfiles obtenidos en las series se puede comparar con la naturaleza del propio borde. La Metodología propuesta se ha testeado en la ciudad de Granada (España, específicamente, sobre el borde de contacto de la ciudad con el entorno de la Vega de Granada, un paisaje agrario singular ligado al Río Genil.

  15. Development of an atomic clock on an atom chip: Optimisation of the coherence time and preliminary characterisation

    International Nuclear Information System (INIS)

    Lacroute, Clement

    2010-01-01

    We describe the construction and preliminary characterization of an atomic clock on an atom chip. A sample of magnetically trapped 87 Rb atoms is cooled below 1 μK, close to Bose- Einstein condensation temperature. The trapped states |F = 1; m F = -1> and |F = 2;m F = 1> define our two-photon clock transition. Atoms are trapped around a field B0 = 3.23 G, where the clock frequency is first-order insensitive to magnetic field fluctuations. We have designed an atom chip that includes a microwave coplanar waveguide which drives the 6.835 GHz transition. The whole clock cycle is performed in the vicinity of the chip surface, making the physics package compact (5 cm) 3 . We first describe the experimental setup of the clock, and the optical bench that has been developed and characterized during this thesis. We then give the results obtained for atom cooling, which led to obtaining a 3 10 4 atoms Bose-Einstein condensate. We finally present the results obtained by Ramsey spectroscopy of the clock transition. We measure coherence times exceeding 10 seconds with our setup, dominated by atom losses. A preliminary measurement shows that the clock relative frequency stability is of 6 10 -12 at 1 s, limited by technical noise. Our goal is to reach a stability in the low 10 -13 at 1 s, i.e. better than commercial clocks and competitive with today's best compact clocks. (author)

  16. The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA

    Science.gov (United States)

    Heather Sander; Stephen Polasky; Robert. Haight

    2010-01-01

    Urban tree cover benefits communities. These benefits' economic values, however, are poorly recognized and often ignored by landowners and planners. We use hedonic property price modeling to estimate urban tree cover's value in Dakota and Ramsey Counties, MN, USA, predicting housing value as a function of structural, neighborhood, and environmental variables...

  17. Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions

    International Nuclear Information System (INIS)

    Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg

    2010-01-01

    Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.

  18. Extreme sub-wavelength atom localization via coherent population trapping

    OpenAIRE

    Agarwal, Girish S.; Kapale, Kishore T.

    2005-01-01

    We demonstrate an atom localization scheme based on monitoring of the atomic coherences. We consider atomic transitions in a Lambda configuration where the control field is a standing wave field. The probe field and the control field produce coherence between the two ground states. We show that this coherence has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of the atomic coherence would localize the atom. Interestingly enough the role of the cavity ...

  19. Remote state preparation through hyperentangled atomic states

    Science.gov (United States)

    Nawaz, Mehwish; ul-Islam, Rameez-; Ikram, Manzoor

    2018-04-01

    Hyperentangled states have enhanced channel capacity in quantum processing and have yielded` evident increased communication speed in quantum informatics as a consequence of excessively high information content coded over each quantum entity. In the present article, we intend to demonstrate this fact by utilizing atomic states simultaneously entangled both in internal as well as external degrees of freedom, i.e. the de Broglie motion for remote state preparation (RSP). The results clearly demonstrate that we can efficiently communicate two bit information while manipulating only a single quantum subsystem. The states are prepared and manipulated using atomic Bragg diffraction as well as Ramsey interferometry, both of which are now considered as standard, state of the art tools based on cavity quantum electrodynamics. Since atomic Bragg diffraction is a large interaction time regime and produces spatially well separated, decoherence resistant outputs, the schematics presented here for the RSP offer important perspectives on efficient detection as well as unambiguous information coding and readout. The article summarizes the experimental feasibility of the proposal, culminating with a brief discussion.

  20. Atomic Gravitational Wave Interferometric Sensors (AGIS) in Space

    Science.gov (United States)

    Sugarbaker, Alex; Hogan, Jason; Johnson, David; Dickerson, Susannah; Kovachy, Tim; Chiow, Sheng-Wey; Kasevich, Mark

    2012-06-01

    Atom interferometers have the potential to make sensitive gravitational wave detectors, which would reinforce our fundamental understanding of gravity and provide a new means of observing the universe. We focus here on the AGIS-LEO proposal [1]. Gravitational waves can be observed by comparing a pair of atom interferometers separated over an extended baseline. The mission would offer a strain sensitivity that would provide access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Many of the techniques relevant to an AGIS mission can be investigated in the Stanford 10-m drop tower.[4pt] [1] J.M. Hogan, et al., Gen. Rel. Grav. 43, 1953-2009 (2011).

  1. Standing waves in fiber-optic interferometers

    NARCIS (Netherlands)

    De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.

    2011-01-01

    A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac

  2. High-Flux Ultracold-Atom Chip Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ColdQuanta's ultimate objective is to produce a compact, turnkey, ultracold-atom system specifically designed for performing interferometry with Bose-Einstein...

  3. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  4. Turbulence-Free Double-slit Interferometer

    Science.gov (United States)

    Smith, Thomas A.; Shih, Yanhua

    2018-02-01

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  5. Lasers, light-atom interaction

    International Nuclear Information System (INIS)

    Cagnac, B.; Faroux, J.P.

    2002-01-01

    This book has a double purpose: first to explain in a way as simple as possible the interaction processes occurring between atoms and light waves, and secondly to help any scientist that needs further information to improve his knowledge of lasers. The content of this book has been parted into 3 more or less independent sections: 1) effect of an electromagnetic field on a 2-quantum state system, 2) operating mode of lasers in the framework of transition probabilities, and 3) calculation of the emitted wave. Einstein's phenomenological hypothesis has led to probability equations called rate equations, these equations do not give a true representation of the interaction process at the scale of the atom but this representation appears to be true on an average over a large population of atoms. Only quantum mechanics can describe accurately the light-atom interaction but at the cost of a far higher complexity. In the first part of the book quantum mechanics is introduced and applied under 2 simplifying hypothesis: -) the atom system has only 2 non-degenerate states and -) the intensity of the light wave is high enough to involve a large population of photons. Under these hypothesis, Rabi oscillations, Ramsey pattern and the splitting of Autler-Townes levels are explained. The second part is dedicated to the phenomenological model of Einstein that gives good results collectively. In the third part of the book, Maxwell equations are used to compute field spatial distribution that are currently found in experiments involving lasers. (A.C.)

  6. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  7. Michelson-type Radio Interferometer for University Education

    Science.gov (United States)

    Koda, Jin; Barrett, J. W.; Hasegawa, T.; Hayashi, M.; Shafto, G.; Slechta, J.

    2013-01-01

    Despite the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the futue generation of astronomers. Students need hands-on experiments to fully understand the basic concepts of interferometry. Professional interferometers are often too complicated for education, and it is difficult to guarantee access for classes in a university course. We have built a simple and affordable radio interferometer for education and used it for an undergraduate and graduate laboratory project. This interferometer's design is based on the Michelson & Peace's stellar optical interferometer, but operates at a radio wavelength using a commercial broadcast satellite dish and receiver. Two side mirrors are surfaced with kitchen aluminum foil and slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, a nice daytime experiment which can be carried out even under a marginal weather (i.e., partial cloud coverage). Commercial broadcast satellites provide convenient point sources. By comparing the Sun and satellites, students can learn how an interferometer works and resolves structures in the sky.

  8. Características de qualidade do vinho ‘Bordô’ elaborado com diferentes processos de vinificação e períodos de maceração = Characteristics of quality of ‘Bordô’ wine elabored with different vinification process and diferent periods of maceration

    Directory of Open Access Journals (Sweden)

    Marcelo Barbosa Malgarim

    2006-07-01

    Full Text Available O estudo objetivou avaliar as características químicas e sensoriais do vinho tinto de mesa ‘Bordô’ produzido em diferentes processos de vinificação e períodos de maceração. Após a colheita, as uvas permaneceram dois dias na temperatura ambiente para estabilização e concentração de açúcares. Posteriormente foram elaborados três vinhos constituindo os tratamentos: T1 vinho elaborado pelo processo de microvinificação industrial, com quatro dias de maceração; T2 vinhoelaborado pelo processo de microvinificação industrial, com sete dias de maceração; e T3 vinho elaborado pelo processo de vinificação artesanal, com sete dias de maceração. Nos mostos dos tratamentos 1 e 2 adicionou-se K2S2O5 na dosagem de 6 g 100 L-1 de mosto e também sacarose na proporção de 3,56 kg 100 L-1 de mosto, já no mosto do tratamento 3 adicionou-se sacarose na proporção de 2,5 kg 100 L-1 de mosto. Após o período de estabilização dos vinhos foram avaliadas asseguintes variáveis: coloração, graduação alcoólica, pH, acidez total titulável, acidez volátil, extrato seco, sólidos solúveis totais, turbidez e características sensoriais. O vinho tinto de mesa ‘Bordô’elaborado pelo processo de vinificação artesanal apresentou característica gustativa amadeirada e levemente avinagrada. A acidez foi maior e a intensidade corante menor no vinho elaborado peloprocesso de microvinificação com quatro dias de maceração. Conclui-se que o vinho ‘Bordô’ elaborado pelo processo de microvinificação com sete dias de maceração apresentou as melhores características químicas e sensoriais.This study aimed to evaluate the vinification process and period of maceration in the chemical and sensorial characteristics of the ‘Bordô’ wine. After harvest, the grapes were kept under environment temperature for two days for stabilization and concentration of sugars. Three wines were elaborated according to the followingtreatments: T

  9. Ultracold atoms for precision measurement of fundamental physical quantities

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Cooling and trapping of neutral atoms has been one of the most active fields of research in physics in recent years. Several methods were demonstrated to reach temperatures as low as a few nanokelvin allowing, for example, the investigation of quantum degenerate gases. The ability to control the quantum degrees of freedom of atoms opens the way to applications for precision measurement of fundamental physical quantities. Experiments in progress, planned or being considered using new quantum devices based on ultracold atoms, namely atom interferometers and atomic clocks, will be discussed.

  10. Atomic interactions in precision interferometry using Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Jamison, Alan O.; Gupta, Subhadeep; Kutz, J. Nathan

    2011-01-01

    We present theoretical tools for predicting and reducing the effects of atomic interactions in Bose-Einstein condensate (BEC) interferometry experiments. To address mean-field shifts during free propagation, we derive a robust scaling solution that reduces the three-dimensional Gross-Pitaevskii equation to a set of three simple differential equations valid for any interaction strength. To model the other common components of a BEC interferometer--condensate splitting, manipulation, and recombination--we generalize the slowly varying envelope reduction, providing both analytic handles and dramatically improved simulations. Applying these tools to a BEC interferometer to measure the fine structure constant, α[S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002)], we find agreement with the results of the original experiment and demonstrate that atomic interactions do not preclude measurement to better than part-per-billion accuracy, even for atomic species with relatively large scattering lengths. These tools help make BEC interferometry a viable choice for a broad class of precision measurements.

  11. Liquid-helium-cooled Michelson interferometer

    Science.gov (United States)

    Augason, G. C.; Young, N.

    1972-01-01

    Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.

  12. Naturally stable Sagnac-Michelson nonlinear interferometer.

    Science.gov (United States)

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  13. Light-pulse atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  14. Mariner 9 Michelson interferometer.

    Science.gov (United States)

    Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.

    1972-01-01

    The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.

  15. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  16. Lockheed Solar Observatory and the Discovery of Moreton-Ramsey Waves

    Science.gov (United States)

    Tarbell, Theodore D.

    2014-06-01

    Moreton Waves are high-speed disturbances seen traveling away from large solar flares in H-alpha movies of the solar chromosphere. They were discovered by the observer Harry Ramsey in the late 1950s, and then published and publicized by the director Gail Moreton, both of the Lockheed Solar Observatory in the Hollywood Hills of Southern California. These efforts established the scientific reputation and secured continuing funding of the observatory, whose present-day successor is the Lockheed Martin Solar and Astrophysics Lab in Palo Alto. Moreton waves are rare, and there was limited interest in them until the EIT instrument on SOHO began seeing large numbers of similar waves in the corona in the late 1990s. The exact relation between the two observations is still a research topic today. This talk will describe some of the history of the observatory and the discovery and early interpretation of the waves.

  17. Bordes urbanos metropolitanos en Venezuela ante nuevas leyes y proyectos inmobiliarios

    Directory of Open Access Journals (Sweden)

    Nubis Pulido

    2014-01-01

    Full Text Available En Venezuela, a los tradicionales factores motivadores de la dinámica de expansión metropolitana, hoy se incorporan nuevas decisiones de políticas emanadas como leyes desde el gobierno central. La implementación de estas leyes contribuye a acelerar la ampliación de los bordes metropolitanos, reforzando, paradójicamente, un proceso improvisado y desarticulado de anexión de nuevos desarrollos populares, sin infraestructura, equipamiento y servicios necesarios para garantizar la calidad de vida urbana, y a expensas de espacios ecológicamente valiosos y vulnerables. Estas áreas constituyen emergencias territoriales que ameritan atención particular e inmediata, porque constituyen las formas territoriales de mayores y más recientes cambios y las más susceptibles a intervenciones con fines de ordenamiento territorial.

  18. Gamma signatures of the C-BORD Tagged Neutron Inspection System

    Directory of Open Access Journals (Sweden)

    Sardet A.

    2018-01-01

    Full Text Available In the frame of C-BORD project (H2020 program of the EU, a Rapidly relocatable Tagged Neutron Inspection System (RRTNIS is being developed to non-intrusively detect explosives, chemical threats, and other illicit goods in cargo containers. Material identification is performed through gamma spectroscopy, using twenty NaI detectors and four LaBr3 detectors, to determine the different elements composing the inspected item from their specific gamma signatures induced by fast neutrons. This is performed using an unfolding algorithm to decompose the energy spectrum of a suspect item, selected by X-ray radiography and on which the RRTNIS inspection is focused, on a database of pure element gamma signatures. This paper reports on simulated signatures for the NaI and LaBr3 detectors, constructed using the MCNP6 code. First experimental spectra of a few elements of interest are also presented.

  19. UN OUTIL D’AIDE Á LA GESTION DE L’ANGUILLE : LE TABLEAU DE BORD ANGUILLLE DU BASSIN LOIRE

    Directory of Open Access Journals (Sweden)

    BAISEZ A.

    2005-10-01

    Full Text Available L’anguille européenne (Anguilla anguilla, L. est longtemps apparue comme une espèce commune, représentant une composante majeure des milieux littoraux et des eaux continentales. La prise de conscience de la diminution de son abondance est réelle et engendre l’émergence de processus de gestion. Ce constat situe l’enjeu du Tableau de Bord Anguille du Bassin Loire mis en place en avril 2002 sous l’égide du COmité de GEstion des POissons MIgrateurs du Bassin de la Loire, des Côtiers Vendéens et de la Sèvre Niortaise. Son objectif in fine est de contribuer à une gestion et à un développement durable de l’espèce et de ses habitats. Il vise à surveiller les caractéristiques des stocks locaux présents et des habitats disponibles au moyen d’une collecte régulière et objective de données synthétisées sous forme d’indicateurs de population et de milieu. Le concept, le fonctionnement actuel et les applications de ce tableau de bord sont ici présentés.

  20. Optical configurations for the Virgo interferometer

    International Nuclear Information System (INIS)

    Hello, P.

    1993-01-01

    We present, in this paper, the potential optical configurations for the VIRGO interferometer, as well as for other similar antennas (LIGO...), and the implications for its sensitivity for the detection of gravitational waves (GW's). The dual recycling arrangement may particularly relax the severe optical specifications required in a power recycling interferometer. Finally, a new idea to improve the symmetry of the interferometer is presented. (author). 11 refs., 2 figs

  1. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  2. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    Science.gov (United States)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  3. Manipulating Atoms with Light Achievements and Perspectives

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    During the last few decades spectacular progress has been achieved in the control of atomic systems by light. It will be shown how it is possible to use the basic conservation laws in atom-photon interactions for polarizing atoms, for trapping them, for cooling them to extremely low temperatures, in the microkelvin, and even in the nanokelvin range. A review will be given of recent advances in this field and of new applications, including atomic clocks with very high relative stability and accuracy, atomic interferometers allowing precise measurement of rotation speeds and gravitational fields, the realization of new states of matter such as Bose-Einstein condensates, matter waves and atom lasers, ultracold molecules. New perspectives opened by these results will be also briefly discussed.

  4. Caracterización de bordes de bosque altoandino e implicaciones para la restauración ecológica en la Reserva Forestal de Cogua (Colombia

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available Se caracterizaron tres tipos de borde de bosque altoandino: borde de Chusquea scandens, paramizado y antiguo; este último denominado así por presentar un estado sucesional más avanzado. Se seleccionaron dos parches de bosque por cada tipo de borde, para analizar 13 criterios entre fisiográficos, microclimáticos, estructura y composición de la vegetación. Tres de los criterios (pendiente, forma y área del parche son poco determinantes del tipo de hábitat de borde, los demás están estrechamente relacionados con las condiciones del microambiente y éste a su vez con la estructura y composición de la vegetación, confiriendo características particulares a cada hábitat de borde. El borde paramizado muestra la menor capacidad de autorregulación ambiental estando más expuesto a la fluctuación en estas variables, debido a su exposición directa a la acción del viento y a la pérdida de los estratos arbóreos más altos (entre 10 y 15 m, por lo que requiere la mayor intervención para su restauración. El borde de chusque es el más resguardado al actuar esta especie como una barrera protectora, que sin embargo debe ser controlada para promover la expansión del bosque como habita en el borde antiguo, el cual presenta una capacidad reguladora intermedia entre los otros dos.Characterization of High Andean forest edges and implications for their ecological restoration (Colombia. The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia: 1 edge of Chusquea scandens, 2 "paramizado", and 3 old edge, characterized for being in a later successional state. Two forest patches were

  5. Atom interferometry in space: Thermal management and magnetic shielding

    Energy Technology Data Exchange (ETDEWEB)

    Milke, Alexander; Kubelka-Lange, André; Gürlebeck, Norman, E-mail: norman.guerlebeck@zarm.uni-bremen.de; Rievers, Benny; Herrmann, Sven [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); Schuldt, Thilo [DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)

    2014-08-15

    Atom interferometry is an exciting tool to probe fundamental physics. It is considered especially apt to test the universality of free fall by using two different sorts of atoms. The increasing sensitivity required for this kind of experiment sets severe requirements on its environments, instrument control, and systematic effects. This can partially be mitigated by going to space as was proposed, for example, in the Spacetime Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission. However, the requirements on the instrument are still very challenging. For example, the specifications of the STE-QUEST mission imply that the Feshbach coils of the atom interferometer are allowed to change their radius only by about 260 nm or 2.6 × 10{sup −4} % due to thermal expansion although they consume an average power of 22 W. Also Earth's magnetic field has to be suppressed by a factor of 10{sup 5}. We show in this article that with the right design such thermal and magnetic requirements can indeed be met and that these are not an impediment for the exciting physics possible with atom interferometers in space.

  6. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  7. Dynamics of infinite-dimensional groups the Ramsey-Dvoretzky-Milman phenomenon

    CERN Document Server

    Pestov, Vladimir

    2006-01-01

    The "infinite-dimensional groups" in the title refer to unitary groups of Hilbert spaces, the infinite symmetric group, groups of homeomorphisms of manifolds, groups of transformations of measure spaces, etc. The book presents an approach to the study of such groups based on ideas from geometric functional analysis and from exploring the interplay between dynamical properties of those groups, combinatorial Ramsey-type theorems, and the phenomenon of concentration of measure. The dynamics of infinite-dimensional groups is very much unlike that of locally compact groups. For instance, every locally compact group acts freely on a suitable compact space (Veech). By contrast, a 1983 result by Gromov and Milman states that whenever the unitary group of a separable Hilbert space continuously acts on a compact space, it has a common fixed point. In the book, this new fast-growing theory is built strictly from well-understood examples up. The book has no close counterpart and is based on recent research articles. At t...

