WorldWideScience

Sample records for raman spectroscopy studies

  1. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  2. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  3. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  4. Studies of cartilaginous tissue using Raman spectroscopy method

    Science.gov (United States)

    Timchenko, Pavel E.; Timchenko, Elena V.; Volova, Larisa T.; Dolgyshkin, Dmitry A.; Markova, Maria D.; Kylabyhova, A. Y.; Kornilin, Dmitriy V.

    2016-10-01

    The work presents the results of studies of samples of human articular surface of the knee joint, obtained by Raman spectroscopy implementedduring endoprosthesis replacement surgery . The main spectral characteristics of articular surface areas with varying degrees of cartilage damage were detected at 956 cm-1, 1066 cm-1 wavenumbers, corresponding to phosphate and carbonate, and at 1660 cm-1, 1271 cm-1 wavenumbers, corresponding to amide I and amide III. Criteria allowing to identify the degree of articular hyaline cartilage damage were introduced.

  5. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  6. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  7. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    International Nuclear Information System (INIS)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs

  8. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  9. PZT microfibre defect structure studied by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kozielski, L.; Buixaderas, Elena; Clemens, F.

    2010-01-01

    Roč. 43, č. 41 (2010), 415401/1-415401/6 ISSN 0022-3727 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : point defects * phase transitions * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.105, year: 2010

  10. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.

    Science.gov (United States)

    Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R

    1979-10-30

    Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.

  11. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  12. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  13. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  14. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  15. [Study of alkaline lignin from Arundo donax linn based on FT Raman spectroscopy].

    Science.gov (United States)

    You, Ting-ting; Ma, Jian-feng; Guo, Si-qin; Xu, Feng

    2014-08-01

    Arundo donax linn, as a perennial energy crop, has promising application prospect. In the present study, Fourier transform Raman (FT Raman) spectroscopy was applied to determine the structural information of materials, milled wood lignin (MWL), and alkaline lignins (AL, under different treated time) from A. donax stem nondestructively. The results indicated that, extractable compounds in A. donax had negative contribution to the Raman spectra without rising new Raman peaks. FT Raman spectrum of MWL indicated that MWL from A. donax was HGS type lignins. Compared with the spectra of MWL from wood materials, the peak at 1173 cm(-1) was much higher in intensity for the MWL from A. donax stem, which may be assigned to hydroxycinnamic acid by analyzing the standard. With respect to FT Raman spectra of ALs, the relatively highest intensity of 1173 cm(-1) was found in alkaline lignin (AL2), which was treated for 40 min by alkaline. Moreover, the peak of coniferaldehyde/sinapaldehyde (1630 cm(-1)) was lowest in intensity while the band attributed to coniferyl alcohol/sinapyl alcohol (1660 cm(-1)) was almost disappeared in AL2. It could be inferred that AL2 demonstrated a highest content of phenolic acid, which may improve its potential application, such as for antioxidant activity. Furthermore, the results obtained by FT Raman spectra were verified by two dimensional heteronuclear singlequantum coherence nuclear magnetic resonance analyses. Above all, FT Raman spectroscopy provided alternative safe, rapid, accurate, and nondestructive technology for lignin structure determination.

  16. Spatially resolved Raman spectroscopy study of transformed zones in magnesia-partially-stabilized zirconia

    International Nuclear Information System (INIS)

    Davskardt, R.H.; Veirs, D.K.; Ritchie, R.O.

    1989-01-01

    Raman vibrational spectroscopy provides an effective phase characterization technique in materials systems containing particle dispersions of the tetragonal and monoclinic polymorphs of zirconia, each of which yields a unique Raman spectrum. An investigation is reported to assess a novel, spatially resolved Raman spectroscopy system in the study of transformed zones surrounding cracks in partially stabilized MgO-ZrO 2 (PSZ). The experimental arrangement uses an imaging (two-dimensional) photomultiplier tube to produce a one-dimensional Raman profile of phase compositions along a slitlike laser beam without translation of either the sample or the laser beam and without scanning the spectrometer. Results from phase characterization studies of the size, frontal morphology, and extent of transformation of transformation zones surrounding cracks produced under monotonic and cyclic loading conditions are presented

  17. An exploratory study of human teeth enamel by using Ft-Raman spectroscopy

    International Nuclear Information System (INIS)

    Afishah Alias; Siti Rahayu Mohd Hashim; Mihaly, Judith; Julyannie Wajir; Fauziah Abdul Aziz

    2009-01-01

    Unaffected , affected and heavily affected teeth enamel were studied by using FT-Raman spectroscopy. The 14 permanent teeths enamel surface were measured randomly, resulting in total n = 43 FT-Raman spectra. The results obtained from FT-Raman spectra of heavily affected, affected and unaffected tooths enamel surfaces did not show any significant difference. In this study, Kruskal-Wallis and Wilcoxon rank sum tests were used to compare the intensity between the categories of enamel as well as the surfaces of teeth samples. (author)

  18. Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy

    OpenAIRE

    S. Ponkumar; P. Duraisamy; N. Iyandurai

    2011-01-01

    Problem statement: In the present study, FT Raman spectroscopy had been used to extend our knowledge about Magnesium ion - DNA interactions at various volume ratios (1:50, 1:20, 1:10 and 1:5). Approach: The analysis of FT Raman data supported the existence of structural specificities in the interaction and also the stability of DNA secondary structure. Results: Results from the Raman spectra clearly indicate that the interaction of Magnesium ion with DNA is mainly through the phosphate groups...

  19. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  20. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  1. Using Raman spectroscopy to study the onset of labor: a pilot study

    Science.gov (United States)

    Vargis, Elizabeth; Webb, C. Nathan; Paria, B. C.; Bennett, Kelly; Reese, Jeff; Al-Hendy, Ayman; Mahadevan-Jansen, Anita

    2011-03-01

    Preterm birth is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy indicative of labor. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  2. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  3. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  4. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  5. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  6. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  7. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  8. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  9. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  10. Stress transfer of a Kevlar 49 fiber pullout test studied by micro-Raman spectroscopy.

    Science.gov (United States)

    Lei, Zhenkun; Wang, Quan; Qiu, Wei

    2013-06-01

    The interfacial stress transfer behavior of a Kevlar 49 aramid fiber-epoxy matrix was studied with fiber pullout tests, the fibers of which were stretched by a homemade microloading device. Raman spectra on the embedded fiber were recorded by micro-Raman spectroscopy, under different strain levels. Then, the fiber axial stress was obtained by the relationship between the stress and Raman shift of the aramid fiber. Experimental results revealed that the fiber axial stress increased significantly with the load. The shear stress concentration occurred at the fiber entry to the epoxy resin. Thus, interfacial friction stages exist in the debonded fiber segment, and the interfacial friction shear stress is constant within one stage. The experimental results are consistent with the theoretical model predictions.

  11. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  12. Study on Surface Structure of U1-yGdyO2-x Using Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jeong Mook; Kim, Jan Dee; Youn, Young Sang; Kim, Jong Goo; Ha, Yeong Keong; Kim, Jong Yun

    2016-01-01

    To understand the structural character of the spent nuclear fuel, rare earth element (REE) doped UO 2±x have been studied as simulated spent fuel. The REE doping effect has influence on the phase stability in U-FP-O system, thermal conductivity and the relevant fuel performance. Raman spectroscopy has been used to investigate surface structure of the nuclear fuel materials, because of its sensitivity, convenience and non-destructive sample preparation. The Raman studies on trivalent-doped UO 2 directly show the defect due to oxygen vacancy that could be created by loss of oxygen for charge compensation. This defect has significant effect on the kinetics of fuel oxidation. In this study, we have been investigated the effect on Gd-doping on the UO 2 structure with Raman spectroscopy to characterize the defect structure of nuclear fuel material. The oxygen deficiencies of pellets were estimated by the relation between the doping concentration and a lattice parameter evaluated from XRD spectra. The Raman spectra of U 1-y GdyO 2-x solid solution pellets show the distorted fluorite structure with defect structure due to oxygen vacancies with increasing Gd contents.

  13. Study on Surface Structure of U1-yGdyO2-x Using Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Kim, Jan Dee; Youn, Young Sang; Kim, Jong Goo; Ha, Yeong Keong; Kim, Jong Yun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To understand the structural character of the spent nuclear fuel, rare earth element (REE) doped UO{sub 2±x} have been studied as simulated spent fuel. The REE doping effect has influence on the phase stability in U-FP-O system, thermal conductivity and the relevant fuel performance. Raman spectroscopy has been used to investigate surface structure of the nuclear fuel materials, because of its sensitivity, convenience and non-destructive sample preparation. The Raman studies on trivalent-doped UO{sub 2} directly show the defect due to oxygen vacancy that could be created by loss of oxygen for charge compensation. This defect has significant effect on the kinetics of fuel oxidation. In this study, we have been investigated the effect on Gd-doping on the UO{sub 2} structure with Raman spectroscopy to characterize the defect structure of nuclear fuel material. The oxygen deficiencies of pellets were estimated by the relation between the doping concentration and a lattice parameter evaluated from XRD spectra. The Raman spectra of U{sub 1-y}GdyO{sub 2-x} solid solution pellets show the distorted fluorite structure with defect structure due to oxygen vacancies with increasing Gd contents.

  14. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  15. In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts: Reactivity Studies with Methanol and Butane

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    The interactions of methanol and butane with supported chromium oxide catalysts under oxidizing and reducing conditions were studied by in situ Raman spectroscopy as a function of the specific oxide support (Al2O3, ZrO2, TiO2, SiO2, Nb2O5, 3% SiO2/TiO2, 3% TiO2/SiO2, and a physical mixture of SiO2

  16. Study on Fracture Healing with Small-Splint-Fixation Therapy by Near-Infrared Raman Spectroscopy

    OpenAIRE

    Hao Huang; Shangyuan Feng; Weiwei Chen; Yun Yu; Duo Lin; Rong Chen

    2013-01-01

    In this study, near-infrared (NIR) Raman spectroscopy was explored to assess the incorporation of calcium hydroxyapatite (CHA ~960 cm−1) and other biochemical substances during the recovery of rabbits with complete radial fractures treated with or without small splints. 24 rabbits were randomy divided into two groups, one treated with small-splint-fixation therapy and the other without any intervention. The rabbits were sacrificed at 7, 15, 23, and 30 days after surgery, and the surface layer...

  17. Study of carvedilol by combined Raman spectroscopy and ab initio MO calculations

    OpenAIRE

    Marques, M. P. M.; Oliveira, P. J.; Moreno, A. J. M.; Carvalho, L. A. E. Batista de

    2002-01-01

    The novel cardioprotective drug carvedilol was studied by both Raman spectroscopy and ab initio molecular orbital methods (using the density functional theory approach). The spectra, acquired both for the solid samples and DMSO solutions as a function of pH, were assigned in view of the calculated wavenumbers and intensities, and also based on the experimental data obtained for individual compounds which comprise the molecule, namely carbazole and 1,2-dimethoxybenzene. The pH dependence of th...

  18. Raman spectroscopy for the assessment of acute myeloid leukemia: a proof of concept study

    Science.gov (United States)

    Vanna, R.; Tresoldi, C.; Ronchi, P.; Lenferink, A. T. M.; Morasso, C.; Mehn, D.; Bedoni, M.; Terstappen, L. W. M. M.; Ciceri, F.; Otto, C.; Gramatica, F.

    2014-03-01

    Acute myeloid leukemia (AML) is a proliferative neoplasm, that if not properly treated can rapidly cause a fatal outcome. The diagnosis of AML is challenging and the first diagnostic step is the count of the percentage of blasts (immature cells) in bone marrow and blood sample, and their morphological characterization. This evaluation is still performed manually with a bright field light microscope. Here we report results of a study applying Raman spectroscopy for analysis of samples from two patients affected by two AML subtypes characterized by a different maturation stage in the neutrophilic lineage. Ten representative cells per sample were selected and analyzed with high-resolution confocal Raman microscopy by scanning 64x64 (4096) points in a confocal layer through the volume of the whole cell. The average spectrum of each cell was then used to obtain a highly reproducible mean fingerprint of the two different AML subtypes. We demonstrate that Raman spectroscopy efficiently distinguishes these different AML subtypes. The molecular interpretation of the substantial differences between the subtypes is related to granulocytic enzymes (e.g. myeloperoxidase and cytochrome b558), in agreement with different stages of maturation of the two considered AML subtypes . These results are promising for the development of a new, objective, automated and label-free Raman based methods for the diagnosis and first assessment of AML.

  19. Study on Fracture Healing with Small-Splint-Fixation Therapy by Near-Infrared Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2013-01-01

    Full Text Available In this study, near-infrared (NIR Raman spectroscopy was explored to assess the incorporation of calcium hydroxyapatite (CHA ~960 cm−1 and other biochemical substances during the recovery of rabbits with complete radial fractures treated with or without small splints. 24 rabbits were randomy divided into two groups, one treated with small-splint-fixation therapy and the other without any intervention. The rabbits were sacrificed at 7, 15, 23, and 30 days after surgery, and the surface layers of the calluses in the fracture healing site from control and treated groups were routinely prepared for Raman spectroscopy. The prominent Raman bands were observed, including minerals at 430, 590, 960, 1003, and 1071  cm−1, protein at 856, 876, 1246, and 1667 cm−1, and lipid at 1767 cm−1. The carbonate-to-phosphate ratio (CO3 to υ1 PO4 and the mineral-to-matrix ratio (υ1 PO4 to amide I were calculated from these normalized Raman bands. Comparison of the υ1 PO4-to-amide I ratio for the control group with that of the treated group probably indicated that the small-splint-fixation therapy could be useful for the gradual mineralization of the collagen matrix during fracture healing.

  20. Raman spectroscopy of bio fluids: an exploratory study for oral cancer detection

    Science.gov (United States)

    Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu

    2016-03-01

    ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.