  8. Magdalena Ridge Observatory Interferometer: Status Update

    National Research Council Canada - National Science Library

    Creech-Eakman, M. J; Bakker, E. J; Buscher, D. F; Coleman, T. A; Haniff, C. A; Jurgenson, C. A; Klinglesmith, III, D. A; Parameswariah, C. B; Romero, V. D; Shtromberg, A. V; Young, J. S

    2006-01-01

    The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m...

  9. Two-path plasmonic interferometer with integrated detector

    Science.gov (United States)

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  10. Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer

    International Nuclear Information System (INIS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-01-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry–Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed. (paper)

  11. Un método algoritmo para el cálculo del número baricéntrico de ramsey para el grafo estrella

    Directory of Open Access Journals (Sweden)

    Felicia Villarroel

    2018-04-01

    Full Text Available Let G be an abelian finite group and H be a graph. A sequence in G, with length al least two, is barycentric if it contains an ”average” element of its terms. Within the context of these sequences, one defines the barycentric Ramsey number, denoted by BR(H, G, as the smallest positive integer t such that any coloration of the edges of the complete graph Kt with elements of G produces a barycentric copy of the graph H. In this work we present a method based on the combinatorial theory and on the definition of barycentric Ramsey for calculating exact values of the above metioned constant, for some small graphs where the order is less than or equal to 8. We will exemplify the case where H is the star graph K1,k, and where G is the cyclical group Zn, with 3 ≤ n ≤ 11 and 3 ≤ k ≤ n.

  12. Matterwave interferometric velocimetry of cold Rb atoms

    Science.gov (United States)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  13. Two-wavelength HeNe laser interferometer

    International Nuclear Information System (INIS)

    Granneman, E.H.A.

    1981-01-01

    This paper presents an interferometer set-up in which two wavelengths are used simultaneously. This enables one to determine separately the phase shifts caused by changes in plasma density and by mechanical vibrations of the interferometer structure

  14. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  15. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  16. Dispersion cancellation in a triple Laue interferometer

    International Nuclear Information System (INIS)

    Lemmel, Hartmut

    2014-01-01

    The concept of dispersion cancellation has been established in light optics to improve the resolution of interferometric measurements on dispersive media. Odd order dispersion cancellation allows to measure phase shifts without defocusing the interferometer due to wave packet displacements, while even order dispersion cancellation allows to measure time lags without losing resolution due to wave packet spreading. We report that either type of dispersion cancellation can be realized very easily in a triple Laue interferometer. Such interferometers are Mach–Zehnder interferometers based on Bragg diffraction, and are commonly used for neutrons and x-rays. Although the first x-ray interferometer was built nearly five decades ago, the feature of dispersion cancellation hasn't been recognized so far because the concept was hardly known in the neutron and x-ray community. However, it explains right away the surprising decoupling of phase shift and spatial displacement that we have discovered recently in neutron interferometry (Lemmel and Wagh 2010 Phys. Rev. A 82 033626). Furthermore, this article might inspire the light optics community to consider whether a triple Laue interferometer for laser light would be useful and feasible. We explain how dispersion cancellation works in neutron interferometry, and we describe the setup rigorously by solving the Schrödinger equation and by calculating the path integral. We point out, that the latter has to be evaluated with special care since in our setup the beam trajectory moves with respect to the crystal lattice of the interferometer. (paper)

  17. Stratigraphic and technological evidence from the middle palaeolithic-Châtelperronian-Aurignacian record at the Bordes-Fitte rockshelter (Roches d’Abilly site, Central France)

    DEFF Research Database (Denmark)

    Aubry, Thierry; Dimuccio, Luca Antonio; Almeida, Miguel

    2012-01-01

    This paper presents a geoarchaeological study of Middle and Upper Palaeolithic (Châtelperronian, Aurignacian and Solutrean) occupations preserved at the Bordes-Fitte rockshelter in Central France. The lithostratigraphic sequence is composed of near-surface sedimentary facies with vertical and lat...

  18. Subwavelength atom localization via coherent population trapping

    International Nuclear Information System (INIS)

    Agarwal, G S; Kapale, K T

    2006-01-01

    We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization

  19. Development of stable monolithic wide-field Michelson interferometers.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian; Chen, Zhiping

    2011-07-20

    Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations. © 2011 Optical Society of America

  20. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  1. A nanofabricated, monolithic, path-separated electron interferometer

    OpenAIRE

    Agarwal, Akshay; Kim, Chung-Soo; Hobbs, Richard; Dyck, Dirk van; Berggren, Karl K.

    2017-01-01

    Progress in nanofabrication technology has enabled the development of numerous electron optic elements for enhancing image contrast and manipulating electron wave functions. Here, we describe a modular, self-aligned, amplitude-division electron interferometer in a conventional transmission electron microscope. The interferometer consists of two 45-nm-thick silicon layers separated by 20??m. This interferometer is fabricated from a single-crystal silicon cantilever on a transmission electron m...

  2. A Michelson interferometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S.S.; Steinhauser, K.A.; Berger, L.

    1979-01-01

    We propose a neutron Michelson Interferometer installed within a focussing 'gravity diffractometer' for ultracold neutrons. In this arrangement the expected interference pattern depends only on the well-defined vertical component of neutron wavevector. Possible applications of such an interferometer are discussed. (orig.)

  3. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    Science.gov (United States)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  4. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  5. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming -Yee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  6. A quantum trampoline for ultra-cold atoms

    Science.gov (United States)

    Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.

    2010-01-01

    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.

  7. 2-mm microwave interferometer

    International Nuclear Information System (INIS)

    Futch, A.H.; Mortensen, W.K.

    1977-01-01

    A 2-mm microwave interferometer has been developed, and phase shift measurements have been made on the Baseball II experiment. The interferometer system employs a 140-GHz receiver for double down conversion of the plasma signal to a 60-MHz, IF frequency. The 140-GHz references signal is also down-converted and compared with the plasma signal to provide the desired phase change of the signal passing through the plasma. A feedback voltage from a 60-MHz discriminator to a voltage-controlled oscillator in the receiver provides frequency stability of the 60-MHz IF signals

  8. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    Science.gov (United States)

    Kimble, H. J.; Levin, Yuri; Matsko, Andrey B.; Thorne, Kip S.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Pérot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e-2R=0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ɛ*=0.01) and using an input laser power Io in units of that required to reach the SQL (the planned LIGO-II power, ISQL), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡(Sh)/(SSQLh) and with the following corresponding increase V=1/μ3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input-μ~=(e-2R)~=0.3 and V~=1/0.33~=30 using Io/ISQL=1. Variational-output-μ~=ɛ1/4*~=0.3 and V~=30 but only if the optics can handle a ten times larger power: Io/ISQL~=1/(ɛ*)=10

  9. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

    International Nuclear Information System (INIS)

    Kimble, H.J.; Levin, Yuri; Thorne, Kip S.; Matsko, Andrey B.; Vyatchanin, Sergey P.

    2002-01-01

    The LIGO-II gravitational-wave interferometers (ca. 2006-2008) are designed to have sensitivities near the standard quantum limit (SQL) in the vicinity of 100 Hz. This paper describes and analyzes possible designs for subsequent LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a squeezed-input interferometer (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a variational-output interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a squeezed-variational interferometer with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology (power squeeze factor e -2R =0.1 for input squeezed vacuum and net fractional loss of signal power in arm cavities and output optical train ε * =0.01) and using an input laser power I o in units of that required to reach the SQL (the planned LIGO-II power, I SQL ), the three types of interferometer could beat the amplitude SQL at 100 Hz by the following amounts μ≡√(S h )/√(S h SQL ) and with the following corresponding increase V=1/μ 3 in the volume of the universe that can be searched for a given noncosmological source: Squeezed input--μ≅√(e -2R )≅0.3 and V≅1/0.3 3 ≅30 using I o /I SQL =1. Variational-output--μ≅ε * 1/4 ≅0.3 and V≅30 but only if the optics can handle a ten

  10. A generalized, periodic nonlinearity-reduced interferometer for straightness measurements

    International Nuclear Information System (INIS)

    Wu Chienming

    2008-01-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. However, an interferometer with a displacement measurement accuracy of less than 1 nm is required in nanometrology and in fundamental scientific research. To meet this requirement, a generalized, periodic nonlinearity-reduced interferometer, based on three construction principles has been developed for straightness measurements. These three construction principles have resulted in an interferometer with a highly stable design with reduced periodic nonlinearity. Verifications by a straightness interferometer have demonstrated that the periodic nonlinearity was less than 40 pm. The results also demonstrate that the interferometer design is capable of subnanometer accuracy and is useful in nanometrology

  11. Theological reflections on donation after circulatory death: the wisdom of Paul Ramsey and Moshe Feinstein.

    Science.gov (United States)

    Jotkowitz, A

    2008-10-01

    Due to the worldwide shortage of organs for transplantation, there has been an increased use of organs obtained after circulatory death alone. A protocol for this procedure has recently been approved by a major transplant consortium. This development raises serious moral and ethical concerns. Two renowned theologians of the previous generation, Paul Ramsey and Moshe Feinstein, wrote extensively on the ethical issues relating to transplantation, and their work has much relevance to current moral dilemmas. Their writings relating to definition of death, organ transplantation and the care of the terminally ill are briefly presented, and their potential application to the moral problem of organ donation after circulatory death is discussed.

  12. Unequal-Arms Michelson Interferometers

    Science.gov (United States)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  13. High accuracy step gauge interferometer

    Science.gov (United States)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  14. Michelson interferometer for measuring temperature

    Science.gov (United States)

    Xie, Dong; Xu, Chunling; Wang, An Min

    2017-09-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displaying Kerr nonlinearity. We obtain the analytical equations and numerically calculate the precision with parameters within the reach of current technology, proving that the precision of temperature can be greatly enhanced by using a nonlinear medium. Our results show that one can create an accurate thermometer by measuring the photons in the Michelson interferometer, with no need to directly measure the population of thermalized sample.

  15. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  16. A momentum filter for atomic gas

    International Nuclear Information System (INIS)

    Xiong, Wei; Zhou, Xiaoji; Yue, Xuguang; Zhai, Yueyang; Chen, Xuzong

    2013-01-01

    We propose and demonstrate a momentum filter for atomic gas-based on a designed Talbot–Lau interferometer. It consists of two identical optical standing-wave pulses separated by a delay equal to odd multiples of the half Talbot time. The one-dimensional momentum width along the long direction of a cigar-shaped condensate is rapidly and greatly purified to a minimum, which corresponds to the ground state energy of the confining trap in our experiment. We find good agreement between theoretical analysis and experimental results. The filter is also effective for non-condensed cold atoms and could be applied widely. (paper)

  17. L'impact de l'utilisation du tableau de bord de gestion sur la satisfaction des dirigeants

    OpenAIRE

    Zouhour , Châari; Leclère , Didier

    2008-01-01

    International audience; This paper presents the results of a study undertaken with 39 managers concerning the place taken in the decision making by information provided by the tableau de bord. These principal results show also the place of the unformal sources of information.; Cette communication présente les résultats d'une enquête effectuée auprès de 39 managers afin de cerner la place occupée dans la prise de décision par les informations diffusées par la fonction contrôle de gestion et no...

  18. Computerized lateral-shear interferometer

    Science.gov (United States)

    Hasegan, Sorin A.; Jianu, Angela; Vlad, Valentin I.

    1998-07-01

    A lateral-shear interferometer, coupled with a computer for laser wavefront analysis, is described. A CCD camera is used to transfer the fringe images through a frame-grabber into a PC. 3D phase maps are obtained by fringe pattern processing using a new algorithm for direct spatial reconstruction of the optical phase. The program describes phase maps by Zernike polynomials yielding an analytical description of the wavefront aberration. A compact lateral-shear interferometer has been built using a laser diode as light source, a CCD camera and a rechargeable battery supply, which allows measurements in-situ, if necessary.

  19. Estudio del comportamiento de una sustancia de cambio de fase con condición de borde convectiva

    OpenAIRE

    Lozano, Ricardo; Villa Saravia, Luis Tadeo; Bouciguez, Angélica Carmen

    2016-01-01

    El proceso de fusión - solidificación, ha sido abordado con anterioridad, procurando soluciones a problemas de difusión con cambio de fase, cuando estando inicialmente solidas a la temperatura de fusión son sometidas a un flujo de calor por uno de sus laterales. Un flujo interesante es el convectivo, pues es la forma más realista de entrada o extracción de calor a la sustancia de cambio de fase. Dada esta condición de borde resulta interesante observar el comportamiento de la sustancia, cuand...

  20. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  1. Using the Talbot_Lau_interferometer_parameters Spreadsheet

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-04

    Talbot-Lau interferometers allow incoherent X-ray sources to be used for phase contrast imaging. A spreadsheet for exploring the parameter space of Talbot and Talbot-Lau interferometers has been assembled. This spreadsheet allows the user to examine the consequences of choosing phase grating pitch, source energy, and source location on the overall geometry of a Talbot or Talbot-Lau X-ray interferometer. For the X-ray energies required to penetrate scanned luggage the spacing between gratings is large enough that the mechanical tolerances for amplitude grating positioning are unlikely to be met.

  2. Fizeau plasma interferometer

    International Nuclear Information System (INIS)

    Frank, A.M.

    1980-01-01

    This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful

  3. Testing single-grain quartz OSL methods using sediment samples with independent age control from the Bordes-Fitte rockshelter (Roches d'Abilly site, Central France)

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Murray, Andrew Sean; Buylaert, Jan-Pieter

    2016-01-01

    We present quartz single-grain dose distributions for four well-bleached and unmixed sediment samples with independent age control (22–48 ka), from the archaeologically important Bordes-Fitte rockshelter at Roches d'Abilly, France. This site has previously been dated using 14C AMS dating and stan...

  4. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  5. Heterodyne displacement interferometer, insensitive for input polarization

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error

  6. Applications of atom interferometry - from ground to space

    Science.gov (United States)

    Schubert, Christian; Rasel, Ernst Maria; Gaaloul, Naceur; Ertmer, Wolfgang

    2016-07-01

    Atom interferometry is utilized for the measurement of rotations [1], accelerations [2] and for tests of fundamental physics [3]. In these devices, three laser light pulses separated by a free evolution time coherently manipulate the matter waves which resembles the Mach-Zehnder geometry in optics. Atom gravimeters demonstrated an accuracy of few microgal [2,4], and atom gradiometers showed a noise floor of 30 E Hz^{-1/2} [5]. Further enhancements of atom interferometers are anticipated by the integration of novel source concepts providing ultracold atoms, extending the free fall time of the atoms, and enhanced techniques for coherent manipulation. Sources providing Bose-Einstein condensates recently demontrated a flux compatible with precision experiments [6]. All of these aspects are studied in the transportable quantum gravimeter QG-1 and the very long baseline atom interferometry teststand in Hannover [7] with the goal of surpassing the microgal regime. Going beyond ground based setups, the QUANTUS collaboration exploits the unique features of a microgravity environment in drop tower experiments [8] and in a sounding rocket mission. The payloads are compact and robust atom optics experiments based on atom chips [6], enabling technology for transportable sensors on ground as a byproduct. More prominently, they are pathfinders for proposed satellite missions as tests of the universality of free fall [9] and gradiometry based on atom interferometers [10]. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] PRL 114 063002 2015 [2] Nature 400 849 1999 [3] PRL 112 203002 2014 [4] NJP 13 065026 2011 [5] PRA 65 033608 2002 [6] NJP 17 065001 2015 [7] NJP 17 035011 2015 [8] PRL 110 093602 2013 [9

  7. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  8. Step index fibre using laser interferometer

    Indian Academy of Sciences (India)

    2014-03-04

    Mar 4, 2014 ... We propose the following model to describe the cladded fibre placed inside a liquid wedge interferometer. For simplicity, we assume square interferometer plates of dimensions 2a,. 2b and refractive index μL. The fibre radius is rf and the core radius is rc with skin and core indices μs, μc respectively. Hence ...

  9. Algorithms for Unequal-Arm Michelson Interferometers

    Science.gov (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  10. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  11. Experimental implementation of phase locking in a nonlinear interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Marino, A. M. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, Oklahoma 73019 (United States)

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  12. LTP interferometer-noise sources and performance

    International Nuclear Information System (INIS)

    Robertson, David; Killow, Christian; Ward, Harry; Hough, Jim; Heinzel, Gerhard; Garcia, Antonio; Wand, Vinzenz; Johann, Ulrich; Braxmaier, Claus

    2005-01-01

    The LISA Technology Package (LTP) uses laser interferometry to measure the changes in relative displacement between two inertial test masses. The goals of the mission require a displacement measuring precision of 10 pm Hz -1/2 at frequencies in the 3-30 mHz band. We report on progress with a prototype LTP interferometer optical bench in which fused silica mirrors and beamsplitters are fixed to a ZERODUR (registered) substrate using hydroxide catalysis bonding to form a rigid interferometer. The couplings to displacement noise of this interferometer of two expected noise sources-laser frequency noise and ambient temperature fluctuations-have been investigated, and an additional, unexpected, noise source has been identified. The additional noise is due to small amounts of signal at the heterodyne frequency arriving at the photodiode preamplifiers with a phase that quasistatically changes with respect to the optical signal. The phase shift is caused by differential changes in the external optical paths the beams travel before they reach the rigid interferometer. Two different external path length stabilization systems have been demonstrated and these allowed the performance of the overall system to meet the LTP displacement noise requirement

  13. Michelson Interferometer

    Science.gov (United States)

    Rogers, Ryan

    2007-01-01

    The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.

  14. Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope

    Science.gov (United States)

    2018-01-01

    suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704...spin-exchange relaxation in a finite magnetic field. We operated the gyroscope using a Ramsey-type interrogation sequence with nuclear spin precession...shift by a factor of 105. Here we use the approach of a Ramsey clock interrogation scheme, where the optical pumping, free evolution, and measurement

  15. The effect of rotations on Michelson interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Maraner, Paolo, E-mail: pmaraner@unibz.it

    2014-11-15

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.

  16. The effect of rotations on Michelson interferometers

    International Nuclear Information System (INIS)

    Maraner, Paolo

    2014-01-01

    In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations

  17. Turismo y Migraciones. Relaciones en los Bordes del Sistema Mundo

    Directory of Open Access Journals (Sweden)

    Ana Alcazar Campos

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE MicrosoftInternetExplorer4 Este artículo pretende reflexionar acerca de las teorías de la movilidad y de cómo, mediante su uso, es posible conectar el turismo y los movimientos migratorios. Para esto, se opta por el área geográfica caribeña. En concreto, a partir de trabajo de campo etnográfico realizado en Cuba, analizamos lo que hemos denominado ‘contactos en los bordes del sistema mundo’. En este análisis vemos cómo la globalización neoliberal traza un ‘mapa de movilidad’ que determina rutas móviles desiguales entre los países del denominado Primer Mundo y los países del sur global. Así mismo, se pone de manifiesto cómo turismo y migración se relacionan, al funcionar el primero, a nivel simbólico y material, como la llave para concretar la migración, mediante estrategias diferenciadas por género; y el segundo como promotor de viajes que son considerados de turismo.

  18. Six-channel adaptive fibre-optic interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Bezruk, M N; Kamshilin, A A; Kulchin, Yurii N

    2012-06-30

    We have proposed and analysed a scheme for the multiplexing of orthogonal dynamic holograms in photorefractive crystals which ensures almost zero cross talk between the holographic channels upon phase demodulation. A six-channel adaptive fibre-optic interferometer was built, and the detection limit for small phase fluctuations in the channels of the interferometer was determined to be 2.1 Multiplication-Sign 10{sup -8} rad W{sup 1/2} Hz{sup -1/2}. The channel multiplexing capacity of the interferometer was estimated. The formation of 70 channels such that their optical fields completely overlap in the crystal reduces the relative detection limit in the working channel by just 10 %. We found conditions under which the maximum cross talk between the channels was within the intrinsic noise level in the channels (-47 dB).