  1. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  2. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  3. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  4. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  5. Raman spectroscopy study of the nanodiamond-to-carbon onion transformation

    International Nuclear Information System (INIS)

    Cebik, Jonathan; Peerally, Filipe; Medrano, Rene; Osswald, Sebastian; McDonough, John K; Neitzel, Ioannis; Gogotsi, Yury

    2013-01-01

    Here, we present a comprehensive study analyzing early stages of the transformation of detonation nanodiamond (ND) powder to graphitic carbon onions via thermal annealing in argon atmosphere. Raman spectroscopy was employed to monitor this transformation, starting with the sp 3 -to-sp 2 conversion of the ND surface at the onset of the graphitization process. Additionally, transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis were used to supplement the structural information obtained from Raman spectroscopy and allow for an accurate interpretation of the obtained Raman data. The effect of the annealing time on the transformation process was also studied to determine the kinetics of the conversion at low temperatures. The results presented in this study complement previous work on ND annealing and provide deeper insight into the nanodiamond-to-carbon onion conversion mechanism, in particular the time and size dependence. We present further evidence for the existence of a disordered sp 2 phase as an intermediate step in the transformation process. (paper)

  6. Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation

    International Nuclear Information System (INIS)

    Song, Ji Eun; Ko, Taeg Yeoung; Ryu, Sun Min

    2010-01-01

    Raman spectroscopy was combined with AFM to investigate the effects of thermal annealing on the graphene samples prepared by the widely used micromechanical exfoliation method. Following annealing cycles, adhesive residues were shown to contaminate graphene sheets with thin molecular layers in their close vicinity causing several new intense Raman bands. Detailed investigation shows that the Raman scattering is very strong and may be enhanced by the interaction with graphene. Although the current study does not pinpoint detailed origins for the new Raman bands, the presented results stress that graphene prepared by the above method may require extra cautions when treated with heat or possibly solvents. Since its isolation from graphite, graphene has drawn a lot of experimental and theoretical research. These efforts have been mostly in pursuit of various applications such as electronics, sensors, stretchable transparent electrodes, and various composite materials. To accomplish such graphene-based applications, understanding chemical interactions of this new material with environments during various processing treatments will become more important. Since thermal annealing is widely used in various research of graphene for varying purposes such as cleaning, nanostructuring, reactions, etc., understanding annealing-induced effects is prerequisite to many fundamental studies of graphene. In this regard, it is to be noted that there has been a controversy on the cause of the annealing-induced hole doping in graphene

  7. Effect of a bioactive curcumin derivative on DPPC membrane: A DSC and Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Gardikis, Kostantinos [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece); Hatziantoniou, Sophia [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece); Viras, Kyriakos [Laboratory of Physical Chemistry, Department of Chemistry, University of Athens, Athens (Greece); Demetzos, Costas [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece)]. E-mail: demetzos@pharm.uoa.gr

    2006-08-01

    Interactions of dimethoxycurcumin (1) a lipophilic bioactive curcumin derivative with dipalmitoyl phosphatidylcholine (DPPC) were investigated. The thermodynamic changes caused by (1) and its location into DPPC lipid bilayers were monitored by differential scanning calorimetry and Raman spectroscopy. The results reveal that (1) influences the thermotropic properties of DPPC lipid membrane causing abolition of the pretransition and broadening of the phase-transition profile and slightly decreases the T {sub m} at increasing concentrations. The Raman height intensity ratios of the peaks I {sub 2935/2880}, I {sub 2844/2880} and I {sub 1090/1130} are representative of the interaction of (1) with the alkyl chains and furnish information about the ratio between disorder and order that exists in the conformation of the alkyl chain. The intensity changes of the peak at 715 cm{sup -1} indicates interaction between the choline head group and (1). The Raman spectroscopy results are in agreement with the thermal analysis results. Biologically active lipophilic molecules such as (1) should be studied in terms of their interaction with lipid bilayers prior to the development of advanced lipid carrier systems such as liposomes. The results of these studies provide information on the membrane integrity and physicochemical properties that are essential for the rational design lipidic drug delivery systems.

  8. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    Science.gov (United States)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  9. Study on a noninvasive method for rapid screening Human Serum albumin injectables by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2017-01-01

    Full Text Available Human serum albumin (HSA injectable product is a severely afflicted area on drug safety due to its high price and restricted supply. Raman spectroscopy performances high specificity on HSA detection and it is even possible to determine HSA injectable products noninvasively. In this study, we developed a noninvasive rapid screening method for of HSA injectable products by using portable Raman spectrometer. Qualitative models were established by using principal component analysis combined with classical least squares (PCA-CLS algorithm, while quantitative model was established by using partial least squares (PLS algorithm. Model transfer in different instruments of both the same and different apparatus modules was further discussed in this paper. A total of 34 HSA injectable samples collected from markets were used for verification. The identification results showed 100% accuracy and the predicted concentrations of those identified as true HSA were consistent with their labeled concentrations. The quantitative results also indicated that model transfer was excellent in the same apparatus modules of Raman spectrometer at all concentration levels, and still good enough in the different apparatus modules although the relative standard deviation (RSD value showed a little increasing trend at low HSA concentration level. In conclusion, the method was proved to be feasible and efficient for screening HSA injections, especially on its screening speed and the consideration of glass containers. Moreover, with inspiring results on the model transfer, the method could be used as a universal screening mean to different Raman instruments.

  10. Quick, Easy, and Economic Mineralogical Studies of Flooded Chalk for EOR Experiments Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Laura Borromeo

    2018-05-01

    Full Text Available Understanding the chalk-fluid interactions and the associated mineralogical and mechanical alterations on a sub-micron scale are major goals in Enhanced Oil Recovery. Mechanical strength, porosity, and permeability of chalk are linked to mineral dissolution that occurs during brine injections, and affect the reservoir potential. This paper presents a novel “single grain” methodology to recognize the varieties of carbonates in rocks and loose sediments: Raman spectroscopy is a non-destructive, quick, and user-friendly technique representing a powerful tool to identify minerals down to 1 µm. An innovative working technique for oil exploration is proposed, as the mineralogy of micron-sized crystals grown in two flooded chalk samples (Liége, Belgium was successfully investigated by Raman spectroscopy. The drilled chalk cores were flooded with MgCl2 for ca. 1.5 (Long Term Test and 3 years (Ultra Long Term Test under North Sea reservoir conditions (Long Term Test: 130 °C, 1 PV/day, 9.3 MPa effective stress; Ultra Long Term Test: 130 °C, varying between 1–3 PV/day, 10.4 MPa effective stress. Raman spectroscopy was able to identify the presence of recrystallized magnesite along the core of the Long Term Test up to 4 cm from the injection surface, down to the crystal size of 1–2 µm. In the Ultra Long Term Test core, the growth of MgCO3 affected nearly the entire core (7 cm. In both samples, no dolomite or high-magnesium calcite secondary growth could be detected when analysing 557 and 90 Raman spectra on the Long and Ultra Long Term Test, respectively. This study can offer Raman spectroscopy as a breakthrough tool in petroleum exploration of unconventional reservoirs, due to its quickness, spatial resolution, and non-destructive acquisition of data. These characteristics would encourage its use coupled with electron microscopes and energy dispersive systems or even electron microprobe studies.

  11. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study

    National Research Council Canada - National Science Library

    Eucker, IV, William

    2008-01-01

    ...) with selected ionic liquids (ILs). Raman spectroscopy and first principle quantum mechanical calculations were performed on selected IL solvents in contact with CO2 in the effort to discover how the solvents interact with the gas. ILs are salts...

  12. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kovaříček, Petr; Bastl, Zdeněk; Valeš, Václav; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 15 (2016), s. 5404-5408 ISSN 1521-3765 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * nanomaterials * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Time evolution studies of laser induced chemical changes in InAs nanowire using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suparna; Aggarwal, R.; Kumari Gupta, Vandna; Ingale, Alka [Laser Physics Application Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, MP (India)

    2014-07-07

    We report the study of time evolution of chemical changes on the surface of an InAs nanowire (NW) on laser irradiation in different power density regime, using Raman spectroscopy for a time span of 8–16 min. Mixture of metastable oxides like InAsO{sub 4,} As{sub 2}O{sub 3} are formed upon oxidation, which are reflected as sharp Raman peaks at ∼240–254 and 180–200 cm{sup −1}. Evidence of removal of arsenic layer by layer is also observed at higher power density. Position controlled laser induced chemical modification on a nanometer scale, without changing the core of the NW, can be useful for NW based device fabrication.

  14. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  15. Applications of Raman spectroscopy to gemology.

    Science.gov (United States)

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  16. Accurate and Rapid Differentiation of Acinetobacter baumannii Strains by Raman Spectroscopy: a Comparative Study.

    Science.gov (United States)

    Ghebremedhin, Meron; Heitkamp, Rae; Yesupriya, Shubha; Clay, Bradford; Crane, Nicole J

    2017-08-01

    In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become the standard for routine bacterial species identification due to its rapidity and low costs for consumables compared to those of traditional DNA-based methods. However, it has been observed that strains of some bacterial species, such as Acinetobacter baumannii strains, cannot be reliably identified using mass spectrometry (MS). Raman spectroscopy is a rapid technique, as fast as MALDI-TOF, and has been shown to accurately identify bacterial strains and species. In this study, we compared hierarchical clustering results for MS, genomic, and antimicrobial susceptibility test data to hierarchical clustering results from Raman spectroscopic data for 31 A. baumannii clinical isolates labeled according to their pulsed-field gel electrophoresis data for strain differentiation. In addition to performing hierarchical cluster analysis (HCA), multiple chemometric methods of analysis, including principal-component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), were performed on the MS and Raman spectral data, along with a variety of spectral preprocessing techniques for best discriminative results. Finally, simple HCA algorithms were performed on all of the data sets to explore the relationships between, and natural groupings of, the strains and to compare results for the four data sets. To obtain numerical comparison values of the clustering results, the external cluster evaluation criteria of the Rand index of the HCA dendrograms were calculated. With a Rand index value of 0.88, Raman spectroscopy outperformed the other techniques, including MS (with a Rand index value of 0.58). Copyright © 2017 Ghebremedhin et al.

  17. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  18. Raman spectroscopy study of the crystal - melt phase transition of lanthanum, cerium and neodymium trichlorides

    International Nuclear Information System (INIS)

    Zakir'yanova, I.D.; Salyulev, A.B.

    2007-01-01

    Systematic structural studies of crystalline (over a wide temperature range) and molten LaCl 3 , CeCl 3 , and NdCl 3 salts (near the crystal-melt phase transition temperature) are conducted employing Raman spectroscopy. A change in the trend of temperature dependences of characteristic frequencies is revealed in the pre-melting region of the compounds. This is attributed to an increase in the number of crystal defects due to weakening of a part of Ln-Cl bonds and decreasing of coordination number of chloride anions in the vicinity of rare earth cation [ru

  19. Raman spectroscopy study of disordering processes of anion sublattice in superionic fluorides with the tysonite structure

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Fershtat, L.N.; Khabibullaev, P.K.; Sharipov, Kh.T.

    1990-01-01

    By the method of Raman spectroscopy the mechanism of disordering of LaF 3 -NdF 3 series superionic conductor lattice has been studied. It is ascertained that high ionic conductivity in the compounds is related to the formation of antifrenkel defects, while disordering activation energy, constituting 0.026-0.028 eV in the range of the first phase transition at the temperatures exceeding the critical ones, decreases to 0.0006 eV. It is shown that nodal and interstitial positions of F - (1) ions are practically equivalent energetically and it determines high conductivity in superionic phase

  20. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  1. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  2. Study of human breast tissues biochemistry by FT-Raman spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Jara, Walter Andres A.; Netto, Mário M.; Martinho, Herculano; Ramalho, Leandra Náira Z.; Martin, Airton A.

    2006-02-01

    In this work we employ the Fourier Transform Raman Spectroscopy to study the human breast tissues, both normal and pathological. In the present study we analyze 194 Raman spectra from breast tissues that were separated into 9 groups according to their corresponding histopathological diagnosis, which are as follows: Normal breast tissue, Fibrocystic condition, In Situ Duct Carcinoma, In Situ Duct Carcinoma with Necrosis, Infiltrating Duct Carcinoma, Infiltrating Duct Inflammatory Carcinoma, Infiltrating Duct Medullar Carcinoma, Infiltrating Duct Colloid Carcinoma, and Infiltrating Lobule Carcinoma. We found a strong lipids Raman band, and this structure was identified as abundant in the normal breast tissue spectra. The primary structure of proteins was identified through the shift of the amine acids bands. The identification of the secondary structure of proteins occurred through the peptide bands (Amide I and Amide III). In relation to the carbohydrates, the spectra of duct infiltrating colloid carcinoma, fibrocystic condition, and infiltrating duct carcinoma have been compared and identified. We observed an increase in the intensity of the 800-1200 cm -1 spectral region. This fact could indicate the presence of liquid cystic. We also notice alterations in the peaks in the region of 500 to 600 cm -1 and 2000 to 2100 cm -1 that may suggest changes in the nucleic acids of the cells.

  3. Study of the processes of carbonization and oxidation of porous silicon by Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Vasin, A. V.; Okholin, P. N.; Verovsky, I. N.; Nazarov, A. N.; Lysenko, V. S.; Kholostov, K. I.; Bondarenko, V. P.; Ishikawa, Y.

    2011-01-01

    Porous silicon layers were produced by electrochemical etching of single-crystal silicon wafers with the resistivity 10 Ω cm in the aqueous-alcohol solution of hydrofluoric acid. Raman spectroscopy and infrared absorption spectroscopy are used to study the processes of interaction of porous silicon with undiluted acetylene at low temperatures and the processes of oxidation of carbonized porous silicon by water vapors. It is established that, even at the temperature 550°C, the silicon-carbon bonds are formed at the pore surface and the graphite-like carbon condensate emerges. It is shown that the carbon condensate inhibits oxidation of porous silicon by water vapors and contributes to quenching of white photoluminescence in the oxidized carbonized porous silicon nanocomposite layer.