  19. Vibrometer based on a self-mixing effect interferometer

    International Nuclear Information System (INIS)

    Marti-Lopez, Luis; Gonzalez-Penna, R.; Martinez-Celorio, R. A.

    2009-01-01

    We outline the basic principles of the self-mixing effect and present the design and construction of an interferometer based on this phenomenon. It differs from the previously reported in the literature by the use of two photodetectors, located at different arms of the interferometer. This feature allows widening the arsenal of strategies for the digital processing of the signal. The interferometer is used as vibrometer for the characterization of professional loudspeakers. Experimental results are presented as an illustration. (Author)

  20. Special topics in infrared interferometry. [Michelson interferometer development

    Science.gov (United States)

    Hanel, R. A.

    1985-01-01

    Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.

  1. Evanescent light-wave atom mirrors, resonators, waveguides, and traps

    International Nuclear Information System (INIS)

    Dowling, J.P.; Gea-Banacloche, J.

    1996-01-01

    For many years, it has been known that light can be used to trap and manipulate small dielectric particles and atoms. In particular, the intense coherent light of lasers has been used to cool neutral atoms down to the micro-Kelvin and now even the nano-Kelvin regimes. At such low temperatures, the de Broglie wavelike character of the atoms becomes pronounced, making it necessary to treat the atoms as wave phenomena. To this end, the study of atom optics has recently developed, in which atom optical elements are fabricated in order to manipulate atoms, while utilizing and preserving the coherence and superposition properties inherent in their wavelike propagation. For example, there has been a concerted effort to study theoretically and produce experimentally the atom optic analogs of photonic optical elements, such as atom beam splitters, atom diffraction gratings, atom lenses, atom interferometers, and-last but not least-atom mirrors. It is light-induced atom mirrors, and their application to making atom resonators, waveguides, and traps, that we shall focus on in this chapter. 133 refs., 26 figs., 1 tab

  2. Superconducting on-chip microwave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.

  3. A double-pass interferometer for measurement of dimensional changes

    International Nuclear Information System (INIS)

    Ren, Dongmei; Lawton, K M; Miller, J A

    2008-01-01

    A double-pass interferometer was developed for measuring dimensional changes of materials in a nanoscale absolute interferometric dilatometer. This interferometer realized the double-ended measurement of a sample using a single-detection double-pass interference system. The nearly balanced design, in which the measurement beam and the reference beam have equal optical path lengths except for the path difference caused by the sample itself, makes this interferometer have high stability, which is verified by the measurement of a quasi-zero-length sample. The preliminary experiments and uncertainty analysis show that this interferometer should be able to measure dimensional changes with characteristic uncertainty at the nanometer level

  4. An absolute distance interferometer with two external cavity diode lasers

    International Nuclear Information System (INIS)

    Hartmann, L; Meiners-Hagen, K; Abou-Zeid, A

    2008-01-01

    An absolute interferometer for length measurements in the range of several metres has been developed. The use of two external cavity diode lasers allows the implementation of a two-step procedure which combines the length measurement with a variable synthetic wavelength and its interpolation with a fixed synthetic wavelength. This synthetic wavelength is obtained at ≈42 µm by a modulation-free stabilization of both lasers to Doppler-reduced rubidium absorption lines. A stable reference interferometer is used as length standard. Different contributions to the total measurement uncertainty are discussed. It is shown that the measurement uncertainty can considerably be reduced by correcting the influence of vibrations on the measurement result and by applying linear regression to the quadrature signals of the absolute interferometer and the reference interferometer. The comparison of the absolute interferometer with a counting interferometer for distances up to 2 m results in a linearity error of 0.4 µm in good agreement with an estimation of the measurement uncertainty

  5. Dual-recycled cavity-enhanced Michelson interferometer for gravitational-wave detection.

    Science.gov (United States)

    Müller, Guido; Delker, Tom; Tanner, David B; Reitze, David

    2003-03-01

    The baseline design for an Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) is a dual-recycled Michelson interferometer with cavities in each of the Michelson interferometer arms. We describe one possible length-sensing and control scheme for such a dual-recycled, cavity-enhanced Michelson interferometer. We discuss the principles of this scheme and derive the first-order sensing signals. We also present a successful experimental verification of our length-sensing system using a prototype tabletop interferometer. Our results demonstrate the robustness of the scheme against deviations from the idealized design. We also identify potential weaknesses and discuss possible improvements. These results as well as other benchtop experiments that we present form the basis for a sensing and control scheme for Advanced LIGO.

  6. Polydyne displacement interferometer using frequency-modulated light

    Science.gov (United States)

    Arablu, Masoud; Smith, Stuart T.

    2018-05-01

    A radio-frequency Frequency-Modulated (FM) signal is used to diffract a He-Ne laser beam through an Acousto-Optic Modulator (AOM). Due to the modulation of the FM signal, the measured spectra of the diffracted beams comprise a series of phase-synchronized harmonics that have exact integer frequency separation. The first diffraction side-beam emerging from the AOM is selected by a slit to be used in a polydyne displacement interferometer in a Michelson interferometer topology. The displacement measurement is derived from the phase measurement of selected modulation harmonic pairs. Individual harmonic frequency amplitudes are measured using discrete Fourier transform applied to the signal from a single photodetector. Phase signals are derived from the changes in the amplitudes of different harmonic pairs (typically odd-even pairs) with the phase being extracted using a standard quadrature method. In this study, two different modulation frequencies of 5 and 10 kHz are used at different modulation depths. The measured displacements by different harmonic pairs are compared with a commercial heterodyne interferometer being used as a reference for these studies. Measurements obtained from five different harmonic pairs when the moving mirror of the interferometer is scanned over ranges up to 10 μm all show differences of less than 50 nm from the reference interferometer measurements. A drift test was also used to evaluate the differences between the polydyne interferometer and reference measurements that had different optical path lengths of approximately 25 mm and 50 mm, respectively. The drift test results indicate that about half of the differences can be attributed to temperature, pressure, and humidity variations. Other influences include Abbe and thermal expansion effects. Rough magnitude estimates using simple models for these two effects can account for remaining observed deviations.

  7. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  8. Semi-classical description of matter wave interferometers and hybrid quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mathias

    2015-02-16

    This work considers the semi-classical description of two applications involving cold atoms. This is, on one hand, the behavior of a BOSE-EINSTEIN condensate in hybrid systems, i.e. in contact with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution of phase space distributions in matter wave interferometers utilizing ray tracing methods was discussed. For describing condensates in hybrid systems, one can map the GROSS-PITAEVSKII equation, a differential equation in the complex-valued macroscopic wave function, onto a system of two differential equations in density and phase. Neglecting quantum dispersion, one obtains a semiclassical description which is easily modified to incorporate interactions between condensate and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-POLDER forces) and loss of condensed atoms due to inelastic collisions at the surface of the object. Our model exhibited the excitation of sound waves that are triggered by the object's rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads to a shrinking of the bulk condensate. We showed that the total number of condensed particles is decreasing potentially in the beginning (large condensate, strong mean field interaction), while it decays exponentially in the long-time limit (small condensate, mean field inetraction negligible). For representing the physics of matter wave interferometers in phase space, we utilized the WIGNER function. In semi-classical approximation, which again consists in ignoring the quantum dispersion, this representation is subject to the same equation of motion as classical phase space distributions, i.e. the LIOUVILLE equation. This implies that time evolution of theWIGNER function follows a phase space flow that consists of classical trajectories (classical transport). This means, for calculating a time-evolved distribution, one has know the initial

  9. Parallel Wavefront Analysis for a 4D Interferometer

    Science.gov (United States)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  10. Comparison of the performance of the next generation of optical interferometers

    Science.gov (United States)

    Pisani, Marco; Yacoot, Andrew; Balling, Petr; Bancone, Nicola; Birlikseven, Cengiz; Çelik, Mehmet; Flügge, Jens; Hamid, Ramiz; Köchert, Paul; Kren, Petr; Kuetgens, Ulrich; Lassila, Antti; Bartolo Picotto, Gian; Şahin, Ersoy; Seppä, Jeremias; Tedaldi, Matthew; Weichert, Christoph

    2012-08-01

    Six European National Measurement Institutes (NMIs) have joined forces within the European Metrology Research Programme funded project NANOTRACE to develop the next generation of optical interferometers having a target uncertainty of 10 pm. These are needed for NMIs to provide improved traceable dimensional metrology that can be disseminated to the wider nanotechnology community, thereby supporting the growth in nanotechnology. Several approaches were followed in order to develop the interferometers. This paper briefly describes the different interferometers developed by the various partners and presents the results of a comparison of performance of the optical interferometers using an x-ray interferometer to generate traceable reference displacements.

  11. Development of holographic interferometer for non-destructive testing

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Sung Hoon; Shin, Jang Soo; Cho, Jai Wan; Kim, Duk Hyeon; Hong, Suck Kyoung; Lee, Sang Kil; Kim, Heon Jun; Park, Chang Jin

    1993-02-01

    This project sets the goal at development of holographic interferometer. In this interferometer, fringe localization and imaging of object are considered. And collimated beam and wedge are used for the high-speed recording and formation of carrier fringes, respectively. With this real-time holographic interferometer, not only experiments were conducted on natural convection and flame jet, but also on high speed flow phenomena such as shock wave propagation. Visualization of high-speed flow is recorded in high-speed camera with framing rate ∼ 35000f/s. And to analyze axis symmetric phase object, analysis program was developed. (Author)

  12. Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    Science.gov (United States)

    Williams, Jason; D'Incao, Jose; Chiow, Sheng-Wey; Yu, Nan

    2015-05-01

    Precision atom interferometers (AI) in space promise exciting technical capabilities for fundamental physics research, with proposals including unprecedented tests of the weak equivalence principle, precision measurements of the fine structure and gravitational constants, and detection of gravity waves and dark energy. Consequently, multiple AI-based missions have been proposed to NASA, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory (CAL) onboard the International Space Station. In this talk, I will discuss our plans and preparation at JPL for the proposed flight experiments to use the CAL facility to study the leading-order systematics expected to corrupt future high-precision measurements of fundamental physics with AIs in microgravity. The project centers on the physics of pairwise interactions and molecular dynamics in these quantum systems as a means to overcome uncontrolled shifts associated with the gravity gradient and few-particle collisions. We will further utilize the CAL AI for proof-of-principle tests of systematic mitigation and phase-readout techniques for use in the next-generation of precision metrology experiments based on AIs in microgravity. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. A Michelson interferometer for X-rays and thermal neutrons

    International Nuclear Information System (INIS)

    Appel, A.

    1992-01-01

    The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.) [de

  14. Amplitude modulation of atomic wave functions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The major theoretical advance has been to show that one can modulate Rydberg wave functions using either of two methods: (1) the amplitude modulation technique which depends on autoionization to deplete part of the wave function, or (2) a phase modulation method, which uses a change in the core potential to create a localized phase shift in the wave function. Essentially, these two methods can both be seen as using the core potential to change the Rydberg wave function, using the imaginary part of the potential to do amplitude modulation, or using the real part of the potential to do phase modulation. This work will be published as the authors acquire experimental results which show the differences between the two methods. One of the results of this theoretical study is that the initial proposal to study Barium 6snd states had a significant flaw. Neither the autoionization time, nor the quantum defect shifts are very large in these cases. This means that the modulation is relatively small. This shows itself primarily in the difficulty of seeing significant population redistribution into different 6snd states. The authors intend to correct this in the next funding cycle either: (a) by using the more quickly decaying Ba 6pnf states to modulate 6snd states, or (b) by using Sr 5 snd states, as outlined in this report. Their first, low power experiments are complete. These experiments have used two pulses to do a temporal version of the Ramsey separated oscillatory fields excitation. The two pulses are generated by passing the single pulse through a Michelson-Morley interferometer, which is computer controlled to sweep one arm through 2.5 {micro}m in steps of 10 nm. The second pulse`s excitation interferes with that of the first pulse, and so the total excitation has a sinusoidal variation (with a time period equal to the optical period) on top of a constant background. The amplitude of the total variation should decay at half of the rate decay rate of the autoionizing

  15. Analysis of a four-mirror-cavity enhanced Michelson interferometer.

    Science.gov (United States)

    Thüring, André; Lück, Harald; Danzmann, Karsten

    2005-12-01

    We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.

  16. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    International Nuclear Information System (INIS)

    Weichert, C; Köchert, P; Köning, R; Flügge, J; Andreas, B; Kuetgens, U; Yacoot, A

    2012-01-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction. (paper)

  17. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    Science.gov (United States)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  18. Quantum Spin Transport in Mesoscopic Interferometer

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  19. Talbot Carpet Simulation for X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngju; Oh, Ohsung; Jeong, Hanseong; Kim, Jeongho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Kim, Jongyul; Moon, Myungkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, Talbot carpet simulator has been developed to visualize the X-ray grating interference patterns in grating interferometer. We have simulated X-ray interference for a variety of simulations and demonstrated a few examples in this summary. Grating interferometer produces interference of X-ray called Talbot pattern with gratings manufactured in micro scale. Talbot pattern is self-images of phase grating which develops interference as beam splitter that is one of gratings consisted of interferometer. As the other gratings, there are source grating makes coherence and analyze grating is used to analyze interference onto detector. Talbot carpet has been studied as the beam behavior which is distinguished with common X-ray imaging systems. It is helpful to understand grating interferometer and possible to expect beams' oscillation for designing theoretically. We confirm pattern has periodicity produced by interference after pi and pi/2 phase grating and changes in the perpendicular direction to entrance face according to phase objects.

  20. Very small beam-size measurement by a reflective synchrotron radiation interferometer

    Directory of Open Access Journals (Sweden)

    T. Naito

    2006-12-01

    Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7   μm and the estimated vertical emittance was 0.97×10^{-11}   m.

  1. Local readout enhancement for detuned signal-recycling interferometers

    International Nuclear Information System (INIS)

    Rehbein, Henning; Mueller-Ebhardt, Helge; Schnabel, Roman; Danzmann, Karsten; Somiya, Kentaro; Chen Yanbei; Li Chao

    2007-01-01

    High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector's sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease

  2. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  3. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  4. CO laser interferometer for REB-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Burmasov, V S; Kruglyakov, E P [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-12-31

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF{sub 2} prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at {lambda} 5.34 {mu}m coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser ({lambda} = 3.39 {mu}m) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs.

  5. Michelson and His Interferometer

    Science.gov (United States)

    Shankland, Robert S.

    1974-01-01

    Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)

  6. A combined scanning tunnelling microscope and x-ray interferometer

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich; Koenders, Ludger; Weimann, Thomas

    2001-10-01

    A monolithic x-ray interferometer made from silicon and a scanning tunnelling microscope have been combined and used to calibrate grating structures with periodicities of 100 nm or less. The x-ray interferometer is used as a translation stage which moves in discrete steps of 0.192 nm, the lattice spacing of the silicon (220) planes. Hence, movements are traceable to the definition of the metre and the nonlinearity associated with the optical interferometers used to measure displacement in more conventional metrological scanning probe microscopes (MSPMs) removed.

  7. SHORT COMMUNICATION: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    Science.gov (United States)

    Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L.

    2010-08-01

    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atom gravimeter and FG5#220 of Leibniz Universität of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participate in the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of (4.3 ± 6.4) µGal.

  8. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    Science.gov (United States)

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  9. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis, Alfredo; Rivas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  10. A study of microwave interferometers for electron density measurements in REB-plasma experiments

    International Nuclear Information System (INIS)

    Saxena, A.C.; Paithankar, A.S.; Iyyengar, S.K.; Rohatgi, V.K.

    1981-01-01

    In order to select a suitable microwave interferometer for electron density measurements in Relativistic Electron Beam (REB)-Plasma Experiments, a study has been carried out of four types of interferometers, viz. simple interferometer, standing-wave interferometer, frequency and phase modulated interferometers. Various direct reading interferometers which give a voltage proportional to the phase shift, are also discussed. Systems have been analysed in terms of time resolution, phase sensitivity, system stability, ease of measurement etc. Theoretical and experimental limitations of various systems have been indicated. Summary of the various systems is presented in a table to aid the experimentalist to select the most appropriate system for the prevailina experimental conditions. Finally, an attempt has been made to find out the interferometer system best suited for REB-Plasma Experiments. (author)

  11. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  12. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    CERN Document Server

    Miyakawa, O; Heinzel, G; Kawamura, S

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect.

  13. Development of a suspended-mass RSE interferometer using third harmonic demodulation

    International Nuclear Information System (INIS)

    Miyakawa, Osamu; Somiya, Kentaro; Heinzel, Gerhard; Kawamura, Seiji

    2002-01-01

    The most important point of a resonant sideband extraction (RSE) experiment is the signal extraction for control of the interferometer. We proposed a new signal-sensing method for the single modulation scheme. This method uses the third harmonic demodulation (THD) with a particular asymmetry in the interferometer which makes the third-order sidebands vanish at the detecting port. We have successfully locked a suspended-mass RSE interferometer for the first time by the THD method. The transfer function of the interferometer was measured to confirm the RSE effect

  14. Optical diameters of stars measured with the Mt. Wilson Mark III interferometer

    International Nuclear Information System (INIS)

    Simon, R.S.; Mozurkewich, D.; Johnston, K.J.; Gaume, R.; Hutter, D.J.; Bowers, P.F.; Colavita, M.M.; Shao, M.

    1990-01-01

    Reliable stellar angular diameters can now be determined using the Mark III Optical Interferometer located on Mt. Wilson, California. The Mark III is a Michelson Interferometer capable of measuring the interferometric fringe visibility for stars using interferometer baselines varying from 3 to 31.5 meters in length. Angular diameters measured with the Mark III Optical Interferometer are presented for 12 stars at wavelengths of 450 and 800 nm. 10 refs

  15. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  16. Levitation of atoms by interference and Two-dimensional transport in the presence of disorder

    International Nuclear Information System (INIS)

    Robert De Saint Vincent, M.

    2010-12-01

    This thesis presents two experiments of atomic physics, realized on an ultra-cold sample of Rubidium 87. We tackle the topics of atom interferometry, and of the transport properties in disordered medium. In the first experiment, we demonstrate a technique for suspending atoms against gravity, which could help increase the interrogation time of atom interferometers. The atoms are periodically diffracted on a light standing wave, used as Bragg mirror to reflect the atoms and thus prevent their fall. However, when getting close to the thin grating limit, the matter wave-packet is split into many trajectories that periodically recombine. We show that the interference between these multiple components can be used to cancel the losses towards falling channels. This original interferometer could be an interesting alternative to suspend an inertial sensor or an atom clock in a limited volume, whilst allowing simultaneous measurement of the forces acting on the atoms. The second experiment is devoted to the study of the transport properties in a 2-dimensional (2D) disordered medium. In particular, matter wave interference can prevent the transport - a phenomenon known as Anderson Localization. The atoms are confined between two repulsive sheets of light, and the disorder is generated by a speckle pattern shined onto the cloud. We observe a diffusive expansion in these potentials, and extract diffusion coefficients in agreement with a numerical simulation. We then explore the dynamic at lower energies, where sub-diffusion, classical trapping under the percolation threshold, and Anderson Localization may be observed. Finally, the study of the interplay between disorder and the Berezinskii-Kosterlitz-Thouless transition in 2D is now within reach. (author)

  17. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  18. Phase-Shifting Liquid Crystal Interferometers for Microgravity Fluid Physics

    Science.gov (United States)

    Griffin, DeVon W.; Marshall, Keneth L.