  4. Micro-Raman spectroscopy studies of bulk and thin films of CuInTe2

    International Nuclear Information System (INIS)

    Ananthan, M R; Mohanty, Bhaskar Chandra; Kasiviswanathan, S

    2009-01-01

    Micro-Raman spectroscopy measurements were made on polycrystalline and amorphous thin films of CuInTe 2 as well as bulk polycrystalline CuInTe 2 . Various vibrational modes exhibited by the bulk and polycrystalline thin films were attributed to those expected for single crystal CuInTe 2 . Raman spectra of amorphous films presented a broad spectrum, decomposition of which revealed the presence of elemental tellurium on the film surface. Laser-induced changes on CuInTe 2 thin films were studied by acquiring spectra with higher laser beam power. Modes due to tellurium appeared when the spectra were acquired during laser–sample interaction, indicating tellurium segregation. The Raman spectra measured from polycrystalline films during high laser power irradiation did not show decrease in the intensity of the A 1 mode of CuInTe 2 in spite of loss of tellurium from the lattice. This has been interpreted as related to an increased contribution from the undistorted subsurface CuInTe 2 region at higher excitation power

  5. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  6. FT-Raman spectroscopy study of organic matrix degradation in nanofilled resin composite.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Nahórny, Sídnei; Martin, Airton Abrahão

    2013-04-01

    This in vitro study evaluated the effect of light curing unit (LCU) type, mouthwashes, and soft drink on chemical degradation of a nanofilled resin composite. Samples (80) were divided into eight groups: halogen LCU, HS--saliva (control); HPT--Pepsi Twist®; HLC--Listerine®; HCP--Colgate Plax®; LED LCU, LS--saliva (control); LPT--Pepsi Twist®; LLC--Listerine®; LCP--Colgate Plax®. The degree of conversion analysis and the measure of the peak area at 2,930 cm-1 (organic matrix) of resin composite were done by Fourier-transform Raman spectroscopy (baseline, after 7 and 14 days). The data were subjected to multifactor analysis of variance (ANOVA) at a 95% confidence followed by Tukey's HSD post-hoc test. The DC ranged from 58.0% (Halogen) to 59.3% (LED) without significance. Differences in the peak area between LCUs were found after 7 days of storage in S and PT. A marked increase in the peak intensity of HLC and LLC groups was found. The soft-start light-activation may influence the chemical degradation of organic matrix in resin composite. Ethanol contained in Listerine® Cool Mint mouthwash had the most significant degradation effect. Raman spectroscopy is shown to be a useful tool to investigate resin composite degradation.

  7. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  8. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  9. Bone compositional study during healing of subcritical calvarial defects in rats by Raman spectroscopy

    Science.gov (United States)

    Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon

    2017-07-01

    Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.

  10. Feasibility study of Raman spectroscopy for investigating the mouse retina in vivo

    Science.gov (United States)

    Manna, Suman K.; de Oliveira, Marcos A. S.; Zhang, Pengfei; Maleppat, Ratheesh K.; Chang, Che-Wei; Pugh, Edward N.; Chan, James W.; Zawadzki, Robert J.

    2018-02-01

    The use of Raman spectroscopy in biochemistry has been very successful, particularly because of its ability to identify elementary chemical species. However, application of this spectroscopic technique for in vivo assessment is often limited by autofluorescence, which make detection of Raman signatures difficult. The mouse eye has been used as an optical testbed for investigation of a variety of disease models and therapeutic pathways. Implementation of in vivo Raman spectroscopy in mice retina would be valuable but needs to be examined in context of the intrinsic auto-fluorescence artifact and potential light damage if high probing beam powers were used. To evaluate feasibility, a Raman system was built on a custom SLO/OCT platform allowing mouse positioning and morphological data acquisition along with the Raman signal from a desired retinal eccentricity. The performance of the Raman system was first assessed with a model eye consisting of polystyrene in the image plane (retina), using excitation wavelengths of 488 nm, 561 nm, and 785 nm to determine whether auto-fluorescence would be reduced at longer wavelengths. To improve the SNR, the combined system is featured with the optical compatibility for these three excitations such that their corresponding spectra from a typical region of interest can be acquired consecutively during single imaging run. Our results include emission spectra acquired over 10 s with excitation energy less than 160 J.s-1.m-2 for all wavelengths and corresponding retinal morphology for different mouse strains including WT, BALB/c and ABCA4-/-.

  11. Study of the cell activity in three-dimensional cell culture by using Raman spectroscopy

    Science.gov (United States)

    Arunngam, Pakajiraporn; Mahardika, Anggara; Hiroko, Matsuyoshi; Andriana, Bibin Bintang; Tabata, Yasuhiko; Sato, Hidetoshi

    2018-02-01

    The purpose of this study is to develop a estimation technique of local cell activity in cultured 3D cell aggregate with gelatin hydrogel microspheres by using Raman spectroscopy. It is an invaluable technique allowing real-time, nondestructive, and invasive measurement. Cells in body generally exist in 3D structure, which physiological cell-cell interaction enhances cell survival and biological functions. Although a 3D cell aggregate is a good model of the cells in living tissues, it was difficult to estimate their physiological conditions because there is no effective technique to make observation of intact cells in the 3D structure. In this study, cell aggregates were formed by MC3T-E1 (pre-osteoblast) cells and gelatin hydrogel microspheres. In appropriate condition MC3T-E1 cells can differentiate into osteoblast. We assume that the activity of the cell would be different according to the location in the aggregate because the cells near the surface of the aggregate have more access to oxygen and nutrient. Raman imaging technique was applied to measure 3D image of the aggregate. The concentration of the hydroxyapatite (HA) is generated by osteoblast was estimated with a strong band at 950-970 cm-1 which assigned to PO43- in HA. It reflects an activity of the specific site in the cell aggregate. The cell density in this specific site was analyzed by multivariate analysis of the 3D Raman image. Hence, the ratio between intensity and cell density in the site represents the cell activity.

  12. Fe-Ti-Cr-Oxides in Martian Meteorite EETA79001 Studied by Point-counting Procedure Using Raman Spectroscopy

    Science.gov (United States)

    Wang, Alian; Kuebler, Karla E.; Jolliff, Bradley L.; Haskin, Larry A.

    2003-01-01

    Fe-Ti-Cr-Oxide minerals contain much information about rock petrogenesis and alteration. Among the most important in the petrology of common intrusive and extrusive rocks are those of the FeO-TiO2-Cr2O3 compositional system chromite, ulv spinel-magnetite, and ilmenite-hematite. These minerals retain memories of oxygen fugacity. Their exsolution into companion mineral pairs give constraints on formation temperature and cooling rate. Laser Raman spectroscopy is anticipated to be a powerful technique for characterization of materials on the surface of Mars. A Mars Microbeam Raman Spectrometer (MMRS) is under development. It combines a micro sized laser beam and an automatic point-counting mechanism, and so can detect minor minerals or weak Raman-scattering phases such as Fe- Ti-Cr-oxides in mixtures (rocks & soils), and provide information on grain size and mineral mode. Most Fe-Ti-Cr-oxides produce weaker Raman signals than those from oxyanionic minerals, e.g. carbonates, sulfates, phosphates, and silicates, partly because most of them are intrinsically weaker Raman scatters, and partly because their dark colors limit the penetration depth of the excitation laser beam (visible wavelength) and of the Raman radiation produced. The purpose of this study is to show how well the Fe-Ti-Cr-oxides can be characterized by on-surface planetary exploration using Raman spectroscopy. We studied the basic Raman features of common examples of these minerals using well-characterized individual mineral grains. The knowledge gained was then used to study the Fe-Ti-Cr-oxides in Martian meteorite EETA79001, especially effects of compositional and structural variations on their Raman features.

  13. Research studies of aging changes of hyaline cartilage surface by using Raman-scattering spectroscopy

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Dolgushkin, D. A.; Volova, L. T.; Lazarev, V. A.; Tyumchenkova, A. S.; Markova, M. D.

    2017-08-01

    The paper presents the results of a comparative analysis by the method of Raman spectroscopy of the joint hyaline cartilage of adults and children. Differences in the spectral characteristics of the surface of articular cartilage are shown. New optical coefficients have been introduced, which make it possible to evaluate the age-related changes in cartilaginous tissue.

  14. The effect of a thin gold layer on graphene: a Raman spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Valeš, Václav; Vejpravová, Jana

    2014-01-01

    Roč. 4, č. 105 (2014), s. 60929-60935 ISSN 2046-2069 R&D Projects: GA MŠk LL1301; GA ČR GAP204/10/1677 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : chemical vapor deposition * graphene * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.840, year: 2014

  15. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  16. Raman Scattering and Surface Photovoltage Spectroscopy Studies of InGaAs/GaAs Radial Superlattices

    Science.gov (United States)

    Angelova, T.; Cros, A.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Shtinkov, N.; Deneke, Ch.; Schmidt, O. G.

    2011-12-01

    In this work we get insight into the multilayer structure of rolled-up microtube radial superlattices (RSLs) by the study of the optical and folded acoustic phonon modes of individual microtubes. Raman results show shifts of the InGaAs and GaAs related longitudinal optical modes that can be related to the strain state of the tubes. The folding of the acoustic modes has been related with the periodicity of the artificial superlattice formed by the multiple turns of the heterostructures. Information on the electronic structure and optical transitions of RSLs has been obtained by surface photovoltage spectroscopy. Room temperature spectra reveal several electronic transitions with energies below 1.3 eV. These transitions have been identified as originating from defect levels at the interfaces, as well as from the RSLs and the In0.215Ga0.785As/GaAs quantum well in the unfolded regions of the sample.

  17. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  18. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  19. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  20. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  1. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions

    International Nuclear Information System (INIS)

    Pasteris, J.D.; Wopenka, B.; Seitz, J.C.

    1988-01-01

    This paper is addressed to both geologists who use laser Raman microprobe (LRM) spectroscopy to analyze fluid inclusions and to those who want to evaluate analyses done by this technique. Emphasis is on how to obtain quantitative analyses of fluid inclusions. The authors discuss the basic method of fluid inclusion analysis by LRM spectroscopy and the levels of accuracy and precision attainable with this technique. They evaluate which kinds of fluid inclusions and host mineral matrices will yield the most reliable compositional data. Necessary sample preparations, detection limits, problems with fluorescence, dependence of Raman scattering efficiencies on density, and many other questions asked at the workshop on Raman spectroscopy during the 1987 ACROFI meeting also are addressed. The complementary nature, advantages, and disadvantages of both LRM spectroscopy and microthermometry, the two techniques most frequently used for the analysis of individual fluid inclusions, are emphasized. Some discussions are intended to held LRM users calibrate, and evaluate the optical characteristics of, their particular instruments. It is hoped that this paper will further LRM users in finding a common ground on which to discuss the differences and similarities among different LRM instruments, and that it will encourage a future consensus on efficient means of calibration and on interlaboratory standards

  3. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  4. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  5. Blood proteins analysis by Raman spectroscopy method

    Science.gov (United States)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  6. Thermal dehydration of potash alum studied by Raman spectroscopy and X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki, E-mail: kisimura@nda.ac.jp; Imasu, Yuhta; Matsumoto, Hitoshi

    2015-01-15

    The thermal dehydrations of potash alum caused by heating at various temperatures for at least 2 h were investigated by ex situ Raman spectroscopy and X-ray diffraction (XRD) analyses in air. With increasing the heating temperature, all Raman peaks were observed to broaden, while an additional broad peak appeared at approximately 1030 cm{sup −1} and shifted toward higher wavenumbers. In addition, the Raman band assigned to the O–H stretching mode weakened. The orientational disorder (OD) of the sulfate ions, as indicated by the intensity ratio of doublet peaks at 989 and 974 cm{sup −1}, was found to increase with increasing the heating temperature. The XRD patterns demonstrated that a structural phase transition from crystalline KAl(SO{sub 4}){sub 2}⋅12H{sub 2}O to amorphous phases began at around 75 °C, while broadening of the Raman peaks and an increase in OD also suggested the onset of an amorphous phase. Raman peaks corresponding to anhydrous KAl(SO{sub 4}){sub 2} appeared at approximately 180 °C. It was concluded that the elimination of water molecules was responsible for increase in the extent of OD, and this in turn induced the observed phase transitions. The formation of the amorphous phases observed in this work was similar to the pressure-induced amorphization of KAl(SO{sub 4}){sub 2}⋅12H{sub 2}O. - Highlights: • The thermal dehydration of potash alum proceeds through several steps. • Raman spectra and X-ray diffraction reveal the amorphization of the heated samples. • A transition from the amorphous phase to the KAl(SO{sub 4}){sub 2} crystal phase is observed in the sample heated at 180 °C.

  7. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  8. Study of hemoglobin response to mid-ultraviolet (UVB) radiation using micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Y. Y.; Li, N.; Zhou, S. N.; Huang, Z. T.; Zhuang, Z. F.

    2017-09-01

    Confocal micro-Raman spectroscopy is employed to monitor the damage to haemoglobin from mid-ultraviolet (UVB) radiation. We obtained the Raman spectra of an erythrocyte, which indicated that a peroxidation reaction occurs after UVB radiation. Further, the surface enhanced Raman scattering (SERS) spectra of isolated haemoglobin show that the intensities of the 1375 and 1399 cm-1 bands, which are markers of haem aggregation, obviously increase with prolonged UVB irradiation. This increase reveals that haem aggregation occurs in the peroxidation of erythrocytes. The UV-Vis spectra of isolated haemoglobin indicate that the Soret band, which is indicative of excitonic interactions in the aggregated haems, has a redshift ( 12 nm) after 30 min of UVB irradiation of erythrocytes. It can be deduced that an excitonic interaction occurs in the aggregated haems, which is caused by haemoglobin denaturation following UVB irradiation. In addition, the changes of the Raman marker bands during aggregation primarily originate from excitonic interactions. Throughout the process, a higher UVB radiation dose causes greater damage to haemoglobin.

  9. An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer

    International Nuclear Information System (INIS)

    Mu Minfang; Winey, Karen I; Osswald, Sebastian; Gogotsi, Yury

    2009-01-01

    The transfer mechanism of applied stress in single-wall carbon nanotube (SWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites was investigated using in situ Raman spectroscopy on composite fibers. These SWCNT/PMMA nanocomposite fibers have no specific SWCNT-polymer interactions and the high degree of nanotube alignment minimizes the contributions from nanotube-nanotube interactions. Although tensile testing found significantly improved overall mechanical properties of the fibers, effective stress transfer to SWCNTs is limited to a small strain regime (ε<0.2%). At higher strains, the stress on the SWCNTs decreases due to the slippage at the nanotube-polymer interface. Slippage was also evident in scanning electron micrographs of fracture surfaces produced by tensile testing of the composite fibers. Above ε = 0.2%, the strain-induced slippage was accompanied by irreversible responses in stress and Raman peak shifts. This paper shows that efficient stress transfer to nanotubes as monitored by Raman spectroscopy is crucial to improving the mechanical properties of polymer nanocomposites and to detecting internal damage in nanocomposites.

  10. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  11. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  12. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies

    International Nuclear Information System (INIS)

    Yang Kaifeng; Cui Qiliang; Hou Yuanyuan; Liu Bingbing; Zhou Qiang; Hu Jingzhu; Mao, H-K; Zou Guangtian

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I4 1 /acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction

  13. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    Science.gov (United States)

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  14. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  15. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  16. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  17. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  18. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  19. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  20. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  1. Al-doped MgB_2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan

    2016-01-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB_2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB_2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB_2. Above a certain level of Al doping, enhanced conductive properties of MgB_2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  2. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  3. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  4. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    Science.gov (United States)

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  5. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  6. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  7. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  8. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.edu; Gan, Hao; Pegg, Ian L.

    2017-05-15

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo{sup 6+}O{sub 4} with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V{sup 5+}O{sub 4} as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν{sub 1}) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm{sup −1} for glasses that change from Li{sup +} to Na{sup +} as the dominant network-modifying species. This indicates that MoO{sub 4} tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na{sup +} and Li{sup +}. Secondary ν{sub 1} frequency effects, with changes up to 7 cm{sup −1}, were also observed with increasing V{sub 2}O{sub 5} and MoO{sub 3} content. These secondary trends may indicate MoO{sub 4}-MoO{sub 4} and MoO{sub 4}-VO{sub 4} clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation. - Highlights: •Raman and XAS data indicate isolated MoO{sub 4} tetrahedra from the borosilicate network. •Mo-O stretch frequency is sensitive to network-modifying Li and Na concentrations. •Mo-O stretch frequency shifts were also seen with increasing V{sub 2}O{sub 5} and MoO{sub 3} content. •The Raman trends may indicate MoO{sub 4}-MoO{sub 4} and MoO{sub 4}-VO{sub 4} clustering in the glass. •V may stabilize Mo in the glass matrix avoiding yellow phase formation.

  9. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    weak Raman signal, which facilitates identification in chemi- cal and biological systems. Recently, single-molecule Raman scattering has enhanced the detection sensitivity limit of ... was working on the molecular diffraction of light, which ulti-.

  10. Raman spectroscopy study of the influence of processing conditions on the structure of polycrystalline diamond films

    International Nuclear Information System (INIS)

    Ramamurti, R.; Shanov, V.; Singh, R.N.; Mamedov, S.; Boolchand, P.

    2006-01-01

    Diamond films are prepared by microwave plasma-enhanced chemical-vapor deposition on Si (100) substrates using the H 2 -Ar-CH 4 gases. Raman scattering data, including the peak position, intensity, area, and width, are analyzed in depth and used to obtain the sp 3 - and sp 2 -bonded carbon contents and the nature of internal stresses in the films. Polarization behavior of the Raman peaks is analyzed to assess its role on the quantitative analysis of the diamond films, which suggested that the 1150 cm -1 Raman peak in nanocrystalline diamond films could be attributed to sp 2 -bonded carbon. The role of the H 2 /Ar content in the gas mixture and substrate temperature on the characteristics of the diamond film is studied. Thickness and grain size of diamond films are also determined by scanning electron microscopy and related to the deposition conditions and Raman results. Deposition conditions, which led to highest sp 3 -bonded carbon content and growth rate, are identified

  11. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  12. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  13. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  14. Raman Spectroscopy with simple optic components

    International Nuclear Information System (INIS)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula

    2014-01-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  15. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin.

    Science.gov (United States)

    Atef, Eman; Altuwaijri, Njoud

    2018-01-01

    The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.

  16. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  17. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  18. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    International Nuclear Information System (INIS)

    Gonchukov, S; Sukhinina, A; Bakhmutov, D; Biryukova, T; Tsvetkov, M; Bagratashvily, V

    2013-01-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm −1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva. (letter)

  19. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  20. Diagnosing breast cancer by using Raman spectroscopy

    Science.gov (United States)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  1. Analysis of European honeybee (Apis mellifera) wings using ATR-FTIR and Raman spectroscopy: A pilot study

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Lapčák, L.; Havelcová, Martina; Borecká, Lenka; Novotná, M.; Novotná, M.; Javůrková, I.; Langrová, I.; Hájková, Š.; Brožová, A.; Titěra, D.

    2017-01-01

    Roč. 48, č. 1 (2017), s. 22-29 ISSN 1211-3174 Institutional support: RVO:67985891 Keywords : honeybee wings * ATR-FTIR * Raman spectroscopy * protein * lipid * chitin Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  2. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  3. Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Dychalska Anna

    2015-09-01

    Full Text Available Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100 substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

  4. Fast Resonance Raman Spectroscopy of Short-Lived Radicals

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Wilbrandt, Robert Walter; Hansen, Karina Benthin

    1976-01-01

    We report the first application of pulsed resonance Raman spectroscopy to the study of short-lived free radicals produced by pulse radiolysis. A single pulse from a flash-lamp pumped tunable dye laser is used to excite the resonance Raman spectrum of the p-terphenyl anion radical with an initial...

  5. Raman spectroscopy of CNC-and CNF-based nanocomposites

    Science.gov (United States)

    Umesh P. Agarwal

    2017-01-01

    In this chapter, applications of Raman spectroscopy to nanocelluloses and nanocellulose composites are reviewed, and it is shown how use of various techniques in Raman can provide unique information. Some of the most important uses consisted of identification of cellulose nanomaterials, estimation of cellulose crystallinity, study of dispersion of cellulose...

  6. Polarized Raman spectroscopy of bone tissue: watch the scattering

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-02-01

    Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

  7. Study regarding magnetospirillum griphyswaldenses bacteria biochemical changes using FTIR and Raman spectroscopy

    International Nuclear Information System (INIS)

    Mihai, C.; Institute of Biology, Bucharest; Mihaela, M.; Ioan, A.; Ovidius University, Constanta

    2011-01-01

    Complete text of publication follows. Spectroscopy using Fourier transform and Raman spectroscopy can be used to enlighten functional groups that belong to different biomolecules that are specific to cells (proteins, lipids, carbohydrates, nucleic acids), thus obtaining valuable information regarding bacteria's biochemical composition. Since microorganisms react very promptly to the culture medium changes, the apparition of a stress agent produces a modification of the cellular enzymatic print in order to compensate for the effect of those factors, thus the bacteria self adapting to those changes. These methods can be used to highlight the metabolically modifications in cells which respond to stress factors. The biochemical modification are important in bioremediation processes like biosorption of metal contaminated waste water from metallurgical baths or even from irradiator pool, heavy water from nuclear power plant. The main targets are to analyze the biochemical modification appeared in presence or absence of two metals, Fe and Co. The presence of Fe is benefit for bacteria because she can absorb iron and deposit as magnetic inside the cell. The presence of Co determines changes in metabolism with the loss of many polar bindings but the growth was not inhibited even in concentration like 100 mM.

  8. Synchrotron radiation resonance Raman spectroscopy (SR3S)

    International Nuclear Information System (INIS)

    Hester, R.E.

    1979-01-01

    The use of normal Raman spectroscopy and resonance Raman spectroscopy to study the structure of molecular species and the nature of their chemical bonds is discussed. The availability of a fully tunable radiation source (the Synchrotron Radiation Source) extending into the ultraviolet raises the possibility of using synchrotron radiation resonance Raman spectroscopy as a sensitive and specific analytical probe. The pulsed nature of the SRS beam may be exploited for time-resolved resonance Raman spectroscopy and its high degree of polarization could be very helpful in the interpretation of spectra. The possibilities are considered under the headings: intensity requirements and comparison with other sources; some applications (e.g. structure of proteins; study of iron-porphyrin unit; study of chlorophylls). (U.K.)

  9. Density functional theory and surface enhanced Raman spectroscopy studies of tautomeric hypoxanthine and its adsorption behaviors in electrochemical processes

    International Nuclear Information System (INIS)

    Huang, Wei; Jiang, Jin-Zhi; Chen, Liang; Zhang, Bi-Qi; Deng, Shu-Fen; Sun, Jian Jun; Chen, Wen-Kai

    2015-01-01

    ABSTRACT: Hypoxanthine, a purine heterocyclic compound with N and O atoms, has capability to combine metal ions or adsorb on metals. By using density functional theory (DFT) method calculation, the energy, charge distribution, molecular orbital and vibration spectra information of tautomeric hypoxanthine were given. Combined with these DFT results, the influence of pH on the structure of tautomeric hypoxanthine was studied by surface enhanced Raman spectroscopy (SERS). Electrochemical SERS was applied to study the properties of hypoxanthine/gold interface. It is found that the structure of adsorbed hypoxanthine was changed from slightly tilted to upright with negatively moving of potentials

  10. Lattice dynamics of binary and ternary phases in Ti–Si–C system: A combined Raman spectroscopy and density functional theory study

    International Nuclear Information System (INIS)

    Wdowik, U.D.; Twardowska, A.; Mȩdala-Wa̧sik, M.

    2015-01-01

    Results of the x-ray diffraction and the Raman spectroscopy experiments on the multiphase Ti–Si–C system containing Ti_3SiC_2 as the major phase and TiSi_2, TiC_x, and Ti_5Si_3/Ti_5Si_3C_x impurity phases are reported. Experimental studies are supported by the density functional theory calculations of the Raman spectra performed for the major and concomitant phases. The effect of carbon vacancies and impurities on the TiC_x and Ti_5Si_3C_x Raman spectra is investigated. It is shown that identification and refinement of the phase composition of the multicomponent Ti–Si–C system based on the theoretical Raman spectroscopy can be achieved when both frequencies and intensities of the simulated Raman-active modes are simultaneously considered. - Highlights: • Multiphase Ti-Si-C system is explored by Raman spectroscopy and DFT methods. • Ab initio Raman spectra of Ti3SiC2, TiSi2, TiCx, Ti5Si3/Ti5Si3Cx are investigated. • Raman intensities play key role in refinement of spectra from multiphase samples.

  11. Lattice dynamics of binary and ternary phases in Ti–Si–C system: A combined Raman spectroscopy and density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Wdowik, U.D., E-mail: sfwdowik@cyf-kr.edu.pl; Twardowska, A.; Mȩdala-Wa̧sik, M.

    2015-11-15

    Results of the x-ray diffraction and the Raman spectroscopy experiments on the multiphase Ti–Si–C system containing Ti{sub 3}SiC{sub 2} as the major phase and TiSi{sub 2}, TiC{sub x}, and Ti{sub 5}Si{sub 3}/Ti{sub 5}Si{sub 3}C{sub x} impurity phases are reported. Experimental studies are supported by the density functional theory calculations of the Raman spectra performed for the major and concomitant phases. The effect of carbon vacancies and impurities on the TiC{sub x} and Ti{sub 5}Si{sub 3}C{sub x} Raman spectra is investigated. It is shown that identification and refinement of the phase composition of the multicomponent Ti–Si–C system based on the theoretical Raman spectroscopy can be achieved when both frequencies and intensities of the simulated Raman-active modes are simultaneously considered. - Highlights: • Multiphase Ti-Si-C system is explored by Raman spectroscopy and DFT methods. • Ab initio Raman spectra of Ti3SiC2, TiSi2, TiCx, Ti5Si3/Ti5Si3Cx are investigated. • Raman intensities play key role in refinement of spectra from multiphase samples.

  12. Raman spectroscopy in pharmaceutical product design

    DEFF Research Database (Denmark)

    Paudel, Amrit; Raijada, Dhara; Rantanen, Jukka

    2015-01-01

    Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from...... molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant...... application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed....

  13. Characterization of alkali silica reaction gels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Balachandran, C.; Muñoz, J.F.; Arnold, T.

    2017-01-01

    The ability of Raman spectroscopy to characterize amorphous materials makes this technique ideal to study alkali silica reaction (ASR) gels. The structure of several synthetic ASR gels was thoroughly characterized using Raman Spectroscopy. The results were validated with additional techniques such as Fourier transmission infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. The Raman spectra were found to have two broad bands in the 800 to 1200 cm −1 range and the 400 to 700 cm −1 range indicating the amorphous nature of the gel. Important information regarding the silicate polymerization was deduced from both of these spectral regions. An increase in alkali content of the gels caused a depolymerization in the silicate framework which manifested in the Raman spectra as a gradual shift of predominant peaks in both regions. The trends in silicate depolymerization were in agreement with results from a NMR spectroscopy study on similar synthetic ASR gels.