    2002-01-01

    The initial focus of this project was to eliminate both of these problems in the Liquid Crystal Point-Diffraction Interferometer (LCPDI). Progress toward that goal will be described, along with the demonstration of a phase shifting Liquid Crystal Shearing Interferometer (LCSI) that was developed as part of this work. The latest LCPDI, other than a lens to focus the light from a test section onto a diffracting microsphere within the interferometer and a collimated laser for illumination, the pink region contained within the glass plates on the rod-mounted platform is the complete interferometer. The total width is approximately 1.5 inches with 0.25 inches on each side for bonding the electrical leads. It is 1 inch high and there are only four diffracting microspheres within the interferometer. As a result, it is very easy to align, achieving the first goal. The liquid crystal electro-optical response time is a function of layer thickness, with thinner devices switching faster due to a reduction in long-range viscoelastic forces between the LC molecules. The LCPDI has a liquid crystal layer thickness of 10 microns, which is controlled by plastic or glass microspheres embedded in epoxy 'pads' at the corners of the device. The diffracting spheres are composed of polystyrene/divinyl benzene polymer with an initial diameter of 15 microns. The spheres deform slightly when the interferometer is assembled to conform to the spacing produced by the microsphere-filled epoxy spacer pads. While the speed of this interferometer has not yet been tested, previous LCPDIs fabricated at the Laboratory for Laser Energetics switched at a rate of approximately 3.3 Hz, a factor of 10 slower than desired. We anticipate better performance when the speed of these interferometers is tested since they are approximately three times thinner. Phase shifting in these devices is a function of the AC voltage level applied to the liquid crystal. As the voltage increases, the dye in the liquid crystal

  19. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks...

  20. Tests of a two-color interferometer and polarimeter for ITER density measurements

    Science.gov (United States)

    Van Zeeland, M. A.; Carlstrom, T. N.; Finkenthal, D. K.; Boivin, R. L.; Colio, A.; Du, D.; Gattuso, A.; Glass, F.; Muscatello, C. M.; O'Neill, R.; Smiley, M.; Vasquez, J.; Watkins, M.; Brower, D. L.; Chen, J.; Ding, W. X.; Johnson, D.; Mauzey, P.; Perry, M.; Watts, C.; Wood, R.

    2017-12-01

    A full-scale 120 m path length ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been constructed and undergone initial testing at General Atomics. In the TIP prototype, two-color interferometry is carried out at 10.59 μm and 5.22 μm using a CO2 and quantum cascade laser (QCL) respectively while a separate polarimetry measurement of the plasma induced Faraday effect is made at 10.59 μm. The polarimeter system uses co-linear right and left-hand circularly polarized beams upshifted by 40 and 44 MHz acousto-optic cells respectively, to generate the necessary beat signal for heterodyne phase detection, while interferometry measurements are carried out at both 40 MHz and 44 MHz for the CO2 laser and 40 MHz for the QCL. The high-resolution phase information is obtained using an all-digital FPGA based phase demodulation scheme and precision clock source. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system responsible for minimizing noise in the measurement and keeping the TIP diagnostic aligned indefinitely on its 120 m beam path including as the ITER vessel is brought from ambient to operating temperatures. The prototype beam path incorporates translation stages to simulate ITER motion through a bake cycle as well as other sources of motion or misalignment. Even in the presence of significant motion, the TIP prototype is able to meet ITER’s density measurement requirements over 1000 s shot durations with demonstrated phase resolution of 0.06° and 1.5° for the polarimeter and vibration compensated interferometer respectively. TIP vibration compensated interferometer measurements of a plasma have also been made in a pulsed radio frequency device and show a line-integrated density resolution of δ {nL}=3.5× {10}17 m-2.

  1. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    Drachev, V.P.; Krasnikov, Yu.I.; Bagryansky, P.A.

    1992-01-01

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  2. Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer

    International Nuclear Information System (INIS)

    Matityahu, Shlomi; Aharony, Amnon; Entin-Wohlman, Ora; Tarucha, Seigo

    2013-01-01

    We study the spin-dependent transport of spin-1/2 electrons through an interferometer made of two elongated quantum dots or quantum nanowires, which are subject to both an Aharonov–Bohm flux and (Rashba and Dresselhaus) spin–orbit interactions. Similar to the diamond interferometer proposed in our previous papers (Aharony et al 2011 Phys. Rev. B 84 035323; Matityahu et al 2013 Phys. Rev. B 87 205438), we show that the double-dot interferometer can serve as a perfect spin filter due to a spin interference effect. By appropriately tuning the external electric and magnetic fields which determine the Aharonov–Casher and Aharonov–Bohm phases, and with some relations between the various hopping amplitudes and site energies, the interferometer blocks electrons with a specific spin polarization, independent of their energy. The blocked polarization and the polarization of the outgoing electrons is controlled solely by the external electric and magnetic fields and do not depend on the energy of the electrons. Furthermore, the spin filtering conditions become simpler in the linear-response regime, in which the electrons have a fixed energy. Unlike the diamond interferometer, spin filtering in the double-dot interferometer does not require high symmetry between the hopping amplitudes and site energies of the two branches of the interferometer and thus may be more appealing from an experimental point of view. (paper)

  3. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  4. EIT Based Gas Detector Design by Using Michelson Interferometer

    International Nuclear Information System (INIS)

    Abbasian, K.; Rostami, A.; Abdollahi, M. H.

    2011-01-01

    Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.

  5. Streak camera recording of interferometer fringes

    International Nuclear Information System (INIS)

    Parker, N.L.; Chau, H.H.

    1977-01-01

    The use of an electronic high-speed camera in the streaking mode to record interference fringe motion from a velocity interferometer is discussed. Advantages of this method over the photomultiplier tube-oscilloscope approach are delineated. Performance testing and data for the electronic streak camera are discussed. The velocity profile of a mylar flyer accelerated by an electrically exploded bridge, and the jump-off velocity of metal targets struck by these mylar flyers are measured in the camera tests. Advantages of the streak camera include portability, low cost, ease of operation and maintenance, simplified interferometer optics, and rapid data analysis

  6. 30-lens interferometer for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G. [European Synchrotron Radiation facility (ESRF), CS 40220, 71, av des Martyrs, F-38043, Grenoble (France); Kohn, V. [National Research Centre “Kurchatov Institute”, 123182, Moscow (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka (Russian Federation); Snigirev, A. [Baltic Federal University, 236041, Kaliningrad (Russian Federation)

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  7. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  8. Plasmonic interferometers: From physics to biosensing applications

    Science.gov (United States)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  9. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.; Zastrau, Ulf; Blinne, Alexander; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Förster, Eckhart

    2013-01-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed

  10. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  11. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers.

    Science.gov (United States)

    Hilbert, Vinzenz; Blinne, Alexander; Fuchs, Silvio; Feigl, Torsten; Kämpfer, Tino; Rödel, Christian; Uschmann, Ingo; Wünsche, Martin; Paulus, Gerhard G; Förster, Eckhart; Zastrau, Ulf

    2013-09-01

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  12. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  13. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    International Nuclear Information System (INIS)

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-01-01

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  14. Phase-modulation interferometer for ICF-target characterization

    International Nuclear Information System (INIS)

    Cooper, D.E.

    1981-01-01

    Characterization requirements for high gain laser fusion targets are severe. We are required to detect defects on the surfaces of opaque and transparent shells with an amplitude resolution of +- 5 nm and a spatial resolution of 1 to 10 μm. To achieve this we have developed a laser-illuminated phase-modulation interferometer. This instrument is based on a photoelastic polarization modulation technique which allows one to convert phase information into an intensity modulation which can be easily and sensitively measured using ac signal processing techniques. This interferometer has detected path length changes as small as 1 nm and the required spatial resolution is assured by using a microscope objective to focus the probe laser beam down to a small (approx. 1 μm) spot on the surface of a microballoon. The interferometer will soon be coupled to an LSI-11 controlled 4π sphere manipulator which will allow us to automatically inspect the entire surface area of a target sphere

  15. In-line femtosecond common-path interferometer in reflection mode.

    Science.gov (United States)

    Chandezon, J; Rampnoux, J-M; Dilhaire, S; Audoin, B; Guillet, Y

    2015-10-19

    An innovative method to perform femtosecond time-resolved interferometry in reflection mode is proposed. The experiment consists in the combined use of a pump-probe setup and of a fully passive in-line femtosecond common-path interferometer. The originality of this interferometer relies on the use of a single birefringent crystal first to generate a pair of phase-locked pulses and second to recombine them to interfere. As predicted by analytical modeling, this interferometer measures the temporal derivative of the ultrafast changes of the complex optical reflection coefficient of the sample. Working conditions are illustrated through picosecond opto-acoustic experiments on a thin film.

  16. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  17. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  18. A novel polarization interferometer for measuring upper atmospheric winds

    International Nuclear Information System (INIS)

    Ting-Kui, Mu; Chun-Min, Zhang

    2010-01-01

    A static polarization interferometer for measuring upper atmospheric winds is presented, based on two Savart plates with their optical axes perpendicular to each other. The principle and characteristics of the interferometer are described. The interferometer with a wide field of view can offer a stable benchmark optical path difference over a specified spectral region of 0.55–0.63 μm because there are no quarter wave plates. Since the instrument employs a straight line common-path configuration but without moving parts and slits, it is very compact, simple, inherently robust and has high throughput. The paper is limited to a theoretical analysis. (general)

  19. DETERMINANTES DE LA COMPOSICIÓN FLORÍSTICA Y EFECTO DE BORDE EN UN FRAGMENTO DE BOSQUE EN EL GUAVIARE, AMAZONIA COLOMBIANA

    OpenAIRE

    Stevenson, Pablo R.; Rodríguez, María Elizabeth

    2008-01-01

    La fragmentación de un bosque genera cambios en muchos aspectos bióticos y abióticos de los parches remanentes. En este estudio se describe la composición florística de un fragmento de bosque en el departamento del Guaviare, Colombia, analizando el efecto de borde y factores abióticos. Se establecieron diez parcelas de 100 x 10 m y se muestrearon todas las especies de árboles con DAP≥ 10 cm. El índice de importancia mostró que las especies con mayores valores fueron Iriartea deltoidea, Croton...

  20. The comparison of environmental effects on michelson and fabry-perot interferometers utilized for the displacement measurement.

    Science.gov (United States)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-01-01

    The optical structure of general commercial interferometers, e.g., the Michelson interferometers, is based on a non-common optical path. Such interferometers suffer from environmental effects because of the different phase changes induced in different optical paths and consequently the measurement precision will be significantly influenced by tiny variations of the environmental conditions. Fabry-Perot interferometers, which feature common optical paths, are insensitive to environmental disturbances. That would be advantageous for precision displacement measurements under ordinary environmental conditions. To verify and analyze this influence, displacement measurements with the two types of interferometers, i.e., a self-fabricated Fabry-Perot interferometer and a commercial Michelson interferometer, have been performed and compared under various environmental disturbance scenarios. Under several test conditions, the self-fabricated Fabry-Perot interferometer was obviously less sensitive to environmental disturbances than a commercial Michelson interferometer. Experimental results have shown that induced errors from environmental disturbances in a Fabry-Perot interferometer are one fifth of those in a Michelson interferometer. This has proved that an interferometer with the common optical path structure will be much more independent of environmental disturbances than those with a non-common optical path structure. It would be beneficial for the solution of interferometers utilized for precision displacement measurements in ordinary measurement environments.

  1. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    International Nuclear Information System (INIS)

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-01-01

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  2. Multiple reflection Michelson interferometer with picometer resolution.

    Science.gov (United States)

    Pisani, Marco

    2008-12-22

    A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.

  3. dc readout experiment at the Caltech 40m prototype interferometer

    International Nuclear Information System (INIS)

    Ward, R L; Adhikari, R; Abbott, B; Abbott, R; Bork, R; Fricke, T; Heefner, J; Ivanov, A; Miyakawa, O; Smith, M; Taylor, R; Vass, S; Waldman, S; Weinstein, A; Barron, D; Frolov, V; McKenzie, K; Slagmolen, B

    2008-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

  4. Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement

    Science.gov (United States)

    Brown, Daniel D.; Miao, Haixing; Collins, Chris; Mow-Lowry, Conor; Töyrä, Daniel; Freise, Andreas

    2017-09-01

    We demonstrate the applicability of the EPR entanglement squeezing scheme for enhancing the shot-noise-limited sensitivity of detuned dual-recycled Michelson interferometers. In particular, this scheme is applied to the GEO600 interferometer. The effect of losses throughout the interferometer, arm length asymmetries, and imperfect separation of the signal and idler beams is considered.

  5. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  6. Manipulation of ultracold atoms in dressed adiabatic radio-frequency potentials

    DEFF Research Database (Denmark)

    Lesanovsky, Igor; Hofferberth, S.; Schmiedmayer, Jörg

    2006-01-01

    We explore properties of atoms whose magnetic hyperfine sublevels are coupled by an external magnetic radio frequency (rf) field. We perform a thorough theoretical analysis of this driven system and present a number of systematic approximations which eventually give rise to dressed adiabatic radio...... frequency potentials. The predictions of this analytical investigation are compared to numerically exact results obtained by a wave packet propagation. We outline the versatility and flexibility of this class of potentials and demonstrate their potential use to build atom optical elements such as double...... wells, interferometers, and ringtraps. Moreover, we perform simulations of interference experiments carried out in rf induced double-well potentials. We discuss how the nature of the atom-field coupling mechanism gives rise to a decrease of the interference contrast....

  7. Germanium on silicon mid-infrared waveguides and Mach-Zehnder interferometers

    NARCIS (Netherlands)

    Malik, A.; Muneeb, M.; Shimura, Y.; Campenhout, van J.; Loo, van de R.; Roelkens, G.C.

    2013-01-01

    In this paper we describe Ge-on-Si waveguides and Mach-Zehnder interferometers operating in the 5.2 - 5.4 µm wavelength range. 3dB/cm waveguide losses and Mach-Zehnder interferometers with 20dB extinction ratio are presented.

  8. Improved double-pass michelson interferometer

    Science.gov (United States)

    Schindler, R. A.

    1978-01-01

    Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.

  9. Quasi-quadrature interferometer for plasma density radial profile measurements

    International Nuclear Information System (INIS)

    Lowenthal, D.D.; Hoffman, A.L.

    1979-01-01

    A cw Mach Zehnder multichannel interferometer has been developed to measure time-dependent fractional fringe shifts with an accuracy of one-fortieth fringe. The design is quasi-quadrature in that known phase shifts, introduced in the reference beam, are time multiplexed with the normal reference beam. This technique requires only one detector per interferometer channel as compared to two detectors for most quadrature designs. The quadrature information makes the sense of density changes unambiguous, it automatically calibrates the instrument during the plasma event, and it makes fringe shift measurements virtually independent of fringe contrast fluctuations caused by plasma refractive and/or absorptive effects. The interferometer optical design is novel in that the electro-optic crystal used to introduce the 90 0 phase shifts is located in the common 2-mm-diam HeNe entrance beam to the interferometer, by exploiting polarization techniques, rather than in the expanded 1--2-cm reference beam itself. This arrangement greatly reduces the size, cost, and high-voltage requirements for the phase modulating crystal

  10. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  11. Instrument development for atmospheric radiation measurement (ARM): Status of the Atmospheric Emitted Radiance Interferometer - extended Resolution (AERI-X), the Solar Radiance Transmission Interferometer (SORTI), and the Absolute Solar Transmission Inferometer (ASTI)

    Energy Technology Data Exchange (ETDEWEB)

    Murcray, F.; Stephen, T.; Kosters, J. [Univ. of Denver, CO (United States)

    1996-04-01

    This paper describes three instruments currently under developemnt for the Atmospheric Radiation Measurement (ARM) Program at the University of Denver: the AERI-X (Atmospheric Emitted Radiance Interferometer-Extended Resolution) and the SORTI (Solar R adiance Transmission Interferometer), and ASTI (Absolute Solar transmission Interferometer).

  12. The role of fishing cooperatives on social – Economic and cultural development of rural areas of Bord Khun city of Bushehr, Iran

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2017-04-01

    Full Text Available The main purpose of this study was to determine the role of fishing cooperatives on the socio – economic development of and rural areas in the Bord Khun of Bushehr, Iran. This research, in terms of objective, was exploratory and in terms of data collection was descriptive (causal-comparative. The under study population were active fishing cooperatives of Bord Khun. To determine the validity of the questionnaire the content validity was used which was obtained through the views of teachers and specialists after several steps of revision. To identify the reliability of the questionnaire a pretest (30 questionnaires was administered in Abkesh Village, of Bushehr, Iran. Cronbach’s alpha coefficient was obtained (0.864–0.610 showing the validity of the questionnaire. The results showed that mean total economic for the registered villages was 1.57 (SD = 0.367 and for the non-registered villages was 1.51 (SD = 1.82. These figures indicated a very poor economic situation of registered villagers compared to non-registered members before implementing the plan. The total socio-cultural mean for the registered villagers was 2.122 (SD = 0.609 and for the non-registered members was 2.578(SD = 0.673. The figures indicated better socio-cultural situation of non-registered villagers compared to registered members before implementing the plan. It can be claimed that the fishing cooperatives had significant impact on rural areas.

  13. Parametric instability in GEO 600 interferometer

    International Nuclear Information System (INIS)

    Gurkovsky, A.G.; Vyatchanin, S.P.

    2007-01-01

    We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ

  14. All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Frandsen, Lars Hagedorn

    2016-01-01

    A novel all-silicon thermal independent Mach-Zehnder interferometer consisting of two multimode waveguide arms having equal lengths and widths but transmitting different modes is proposed and experimentally demonstrated. The interferometer has a temperature sensitivity smaller than 8pm/°C in a wa...

  15. A Survey of Atom Interferometer Beam-Combination Configurations and Beam Splitter Designs

    National Research Council Canada - National Science Library

    Zhang, Xiaolei

    2005-01-01

    This report summarizes the state of the art of atom-interferometry experiments, with an emphasis on the beam-splitting and beam-combination configurations, as well as on the different choices of beam...

  16. Optical displacement measurement with GaAs/AlGaAs-based monolithically integrated Michelson interferometers

    OpenAIRE

    Hofstetter, Daniel; Zappe, H. P.; Dändliker, René

    2008-01-01

    Two monolithically integrated optical displacement sensors fabricated in the GaAs/AlGaAs material system are reported. These single-chip microsystems are configured as Michelson interferometers and comprise a distributed Bragg reflector (DBR) laser, photodetectors, phase shifters, and waveguide couplers. While the use of a single Michelson interferometer allows measurement of displacement magnitude only, a double Michelson interferometer with two interferometer signals in phase quadrature als...

  17. Fine art of computing nulling interferometer maps

    Science.gov (United States)

    Hénault, F.

    2008-07-01

    Spaceborne nulling interferometers are often characterized by means of their nulling ratio, which is defined as the deepest possible extinction of one target star supposed to harbor an extra-solar system. Herein is shown that another parameter, which is the transmitting efficiency of nearby bright fringes, is also of prime importance. More generally, "nulling maps" formed by the whole destructive and constructive fringe pattern projected on-sky, are found to be very sensitive on the design of some subsystems constituting the interferometer. In particular, we consider Spatial Filtering (SF) and Achromatic Phase Shifter (APS) devices, both required achieving planet detection and characterization. Consequences of the SF choice (pinhole or single-mode optical fiber) and APS properties (with or without induced pupil-flip) are discussed, for both monochromatic and polychromatic cases. Examples of numerical simulations are provided for single Bracewell interferometer, Angel cross and X-array configurations, demonstrating noticeable differences in the aspect of resulting nulling maps. It is concluded that both FS and APS designs exhibit variable capacities for serendipitous planet discovery.

  18. Dynamics of Bose-Einstein condensates in novel optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kueber, Johannes

    2014-07-21

    Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three

  19. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  20. A Fabry-Perot interferometer system for high-speed velocity measurement

    NARCIS (Netherlands)

    Cheng, L.K.; Bruinsma, A.J.A.; Prinse, W.C.; Smorenburg, C.

    1997-01-01

    The Fabry-Perot Velocity Interferometer System (F-PVIS) is designed and built for measuring the Doppler shift of light by recording positional changes in the interferometric pattern behind the Fabry-Perot interferometer. The velocity of a surface can be deduced from the Doppler shift which is caused

  1. Comment on "Rovibrational quantum interferometers and gravitational waves"

    OpenAIRE

    Khriplovich, I. B.; Lamoreaux, S. K.; Sushkov, A. O.; Sushkov, O. P.