  14. Spectroscopy and Raman imaging of inhomogeneous materials

    International Nuclear Information System (INIS)

    Maslova, Olga

    2014-01-01

    This thesis is aimed at developing methodologies in Raman spectroscopy and imaging. After reviewing the statistical instruments which allow treating giant amount of data (multivariate analysis and classification), the study is applied to two families of well-known materials which are used as models for testing the limits of the implemented developments. The first family is a series of carbon materials pyrolyzed at various temperatures and exhibiting inhomogeneities at a nm scale which is suitable for Raman-X-ray diffraction combination. Another results concern the polishing effect on carbon structure. Since it is found to induce Raman artifacts leading to the overestimation of the local structural disorder, a method based on the use of the G band width is therefore proposed in order to evaluate the crystallite size in both unpolished and polished nano-graphites. The second class of materials presents inhomogeneities at higher (micrometric) scales by the example of uranium dioxide ceramics. Being well adapted in terms of spatial scale, Raman imaging is thus used for probing their surfaces. Data processing is implemented via an approach combining the multivariate (principal component) analysis and the classical fitting procedure with Lorentzian profiles. The interpretation of results is supported via electron backscattering diffraction (EBSD) analysis which enables us to distinguish the orientation effects of ceramic grains from other underlying contributions. The last ones are mainly localized at the grain boundaries, that is testified by the appearance of a specific Raman mode. Their origin seems to be caused by stoichiometric oxygen variations or impurities, as well as strain inhomogeneities. The perspectives of this work include both the implementation of other mathematical methods and in-depth analysis of UO 2 structure damaged by irradiation (anisotropic effects, role of grain boundaries). (author) [fr

  15. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Matthew W. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.

  16. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  17. Raman and IR-ATR spectroscopy studies of heteroepitaxial structures with a GaN:C top layer

    Science.gov (United States)

    Cerqueira, M. F.; Vieira, L. G.; Alves, A.; Correia, R.; Huber, M.; Andreev, A.; Bonanni, A.; Vasilevskiy, M. I.

    2017-09-01

    This work, motivated by the technologically important task of determination of carbon dopant location in the GaN crystal lattice, employed Raman spectroscopy, with both resonant and non-resonant excitation, and infrared (IR) spectroscopy, in the attenuated total reflection (ATR) configuration, to study lattice vibration modes in a set of carbon-doped GaN (GaN:C) epilayers grown by metalorganic vapour phase epitaxy. We analyse Raman and IR-ATR spectra from the point of view of possible effects of the carbon doping, namely: (i) local vibration mode of C atoms in the nitrogen sublattice (whose frequency we theoretically estimate as 768 cm-1 using an isotope defect model), and (ii) shift in the positions of longitudinal modes owing to the phonon-plasmon coupling. We find only indirect hints of the doping effect on the resonant Raman spectra. However, we show theoretically and confirm experimentally that the IR-ATR spectroscopy can be a much more sensitive tool for this purpose, at least for the considered structures. A weak perturbation of the dielectric function of GaN:C, caused by the substitutional carbon impurity, is shown to produce a measurable dip in the ATR reflectivity spectra at  ≈770 cm-1 for both p- and s-polarizations. Moreover, it influences a specific (guided-wave type) mode observed at  ≈737 cm-1, originating from the GaN layer, which appears in the narrow frequency window where the real parts of the two components of the dielectric tensor of the hexagonal crystal have opposite signs. This interpretation is supported by our modelling of the whole multilayer structure, using a transfer matrix formalism.

  18. In vivo Raman spectroscopy of cervix cancers

    Science.gov (United States)

    Rubina, S.; Sathe, Priyanka; Dora, Tapas Kumar; Chopra, Supriya; Maheshwari, Amita; Krishna, C. Murali

    2014-03-01

    Cervix-cancer is the third most common female cancer worldwide. It is the leading cancer among Indian females with more than million new diagnosed cases and 50% mortality, annually. The high mortality rates can be attributed to late diagnosis. Efficacy of Raman spectroscopy in classification of normal and pathological conditions in cervix cancers on diverse populations has already been demonstrated. Our earlier ex vivo studies have shown the feasibility of classifying normal and cancer cervix tissues as well as responders/non-responders to Concurrent chemoradiotherapy (CCRT). The present study was carried out to explore feasibility of in vivo Raman spectroscopic methods in classifying normal and cancerous conditions in Indian population. A total of 182 normal and 132 tumor in vivo Raman spectra, from 63 subjects, were recorded using a fiberoptic probe coupled HE-785 spectrometer, under clinical supervision. Spectra were acquired for 5 s and averaged over 3 times at 80 mW laser power. Spectra of normal conditions suggest strong collagenous features and abundance of non-collagenous proteins and DNA in case of tumors. Preprocessed spectra were subjected to Principal Component-Linear Discrimination Analysis (PCLDA) followed by leave-one-out-cross-validation. Classification efficiency of ~96.7% and 100% for normal and cancerous conditions respectively, were observed. Findings of the study corroborates earlier studies and suggest applicability of Raman spectroscopic methods in combination with appropriate multivariate tool for objective, noninvasive and rapid diagnosis of cervical cancers in Indian population. In view of encouraging results, extensive validation studies will be undertaken to confirm the findings.

  19. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  20. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Marco Antonio Botelho

    2014-02-01

    Full Text Available OBJECTIVE: To determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10% combined with estriol (0.1% + estradiol (0.25% for relieving postmenopausal symptoms. METHODS: A total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. RESULTS: An improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05 after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04±4.9 to 57.12±4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. CONCLUSION: The nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women.

  1. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    International Nuclear Information System (INIS)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan; Almeida, Jackson Guedes; Quintans Junior, Lucindo

    2014-01-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  2. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy

    Science.gov (United States)

    Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim

    2015-01-01

    Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.

  3. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan, E-mail: marcobotelho@pq.cnpq.br [Universidade Potiguar, Natal, RN (Brazil). Lab. de Nanotecnologia; Fechine, Pierre [Universidade Federal do Ceara (GQMAT/UFCE), Fortaleza, CE (Brazil). Dept. de Quimica Analitica. Grupo Avancado de Biomateriais em Quimica; Queiroz, Danilo Caldas de [Instituto Federal de Ciencia e Tecnologia (IFCT), Fortaleza, CE (Brazil). Lab. de Biotecnologia; Ruela, Ronaldo [Instituto de Biotecnologia Aplicada (INBIOS), Fortaleza, CE (Brazil); Almeida, Jackson Guedes [Universidade Federal do Vale de Sao Francisco (UNIVALE), Petrolina, PE (Brazil). Fac. de Ciencias Farmaceuticas; Quintans Junior, Lucindo [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Dept. de Fisiologia

    2014-06-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  4. UTI diagnosis and antibiogram using Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  5. [Surface-enhanced Raman spectroscopy analysis of thiabendazole pesticide].

    Science.gov (United States)

    Lin, Lei; Wu, Rui-mei; Liu, Mu-hua; Wang, Xiao-bin; Yan, Lin-yuan

    2015-02-01

    Surface-enhanced Raman spectroscopy (SERS) technique was used to analyze the Raman peaks of thiabendazole pesticides in the present paper. Surface enhanced substrates of silver nanoparticle were made based on microwave technology. Raman signals of thiabendazole were collected by laser Micro-Raman spectrometer with 514. 5 and 785 nm excitation wavelengths, respectively. The Raman peaks at different excitation wavelengths were analyzed and compared. The Raman peaks 782 and 1 012 at 785 nm excitation wavelength were stronger, which were C--H out-of-plane vibrations. While 1284, 1450 and 1592 cm(-1) at 514.5 nm excitation wavelength were stronger, which were vng and C==N stretching. The study results showed that the intensity of Raman peak and Raman shift at different excitation wavelengths were different And strong Raman signals were observed at 782, 1012, 1284, 1450 and 1592 cm(-1) at 514.5 and 785 nm excitation wavelengths. These characteristic vibrational modes are characteristic Raman peaks of carbendazim pesticide. The results can provide basis for the rapid screening of pesticide residue in agricultural products and food based on Raman spectrum.

  6. Micro-raman and tip-enhanced raman spectroscopy of carbon allotropes

    NARCIS (Netherlands)

    Hoffmann, G.G.; With, de G.; Loos, J.

    2008-01-01

    Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for

  7. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  8. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    International Nuclear Information System (INIS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-01-01

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  9. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    Science.gov (United States)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  10. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  11. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  12. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  13. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. [University of Vienna, Faculty of Physics, Vienna (Austria)

    2017-04-15

    In the present work, the doping effect of terbium chloride, terbium bromide, and terbium iodide on single-walled carbon nanotubes (SWCNTs) was compared by Raman spectroscopy. A precise investigation of the doping-induced alterations of the Raman modes of the filled SWCNTs was conducted. The shifts of the components of the Raman modes and modification of their profiles allowed concluding that the inserted terbium halogenides have acceptor doping effect on the SWCNTs, and the doping efficiency increases in the line with terbium iodide, terbium bromide, and terbium chloride. (orig.)

  14. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  15. Bone tissue ultrastructural defects in a mouse model for osteogenesis imperfecta: a Raman spectroscopy study

    Science.gov (United States)

    Chen, Tsoching; Kozloff, Kenneth M.; Goldstein, Steven A.; Morris, Michael D.

    2004-07-01

    Osteogenesis imperfecta (OI) is genetic defect in which the genes that code for the α1(I) or α2(I) chains of type I collagen are defective. The defects often result in substitution of a bulky amino acid for glycine, causing formation of collagen that can not form the normal triple helix. Depending on the details of the defects, the outcomes range from controllable to lethal. This study focuses on OI type IV, a more common and moderately severe form of the disease. People with the disease have a substantial increase in the risk and rate of fracture. We examine the spectroscopic consequences of these defects, using a mouse model (BRTL) that mimics OI type IV. We compare Raman images from tibial cortical tissue of wild-type mice and BRTL mice with single copy of mutation and show that both mineral to matrix ratios and collagen inter-fibril cross-links are different in wild-type and mutant mice.

  16. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    Science.gov (United States)

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  17. Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Manara, D.; Grandjean, A. [CEA Marcoule, Serv Confinement Deches and Vitrificat, DTCD, DEN - 30 (France); Neuville, D.R. [Institut Physique Globe, Physique des Mineraux et Magmas, CNRS, F-75252 Paris 05 (France)

    2009-05-15

    This study is focused on the behavior of ternary SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} borosilicate glasses at temperatures between 298 and 1800 K. Unpolarized Raman spectra were measured up to high temperature. SiO{sub 2}-Na{sub 2}O-B{sub 2}O{sub 3} glass samples were prepared with different values of the ratio R [Na{sub 2}O]/[B{sub 2}O{sub 3}], while the ratio K = [SiO{sub 2}]/[B{sub 2}O{sub 3}] was kept constant and equal 2.12. Spectra were measured at room temperature in samples with 0.43 {<=} R {<=} 1.68, and the effect of the modifier content was clearly observed in these glasses, only in partial agreement with previous literature results. In particular, the formation in the glass of sodium-danburite units Na{sub 2}O-B{sub 2}O{sub 3}-2SiO{sub 2} was postulated. This feature led to a new assessment of R{sup *}, the critical value of R above which every new alkali atom added to the system breaks a Fo-O-Fo (Fo=glass former) bridge causing depolymerization of the glass. A revised formula is proposed to obtain the value of R{sup *} as a function of K. Raman spectra measured at high temperature yielded important information about the temperature-dependent evolution of the borosilicate system. In particular, borate and borosilicate units including tetra-coordinated boron seem to be unstable at high temperature, where the formation of metaborate chains or rings is fostered. Above 1500 degrees C, evaporation of borate compounds is clearly observed, stemming from the small sample size. (authors)

  18. Application of Raman spectroscopy for cancer diagnosis

    International Nuclear Information System (INIS)

    Krishnakumar, N.

    2011-01-01

    Cancer is the second leading causes of death next to heart diseases, Half of all cancer cases occur in developing countries. The conventional histopathology is usually the most trustable gold standard for pre-cancer and cancer diagnosis. However, the applicability of this method is more or less restricted because of the requirement of removing human tissues and the difficulty of real time diagnosis. Recently, there has been increased interest in 'optical biopsy' system using tissue spectroscopy to establish the pathological changes. Among optical based methods, Raman spectroscopy is a unique vibrational spectroscopic technique capable of probing biomolecular structures and conformation of tissues, and has excelled in the early detection of pre-cancer and cancer in the number of organs with high diagnostic specificity. Raman spectroscopy offers certain distinct advantages over than other optical diagnostic techniques such as high spatial resolution, use of less harmful NIR radiation, less or no sample preparation, no influence of water bands which facilitates in vivo/in situ measurements. This makes Raman spectroscopy also very useful for biomedical applications. Several research groups have demonstrated the efficacy of this technique in biomedical applications. The background and principle of these techniques will be discussed with some examples and discussions on how Raman spectroscopy can act as a promising technique for rapid in vivo diagnosis and detection of various cancers at the molecular level. (author)

  19. Identification of color development potential of quartz by Raman spectroscopy

    International Nuclear Information System (INIS)

    Alkmim, Danielle G.; Lameiras, Fernando S.; Almeida, Frederico O.T.