    2009-01-01

    In a recent paper, Wicht, L\\"ammerzahl, Lorek, and Dittus [Phys. Rev. {\\bf A 78}, 013610 (2008)] come to the conclusion that a molecular rotational-vibrational quantum interferometer may possess the sensitivity necessary to detect gravitational waves. We do not agree with their results and demonstrate here that the true sensitivity of such interferometer is many orders of magnitude worse than that claimed in the mentioned paper. In the present comment we estimate the expected energy shifts an...

  2. Two-photon quantum interference in a Michelson interferometer

    International Nuclear Information System (INIS)

    Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi

    2005-01-01

    We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms

  3. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  4. The POLIS interferometer for ponderomotive squeezed light generation

    Energy Technology Data Exchange (ETDEWEB)

    Calloni, Enrico [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Conte, Andrea [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); De Laurentis, Martina, E-mail: martina.delaurentis@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli “Federico II”, Napoli (Italy); INFN, Sezione di Napoli (Italy); Naticchioni, Luca [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy); Puppo, Paola [INFN, Sezione di Roma1 (Italy); Ricci, Fulvio [Dipartimento di Fisica, Università di Roma “Sapienza”, Roma (Italy); INFN, Sezione di Roma1 (Italy)

    2016-07-11

    POLIS (POnderomotive LIght Squeezer) is a suspended interferometer, presently under construction, devoted to the generation of ponderomotive squeezed light and to the study of the interaction of non classical quantum states of light and macroscopic objects. The interferometer is a Michelson whose half-meter long arms are constituted by high-finesse cavities, suspended to a seismic isolation chain similar to the Virgo SuperAttenuator. The mass of the suspended cavity mirrors are chosen to be tens of grams: this value is sufficiently high to permit the use of the well-tested Virgo suspension techniques but also sufficiently small to generate the coupling among the two phase quadratures with a limited amount of light in the cavity, of the order of few tens of kW. In this short paper the main features of the interferometer are shown, together with the expected sensitivity and squeezing factor.

  5. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  6. A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Ronald J.; /Stanford U., HEPL /San Francisco State U.; Muller, Holger; /UC, Berkeley; Perl, Martin L.; /KIPAC, Menlo Park /SLAC

    2012-06-11

    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.

  7. Humanidades y ciencias sociales: rearticulaciones transdisciplinarias y conflictos en los bordes

    Directory of Open Access Journals (Sweden)

    Nelly Richard

    2009-01-01

    Full Text Available La reflexión acerca de la identidad latinoamericana había sido encomendada tradicionalmente a la literatura y las humanidades, para, a partir de los años ’80, desplazarse hacia las ciencias sociales y de la comunicación. La transdisciplinariedad se ha convertido entonces en método irrenunciable, pero la autora propone que, frente a la convivencia acrítica, los estudios culturales deben usar los bordes de conflicto entre disciplinas humanísticas y tecnológicas para oponerse al sistema hegemónico que hace primar a las segundas sobre las primeras, y recuperar la capacidad del arte, la literatura y el pensamiento crítico para reintroducir los desórdenes de lo inclasificable en el mundo de lo clasificado y lo clasificador. Reflections on Latinoamerican identity was traditionally linked to literature and humanities. From the 80’s, it slowly swerved to social sciences and communication. Approaches across disciplines have become mainstream, but this author suggests that, unlike non critical coexistence, cultural studies must accommodate to conceptual conflicts on the edge of disciplines building bridges between humanistic disciplines and technological ones in such a way that the latter are not meant superior in any way and the former are instrumental in turning upside down the straitjacket of the orderly world that technology renders.

  8. Construction de savoirs professionnels dans une formation hybride : étude d’un carnet de bord en ligne collaboratif

    Directory of Open Access Journals (Sweden)

    Fatiha TALI

    2017-01-01

    Full Text Available Cet article se focalise sur la co-construction de savoirs professionnels, la nature de ces savoirs et les processus sous-jacents à cette construction dans un contexte de formation hybride à l’Université. Nous analysons les écrits dans le carnet de bord collaboratif en ligne d’un groupe d’enseignants interagissant et échangeant leurs expériences. L’analyse longitudinale montre une diversification des savoirs co-construits et mis en œuvre par les apprenants. Les interactions relevées indiquent : l’importance des échanges socio-affectifs; un étayage entre pairs visant l’enrôlement et le contrôle de la frustration; et de nombreux exemples pouvant servir à l’apprentissage vicariant.

  9. Electromagnetic modelling of a space-borne far-infrared interferometer

    Science.gov (United States)

    Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber

    2016-02-01

    In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

  10. Feedback-stabilized dual-beam laser interferometer for plasma measurements

    International Nuclear Information System (INIS)

    Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.

    1980-01-01

    A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases

  11. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    Energy Technology Data Exchange (ETDEWEB)

    Schmidsfeld, A. von, E-mail: avonschm@uos.de; Reichling, M., E-mail: reichling@uos.de [Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück (Germany)

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  12. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  13. The Virgo gravitational wave interferometer: status and perspectives

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The first recording of a signal from a binary neutron star system by the Advanced LIGO and Advanced Virgo interferometers, and the observation of its remnants by telescopes in all bands of the electromagnetic spectrum, marked the beginning of multimessenger astronomy with gravitational waves. This followed the detection of gravitational wave signals by the LIGO interferometers in 2015, which started the detailed study of highly curved space time. These achievements come after decades of work spent understanding how to measure the tiny space time strain (h ~ 10-21) carried by gravitational waves. In the future, detectors will able to extract much more precise information from these events, or record signals from fainter sources, providing a new view of the Universe. After a presentation of the Virgo interferometer, the main results obtained from binary black hole and neutron star detection are reviewed. The focus will then shift on the perspective offered by a further reduction of noise in ground based interf...

  14. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  15. Smart photogalvanic running-grating interferometer

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.

    2005-01-01

    Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...

  16. A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    International Nuclear Information System (INIS)

    Frazão, O; Silva, S F; Viegas, J; Baptista, J M; Santos, J L; Roy, P

    2010-01-01

    A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry–Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously

  17. Detectability of periodic gravitational waves by initial interferometers

    International Nuclear Information System (INIS)

    Owen, Benjamin J

    2006-01-01

    I review three recent theoretical developments in neutron star physics predicting that rotating neutron stars could be very strong emitters of periodic gravitational waves. These imply a small but nonzero chance that ground-based interferometers could detect their first periodic signal in the next few years rather than after advanced upgrades. They also imply that upper limits will become astrophysically interesting before advanced upgrades. I discuss the implications for near-future searches and for the astrophysical payoffs of proposed small upgrades to initial interferometers

  18. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  19. Cold-atom gravimetry with a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Debs, J. E.; Altin, P. A.; Barter, T. H.; Doering, D.; Dennis, G. R.; McDonald, G.; Close, J. D.; Robins, N. P.; Anderson, R. P.

    2011-01-01

    We present a cold-atom gravimeter operating with a sample of Bose-condensed 87 Rb atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of (83±6)% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources and observe a reduced visibility of (58±4)% for the thermal source. We suspect the loss in visibility is caused partly by wave-front aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and we present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely falling, coherent atomic sources.

  20. Reducing tilt-to-length coupling for the LISA test mass interferometer

    Science.gov (United States)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  1. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  2. Design of a Michelson Interferometer for Quantitative Refraction Index Profile Measurements

    NARCIS (Netherlands)

    Nijholt, J.L.M.

    1998-01-01

    This book describes the theoretical design of a three camera Michelson interferometer set-up for quantitative refractive index measuerments. Although a two camera system is easier to align and less expensive, a three camera interferometer is preferred because the expected measuring accuracy is much

  3. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector

    International Nuclear Information System (INIS)

    Chen Yanbei

    2003-01-01

    According to quantum measurement theory, 'speed meters' - devices that measure the momentum, or speed, of free test masses - are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sag nac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sag nac interferometer, as for other speed meters. With squeezed vacuum (squeeze factor e -2R =0.1) injected into its dark port, the recycled Sag nac interferometer can beat the SQL by a factor √(10)≅3 over the frequency band 10 Hz c ∼820 kw as is to be used by the (quantum limited) second-generation Advanced LIGO interferometers--if other noise sources are made sufficiently small. It is concluded that the Sag nac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO)

  4. Design and fabrication of a high-damage threshold infrared Smattt interferometer

    International Nuclear Information System (INIS)

    Hammond, R.B.; Gibbs, A.J.

    1981-01-01

    It has been shown that a Smartt interferometer may be used as a very precise alignment tool for infrared lasers. This interferometer may also be used effectively to investigate the phase front of a laser pulse. To use this tool for applications to high-power, fast-pulse laser systems such as Helios and Antares; however, it has been necessary to fabricate a structure with the unique optical characteristics of the Smartt interferometer combined with a very high optical-damage threshold. We have been successful in this effort by utilizing the high technology, process control, and unique properties of semiconductor-grade, single-crystal Si

  5. Cellule État de l’Environnement Wallon (2003 Tableau de bord de l’environnement wallon 2003, Ed MRW –DGRNE, 144 p.

    Directory of Open Access Journals (Sweden)

    Emilie Thuillier

    2004-06-01

    Full Text Available Le Tableau de bord de l'environnement wallon 2003 fait suite au Rapport sur l’état de l'environnement wallon 2000 et constitue la première édition qui sera éditée annuellement. Cette initiative est le fruit d’une collaboration entre, d’une part, la Direction Générale des Ressources Naturelles et de l’Environnement du Ministère de la Région wallone et, d’autre part, une coordination inter-universitaire fondée sur une équipe scientifique pluridisciplinaire permanente coordonnée par Edwin ZACCAÏ...

  6. Plasma electron density measurement with multichannel microwave interferometer on the HL-1 tokamak device

    International Nuclear Information System (INIS)

    Xu Deming; Zhang Hongyin; Liu Zetian; Ding Xuantong; Li Qirui; Wen Yangxi

    1989-11-01

    A multichannel microwave interferometer which is composed of different microwave interferometers (one 2 mm band, one 4 mm band and two 8 mm band) has been used to measure the plasma electron density on HL-1 tokamak device. The electron density approaching to 5 x 10 13 cm -3 is measured by a 2 mm band microwave interferometer. In the determinable range, the electron density profile in the cross-section on HL-1 device has been measured by this interferometer. A microcomputer data processing system is also developed

  7. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A E; Potapov, V T [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Fryazino, Moscow region (Russian Federation); Gorshkov, B G [OOO ' Petrofaiber' , Russia, Tula region, Novomoskovsk (Russian Federation)

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  8. Récupération de l'énergie micro-onde pour l'alimentation de capteurs sans fil à bord des satellites

    OpenAIRE

    Okba , Abderrahim; Takacs , Alexandru; Aubert , Hervé; Fredon , Stéphane; Despoisse , Laurent

    2015-01-01

    National audience; La récupération d'énergie micro-onde à bord des satellites de télécommunication géostationnaires est abordée dans cette communication. Plusieurs topologies de rectennas sont proposées. Certaines d'entre elles, très compactes, permettent de récupérer des puissances DC de l'ordre de 1 mW. Ces résultats montrent que la récupération d'énergie micro-onde représente une solution intéressante pour l'alimentation des capteurs autonomes sans fil utilisés pour le suivi de l'état de f...

  9. Los títulos de créditos en el cine de Pedro Almodóvar: Un caso ejemplar: Mujeres al borde de un ataque de nervios

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Castellani

    2009-12-01

    Full Text Available Bien es conocida la voluntad permanente en en un director como Pedro Almodóvar de utilizar lo más posible las posibilidades específicas del lenguaje cinematográfico y de trabajar todos los segmentos del discurso del cine. Por eso, desde sus primeras películas, Almodóvar ha cuidado mucho los dos umbrales del relato filmico que son los títulos de créditos de principio y de final. Uno de los ejemplos más significativos al particular es el de Mujeres al borde de un ataque de nervios que nos proponemos estudiar detenidamente al mismo tiempo que nos servirá como representación del mensaje esencial de la película._____________________ABSTRACT:We know that Almodovar is a director who thrives at using all the specific means put at his disposal by the cinematic language. That is why, ever since the first movies he directed; Almodovar has paid particular care at the beginning and the ending of the movie, creating crafted opening and closing credits. We find one of the most significative examples in Mujeres al borde de un ataque de nervios that we propose to study now as well as extracting its key messages.

  10. Adjustment of a two-block X-ray interferometer and absolute measurement of lattice spacing

    International Nuclear Information System (INIS)

    Nakayama, Kan

    1994-01-01

    X-ray interferometer was invented in 1965 by Bonse and Hart, and it uses the lattice surface of a silicon single crystal as a three-dimensional diffraction lattice. It divides X-ray coherently, changes direction, combines and causes interference. It made for the first time the interference effect of X-ray into the usable form in macroscopic world. As an example of the application of X-ray interferometers to basic science, there is the absolute measurement of lattice spacing. This is the method of simultaneously measuring the same displacement with an X-ray interferometer and a light wave interferometer, and doing the absolute measurement of the lattice spacing of crystals with light wavelength. Avogadro constant is the constant that becomes the foundation of chemistry, and its relation with other basic constants is shown. The principle of X-ray interferometers is explained. As the elementary technologies for the absolute measurement of lattice spacing, the adjustment of X-ray interferometers, parallel movement table and angular adjustment table, light wave interferometer and the prevention of vibration and temperature change are described. The example of the measurement is reported. In order to improve the accuracy, the improvement of the equipment and the measurement in vacuum are prepared at present. (K.I.)

  11. Michelson interferometer based interleaver design using classic IIR filter decomposition.

    Science.gov (United States)

    Cheng, Chi-Hao; Tang, Shasha

    2013-12-16

    An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.

  12. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  13. Analysis of threshold curves for superconducting interferometers

    International Nuclear Information System (INIS)

    Peterson, R.L.; Hamilton, C.A.

    1979-01-01

    Threshold curves for multijunction superconducting interferometers have been calculated previously, showing general agreement with observed features, especially in symmetric cases. We here add some more details to the analysis, paying particular attention to the effects of asymmetries in coupling, inductance, or critical currents. Feed-loop inductance and flux quantization in the feed loop can be important. A changing lobe pattern over many periods, asymmetries within a period, shifting patterns between runs spanning a warm-up, and sudden changes in pattern because of noise in the environment are all quantitatively explainable on the basis of this model. By use of a single ''calibration curve'', the inductance for symmetric two- or three-junction interferometers can be obtained immediately

  14. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  15. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  16. Atributos vitales de especies leñosas en bordes de bosque altoandino de la Reserva Forestal de Cogua (Colombia

    Directory of Open Access Journals (Sweden)

    Alba Lucía Montenegro

    2008-06-01

    Full Text Available En la Reserva Forestal de Cogua (Colombia, estudiamos mediante transectos la vegetación leñosa en dos parches de bosque altoandino para tres tipos de borde: chusque, paramizado y antiguo (este último denominado así por presentar un estado sucesional más avanzado. Seleccionamos como especies típicas de borde las que tenían mayor abundancia en esta zona, presentes en ambos parches del borde y capaces de colonizar la matriz adyacente. Se obtuvo un conjunto de nueve especies a las cuales se les evaluaron 20 atributos vitales, generando seis grupos mediante un análisis de agrupamiento (cluster: 1 Weinmannia balbisiana-W. tomentosa, 2 Gaiadendron punctatum-Hedyosmum bonplandianum, 3 Miconia ligustrina-M. squamulosa, 4 Macleania rupestris, 5 Pentacalia pulchella y 6 Tibouchina grossa. La amplia variación y plasticidad de las especies estudiadas en cuanto a los atributos analizados, conduce a pensar que los conjuntos obtenidos no obedecen a grupos funcionales claramente diferenciados, sino más bien a estrategias diferentes y que estas especies podrían hacer parte de un solo grupo funcional de gran plasticidad. T. grossa es la especie de borde más exitosa en la reserva, dados sus altos valores de abundancia, tolerancia fisiológica, reproducción vegetativa, producción de hojarasca y producción de semillas pequeñas, numerosas, formadoras de un banco de semillas persistente que evidencian su alta fecundidad.Vital traits of woody species in High Andean forest edges of the Cogua Forest Reserve (Colombia. The Cogua Forest Reserve was studied throughout eight months to detect the existence of functional species-groups associated with edge wood forest. A second goal was to determine which species were the most successful in edge areas and their particular vital traits. The regeneration and growth of the forest patches to the adjacent matrix depends on the establishment of these species and their tolerance to both habitats. Three types of High

  17. A stellar interferometer on the Moon

    Science.gov (United States)

    Porro, Irene

    The work I present in this document has been divided into two main parts, the first one related to the IOTA project and the second one related to the study on the lunar interferometer, and an introduction section. Each section can be read independently from the other, however they are presented following the logical order in which the research work has been developed. As a guide for the reader here I describe the content of each chapter, which represents the original contribution (except when it is specifically declared) to the research accomplished. This section consists in the Introduction itself, with a presentation of the motivations for this research work, and in the chapter Interferometry from the Earth and from the Moon. The first part of this chapter shows the performances which are expected to be reached by ground-based interferometers (Colavita, 1992) by using adaptive optics systems (Beckers, 1993). The evaluation is made separately for the case of high resolution imaging and for high accuracy astrometric measurements. The most optimistic results expected for ground-based instruments determine the level of the performance that has to be required from a space interferometer (both an orbiting and a lunar instrument). In the second part of the chapter I specifically deal with the case of a lunar interferometer, which allows to put together the advantages o ered by a ground-based instrument (very long baseline, a stable platform) and those offered by the space environment (absence of atmospheric turbulence, long integration times, and wavelength range of observation from the ultraviolet to the far infrared). In order to evaluate the limits of the lunar interferometer, I need to consider three subjects with which I did not explicitly dealt for the study on IOTA: the maximum length of the baseline (Tango and Twiss, 1974), the maximum integration time, and the performances obtainable at the minimum temperature of operation (Ridgway, 1990). The chapter ends with

  18. Composição físico-química do vinho Bordô de Flores da Cunha, RS, elaborado com uvas maturadas em condições de baixa precipitação Physicochemical composition of Bordô wines from Flores da Cunha, RS, made with grapes matured in low rain conditions

    Directory of Open Access Journals (Sweden)

    Francine Maria Tecchio

    2007-10-01

    Full Text Available O Bordô é, depois do Isabel, o vinho de mesa de maior importância econômica na Serra Gaúcha, pois existe um considerável segmento de mercado que o aprecia, especialmente por seu sabor frutado e por sua cor intensa e matiz violeta. Devido a isso e às condições de estiagem que ocorreram no verão de 2005, quando as chuvas corresponderam a 38% da normal climatológica, analisaram-se vinhos Bordô do município de Flores da Cunha, RS, um dos mais importantes produtores da Serra Gaúcha. Os vinhos analisados eram varietalmente puros e elaborados segundo a tecnologia de cada vinícola. Avaliaram-se 39 variáveis, das quais os resultados mais expressivos foram os seguintes: álcool 10,58% v/v; acidez total 91meq L-1; acidez volátil 7,3meq L-1; pH 3,21; extrato seco 24,24g L-1; açúcares redutores 2,90g L-1; extrato seco reduzido 22,34g L-1; cinzas 2,09g L-1; ácido tartárico 5,35g L-1; DO 420 0,480; DO 520 1,296; DO 620 0,184; taninos 1,41g L-1; antocianinas 778,8mg L-1; etanal 14,9mg L-1; acetato de etila 59,3mg L-1; metanol 290,9mg L-1; 1-propanol 24,9mg L-1; 2-metiL-1-propanol 40,6mg L-1; 2-metiL-1-butanol 45,9mg L-1; 3-metiL-1-butanol 149,1mg L-1; soma dos álcoois superiores 260,5mg L-1; e K 953mg L-1.The Bordô, after Isabel, is the table wine presenting the greater economic importance in the Serra Gaúcha region, because there is a segment of the market that likes its characteristics, specially its fruity flavor, color intensity, and violet hue. Due to these aspects and to the very dry climatic conditions in the 2005 summer, where rain represented 38% of the climatological normal, Bordô wines were analyzed from the commune of Flores da Cunha, RS, Brazil, one of the most important producers of the Serra Gaúcha region. Analyzed wines were varietal ones and made according to the technology of each winery. Thirty nine variables were evaluated and the average parameters of the most expressive ones were the following: alcohol 10.58% v

  19. On the influence of resonance photon scattering on atom interference

    International Nuclear Information System (INIS)

    Bozic, M; Arsenovic, D; Sanz, A S; Davidovic, M

    2010-01-01

    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d p /λ i =y' 12 (2π/kdλ i ), where y' 12 is the distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic centre-of-mass motion, d is the grating constant and λ i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near-field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of 'which-way' information for the interference visibility.