    2013-01-01

    Colorless quartz is usually exposed to ionizing radiation (gamma rays or high energy electron beams) to acquire different colors for jewelry. Color development is due to the presence of traces of some elements such as aluminum, iron, hydrogen, lithium, or sodium. Most quartz crystals are extracted colorless from nature and it is necessary to separate those that can develop colors from those that cannot. Irradiation tests can be used to accomplish this separation, but they take a long time. Infrared signature of colorless quartz can also be used. However, infrared spectroscopy is quite expensive, especially when using portable devices. Raman spectroscopy is now available as an inexpensive and portable technique that could provide identification of the samples of colorless quartz still in the field, facilitating the prediction for their economic exploitation. In addition, Raman spectroscopy usually requires a minimum or no sample preparation. This paper presents an investigation of the feasibility of using Raman spectroscopy as a substitute for infrared spectroscopy to predict the potential for color development of quartz. A band at 3595 cm -1 in the Raman shift spectrum was observed only along the c axis of a prasiolite excited by a high power 514 nm laser. This band was not observed in quartz samples that do not develop color after irradiation. Further studies are required to identify the potential for color development by Raman spectroscopy of other types of colorless quartz. (author)

  20. Laser stimulating ST36 with optical fiber induce blood component changes in mice: a Raman spectroscopy study.

    Science.gov (United States)

    Zhang, Heng; Chen, Zhenyi; Wu, Jiping; Chen, Na; Xu, Wenjie; Li, Taihao; Liu, Shupeng

    2018-02-15

    ST36 is a commonly-used acupoint in traditional Chinese medicine (TCM) for treatment of inflammations, pains and gastrointestinal disturbs. For decades, the low power laser acupuncture has been widely applied as an alternative therapy to traditional metal needle acupuncture and achieved relatively fine therapeutic effect for ST36-related symptoms with reduction of uncomfortableness and infection risks. However its disadvantages of low penetrativity and lack of manipulation skills limit its potential performance. An optical fiber laser acupuncture introduced by the previous study combines traditional needling acupuncture and the laser stimulation together, making a stronger therapeutic effect and showing a potential value in clinical application. To evaluate its acupunctural effect on blood, mice are taken as experimental model and Raman spectroscopic technique is used to analysis the changes of blood components after stimulating on ST36. The results show that both the traditional needling acupuncture and optical fiber acupuncture could lead to some spectral changes of blood in mice. This study explores the optical fiber acupuncture's effect on blood in mice using Raman spectroscopy technique for mechanism of acupuncture therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Skin biochemical composition analysis by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Patricia Karen; Tosato, Maira Gaspar; Alves, Rani de Souza; Martin, Airton Abrahao; Favero, Priscila Pereira; Raniero, Leandro, E-mail: amartin@univap.br [Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento - IP e D, Universidade do Vale do Paraiba - UniVap, Sao Jose dos Campos, SP (Brazil)

    2012-09-15

    Skin aging is characterized by cellular and molecular alterations. In this context, Confocal Raman spectroscopy was used in vivo to measure these biochemical changes as function of the skin depth. In this study we have tried to correlate spectra from pure amino acids to in vivo spectra from volunteers with different ages. This study was performed on 32 volunteers: 11 from Group A (20-23 years), 11 from Group B (39-42 years) and 10 from Group C (59-62 years). For each group, the Raman spectra were measured on the surface (0 mm), 30 +- 3 mm and 60 +- 3 {mu}m below the surface. The results from intergroup comparisons showed that the oldest group had a prevalence of the tyrosine band, but it also presented a decrease in the band centered at 875 cm{sup -1} of pyrrolidone acid. The amide I band centered at 1637 cm{sup -1} that is attributed to collagen, as well as other proteins and lipid, showed a smaller amount of these biomolecules for Group C, which can be explained by the decrease in collagen concentration as a function of age. (author)

  2. Combined operando Raman/UV-Vis-NIR spectroscopy as a tool to study supported metal oxide catalysts at work

    NARCIS (Netherlands)

    Tinnemans, Stanislaus Josephus

    2006-01-01

    A novel set-up has been developed in which two complementary spectroscopic techniques, namely operando Raman and UV-Vis-NIR spectroscopy, are combined. With this set-up it is possible to characterize catalytic materials under reaction conditions (high temperature, normal pressure) and in this way on

  3. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  4. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.

    Science.gov (United States)

    Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina

    2012-08-21

    The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.

  5. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Studies of Eu2O3 - Bi2O3 - B2O3 glasses using Raman and IR spectroscopy

    International Nuclear Information System (INIS)

    Pop, Lidia; Culea, Eugen N.; Bratu, I.

    2004-01-01

    The bismuth borate (3Bi 2 O 3 ·B 2 O 3 ) glasses were prepared with different concentrations of Eu 3+ . The structure of these systems were investigated by Raman and IR spectroscopy. The structural study reveals that the glasses contain BiO 3 , BiO 6 , BO 3 , BO 4 and Eu-O structural units. For the samples with a higher content of Eu 2 O 3 , the spectra became very large indicating a more disordered structure. The hygroscopic character of the 3Bi 2 O 3 ·B 2 O 3 glass matrix and the progressive decrease of this behaviour with increasing the Eu 2 O 3 content was observed. Therefore, we conclude that the europium oxide acts as a network modifier in these glasses. (authors)

  7. Sixfold ring clustering in sp2-dominated carbon and carbon nitride thin films: A Raman spectroscopy study

    International Nuclear Information System (INIS)

    Abrasonis, G.; Gago, R.; Vinnichenko, M.; Kreissig, U.; Kolitsch, A.; Moeller, W.

    2006-01-01

    The atomic arrangement in sp 2 -dominated carbon (C) and carbon nitride (CN x ) thin films has been studied by Raman spectroscopy as a function of substrate temperature and, in the case of CN x , different N incorporation routes (growth methods). In this way, materials composing graphitelike, fullerenelike (FL), and paracyanogenlike structures have been compared. The results show that each type of arrangement results in a characteristic set of the Raman spectra parameters, which describe the degree of aromatic clustering, bond length, and angle distortion and order in sixfold structures. In the case of C films, the atomic structure evolves with substrate temperature from a disordered network to nanocrystalline planar graphitic configurations, with a progressive promotion in size and ordering of sixfold ring clusters. Nitrogen incorporation favors the promotion of sixfold rings in highly disordered networks produced at low temperatures, but precludes the formation of extended graphiticlike clusters at elevated substrate temperatures (>700 K). In the latter case, N introduces a high degree of disorder in sixfold ring clusters and enhances the formation of a FL microstructure. The formation and growth of aromatic clusters are discussed in terms of substrate temperature, N incorporation, growth rate, film-forming sources, and concurrent bombardment by hyperthermal particles during growth

  8. STUDY OF POLYMORPHISM OF BOROVANADATE GLASS OF SODIUM BY RAMAN SPECTROSCOPY LOW FREQUENCIES

    Directory of Open Access Journals (Sweden)

    M. K. Rabia

    2015-07-01

    Full Text Available Sodium tetraborate (100 – x(Na2B4O7.10H2O­­ ­­­­­– xV2O5, (x = 0 to 20 mole % has been elaborated by splat cooling technique. Raman Measurements on the doped and non polish samples reveal the presence of the of α-NaVO3 crystal on the superficial layer. After polishing, Raman spectra characteristic of glasses are obtained with two main bands located at 555 and 1097 cm-1 in the undoped glass and four bands at 241, 381, 776 and 938 cm-1 for the vanadium oxyde doped glasses. The volume devitrification of these glasses occurs at 750° C and the β-NaVO3 crystalline phase is identified by Raman scattering.

  9. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  10. Resonance Raman Spectroscopy of Free Radicals Produced by Ionizing Radiation

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter

    1984-01-01

    Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p-nitrobenzylchloride and......Applications of time-resolved resonance Raman spectroscopy to the study of short-lived free radicals produced by ionizing radiation are briefly reviewed. Potential advantages and limitations of this technique are discussed in the light of given examples. The reduction of p......-nitrobenzylchloride and subsequent formation of the p-nitrobenzyl radical and the reaction of p-nitrotoluene with O– are studied by resonance Raman and optical absorption spectroscopy....

  11. Molecular structure of tetraaqua adenosine 5'-triphosphate aluminium(III) complex: A study involving Raman spectroscopy, theoretical DFT and potentiometry

    Science.gov (United States)

    Tenório, Thaís; Silva, Andréa M.; Ramos, Joanna Maria; Buarque, Camilla D.; Felcman, Judith

    2013-03-01

    The Alzheimer's disease is one of the most common neurodegenerative diseases that affect elderly population, due to the formation of β-amyloid protein aggregate and several symptoms, especially progressive cognitive decline. The result is a decrease in capture of glucose by cells leading to obliteration, meddling in the Krebs cycle, the principal biochemical route to the energy production leading to a decline in the levels of adenosine 5'-triphosphate. Aluminium(III) is connected to Alzheimer's and its ion provides raise fluidity of the plasma membrane, decrease cell viability and aggregation of amyloid plaques. Studies reveal that AlATP complex promotes the formation of reactive fibrils of β-amyloid protein and independent amyloidogenic peptides, suggesting the action of the complex as a chaperone in the role pathogenic process. In this research, one of complexes formed by Al(III) and adenosine 5'-triphosphate in aqueous solution is analyzed by potentiometry, Raman spectroscopy and ab initio calculations. The value of the log KAlATP found was 9.21 ± 0.01 and adenosine 5'-triphosphate should act as a bidentate ligand in the complex. Raman spectroscopy and potentiometry indicate that donor atoms are the oxygen of the phosphate β and the oxygen of the phosphate γ, the terminal phosphates. Computational calculations using Density Functional Theory, with hybrid functions B3LYP and 6-311++G(d,p) basis set regarding water solvent effects, have confirmed the results. Frontier molecular orbitals, electrostatic potential contour surface, electrostatic potential mapped and Mulliken charges of the title molecule were also investigated.

  12. Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-02-01

    Full Text Available The structural stability of hexagonal Nd2O3 under pressure has been investigated by in situ synchrotron angle dispersive x-ray diffraction and Raman spectroscopy up to 53.1 GPa and 37.0 GPa, respectively. Rietveld analysis of the x-ray diffraction data indicate that the hexagonal Nd2O3 undergoes an isostructural phase transition in the pressure range from 10.2 to 20.3 GPa, accompanied by anomalous lattice compressibility and pressure-volume curve. A third-order Birch-Murnaghan fit based on the observed Pressure-Volume data yields zero pressure bulk moduli (B0 of 142(4 and 183(6 GPa for the low and high pressure hexagonal phases, respectively. Raman spectroscopy confirms this isostructural transition, the pressure dependence of the Raman modes display noticeable breaks in the pressure range of 9.7-20.9 GPa, which is consistent with the change of Nd-O bond length. The pressure coefficients of Raman peaks and the mode Grüneisen parameters of different Raman modes were also determined.

  13. Study of nanophase TiO2 grain boundaries by Raman spectroscopy

    International Nuclear Information System (INIS)

    Melendres, C.A.; Narayanasamy, A.; Maroni, V.A.; Siegel, R.W.

    1989-01-01

    Raman spectra have been recorded for as-consolidated nanophase TiO 2 samples with differing grain sizes and on samples annealed in air at a variety of temperatures up to 1273 K. The nanophase samples with the smallest grain size, about 12 nm average diameter, could have 15-30% of their atoms in grain boundaries; nevertheless, the strong Raman-active lines representative of the rutile structure were found to dominate all of the observed spectra, independent of grain size and annealing treatment. These lines were quite broad in the as-consolidated nanophase samples, equally in 12 nm and 100 nm grain-size compacts, but sharpened considerably upon annealing at elevated temperatures. The Raman data give no indication of grain-boundary structures in nanophase TiO 2 that are significantly different from those in conventional polycrystals. However, defect structures within the grains, which anneal out at elevated temperatures, are evidenced by changes in the Raman spectra. 15 refs., 2 figs

  14. Environmental effects on the lignin model monomer, vanillyl alcohol, studied by raman spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Kiki Lyster; Barsberg, Søren Talbro

    2011-01-01

    model monomer, vanillyl alcohol (G type), dissolved in different solvents were compared to investigate such effects on the Raman band shapes and positions. Density functional theory combined with the polarizable continuum model were applied to assign the observed bands and tested for prediction accuracy...

  15. Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.

    1999-01-01

    A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases

  16. Citrus fruits freshness assessment using Raman spectroscopy.

    Science.gov (United States)

    Nekvapil, Fran; Brezestean, Ioana; Barchewitz, Daniel; Glamuzina, Branko; Chiş, Vasile; Cintă Pinzaru, Simona

    2018-03-01

    The freshness of citrus fruits commonly available in the market was non-destructively assessed by Raman spectroscopy. Intact clementine, mandarin and tangerine species were characterised concerning their carotenoids skin Raman signalling in a time course from the moment they were acquired as fresh stock, supplying the market, to the physical degradation, when they were no longer attractive to consumers. The freshness was found to strongly correlate to the peel Raman signal collected from the same area of the intact fruits in a time course of a maximum of 20days. We have shown that the intensity of the carotenoid Raman signal is indeed a good indicator of fruit freshness and introduced a Raman coefficient of freshness (C Fresh ), whose time course is linearly decreasing, with different slope for different citrus groups. Additionally, we demonstrated that the freshness assessment could be achieved using a portable Raman instrument. The results could have a strong impact for consumer satisfaction and the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bacterial and abiotic decay in waterlogged archaeological Picea abies (L.) Karst studied by confocal Raman imaging and ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Nanna Bjerregaard; Gierlinger, Notburga; Thygesen, Lisbeth Garbrecht

    2015-01-01

    Waterlogged archaeological Norway spruce [Picea abies (L.) Karst] poles were studied by means of confocal Raman imaging (CRI) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis to determine lignin and polysaccharide composition and distribution in the cell......, and minor oxidation of the lignin polymer compared to recent reference material. This is evidence for abiotic decay in the course of waterlogging....

  18. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    Science.gov (United States)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  19. The efficiency of micro-Raman spectroscopy in the analysis of complicated mixtures in modern paints: Munch's and Kupka's paintings under study

    Czech Academy of Sciences Publication Activity Database

    Košařová, V.; Hradil, David; Hradilová, J.; Čermáková, Zdeňka; Němec, I.; Schreiner, M.