  20. Plasma measurement by feedback-stabilized dual-beam laser interferometer

    International Nuclear Information System (INIS)

    Yasuda, Akio; Kawahata, Kazuo; Kanai, Yasubumi.

    1982-03-01

    The plasma density in a dynamic magneto arcjet is measured by a stabilized dual-beam laser interferometer proposed by the authors. The fringe shift for a 0.63 μm beam of He-Ne laser is used to stabilize the interferometer against the effect of mechanical vibration by means of a feedback controlled speaker coil, while the other beam of 3.39 μm, for which the effect of mechanical vibrations is excluded, is used to measure plasma density. Stability of --1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hertz. Stability for higher frequencies, which determines the accuracy of the present measurement, is limited to --1/30 of one fringe for 0.63 μm, which corresponds to --1/200 of one fringe and a line electron density of --1.5 x 10 14 cm - 2 for 3.39 μm, by acoustic noise picked up by the speaker coil. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. Since the effect of the neutral gas background is practically reduced to zero, the present interferometer is to be applied advantageously to the diagnostics of the plasma produced in high pressure gases. (author)

  1. L’intégration du capital humain dans un outil de pilotage de la performance : le cas du tableau de bord stratégique

    OpenAIRE

    Borchani, Manel; Cheffi, Walid

    2005-01-01

    Cette communication examine comment un outil de contrôle de gestion, le tableau de bord stratégique (TdB), permet-il d’intégrer le capital humain dans le pilotage de la performance globale de l’entreprise ? La théorie des ressources (resource based view theory) considère que les Ressources Humaines (RH) sont des ressources internes précieuses pour l’entreprise. Cette théorie établit un lien entre elles, les compétences distinctives et l’avantage concurrentiel durable de l’entreprise. Un tel a...

  2. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer

    International Nuclear Information System (INIS)

    Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo

    2008-01-01

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near λ. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices

  3. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  4. Design of an optical spatial interferometer with transformation optics

    International Nuclear Information System (INIS)

    Naghibi, Atefeh; Shokooh-Saremi, Mehrdad

    2015-01-01

    In this paper, we apply transformation optics to design an optical spatial interferometer. The transformation equations are described and two-dimensional finite element simulations are presented to numerically confirm the functionality of the device. It is shown that a small change in the refractive index can alter the interference pattern and hence can be detected. The design of the interferometer could expand transformation optics’ applications and make way for introduction of new structures with unique electromagnetic or optical functionalities. (paper)

  5. Fabry-Perot interferometer measurements of neutral winds and F2 layer variations at the magnetic equator

    Directory of Open Access Journals (Sweden)

    P. Vila

    1998-06-01

    Full Text Available This letter presents some night-time observations of neutral wind variations at F2 layer levels near the dip equator, measured by the Fabry-Perot interferometer set up in 1994 at Korhogo (Ivory Coast, geographic latitude 9.25°N, longitude 355°E, dip latitude –2.5°. Our instrument uses the 630 nm (O1D line to determine radial Doppler velocities of the oxygen atoms between 200 and 400 km altitude. First results for November 1994 to March 1995 reveal persistent eastward flows, and frequent intervals of southward winds of larger than 50 ms–1 velocity. Compared with the simultaneous ionospheric patterns deduced from the three West African equatorial ionosondes at Korhogo, Ouagadougou (Burkina-Faso, dip latitude +1.5° and Dakar (Sénégal, dip latitude +5°, they illustrate various impacts of the thermospheric winds on F2 layer density: (1 on the mesoscale evolution (a few 103 km and a few 100 minutes scales and (2 on local fluctuations (hundreds of km and tens of minutes characteristic times. We report on these fluctuations and discuss the opportunity to improve the time-resolution of the Fabry-Perot interferometer at Korhogo.Key words. Ionosphere (Equatorial ionosphere; Ionosphere-atmosphere interaction · Meteorology and Atmospheric Dynamics (General circulation

  6. Power-recycled michelson interferometer with a 50/50 grating beam splitter

    International Nuclear Information System (INIS)

    Friedrich, D; Burmeister, O; Britzger, M; Bunkowski, A; Danzmann, K; Schnabel, R; Clausnitzer, T; Fahr, S; Kley, E-B; Tuennermann, A

    2008-01-01

    We designed and fabricated an all-reflective 50/50 beam splitter based on a dielectric grating. This beam splitter was used to set up a power-recycled Michelson interferometer with a finesse of about F PR ∼ 880. Aspects of the diffractive beam splitter as well as of the interferometer design are discussed

  7. Power-recycled michelson interferometer with a 50/50 grating beam splitter

    OpenAIRE

    Friedrich, Daniel; Burmeister, O.; Britzger, M.; Bunkowski, A.; Clausnitzer, T.; Fahr, S.; Kley, E.B.; Tünnermann, A.; Danzmann, Karsten; Schnabel, Roman

    2008-01-01

    We designed and fabricated an all-reflective 50/50 beam splitter based on a dielectric grating. This beam splitter was used to set up a power-recycled Michelson interferometer with a finesse of about FPR ≈ 880. Aspects of the diffractive beam splitter as well as of the interferometer design are discussed.

  8. Improved density measurement by FIR laser interferometer on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jie, E-mail: shenjie1988@ipp.ac.cn; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-11-15

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported.

  9. Improved density measurement by FIR laser interferometer on EAST tokamak

    International Nuclear Information System (INIS)

    Shen, Jie; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-01-01

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported

  10. An atomic force microscope for the study of the effects of tip sample interactions on dimensional metrology

    Science.gov (United States)

    Yacoot, Andrew; Koenders, Ludger; Wolff, Helmut

    2007-02-01

    An atomic force microscope (AFM) has been developed for studying interactions between the AFM tip and the sample. Such interactions need to be taken into account when making quantitative measurements. The microscope reported here has both the conventional beam deflection system and a fibre optical interferometer for measuring the movement of the cantilever. Both can be simultaneously used so as to not only servo control the tip movements, but also detect residual movement of the cantilever. Additionally, a high-resolution homodyne differential optical interferometer is used to measure the vertical displacement between the cantilever holder and the sample, thereby providing traceability for vertical height measurements. The instrument is compatible with an x-ray interferometer, thereby facilitating high resolution one-dimensional scans in the X-direction whose metrology is based on the silicon d220 lattice spacing (0.192 nm). This paper concentrates on the first stage of the instrument's development and presents some preliminary results validating the instrument's performance and showing its potential.

  11. “Costruiscimi una casa difficile, dolente”. Ramsey Nasr, poeta laureato d’Olanda (2009-2013

    Directory of Open Access Journals (Sweden)

    Marco Prandoni

    2013-12-01

    Full Text Available In this article I analyse the evolution of Ramsey Nasr (Rotterdam 1974 from neo-romantic to committed “political” poet. I particularly focus on the way he positioned himself, poetically and mediatically, during the years 2009-2013 – a period of economic crisis and social and political unrest – in his capacity of Poet Laureate of The Netherlands, a highly symbolic function. Supposed to represent the “nation”, in public lectures/performances he fully engaged in the polarised debate around the boundaries of historical and contemporary Dutchness. Being self half-allochtonous (Dutch-Palestinian with a transcultural background, in his poetry he performed a multiple, plural, instable personal and collective identity, questioning any essentialistic and seemingly stable definition of the Dutch cultural identity, as of any other identity construction: the Christian, the Calvinist, the European etc. Nasr did not hesitate to provoke the political establishment, by topicalizing and investigating traumas in Dutch history and in contemporary society (Holocaust, multiculturalism and integration of Muslim migrants, Israeli-Palestinian conflict etc. Instead of erasing these traumas from collective memory, or turning them into museum-pieces, he stated the necessity for everyone to meditate on them in new, daring, hybridized forms.

  12. Locking the local oscillator phase to the atomic phase via weak measurement

    International Nuclear Information System (INIS)

    Shiga, N; Takeuchi, M

    2012-01-01

    A new method is proposed to reduce the frequency noise of a local oscillator to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This method, which we call ‘atomic phase lock (APL)’, uses weak measurement to monitor the phase in the Ramsey method and repeat the cycle without initialization of the phase. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirmed that with APL, the Allan deviation is averaged down at a maximum rate that is proportional to the inverse of the total measurement time, τ -1 . In contrast, current atomic clocks that use projection measurement suppress the noise only to the white frequency noise level, in which case the Allan deviation scales as τ -1/2 . Faraday rotation is one way to achieve weak measurement for APL. The strength of Faraday rotation with 171 Yb + ions trapped in a linear rf-trap is evaluated, and the performance of APL is discussed. The main source of decoherence is a spontaneous emission, induced by the probe beam for Faraday rotation measurement. The Faraday rotation measurement can be repeated until the decoherence becomes comparable to the signal-to-noise ratio of the measurement. The number of cycles for a realistic experimental parameter is estimated to be ∼100. (paper)

  13. Secondary wavelength stabilization of unbalanced Michelson interferometers for the generation of low-jitter pulse trains.

    Science.gov (United States)

    Shalloo, R J; Corner, L

    2016-09-01

    We present a double unbalanced Michelson interferometer producing up to four output pulses from a single input pulse. The interferometer is stabilized with the Hänsch-Couillaud method using an auxiliary low power continuous wave laser injected into the interferometer, allowing the stabilization of the temporal jitter of the output pulses to 0.02 fs. Such stabilized pulse trains would be suitable for driving multi-pulse laser wakefield accelerators, and the technique could be extended to include amplification in the arms of the interferometer.

  14. Femto-second synchronisation with a waveguide interferometer

    Science.gov (United States)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  15. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  16. Measurements of Interferometer Parameters at Reception of GLONASS and GPS Signals

    Directory of Open Access Journals (Sweden)

    Nechaeva M.

    2016-10-01

    Full Text Available The present paper deals with the calibration method of interferometers with antennas having a small effective area, on the quasinoise signals of GLONASS and GPS navigation satellites. Algorithms for calculation of antenna coordinates and instrumental delay from the analysis of correlation interferometer response to signals of satellites in the near field of the instrument were reviewed. The method was tested in VLBI experiments on interferometers with medium and large baselines that included radio telescopes of NIRFI and VIRAC. The values of the antenna coordinates and instrumental delay with an error within the limits of one discrete were obtained. The sources of measurement errors and ways to improve the accuracy of results were analysed.

  17. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    Science.gov (United States)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  18. A wide-band laser interferometer for the detection of gravitational radiation

    International Nuclear Information System (INIS)

    Billing, H.; Maischberger, K.; Ruediger, A.; Schilling, R.; Schnupp, L.; Winkler, W.

    1979-02-01

    The aim of the current investigations of the model interferometer is to gather quantitative data on different noise effects (some of which were rather unexpected), and to develop methods to cope with them. This knowledge will be the basis for a better design of an interferometer of increased path length. The interferometer, in its present form, is not meant for detecting gravitational waves, and the sensitivity currently obtained does not reach that of resonant bars. If the 1-Watt shot-noise limit could be reached, with 300 reflections in the delay line, this model could, however, be an order of magnitude more sensitive than room-temperature resonant bars. (orig.) 891 WB/orig. 892 MAB

  19. Matter-wave interferometry in a double well on an atom chip

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Hofferberth, S.; Andersson, L. M.

    2005-01-01

    Matter-wave interference experiments enable us to study matter at its most basic, quantum level and form the basis of high-precision sensors for applications such as inertial and gravitational field sensing. Success in both of these pursuits requires the development of atom-optical elements...... that can manipulate matter waves at the same time as preserving their coherence and phase. Here, we present an integrated interferometer based on a simple, coherent matter-wave beam splitter constructed on an atom chip. Through the use of radio-frequency-induced adiabatic double-well potentials, we...... demonstrate the splitting of Bose-Einstein condensates into two clouds separated by distances ranging from 3 to 80 μm, enabling access to both tunnelling and isolated regimes. Moreover, by analysing the interference patterns formed by combining two clouds of ultracold atoms originating from a single...

  20. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  1. An active interferometer-stabilization scheme with linear phase control

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Krishnamachari, v v; Potma, E O

    2006-01-01

    We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser...... beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm....

  2. Slow-Light-Enhanced Spectral Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We proposoe a research program aimed at developing spectral interferometers with dramatically enhanced performance. A key aspect of our approach is to place a highly...

  3. Naked eye picometer resolution in a Michelson interferometer using conjugated twisted beams.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2017-01-15

    Michelson interferometry is one of the most widely used techniques for accuracy measurements. Its main characteristic feature is to infer a displacement in one of the arms of the interferometer from a phase measurement. Two different twisted beams, also called vortex beams, with opposite twisted rotations in each arm of the interferometer interfere in a daisy flower-like pattern. The number of petals is twice the topological charge. Their position depends on the relative phase of the beams. Naked eye detection of 44 pm displacements is achieved. The sensitivity of such an interferometer together with possible further improvements, and applications are then discussed.

  4. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  5. Intensity profiles behind a five-stage neutron interferometer

    International Nuclear Information System (INIS)

    Kischko, U.

    1983-01-01

    By means of the quantitative photography intensity profiles behind a five-stage ideal-crystal neutron interferometer at the thermal channel H25 of the high-flux reactor at the institute Laue-Langevin in Grenoble/France were dermined and compared with theoretical profiles. Contravily to X-rays by neutrons the hole Borrmann range is excited. This leads in the interference picture to superposition of several wave field components. It was shown that the spherical wave theory, as it was developed by W. Bauspiess, U. Bonse, and W. Graeff for the absorption-free neutron interferometer, describes well quantitatively the experimental intensity profiles. Expecially for the t-2t-t geometry the theoretically predicted focusing was confirmed. For the H-beam the intensity profile is symmetric and spatially limited; the O-beam is asymetric with intensities decreasing slowly up to the boundary. Geometrical differences within single stages lead to unique changes in the intensity profile. The pigtail pattern leading in the past to some puzzle guessing could be explained by the influence of geometrical defocusings on the phase shift. Important conclusions for the geometrical tolerances, which have to be regarded in the construction of neutron interferometers, could be obtained. (orig.) [de

  6. Silicon Integrated Dual-Mode Interferometer with Differential Outputs

    Directory of Open Access Journals (Sweden)

    Niklas Hoppe

    2017-09-01

    Full Text Available The dual-mode interferometer (DMI is an attractive alternative to Mach-Zehnder interferometers for sensor purposes, achieving sensitivities to refractive index changes close to state-of-the-art. Modern designs on silicon-on-insulator (SOI platforms offer thermally stable and compact devices with insertion losses of less than 1 dB and high extinction ratios. Compact arrays of multiple DMIs in parallel are easy to fabricate due to the simple structure of the DMI. In this work, the principle of operation of an integrated DMI with differential outputs is presented which allows the unambiguous phase shift detection with a single wavelength measurement, rather than using a wavelength sweep and evaluating the optical output power spectrum. Fluctuating optical input power or varying attenuation due to different analyte concentrations can be compensated by observing the sum of the optical powers at the differential outputs. DMIs with two differential single-mode outputs are fabricated in a 250 nm SOI platform, and corresponding measurements are shown to explain the principle of operation in detail. A comparison of DMIs with the conventional Mach-Zehnder interferometer using the same technology concludes this work.

  7. Interferometer for measuring the dynamic surface topography of a human tear film

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  8. Increased interference fringe visibility from the post-fabrication heat treatment of a perfect crystal silicon neutron interferometer

    Science.gov (United States)

    Heacock, B.; Arif, M.; Cory, D. G.; Gnaeupel-Herold, T.; Haun, R.; Huber, M. G.; Jamer, M. E.; Nsofini, J.; Pushin, D. A.; Sarenac, D.; Taminiau, I.; Young, A. R.

    2018-02-01

    We find that annealing a previously chemically etched interferometer at 800 °C dramatically increased the interference fringe visibility from 23% to 90%. The Bragg plane misalignments were also measured before and after annealing using neutron rocking curves, showing that Bragg plane alignment was improved across the interferometer after annealing. This suggests that current interferometers with low fringe visibility may be salvageable and that annealing may become an important step in the fabrication process of future neutron interferometers, leading to less need for chemical etching and larger more exotic neutron interferometers.

  9. Analytic models of spectral responses of fiber-grating-based interferometers on FMC theory.

    Science.gov (United States)

    Zeng, Xiangkai; Wei, Lai; Pan, Yingjun; Liu, Shengping; Shi, Xiaohui

    2012-02-13

    In this paper the analytic models (AMs) of the spectral responses of fiber-grating-based interferometers are derived from the Fourier mode coupling (FMC) theory proposed recently. The interferometers include Fabry-Perot cavity, Mach-Zehnder and Michelson interferometers, which are constructed by uniform fiber Bragg gratings and long-period fiber gratings, and also by Gaussian-apodized ones. The calculated spectra based on the analytic models are achieved, and compared with the measured cases and those on the transfer matrix (TM) method. The calculations and comparisons have confirmed that the AM-based spectrum is in excellent agreement with the TM-based one and the measured case, of which the efficiency is improved up to ~2990 times that of the TM method for non-uniform-grating-based in-fiber interferometers.

  10. Characterisation of a resolution enhancing image inversion interferometer.

    Science.gov (United States)

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  11. Applications of the lateral shearing interferometer in measurement of synchrotron radiation optical elements

    International Nuclear Information System (INIS)

    Liu, Wu-ming; Takacs, P.Z.; Siddons, D.P.

    1987-11-01

    The use of a single plate shearing, or Murty, interferometer for measuring the surface quality of several optical elements is reviewed and several results are given. The principle of the Murty interferometer is also explained

  12. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    Science.gov (United States)

    Lazzerini, Giovanni Mattia; Paternò, Giuseppe Maria; Tregnago, Giulia; Treat, Neil; Stingelin, Natalie; Yacoot, Andrew; Cacialli, Franco

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of "molecular terraces" whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  13. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer

    NARCIS (Netherlands)

    Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.

    2014-01-01

    The use of optical fibers presents several advantages with respect to free-space optical transport regarding sourcefrequency delivery to individual heterodyne interferometers. Unfortunately, fiber delivery to individual coaxial heterodyne interferometers leads to an increase of (periodic)

  14. Analysis of the localization of Michelson interferometer fringes using Fourier optics and temporal coherence

    International Nuclear Information System (INIS)

    Narayanamurthy, C S

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in Principles of Optics by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer have never been analysed seriously in any book. Because Michelson's interferometer is one of the important and fundamental optical experiments taught at both undergraduate and graduate levels, it would be appropriate to explain the localization of these fringes. In this paper, we analyse the localization of Michelson interferometer fringes using Fourier optics and temporal coherence, and show that they never localize at any plane even at infinity

  15. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  16. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, GM; Paterno, GM; Tregnago, G; Treat, N; Stingelin, N; Yacoot, A; Cacialli, F

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8???nm), was used to measure the cr...

  17. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C-61-butyric acid methyl ester

    OpenAIRE

    Lazzerini, G. M.; Paterno, G. M.; Tregnago, G.; Treat, N.; Stingelin, N.; Yacoot, A.; Cacialli, F.

    2016-01-01

    We report high-resolution, traceable atomic force microscopymeasurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crys...

  18. Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment

    Science.gov (United States)

    D'Incao, Jose P.; Willians, Jason R.

    2015-05-01

    Precision atom interferometers (AI) in space are a key element for several applications of interest to NASA. Our proposal for participating in the Cold Atom Laboratory (CAL) onboard the International Space Station is dedicated to mitigating the leading-order systematics expected to corrupt future high-precision AI-based measurements of fundamental physics in microgravity. One important focus of our proposal is to enhance initial state preparation for dual-species AIs. Our proposed filtering scheme uses Feshbach molecular states to create highly correlated mixtures of heteronuclear atomic gases in both their position and momentum distributions. We will detail our filtering scheme along with the main factors that determine its efficiency. We also show that the atomic and molecular heating and loss rates can be mitigated at the unique temperature and density regimes accessible on CAL. This research is supported by the National Aeronautics and Space Administration.

  19. Novel birefringence interrogation for Sagnac loop interferometer sensor with unlimited linear measurement range.

    Science.gov (United States)

    He, Haijun; Shao, Liyang; Qian, Heng; Zhang, Xinpu; Liang, Jiawei; Luo, Bin; Pan, Wei; Yan, Lianshan

    2017-03-20

    A novel demodulation method for Sagnac loop interferometer based sensor has been proposed and demonstrated, by unwrapping the phase changes with birefringence interrogation. A temperature sensor based on Sagnac loop interferometer has been used to verify the feasibility of the proposed method. Several tests with 40 °C temperature range have been accomplished with a great linearity of 0.9996 in full range. The proposed scheme is universal for all Sagnac loop interferometer based sensors and it has unlimited linear measurable range which overwhelming the conventional demodulation method with peak/dip tracing. Furthermore, the influence of the wavelength sampling interval and wavelength span on the demodulation error has been discussed in this work. The proposed interrogation method has a great significance for Sagnac loop interferometer sensor and it might greatly enhance the availability of this type of sensors in practical application.

  20. Mirrors used in the LIGO interferometers for first detection of gravitational waves.

    Science.gov (United States)

    Pinard, L; Michel, C; Sassolas, B; Balzarini, L; Degallaix, J; Dolique, V; Flaminio, R; Forest, D; Granata, M; Lagrange, B; Straniero, N; Teillon, J; Cagnoli, G

    2017-02-01

    For the first time, direct detection of gravitational waves occurred in the Laser Interferometer Gravitational-wave Observatory (LIGO) interferometers. These advanced detectors require large fused silica mirrors with optical and mechanical properties and have never been reached until now. This paper details the main achievements of these ion beam sputtering coatings.

  1. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    Science.gov (United States)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  2. NEuclid: a long-range tilt-immune homodyne interferometer

    Science.gov (United States)

    Bradshaw, M. J.; Speake, C. C.

    2017-11-01

    The new Easy to Use Compact Laser Interferometric Device (nEUCLID) is a polarisation-based homodyne interferometer with substantially unequal arms that is tolerant to target mirror tilt. The design has no active components, uses standard optical components of 25 mm diameter, has a working distance of 706 mm and a reference arm-length of 21 mm. nEUCLID optics have a footprint of 210 x 190 x 180 mm, and has a tolerance to target mirror tilt of +/- 0.5 degrees, made possible by a novel new retro-reflector design [1]. nEUCLID was built to a set of specifications laid down by Airbus Defence and Space, who required a lowmass, low-power device to measure displacement with nanometre accuracy for space applications. At the University of Birmingham we have previously built a smaller, more compact tilt-insensitive homodyne interferometer - the EUCLID [2, 3, 4] - which has a working distance of 6 mm, a working range of +/- 3 mm, and a tilt range of +/- 1° [2]. We created a new optical design to allow a much larger working distance to be achieved (as discussed in Section II) and used this in a new interferometer - the nEUCLID. Section II describes the interferometer in detail; how nEUCLID is tilt insensitive, and the optical configuration. Section III states the design specifications from Airbus Defence and Space and the components used in the final design. The output interference pattern from nEUCLID, and how it has been corrected with a meniscus lens, is also discussed. In Section IV we discuss the results demonstrating the tilt immunity range, and the sensitivity of the device. Section V describes several potential applications of nEUCLID, and Section VI draws together our conclusions.

  3. Direct reading fast microwave interferometer for EBT

    International Nuclear Information System (INIS)

    Uckan, T.

    1984-10-01

    A simple and inexpensive 4-mm direct reading fast (rise time approx. 100 μs) microwave interferometer is described. The system is particularly useful for density measurements on the ELMO Bumpy Torus (EBT) during pulsed operation

  4. The use of x-ray interferometry to investigate the linearity of the NPL Differential Plane Mirror Optical Interferometer

    Science.gov (United States)

    Yacoot, Andrew; Downs, Michael J.

    2000-08-01

    The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.

  5. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  6. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  7. Measurements of sub photon cavity fields by atom interferometry; Mesures de champs au niveau du photon par interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Nussenzveig, P

    1994-07-15

    Two neighbouring levels of a Rydberg atom coupled to a high quality-factor microwave cavity are an excellent tool for the study of matter-wave interactions at the most basic level. The system is so simple (a two-level atom coupled to a single mode of the field) that most phenomena can be described analytically. In this work we study dispersive effects of the non-resonant atom-cavity interaction. We have measured the linear dependence of the atomic energy level-shifts on the average photon number in the cavity. Light shifts induced by an average microwave field intensity weaker than a single photon have been observed. It has also been possible to measure the residual shift of one of the two levels of the atomic transition in the absence of an injected field: a Lamb shift due to a single mode of the field. A sensitive measurement of these energy shifts is performed by an interferometric method: the Ramsey separated oscillatory fields technique. Future experiments, in a situation of very weak field relaxation, are proposed. The quantum behavior of the field will then be dominant and it shall be possible to perform a Quantum Non-Demolition measurement of the photon number: since the interaction is non-resonant, the atoms can neither absorb nor emit photons in the cavity. The performed experiments demonstrate the sensitivity of the apparatus and set the stage for future non-demolition measurements and for the study of 'mesoscopic' Schroedinger cat states of the field, on the boundary between classical and quantum worlds. (author)

  8. Handheld ESPI-speckle interferometer

    DEFF Research Database (Denmark)

    Skov Hansen, René

    2003-01-01

    . The interferometer presented here is a compact version of the set-up, Which is capable of measuring displacements of small objects, having either a specularly reflecting-or a diffusely scattering surface. The small optical set-up together with the use of the popular USB-communication for acquiring the images...... and controlling the phase of the reference wave constitutes a compact "handheld" instrument and eliminates the need for installing extra hardware, such as frame grabber and Digital to Analog converter, in the host computer....

  9. Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, F; Sugamoto, A [Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Sato, S; Leonhardt, V; Yamazaki, T; Fukushima, M; Kawamura, S [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 112-8610 (Japan); Miyakawa, O [California Institute of Technology, Pasadena, CA 91125 (United States); Morioka, T [University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishizawa, A [Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: kawazoe@gravity.mtk.nao.ac.jp

    2008-07-15

    LCGT plans to use tuned RSE as the optical configuration for its interferometer. A tuned RSE interferometer has five degrees of freedom that need to be controlled in order to operate a gravitational-wave detector, although it is expected to be very challenging because of the complexity of its optical configuration. A new control scheme for a tuned RSE interferometer has been developed and tested with a prototype interferometer to demonstrate successful control of the tuned RSE interferometer. The whole RSE interferometer was successfully locked with the control scheme. Here the control scheme and the current status of the experiment are presented.

  10. Experimental investigation of a control scheme for a tuned resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kawazoe, F; Sugamoto, A; Sato, S; Leonhardt, V; Yamazaki, T; Fukushima, M; Kawamura, S; Miyakawa, O; Morioka, T; Nishizawa, A

    2008-01-01

    LCGT plans to use tuned RSE as the optical configuration for its interferometer. A tuned RSE interferometer has five degrees of freedom that need to be controlled in order to operate a gravitational-wave detector, although it is expected to be very challenging because of the complexity of its optical configuration. A new control scheme for a tuned RSE interferometer has been developed and tested with a prototype interferometer to demonstrate successful control of the tuned RSE interferometer. The whole RSE interferometer was successfully locked with the control scheme. Here the control scheme and the current status of the experiment are presented

  11. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  12. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  13. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  14. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin

    2017-01-01

    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  15. Phase-stepping optical profilometry of atom mirrors

    International Nuclear Information System (INIS)

    MacLaren, D A; Goldrein, H T; Holst, B; Allison, W

    2003-01-01

    Electrically deformed single crystal mirrors will be a vital part of a first generation of scanning helium microscope (SHeM). Optimized mirrors will be used to focus thermal energy helium atoms into a surface-sensitive, low-energy probe, with a resolution that depends upon the precise mirror shape. Here, we present surface profilometry measurements of a prototype atom mirror. A temporal phase-stepping Mach-Zender fibre interferometer is used to profile the mirror surface with an accuracy of a few tens of nanometres. Results are compared with the theory of small deflections of an elastic thin plate. Our experiments suggest that relatively simple apparatus can induce the mirror profiles required to demagnify a conventional helium source into a microprobe suitable for a SHeM. Use of elliptical boundary conditions in the clamping mechanism afford biaxial bending in the crystal whilst a simple double-electrode design is demonstrated to be capable of asymmetric control of the mirror deformation

  16. Noise sources in the LTP heterodyne interferometer

    International Nuclear Information System (INIS)

    Wand, V; Bogenstahl, J; Braxmaier, C; Danzmann, K; GarcIa, A; Guzman, F; Heinzel, G; Hough, J; Jennrich, O; Killow, C; Robertson, D; Sodnik, Z; Steier, F; Ward, H

    2006-01-01

    The LISA Technology Package uses a heterodyne Mach-Zehnder interferometer to monitor the relative motion of the test masses with picometer accuracy. This paper discusses two classes of noise sources that were identified and investigated during the prototype experiments. Most troublesome are electrically induced sidebands on the light, which give rise to nonlinearities in the interferometer output. Even worse, if the differential pathlength between two optical fibres fluctuates, a noise term of milliradian amplitude appears and completely spoils the performance. We discuss the origin and mitigation of this process. Dissimilar beam shapes of the interfering beams produce another type of noise in conjunction with beam jitter and spatially inhomogeneous photodetectors. To study and minimize this effect, we have built a real-time high-resolution phasefront imaging system that will be used for the production of the flight model

  17. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  18. Design of a speed meter interferometer proof-of-principle experiment

    International Nuclear Information System (INIS)

    Gräf, C; Barr, B W; Bell, A S; Campbell, F; Cumming, A V; Gordon, N A; Hammond, G D; Hennig, J; Houston, E A; Huttner, S H; Jones, R A; Leavey, S S; Macarthur, J; Marwick, M; Rigby, S; Sorazu, B; Spencer, A; Danilishin, S L; Lück, H; Schilling, R

    2014-01-01

    The second generation of large scale interferometric gravitational wave (GW) detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter (SSM) interferometer, which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify SSM for further research towards an implementation in a future generation large scale GW detector, such as the planned Einstein telescope observatory. (paper)

  19. Optimum design of a microwave interferometer for plasma density measurement

    International Nuclear Information System (INIS)

    Lindberg, L.; Eriksson, A.

    1980-11-01

    Theoretical and practical problems arising in the application of microwave interferometry to density measurements on transient plasmas are discussed. The conditions for unambiquous measurements in a density range as wide as possible are analyzed. It is shown that the initial zero adjustment of the interferometer bridge recommended in many text books is the worst possible choice of initial condition when the aim is high initial sensitivity at low densities. The analytic expressions needed for unambiquous evaluation of any phase shift from a few degrees to several times π (counting of fringes) are derived. The practical design of the interferometer circuit and its inherent error sources due to reflexions and non-ideal component properties are discussed. The results are applied to an interferometer operating at 80 GHz used on a pulsed plasma experiment. The minimum measurable phase shift is 2deg and the range of linear densities that have been measured is = 1 . 10 16 - 3 . 10 18 m -2

  20. Grupos domésticos socialmente vulnerables en el borde sur de la Zona Metropolitana de la Ciudad de México

    Directory of Open Access Journals (Sweden)

    Perla Yannelli Fernández-Silva

    2016-01-01

    Full Text Available Los últimos estudios sobre la relación campo-ciudad señalan la ruptura de la dicotomía entre lo rural y lo urbano. En esta investigación se presentan los resultados de un estudio con metodología cuantitativa aplicado a localidades del borde sur de la Zona Metropolitana de la Ciudad de México, donde se identificó la existencia de algunos grupos domésticos en condiciones de vulnerabilidad social dentro de espacios de transición entre lo urbano y lo rural. Esta vulnerabilidad se constituye a partir de características socioterritoriales que, en conjunto, condicionan las formas de reproducción social y territorial de los grupos en localidades de Milpa Alta, Tlalpan y Tláhuac.

  1. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  2. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    Science.gov (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  3. Eight-chord CO2 interferometer for plasma-density measurements on ZT-40

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Jolin, L.J.

    1981-01-01

    We describe a CO 2 laser interferometer which measures the path-integrated density along eight different chords simultaneously in the ZT-40 reversed-field pinch, a toroidal magnetic confinement experiment at Los Alamos. The interferometer system combines several reliable, commercially available components in a package which provides exceptional measurement resolution as well as ease of operation and maintenance

  4. Fox grape cv. Bordô (Vitis labrusca L.) and grapevine cv. Chardonnay (Vitis vinifera L.) cultivated in vitro under different carbohydrates, amino acids and 6-Benzylaminopurine levels

    OpenAIRE

    Carvalho, Dayse Cristina de; Silva, André Luís Lopes da; Schuck, Mariane Ruzza; Purcino, Marivel; Tanno, Guilherme Nakao; Biasi, Luiz Antonio

    2013-01-01

    The aim of this work was to study the influence of sucrose and glucose, amino acids and BAP (6-Benzylaminopurine) levels on in vitro shoot regeneration of fox grape cv. Bordô and grapevine cv. Chardonnay. The nodal segments from micropropagated material were used as explants and half-strength MS medium as the basal medium. Sucrose and glucose at 15, 30 and 45 g.L-1 were tested as a carbon source and the supplementation of adenine, asparagine, alanine, glycine, cysteine, glutamine, arginine wa...

  5. Quantum physics of entangled systems: wave-particle duality and atom-photon molecules

    International Nuclear Information System (INIS)

    Rempe, G.

    2000-01-01

    One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)

  6. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector

    Science.gov (United States)

    Chen, Yanbei

    2003-06-01

    According to quantum measurement theory, “speed meters”—devices that measure the momentum, or speed, of free test masses—are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sagnac interferometer, as for other speed meters. With squeezed vacuum (squeeze factor e-2R=0.1) injected into its dark port, the recycled Sagnac interferometer can beat the SQL by a factor (10)≃3 over the frequency band 10 Hz≲f≲150 Hz using the same circulating power Ic˜820 kW as is to be used by the (quantum limited) second-generation Advanced LIGO interferometers—if other noise sources are made sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO).

  7. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    Science.gov (United States)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  8. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.

  9. A Fiber Interferometer for the Magnetized Shock Experiment

    International Nuclear Information System (INIS)

    Yoo, Christian

    2012-01-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory requires remote diagnostics of plasma density. Laser interferometry can be used to determine the line-integrated density of the plasma. A multi-chord heterodyne fiber optic Mach-Zehnder interferometer is being assembled and integrated into the experiment. The advantage of the fiber coupling is that many different view chords can be easily obtained by simply moving transmit and receive fiber couplers. Several such fiber sets will be implemented to provide a time history of line-averaged density for several chords at once. The multiple chord data can then be Abel inverted to provide radially resolved spatial profiles of density. We describe the design and execution of this multiple fiber interferometer.

  10. On-chip Mach-Zehnder interferometer for OCT systems

    Science.gov (United States)

    van Leeuwen, Ton G.; Akca, Imran B.; Angelou, Nikolaos; Weiss, Nicolas; Hoekman, Marcel; Leinse, Arne; Heideman, Rene G.

    2018-04-01

    By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained.

  11. Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity

    International Nuclear Information System (INIS)

    Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Chung, Keng-Yeow

    2008-01-01

    We present a test of the local Lorentz invariance of post-Newtonian gravity by monitoring Earth's gravity with a Mach-Zehnder atom interferometer that features a resolution of up to 8x10 -9 g/√(Hz), the highest reported thus far. Expressed within the standard model extension (SME) or Nordtvedt's anisotropic universe model, the analysis limits four coefficients describing anisotropic gravity at the ppb level and three others, for the first time, at the 10 ppm level. Using the SME we explicitly demonstrate how the experiment actually compares the isotropy of gravity and electromagnetism

  12. Efeito da época de poda e da desfolha na interceptação de radiação solar na videira Bordô

    Directory of Open Access Journals (Sweden)

    André Luiz Radünz

    2013-01-01

    Full Text Available O presente trabalho teve por objetivo determinar a influência da desfolha e da época da poda seca sobre o albedo e sobre a radiação solar disponível ao nível dos cachos e determinar o efeito da radiação solar sobre o acúmulo de sólidos solúveis da videira. Foram realizadas duas épocas de poda seca e a desfolha em parte do vinhedo da cultivar Bordô conduzida no sistema pérgula. A radiação solar foi medida utilizando-se tubos solarímetros instalados em cada tratamento, sendo o teor de sólidos solúveis determinado no momento da colheita, com um refratômetro de campo. A realização da poda seca exerceu influência sobre o albedo, sendo que o maior albedo da videira Bordô é observado quando a poda seca ocorreu na época normal (meados de setembro e sem desfolha. Para o período compreendido entre a poda e a desfolha, o albedo variou entre 0,28 e 0,30. Os resultados demonstram que o adiamento da poda seca representa redução na quantidade de radiação solar disponível ao nível dos cachos, ao mesmo tempo em que a realização da desfolha propicia aumento na radiação que incide ao nível dos cachos. O acúmulo de sólidos solúveis está relacionado com a radiação solar disponível ao nível dos cachos.

  13. AMI: Augmented Michelson Interferometer

    Science.gov (United States)

    Furió, David; Hachet, Martin; Guillet, Jean-Paul; Bousquet, Bruno; Fleck, Stéphanie; Reuter, Patrick; Canioni, Lionel

    2015-10-01

    Experiments in optics are essential for learning and understanding physical phenomena. The problem with these experiments is that they are generally time consuming for both their construction and their maintenance, potentially dangerous through the use of laser sources, and often expensive due to high technology optical components. We propose to simulate such experiments by way of hybrid systems that exploit both spatial augmented reality and tangible interaction. In particular, we focus on one of the most popular optical experiments: the Michelson interferometer. In our approach, we target a highly interactive system where students are able to interact in real time with the Augmented Michelson Interferometer (AMI) to observe, test hypotheses and then to enhance their comprehension. Compared to a fully digital simulation, we are investigating an approach that benefits from both physical and virtual elements, and where the students experiment by manipulating 3D-printed physical replicas of optical components (e.g. lenses and mirrors). Our objective is twofold. First, we want to ensure that the students will learn with our simulator the same concepts and skills that they learn with traditional methods. Second, we hypothesis that such a system opens new opportunities to teach optics in a way that was not possible before, by manipulating concepts beyond the limits of observable physical phenomena. To reach this goal, we have built a complementary team composed of experts in the field of optics, human-computer interaction, computer graphics, sensors and actuators, and education science.

  14. An X-ray BBB Michelson interferometer.

    Science.gov (United States)

    Sutter, John P; Ishikawa, Tetsuya; Kuetgens, Ulrich; Materlik, Gerhard; Nishino, Yoshinori; Rostomyan, Armen; Tamasaku, Kenji; Yabashi, Makina

    2004-09-01

    A new X-ray Michelson interferometer based on the BBB interferometer of Bonse and Hart and designed for X-rays of wavelength approximately 1 A was described in a previous paper. Here, a further test carried out at the SPring-8 1 km beamline BL29XUL is reported. One of the BBB's mirrors was displaced by a piezo to introduce the required path-length difference. The resulting variation of intensity with piezo voltage as measured by an avalanche photodiode could be ascribed to the phase variation resulting from the path-length change, with a small additional contribution from the change of the position of the lattice planes of the front mirror relative to the rest of the crystal. This 'Michelson fringe' interpretation is supported by the observed steady movement across the output beam of the interference fringes produced by a refractive wedge when the piezo voltage was ramped. The front-mirror displacement required for one complete fringe at the given wavelength is only 0.675 A; therefore, a quiet environment is vital for operating this device, as previous experiments have shown.