    2016-01-01

    Roč. 156, MAR (2016), s. 36-46 ISSN 1386-1425 Institutional support: RVO:61388980 Keywords : Micro-Raman spectroscopy * Portable Raman spectrometry * Modern paints Subject RIV: CA - Inorganic Chemistry Impact factor: 2.536, year: 2016

  20. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    Science.gov (United States)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  1. Preliminary study on classification of rice and detection of paraffin in the adulterated samples by Raman spectroscopy combined with multivariate analysis.

    Science.gov (United States)

    Feng, Xinwei; Zhang, Qinghua; Cong, Peisheng; Zhu, Zhongliang

    2013-10-15

    Rice has played an important role in staple food supply of over approximately one-half of the world population. In this study, Raman spectroscopy and several multivariate data analysis methods were applied for discrimination of rice samples from different districts of China. A total of 42 samples were examined. It is shown that the representative Raman spectra in each group are different according to geographical origin after baseline correction to enhance spectral features. Moreover, adulteration of rice is a serious problem for consumers. In addition to the obvious effect on producer profits, adulteration can also cause severe health and safety problems. Paraffin was added to give the rice a desirable translucent appearance and increase its marketability. Detection of paraffin in the adulterated rice samples was preliminarily investigated as well. The results showed that Raman spectroscopy data with chemometric techniques can be applied to rapid detecting rice adulteration with paraffin. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Temperature induced conformational transitions of elastin-like polypentapeptides studied by Raman and NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Dybal, Jiří; Schmidt, Pavel; Kurková, Dana; Kříž, Jaroslav; Rodríguez-Cabello, J. C.; Alonso, M.

    2002-01-01

    Roč. 16, 3-4 (2002), s. 251-255 ISSN 0712-4813 R&D Projects: GA ČR GA203/00/1320; GA AV ČR IAA4050208 Institutional research plan: CEZ:AV0Z4050913 Keywords : quantum chemical calculations * elastin -like polypentapeptides * Raman spectra Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.567, year: 2002

  3. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    Science.gov (United States)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  4. A study on identification of bacteria in environmental samples using single-cell Raman spectroscopy: feasibility and reference libraries.

    Science.gov (United States)

    Baritaux, Jean-Charles; Simon, Anne-Catherine; Schultz, Emmanuelle; Emain, C; Laurent, P; Dinten, Jean-Marc

    2016-05-01

    We report on our recent efforts towards identifying bacteria in environmental samples by means of Raman spectroscopy. We established a database of Raman spectra from bacteria submitted to various environmental conditions. This dataset was used to verify that Raman typing is possible from measurements performed in non-ideal conditions. Starting from the same dataset, we then varied the phenotype and matrix diversity content included in the reference library used to train the statistical model. The results show that it is possible to obtain models with an extended coverage of spectral variabilities, compared to environment-specific models trained on spectra from a restricted set of conditions. Broad coverage models are desirable for environmental samples since the exact conditions of the bacteria cannot be controlled.

  5. Characterization of Kevlar Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This paper explores the characterization of Kevlar composite materials using Raman spectroscopy. The goal of the research is to develop and understand the Raman spectrum of Kevlar materials to provide a foundation for the development of nondestructive evaluation (NDE) technologies based on the interaction of laser light with the polymer Kevlar. The paper discusses the fundamental aspects of experimental characterization of the spectrum of Kevlar, including the effects of incident wavelength, polarization and laser power. The effects of environmental exposure of Kevlar materials on certain characteristics of its Raman spectrum are explored, as well as the effects of applied stress. This data may provide a foundation for the development of NDE technologies intended to detect the in-situ deterioration of Kevlar materials used for engineering applications that can later be extended to other materials such as carbon fiber composites.

  6. A Study on the use of Gafchromic{sup TM} EBT3 Film for Microdosimetry by Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Jamal Ahmad; Heo, Taemin; Park, Hyeonsuk; Ye, Sung-Joon [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    This concept is explained in microdosimetry, which deals with the spatial, temporal and energy spectral distributions of energy imparted in cellular and subcellular biological structures and associated biological effects. We at Seoul National University (SNU) are investigating on the use of unlaminated Gafchromic{sup TM} EBT3 film for microdosimetry. Our goal is to determine absorbed dose on EBT3 film with spatial distribution of as low as 10 micron using Raman spectroscopy. Data acquired using Raman is reproducible and temporally stable. Proper placement of film on stage and with right orientation is very important. The peak saturation problem can be avoided by decreasing laser exposure time. Raman intensity decreases with increase or decrease of depths beyond the surface active layer. Depth profile of film for each dose level maybe used to find the maximum signal, which is useful in finding the dose profile. Raman spectroscopy can be used for the determination of absorbed dose by exploiting the idea that C ≡ C and/or C=C in EBT3 film increases with increasing dose due to polymerization of diacetylene monomer.

  7. High-pressure effects in hydrofullerene C60H36 studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Meletov, K.P.; Rossijskaya Akademiya Nauk, Chernogolovka; Tsilika, I.; Assimopoulos, S.; Kourouklis, G.A.; Ves, S.; Bashkin, I.O.; Kulakov, V.I.; Khasanov, S.S.

    2001-01-01

    The effect of hydrostatic pressure on the Raman spectrum of hydrofullerene C 60 H 36 , at room temperature has been investigated up to 12 GPa. The samples were synthesized by means of high-pressure hydrogenation. The pressure dependence of the phonon frequencies exhibits two reversible changes one at ∝0.6 GPa and another one at ∝6 GPa. The first may be probably related to a phase transition from the initial orientationally disordered bcc structure to an orientationally ordered one. The second one, at ∝6 GPa, is probably driven by pressure-induced bonding of hydrogen to a carbon atom of a neighboring hydrofullerene cage. (orig.)

  8. Research study of the treatment efficacy of staphylococcia in the palatine tonsils by using Raman-scattering spectroscopy method

    Science.gov (United States)

    Timchenko, E. V.; Timchenko, P. E.; Asadova, A. A.; Ityaksov, Yu. D.; Tyumchenkova, A. S.

    2017-08-01

    Analysis of effectiveness of the staphylococcal infections treatment in the tonsils is carried out using Raman spectroscopy method. Spectral changes were established in the treatment of palatine tonsils with the antibiotic Amoksiklav. It was shown that when the antibiotic dosage is 500mg / 10ml, the lines disappear at wave numbers 735 cm-1 and 783 cm-1, 986 cm-1, and 1633 cm-1, corresponding to adenine, cytosine, proteins, and amide I, which indicates the effectiveness of treatment.

  9. Candida parapsilosis Biofilm Identification by Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Mlynariková, K.; Bernatová, Silvie; Ježek, Jan; Krzyžánek, Vladislav; Šiler, Martin; Zemánek, Pavel; Růžička, F.; Holá, Miroslava; Mahelová, M.

    2014-01-01

    Roč. 15, č. 12 (2014), s. 23924-23935 E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * Candida parapsilosis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.862, year: 2014

  10. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure

    Science.gov (United States)

    Li, M.; Zheng, H.; Duan, T.

    2006-05-01

    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  11. Structural study of thin films prepared from tungstate glass matrix by Raman and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, Bianca; Barbosa, Anne J.; Ribeiro, Sidney J.L.; Messaddeq, Younes [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, UNESP, CP 355, CEP 14800-900 Araraquara, SP (Brazil); Poirier, Gael [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000 Alfenas, MG (Brazil)], E-mail: gael@unifal-mg.edu.br; Li, Maximo S. [Instituto de Fisica, USP, CP 369, CEP 13560-970 Sao Carlos, SP (Brazil)

    2008-06-30

    Thin films were prepared using glass precursors obtained in the ternary system NaPO{sub 3}-BaF{sub 2}-WO{sub 3} and the binary system NaPO{sub 3}-WO{sub 3} with high concentrations of WO{sub 3} (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L{sub I} and L{sub III} absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO{sub 6}) and that these films are free of tungstate tetrahedral units (WO{sub 4}). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO{sub 3} increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO{sub 6} octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O{sup -} and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO{sub 3} concentrated samples (above 40% molar) attributed to the formation of WO{sub 6} clusters.

  12. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy.

    Science.gov (United States)

    Rehder, Sönke; Wu, Jian X; Laackmann, Julian; Moritz, Hans-Ulrich; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-01-23

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectroscopy measurements. The recrystallisation kinetic parameters (overall recrystallisation rate constant β and the time needed to reach 50% of the equilibrated level t(50)), were determined using a multivariate curve resolution approach. The acoustic levitation device coupled with non-invasive spectroscopy enabled monitoring of the recrystallisation process of the difficult-to-handle (adhesive) amorphous sample. The application of multivariate curve resolution enabled isolation of the underlying pure spectra, which corresponded well with the reference spectra of amorphous and crystalline ibuprofen. The recrystallisation kinetic parameters were estimated from the recrystallisation profiles. While the empirical recrystallisation rate constant determined by NIR and Raman spectroscopy were comparable, the lag time for recrystallisation was significantly lower with Raman spectroscopy as compared to NIRS. This observation was explained by the high energy density of the Raman laser beam, which might have led to local heating effects of the sample and thus reduced the recrystallisation onset time. It was concluded that acoustic levitation with NIR and Raman spectroscopy combined with multivariate curve resolution allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  14. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    Science.gov (United States)

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Contrast and Raman spectroscopy study of single- and few-layered charge density wave material: 2H-TaSe2

    Science.gov (United States)

    Hajiyev, Parviz; Cong, Chunxiao; Qiu, Caiyu; Yu, Ting

    2013-01-01

    In this article, we report the first successful preparation of single- and few-layers of tantalum diselenide (2H-TaSe2) by mechanical exfoliation technique. Number of layers is confirmed by white light contrast spectroscopy and atomic force microscopy (AFM). Vibrational properties of the atomically thin layers of 2H-TaSe2 are characterized by micro-Raman spectroscopy. Room temperature Raman measurements demonstrate MoS2-like spectral features, which are reliable for thickness determination. E1g mode, usually forbidden in backscattering Raman configuration is observed in the supported TaSe2 layers while disappears in the suspended layers, suggesting that this mode may be enabled because of the symmetry breaking induced by the interaction with the substrate. A systematic in-situ low temperature Raman study, for the first time, reveals the existence of incommensurate charge density wave phase transition in single and double-layered 2H-TaSe2 as reflected by a sudden softening of the second-order broad Raman mode resulted from the strong electron-phonon coupling (Kohn anomaly). PMID:24005335

  16. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  17. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  18. Micro-Raman spectroscopy of natural and synthetic indigo samples.

    Science.gov (United States)

    Vandenabeele, Peter; Moens, Luc

    2003-02-01

    In this work indigo samples from three different sources are studied by using Raman spectroscopy: the synthetic pigment and pigments from the woad (Isatis tinctoria) and the indigo plant (Indigofera tinctoria). 21 samples were obtained from 8 suppliers; for each sample 5 Raman spectra were recorded and used for further chemometrical analysis. Principal components analysis (PCA) was performed as data reduction method before applying hierarchical cluster analysis. Linear discriminant analysis (LDA) was implemented as a non-hierarchical supervised pattern recognition method to build a classification model. In order to avoid broad-shaped interferences from the fluorescence background, the influence of 1st and 2nd derivatives on the classification was studied by using cross-validation. Although chemically identical, it is shown that Raman spectroscopy in combination with suitable chemometric methods has the potential to discriminate between synthetic and natural indigo samples.

  19. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  20. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    Science.gov (United States)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  1. Analysis of scorpion venom composition by Raman Spectroscopy

    Science.gov (United States)

    Martínez-Zérega, Brenda E.; González-Solís, José L.

    2015-01-01

    In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.

  2. Silver-capped silicon nanopillar platforms for adsorption studies of folic acid using surface enhanced Raman spectroscopy and density functional theory

    DEFF Research Database (Denmark)

    Castillo, Jaime; Rindzevicius, Tomas; Wu, Kaiyu

    2015-01-01

    The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study of the adso......The study of the interactions of folic acid (FA) with surface enhanced Raman scattering substrates is relevant for understanding its adsorption mechanismand for fabricating analytical devices for detection ofmalignant cells over-expressing folate receptors. This paper presents a study...... of the adsorption of FA on silver-capped silicon nanopillar substrates employing surface enhanced Raman scattering spectroscopy and density functional theory calculations. The experimentally observed vibrations from free FA and FA bound to the Ag surface display different vibrational spectra indicating chemical...

  3. Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces

    KAUST Repository

    Marini, Monica; Das, Gobind; La Rocca, Rosanna; Gentile, Francesco T.; Limongi, Tania; Santoriello, Stefania; Scarpellini, Alice; Di Fabrizio, Enzo M.

    2014-01-01

    A novel approach for the study of low concentrated DNAs (60 pM) using microRaman spectroscopy is reported. A superhydrophobic substrate with array of microPillars is fabricated over which the sample was drop casted. The substrate concentrates the molecules in a very small area with higher molecular density, enabling to carry out the microRaman measurements. Two different DNAs (single strand and double strand) were used to investigate through Raman technique. A spectral Raman difference was found to distinguish the ssDNA and dsDNAs. The approach can be of interest for a wide variety of applications ranging from biological materials interactions characterization to the biomedical field. © 2014 Elsevier B.V. All rights reserved.

  4. Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces

    KAUST Repository

    Marini, Monica

    2014-05-01

    A novel approach for the study of low concentrated DNAs (60 pM) using microRaman spectroscopy is reported. A superhydrophobic substrate with array of microPillars is fabricated over which the sample was drop casted. The substrate concentrates the molecules in a very small area with higher molecular density, enabling to carry out the microRaman measurements. Two different DNAs (single strand and double strand) were used to investigate through Raman technique. A spectral Raman difference was found to distinguish the ssDNA and dsDNAs. The approach can be of interest for a wide variety of applications ranging from biological materials interactions characterization to the biomedical field. © 2014 Elsevier B.V. All rights reserved.