  15. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  16. Density Measurement of Compact Toroid with Mach-Zehnder Interferometer

    Science.gov (United States)

    Laufman-Wollitzer, Lauren; Endrizzi, Doug; Brookhart, Matt; Flanagan, Ken; Forest, Cary

    2016-10-01

    Utilizing a magnetized coaxial plasma gun (MCPG) built by Tri Alpha Energy, a dense compact toroid (CT) is created and injected at high speed into the Wisconsin Plasma Astrophysics Laboratory (WiPAL) vessel. A modified Mach-Zehnder interferometer from the Line-Tied Reconnection Experiment (LTRX) provides an absolute measurement of electron density. The interferometer is located such that the beam intersects the plasma across the diameter of the MCPG drift region before the CT enters the vessel. This placement ensures that the measurement is taken before the CT expand. Results presented will be used to further analyze characteristics of the CT. Funding provided by DoE, NSF, and WISE Summer Research.

  17. A reconfigurable optofluidic Michelson interferometer using tunable droplet grating.

    Science.gov (United States)

    Chin, L K; Liu, A Q; Soh, Y C; Lim, C S; Lin, C L

    2010-04-21

    This paper presents a novel optofluidic Michelson interferometer based on droplet microfluidics used to create a droplet grating. The droplet grating is formed by a stream of plugs in the microchannel with constant refractive index variation. It has a real-time tunability in the grating period through varying the flow rates of the liquids and index variation via different combinations of liquids. The optofluidic Michelson interferometer is highly sensitive and is suitable for the measurement of biomedical and biochemical buffer solutions. The experimental results show that it has a sensitivity of 66.7 nm per refractive index unit (RIU) and a detection range of 0.086 RIU.

  18. Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna

    International Nuclear Information System (INIS)

    Cornish, Neil J.

    2002-01-01

    The random superposition of many weak sources will produce a stochastic background of gravitational waves that may dominate the response of the LISA (Laser Interferometer Space Antenna) gravitational wave observatory. Unless something can be done to distinguish between a stochastic background and detector noise, the two will combine to form an effective noise floor for the detector. Two methods have been proposed to solve this problem. The first is to cross-correlate the output of two independent interferometers. The second is an ingenious scheme for monitoring the instrument noise by operating LISA as a Sagnac interferometer. Here we derive the optimal orbital alignment for cross-correlating a pair of LISA detectors, and provide the first analytic derivation of the Sagnac sensitivity curve

  19. Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer.

    Science.gov (United States)

    Novak, Matt; Millerd, James; Brock, Neal; North-Morris, Michael; Hayes, John; Wyant, James

    2005-11-10

    Recent technological innovations have enabled the development of a new class of dynamic (vibration-insensitive) interferometer based on a CCD pixel-level phase-shifting approach. We present theoretical and experimental results for an interferometer based on this pixelated phase-shifting technique. Analyses of component errors and instrument functionality are presented. We show that the majority of error sources cause relatively small magnitude peak-to-valley errors in measurement of the order of 0.002-0.005lambda. These errors are largely mitigated by high-rate data acquisition and consequent data averaging.

  20. Herriott Cell Augmentation of a Quadrature Heterodyne Interferometer

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2002-01-01

    A quadrature heterodyne interferometer is augmented with a Herriott Cell multi-pass reflector to increase instrument resolution and enable a separation of the phase shift due to neutral density from room vibrations...

  1. Search for a stochastic background of 100-MHz gravitational waves with laser interferometers.

    Science.gov (United States)

    Akutsu, Tomotada; Kawamura, Seiji; Nishizawa, Atsushi; Arai, Koji; Yamamoto, Kazuhiro; Tatsumi, Daisuke; Nagano, Shigeo; Nishida, Erina; Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi; Fukushima, Mitsuhiro; Yamazaki, Toshitaka; Fujimoto, Masa-Katsu

    2008-09-05

    This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.

  2. Interferometer for Measuring Fast Changes of Refractive Index and Temperature in Transparent Liquids

    DEFF Research Database (Denmark)

    Miller, Arne; Hussmann, E. K.; McLaughlin, W. L.

    1975-01-01

    A double‐beam interferometer has been designed for detecting changes of refractive index in transparent liquids associated with the absorption of ionizing radiation energy, due to short electron beam pulses from an accelerator. The response time of the interferometer is less than 0.2 μsec......, and refractive index changes of the order of 10−7 can be measured, corresponding to a temperature change of ∼10−3  °C and an absorbed dose in water of ∼350 rad. The interferometer can be used as either a real‐time or integrating radiation dosimeter, if the temperature coefficient of the refractive index (dn...

  3. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling.

    Science.gov (United States)

    Thüring, André; Gräf, Christian; Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2009-03-15

    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on what we believe to be the first experimental realization of a TSR Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked, and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4 dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

  4. Interferometers as probes of Planckian quantum geometry

    Science.gov (United States)

    Hogan, Craig J.

    2012-03-01

    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ≈L/c with typical amplitude ≈ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.

  5. Combined shearing interferometer and hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Hutchin, R. A.

    1985-01-01

    A sensitive wavefront sensor combining attributes of both a Hartmann type of wavefront sensor and an AC shearing interferometer type of wavefront sensor. An incident wavefront, the slope of which is to be detected, is focussed to first and second focal points at which first and second diffraction gratings are positioned to shear and modulate the wavefront, which then diverges therefrom. The diffraction patterns of the first and second gratings are positioned substantially orthogonal to each other to shear the wavefront in two directions to produce two dimensional wavefront slope data for the AC shearing interferometer portion of the wavefront sensor. First and second dividing optical systems are positioned in the two diverging wavefronts to divide the sheared wavefront into an array of subapertures and also to focus the wavefront in each subaperture to a focal point. A quadrant detector is provided for each subaperture to detect the position of the focal point therein, which provides a first indication, in the manner of a Hartmann wavefront sensor, of the local wavefront slope in each subaperture. The total radiation in each subaperture, as modulated by the diffraction grating, is also detected by the quadrant detector which produces a modulated output signal representative thereof, the phase of which relative to modulation by the diffraction grating provides a second indication of the local wavefront slope in each subaperture, in the manner of an AC shearing interferometer wavefront sensor. The data from both types of sensors is then combined by long term averaging thereof to provide an extremely sensitive wavefront sensor

  6. Explosive component acceptance tester using laser interferometer technology

    Science.gov (United States)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  7. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C61-butyric acid methyl ester

    International Nuclear Information System (INIS)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco; Treat, Neil; Stingelin, Natalie

    2016-01-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction

  8. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    Science.gov (United States)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  9. Background reduction in a young interferometer biosensor

    NARCIS (Netherlands)

    Mulder, H. K P; Subramaniam, V.; Kanger, J. S.

    2014-01-01

    Integrated optical Young interferometer (IOYI) biosensors are among the most sensitive label-free biosensors. Detection limits are in the range of 20 fg/mm2. The applicability of these sensors is however strongly hampered by the large background that originates from both bulk refractive index

  10. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  11. Preliminary result of bunch length measurement using a modified Michelson interferometer

    International Nuclear Information System (INIS)

    Lin Xuling; Luo Feng; Bei Hua; Dai Zhimin; Chinese Academy of Sciences, Beijing; Zhang Jianbing; Lu Shanliang; Yu Tiemin

    2009-01-01

    Based on the femtosecond accelerator device which was built at the Shanghai Institute of Applied Physics (SINAP), recently a modified far infrared Michelson interferometer has been developed to measure the length of electron bunches via the optical autocorrelation method. Compared with our former normal Michelson interferometer, we use a hollow retroreflector instead of a flat mirror as the reflective mirror. The experimental setup and results of the bunch length measurement will be described in this paper. (authors)

  12. The Design and Implementation of the Wide-Angle Michelson Interferometer to Observe Thermospheric Winds.

    Science.gov (United States)

    Ward, William Edmund

    The design and implementation of a Wide-Angle Michelson interferometer (WAMI) as a high spectral resolution device for measuring Doppler shifts and temperatures in the thermosphere is discussed in detail. A general theoretical framework is developed to describe the behavior of interferometers and is applied to the WAMI. Notions concerning the optical coupling of various surfaces within an interferometer are developed and used to investigate the effects of misalignments in the WAMI optics. In addition, these notions in combination with ideas on the polarization behavior of interferometers are used to suggest how complex multisurfaced interferometers might be developed, what features affect their behavior most strongly, and how this behavior might be controlled. Those aspects of the Michelson interferometer important to its use as a high resolution spectral device are outlined and expressions relating the physical features of the interferometer and the spectral features of the radiation passing through the instrument, to the form of the observed interference pattern are derived. The sensitivity of the WAMI to misalignments in its optical components is explored, and quantitative estimations of the effects of these misalignments made. A working WAMI with cube corners instead of plane mirrors was constructed and is described. The theoretical notions outlined above are applied to this instrument and found to account for most of its features. A general digital procedure is developed for the analysis of the observed interference fringes which permits an estimation of the amplitude, visibility and phase of the fringes. This instrument was taken to Bird, northern Manitoba as part of the ground based support for the Auroral Rocket and Image Excitation Study (ARIES) rocket campaign. Doppler shifts and linewidth variations in O(^1 D) and O(^1S) emissions in the aurora were observed during several nights and constitute the first synoptic wind measurements taken with a WAMI. The

  13. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    Science.gov (United States)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  14. CAMEX-3 ATMOSPHERIC EMITTED RADIANCE INTERFEROMETER (AERI) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Atmospheric Emitted Radiance Interferometer (AERI) was used to make atmospheric temperature and moisture retrievals. AERI provides absolutely calibrated...

  15. Experimental investigation of a control scheme for a zero-detuning resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Fumiko; Sugamoto, Akio [Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Leonhardt, Volker; Sato, Shuichi; Yamazaki, Toshitaka; Fukushima, Mitsuhiro; Kawamura, Seiji [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Miyakawa, Osamu [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Somiya, Kentaro [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, 14476 Potsdam (Germany); Morioka, Tomoko [University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishizawa, Atsushi [Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: fumiko.kawazoe@aei.mpg.de

    2008-10-07

    Some next-generation gravitational-wave detectors, such as the American Advanced LIGO project and the Japanese LCGT project, plan to use power recycled resonant sideband extraction (RSE) interferometers for their interferometer's optical configuration. A power recycled zero-detuning (PRZD) RSE interferometer, which is the default design for LCGT, has five main length degrees of freedom that need to be controlled in order to operate a gravitational-wave detector. This task is expected to be very challenging because of the complexity of optical configuration. A new control scheme for a PRZD RSE interferometer has been developed and tested with a prototype interferometer. The PRZD RSE interferometer was successfully locked with the control scheme. It is the first experimental demonstration of a PRZD RSE interferometer with suspended test masses. The result serves as an important step for the operation of LCGT.

  16. Experimental investigation of a control scheme for a zero-detuning resonant sideband extraction interferometer for next-generation gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kawazoe, Fumiko; Sugamoto, Akio; Leonhardt, Volker; Sato, Shuichi; Yamazaki, Toshitaka; Fukushima, Mitsuhiro; Kawamura, Seiji; Miyakawa, Osamu; Somiya, Kentaro; Morioka, Tomoko; Nishizawa, Atsushi

    2008-01-01

    Some next-generation gravitational-wave detectors, such as the American Advanced LIGO project and the Japanese LCGT project, plan to use power recycled resonant sideband extraction (RSE) interferometers for their interferometer's optical configuration. A power recycled zero-detuning (PRZD) RSE interferometer, which is the default design for LCGT, has five main length degrees of freedom that need to be controlled in order to operate a gravitational-wave detector. This task is expected to be very challenging because of the complexity of optical configuration. A new control scheme for a PRZD RSE interferometer has been developed and tested with a prototype interferometer. The PRZD RSE interferometer was successfully locked with the control scheme. It is the first experimental demonstration of a PRZD RSE interferometer with suspended test masses. The result serves as an important step for the operation of LCGT

  17. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    International Nuclear Information System (INIS)

    Xin, Jun; Wang, Hailong; Jing, Jietai

    2016-01-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  18. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Jun; Wang, Hailong [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-01

    Quantum-noise cancellation (QNC) is an effective method to control the noise of the quantum system, which reduces or even eliminates the noise of the quantum systems by utilizing destructive interference in the quantum system. However, QNC can be extremely dependent on the losses inside the system. In this letter, we experimentally and theoretically study how the losses can affect the QNC in the SU(1,1) interferometer. We find that losses in the different arms inside the SU(1,1) interferometer can have different effects on the QNC in the output fields from the SU(1,1) interferometer. And the QNC in the SU(1,1) interferometer can almost be insensitive to the losses in some cases. Our findings may find its potential applications in the quantum noise control.

  19. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    Science.gov (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  20. Report on the set-up of a holographic interferometer

    International Nuclear Information System (INIS)

    Koster, J.N.

    1977-10-01

    Holographic interferometry is well suited for visualizing temperature, density, pressure and concentration fields in transparent fluids. The holographic real-time interferometer allows a continuous observation of stationary and instationary flow processes. After the explanation of the measuring technique, the problems arising during the interferometer set-up as well as the necessary adjusting operations are described. For heat transfer problems new possibilities for the application of holographic interferometry are revealed. Convection in boxes, temperature fields around heated or cooled bodies, concentration and diffusion processes in two phase-flows, mixtures and solutions as well as melting and freezing processes may be investigated. On the basis of particular examples some applications are presented. (orig.) [de

  1. The Michelson interferometer-how to detect invisible interference patterns

    International Nuclear Information System (INIS)

    Verovnik, Ivo; Likar, Andrej

    2004-01-01

    In a Michelson interferometer, the contrast of the interference pattern fades away due to incoherence of light when the mirrors are not in equidistant positions. We propose an experiment where the distance between the interference fringes can be determined, even when the difference in length of the interferometer arms is far beyond the coherence length of the light, i.e. when the interference pattern disappears completely for the naked eye. We used a semiconductor laser with two photodiodes as sensors, which enabled us to follow the fluctuations of the light intensity on the screen. The distance between invisible interference fringes was determined from periodic changes of the summed fluctuating signal, obtained by changing the distance between the two sensors

  2. Method and apparatus for measuring surface movement of an object using a polarizing interferometer

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-05-09

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  3. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Lazzerini, Giovanni Mattia; Yacoot, Andrew [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom); Treat, Neil; Stingelin, Natalie [Department of Materials Science, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  4. DINÁMICAS URBANO-RURALES EN LOS BORDES EN LA CIUDAD DE MEDELLÍN

    Directory of Open Access Journals (Sweden)

    ZULUAGA SÁNCHEZ GLORIA PATRICIA

    2010-05-01

    Full Text Available El objetivo de la presente investigación fue entender cuáles son las dinámicas territoriales que se producen en las periferias rural-urbanas de la ciudad de Medellín y cuáles son los factores que las producen. Se encontró que la amplia difusión de los medios de transporte, las expectativas de un precio del suelo y de la vivienda más bajo y/o de un mejor entorno ambiental, presionan las zonas rurales aledañas a la ciudad de Medellín; este fenómeno se conoce con los nombres de suburbanización, periurbanización y contraurbanización. En estas áreas rural- urbanas, se producen trozos de ciudad a través de intereses y proyectos mayoritariamente privados, debido a que el desarrollo inmobiliario ha pasado a convertirse en uno de los pilares del crecimiento de la economía, así como también a que las áreas rurales del Departamento expulsan a sus pobladores hacia la ciudad, los cuales se instalan principalmente en los bordes de la ciudad. Esta ocupación de las periferias rural- urbanas está generando destrucción y alteración de los ecosistemas y los paisajes tradicionales, desarticulación de las actividades rurales y está desbordando absolutamente los marcos de planeamiento preexistente.

  5. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  6. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  7. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  8. Stable mounting of beamsplitters for an interferometer

    NARCIS (Netherlands)

    Veggel, van A.A.; Nijmeijer, H.

    2008-01-01

    The Basic Angle Monitoring (BAM) system for satellite GAIA (2012–2018) will measure variation on the angle between the lines-of-sight between two telescopes with 2.5 prad uncertainty. It is a laser-interferometer system consisting of two optical benches with a number of mirrors and beamsplitters.

  9. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    Science.gov (United States)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  10. Two Nobel Prize winners in two days

    CERN Document Server

    2006-01-01

    Living legend of physics, Professor Chen Ning Yang, delivered his CERN Colloquium in the Main Auditorium on 12th October (see photo). His numerous contributions to physics include the famous Yang-Mills theory, which underlies the Standard Model of particle physics, and the prediction of parity violation in weak interactions, for which he shared the Nobel prize with T. D. Lee in 1957. The day before, another Nobel laureate, Norman Ramsey, gave a TH Exceptional Seminar in the same auditorium. Ramsey shared the Nobel Prize with Hans G. Dehmelt and Wolfgang Paul in 1989 for developments in atomic precision spectroscopy.

  11. Analysis of a quantum nondemolition speed-meter interferometer

    International Nuclear Information System (INIS)

    Purdue, Patricia

    2002-01-01

    In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g. LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors rather than monitoring their relative position. This paper describes and analyzes the most straightforward design for a speed meter interferometer that accomplishes this--a design (due to Braginsky, Gorodetsky, Khalili and Thorne) that is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and is used to show [in accord with the speed being a quantum nondemolition observable] that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies, and can do so without the use of squeezed vacuum or any auxiliary filter cavities at the interferometer's input or output. However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation. This analysis forms a foundation for ongoing attempts to develop a more practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising LIGO-III/EURO interferometer design that entails low laser power

  12. Adaptive DFT-Based Interferometer Fringe Tracking

    Science.gov (United States)

    Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.

    2005-12-01

    An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately [InlineEquation not available: see fulltext.] milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  13. Adaptive DFT-Based Interferometer Fringe Tracking

    Directory of Open Access Journals (Sweden)

    Wesley A. Traub

    2005-09-01

    Full Text Available An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA Observatory at Mount Hopkins, Arizona. The system can minimize the optical path differences (OPDs for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier-transform (DFT calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on offline data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms, using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse. One example of such an application might be to the field of thin-film measurement by ellipsometry, using a broadband light source and a Fourier-transform spectrometer to detect the resulting fringe patterns.

  14. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  15. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  16. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    Science.gov (United States)

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  17. Development of measurement system for gauge block interferometer

    Science.gov (United States)

    Chomkokard, S.; Jinuntuya, N.; Wongkokua, W.

    2017-09-01

    We developed a measurement system for collecting and analyzing the fringe pattern images from a gauge block interferometer. The system was based on Raspberry Pi which is an open source system with python programming and opencv image manipulation library. The images were recorded by the Raspberry Pi camera with five-megapixel capacity. The noise of images was suppressed for the best result in analyses. The low noise images were processed to find the edge of fringe patterns using the contour technique for the phase shift analyses. We tested our system with the phase shift patterns between a gauge block and a reference plate. The phase shift patterns were measured by a Twyman-Green type of interferometer using the He-Ne laser with the temperature controlled at 20.0 °C. The results of the measurement will be presented and discussed.

  18. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    International Nuclear Information System (INIS)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-01-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  19. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  20. Development of control and data processing system for CO2 laser interferometer

    International Nuclear Information System (INIS)

    Chiba, Shinichi; Kawano, Yasunori; Tsuchiya, Katsuhiko; Inoue, Akira

    2001-11-01

    CO 2 laser interferometer diagnostic has been operating to measure the central electron density in JT-60U plasmas. We have developed a control and data processing system for the CO 2 laser interferometer with flexible functions of data acquisition, data processing and data transfer in accordance with the sequence of JT-60U discharges. This system is mainly composed of two UNIX workstations and CAMAC clusters, in which the high reliability was obtained by sharing the data process functions to the each workstations. Consequently, the control and data processing system becomes to be able to provide electron density data immediately after a JT-60U discharge, routinely. The realtime feedback control of electron density in JT-60U also becomes to be available by using a reference density signal from the CO 2 laser interferometer. (author)