  5. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  6. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.

  7. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  8. Construction of coherent antistokes Raman spectroscopy (CARS)

    International Nuclear Information System (INIS)

    Zidan, M. D.; Jazmati, A.

    2007-01-01

    Coherent Antistokes Raman Spectroscopy (CARS) has been built. It consists of a Raman cell, which is filled with CO 2 gas at 5 atm pressure and a frequency doubled Nd-YAG laser pumped dye laser. The two beams are focused by means of a bi-convex lens into Raman cell. The Antistokes signals (CARS signals) are generated due to Four-wave mixing process. The antistokes signals were directed to monochrometer entrance slit by prism . The signals are detected by photomultiplier detector which is fixed on the exit slit and connected to data acquisition card located inside the computed case. The dye laser frequency has to be tuned to satisfy the energy difference between the ν 1 beam (Nd- YAG laser beam) and the ν 2 beam (the stokes beam or the dye laser beam) exactly corresponds to a vibrational - rotational Raman resonance (ν 2 - ν 1 = ν M ) in the 12 CO 2 or 13 CO 2 molecule, then the antistokes signals (ν 3 ) will be generated. The spectra of the CARS signals have been recorded to determine the isotope shift of 12 CO 2 , 13 CO 2 , which is 18.3 cm -1 . (author)

  9. Raman spectroscopy for grading of live osteosarcoma cells.

    Science.gov (United States)

    Chiang, Yi-Hung; Wu, Stewart H; Kuo, Yi-Chun; Chen, How-Foo; Chiou, Arthur; Lee, Oscar K

    2015-04-18

    Osteosarcoma is the most common primary malignant bone tumor, and the grading of osteosarcoma cells relies on traditional histopathology and molecular biology methods, which require RNA extraction, protein isolation and immunohistological staining. All these methods require cell isolation, lysis or fixation, which is time-consuming and requires certain amount of tumor specimen. In this study, we report the use of Raman spectroscopy for grading of malignant osteosarcoma cells. We demonstrate that, based on the detection of differential production of mineral species, Raman spectroscopy can be used as a live cell analyzer to accurately assess the grades of osteosarcoma cells by evaluating their mineralization levels. Mineralization level was assessed by measuring amount of hydroxyapatite (HA), which is highly expressed in mature osteoblasts, but not in poorly differentiated osteosarcoma cell or mesenchymal stem cells, the putative cell-of-origin of osteosarcoma. We found that under Raman spectroscopy, the level of HA production was high in MG-63 cells, which are low-grade. Moreover, hydroxyapatite production was low in high-grade osteosarcoma cells such as 143B and SaOS2 cells (p Raman spectroscopy for the measurement of HA production by the protocol reported in this study may serve as a useful tool to rapidly and accurately assess the degree of malignancy in osteosarcoma cells in a label-free manner. Such application may shorten the period of pathological diagnosis and may benefit patients who are inflicted with osteosarcoma.

  10. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  11. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Kuhs, Werner F

    2009-04-16

    In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.

  12. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    Science.gov (United States)

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs.

    Science.gov (United States)

    O'Brien, Laura E; Timmins, Peter; Williams, Adrian C; York, Peter

    2004-10-29

    The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130 degrees C, 138 degrees C, 140 degrees C and 150 degrees C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two CH bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid-gas-solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol(-1) to 368 kJ mol(-1) for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

  14. X-ray diffraction and Raman spectroscopy study of white decorations on tricolored ceramics from Northwestern Argentina

    Science.gov (United States)

    Freire, E.; Acevedo, V.; Halac, E. B.; Polla, G.; López, M.; Reinoso, M.

    2016-03-01

    White virgules, commas, and dot designs on tricolored ceramics are sporadically found in different archaeological sites located in Northwestern Argentina area, as Puna and Quebrada de Humahuaca. This decorating style has been reported in several articles, but few previous archaeometric studies have been carried out on the pigment composition. Fragments from Puna and Quebrada archaeological sites, belonging to Regional Development Period (900-1430 AD), were analyzed by X-ray diffraction and Raman spectroscopy in order to characterize the pigments employed. Red and black pigments are based on iron and manganese oxides, as it has been extensively reported for the NW Argentina area. White pigments from white virgules, comma, and dot designs have shown different composition. Hydroxyapatite was found in samples from Doncellas site (North Puna region), and calcium and calcium-magnesium containing compounds, as vaterite and dolomite, along with titanium containing compounds were detected on samples from Abralaite (Central Puna region) and Gasoducto (Quebrada de Humahuaca region). It has been concluded that pigment composition is not characteristic of a unique region.

  15. X-ray diffraction and Raman spectroscopy study of white decorations on tricolored ceramics from Northwestern Argentina.

    Science.gov (United States)

    Freire, E; Acevedo, V; Halac, E B; Polla, G; López, M; Reinoso, M

    2016-03-15

    White virgules, commas, and dot designs on tricolored ceramics are sporadically found in different archaeological sites located in Northwestern Argentina area, as Puna and Quebrada de Humahuaca. This decorating style has been reported in several articles, but few previous archaeometric studies have been carried out on the pigment composition. Fragments from Puna and Quebrada archaeological sites, belonging to Regional Development Period (900-1430 AD), were analyzed by X-ray diffraction and Raman spectroscopy in order to characterize the pigments employed. Red and black pigments are based on iron and manganese oxides, as it has been extensively reported for the NW Argentina area. White pigments from white virgules, comma, and dot designs have shown different composition. Hydroxyapatite was found in samples from Doncellas site (North Puna region), and calcium and calcium-magnesium containing compounds, as vaterite and dolomite, along with titanium containing compounds were detected on samples from Abralaite (Central Puna region) and Gasoducto (Quebrada de Humahuaca region). It has been concluded that pigment composition is not characteristic of a unique region. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB2 superconductor nanomaterials

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Erdem, Emre; Repp, Sergej; Weber, Stefan; Acar, Selcuk; Kokal, Ilkin; Häßler, Wolfgang

    2015-01-01

    Undoped and carbon-doped magnesium diboride (MgB 2 ) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB 2 samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp 3 -hybridized carbon radicals were detected. A strong reduction in the critical temperature T c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra

  17. Electron paramagnetic resonance and Raman spectroscopy studies on carbon-doped MgB{sub 2} superconductor nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koc University, RumelifeneriYolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej; Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, 79104 Freiburg (Germany); Acar, Selcuk; Kokal, Ilkin [Pavezyum Kimya Sanayi Dış Ticaret LTD. ŞTI., Tuzla, Istanbul (Turkey); Häßler, Wolfgang [Leibniz Institute for Solid State and Materials Research Dresden (IFW), P.O. Box 270116, 01171 Dresden (Germany)

    2015-04-21

    Undoped and carbon-doped magnesium diboride (MgB{sub 2}) samples were synthesized using two sets of mixtures prepared from the precursors, amorphous nanoboron, and as-received amorphous carbon-doped nanoboron. The microscopic defect structures of carbon-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman and electron paramagnetic resonance spectroscopy. Mg vacancies and C-related dangling-bond active centers could be distinguished, and sp{sup 3}-hybridized carbon radicals were detected. A strong reduction in the critical temperature T{sub c} was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra.

  18. Rapid Discrimination of Malignant Breast Lesions from Normal Tissues Utilizing Raman Spectroscopy System: A Systematic Review and Meta-Analysis of In Vitro Studies.

    Directory of Open Access Journals (Sweden)

    Ke Deng

    Full Text Available The aim of this study is to evaluate the diagnostic accuracy of Raman spectroscopy system in the detection of malignant breast lesions through a systemic review and meta-analysis of published studies.We conducted a comprehensive literature search of PubMed and Embase from 2000 to June 2015. Published studies that evaluated the diagnostic performance of Raman spectroscopy in distinguishing malignant breast lesions from benign lesions and normal tissues were included in our study. The pooled sensitivity, specificity, diagnostic odds ratio, and the area under the curve of summary receiver-operating characteristic curves was derived. A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies guidelines was used to assess the quality of included studies.The initial search produced a total of 157 articles after removing duplicates. Nine studies (8 in vitro and 1 in vivo were eligible in this meta-analysis. We analyzed the eight in vitro studies with 1756 lesions, the pooled sensitivity and specificity of Raman spectroscopy system for the diagnosis of malignant breast lesions were 0.92 (95% CI 0.86-0.96 and 0.97 (97% CI 0.93-0.98, respectively. Diagnostic odds ratio was 266.70 (95% CI 89.38-795.79, and the area under the curve of summary receiver-operating characteristic curves was 0.98 (95% CI 0.97-0.99. Significant heterogeneity was found between studies. There was no evidence of considerable publication bias.Raman spectroscopy system is an optical diagnostic technology with great value for detecting malignant breast lesions. At the same time, it has advantages of being non-invasive, real-time, and easy to use. Thus it deserves to be further explored for intra-operatory breast tumor margin detection.

  19. Novel Chiroptical Analysis of Hemoglobin by Surface Enhanced Resonance Raman Optical Activity Spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Brazhe, Alexey; Sosnovtseva, Olga

    2010-01-01

    The metalloprotein hemoglobin (Hb) was studied using surface enhanced resonance Raman spectroscopy (SERRS) and surface enhanced resonance Raman optical activity (SERROA). The SERROA results are analyzed and compared with the SERRS, and the later to the resonance Raman (RRS) performed on Hb...

  20. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, A.; Valentim, B.; Rodrigues, S.; Noronha, F. [Centro de Geologia e Departamento de Geociencias, Ambiente e Ordenamento do Territorio da Faculdade de Ciencias, Universidade do Porto, 4169-007-Porto (Portugal); Prieto, A.C. [Departamento de Fisica de la Materia Condensada, Cristalografia y Mineralogia Facultad de Ciencias, Universidad de Valladolid, 47011-Valladolid (Spain)

    2010-09-01

    The Raman spectra and the Raman parameters have been correlated with changes in the structure of carbon materials, and most of the studies have revealed different development of the Raman spectrum. In the present study micro-Raman spectroscopy was conducted on coal bulk samples and on individual coal macerals (collotelinite, fusinite, and macrinite) from a set of Penn State Coal Bank coals of increasing rank to study the variation of their spectral parameters with rank, and considering coal heterogeneity. The spectral parameters that better correlate with the increasing coal rank, for the coals studied are the full width at half maximum of graphitic band (G: at {proportional_to} 1580 cm{sup -} {sup 1}), the position of disordered band (D: at {proportional_to} 1350 cm{sup -} {sup 1}), and the integrated intensity ratio of the D band to G band (ID/IG). With increasing coal rank a narrower G band, a shift of D band to lower wavenumber, and an increase of integrated intensity ratio ID/IG are observed. For each coal, the Raman parameters obtained on fusinites and macrinites are similar and differ from those obtained on coal bulk samples and collotelinites. The variation of the Raman parameters with rank is very well reflected on the analyses of collotelinites. (author)

  1. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  2. Al-doped MgB{sub 2} materials studied using electron paramagnetic resonance and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bateni, Ali; Somer, Mehmet, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr [Department of Chemistry, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul (Turkey); Erdem, Emre, E-mail: emre.erdem@physchem.uni-freiburg.de, E-mail: msomer@ku.edu.tr; Repp, Sergej [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Weber, Stefan [Institut für Physikalische Chemie, Universität Freiburg, Albertstr. 21, Freiburg (Germany); Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Albertstr. 19, Freiburg (Germany)

    2016-05-16

    Undoped and aluminum (Al) doped magnesium diboride (MgB{sub 2}) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB{sub 2} samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB{sub 2}. Above a certain level of Al doping, enhanced conductive properties of MgB{sub 2} disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  3. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  4. Rapid identification of staphylococci by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Holá, V.; Ježek, Jan; Zemánek, Pavel; Sokolová, J.; Petráš, P.

    2017-01-01

    Roč. 7, NOV (2017), s. 1-8, č. článku 14846. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : coagulase-negative staphylococci * Raman spectroscopy * rapid identification Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  5. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  6. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  7. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  8. Exploring Raman spectroscopy for the evaluation of glaucomatous retinal changes

    Science.gov (United States)

    Wang, Qi; Grozdanic, Sinisa D.; Harper, Matthew M.; Hamouche, Nicolas; Kecova, Helga; Lazic, Tatjana; Yu, Chenxu

    2011-10-01

    Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical for the prevention of permanent structural damage and irreversible vision loss. Raman spectroscopy is a technique that provides rapid biochemical characterization of tissues in a nondestructive and noninvasive fashion. In this study, we explored the potential of using Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a support vector machine algorithm, and a classification model was developed to differentiate disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells (RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the multivariate discriminant model differentiated healthy samples and glaucomatous samples with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (Basset Hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (Beagles versus Basset Hounds)]. Raman spectroscopic screening can be used for in vitro detection of glaucomatous changes in retinal tissue with a high specificity.

  9. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Draga, R. O. P.; van Diest, P.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. H. L. R.

    2009-02-01

    Raman spectroscopy is an optical technique that can be used to obtain specific molecular information of biological tissues. It has been used successfully to differentiate normal and pre-malignant tissue in many organs. The goal of this study is to determine the possibility to distinguish normal tissue from bladder cancer using this system. The endoscopic Raman system consists of a 6 Fr endoscopic probe connected to a 785nm diode laser and a spectral recording system. A total of 107 tissue samples were obtained from 54 patients with known bladder cancer during transurethral tumor resection. Immediately after surgical removal the samples were placed under the Raman probe and spectra were collected and stored for further analysis. The collected spectra were analyzed using multivariate statistical methods. In total 2949 Raman spectra were recorded ex vivo from cold cup biopsy samples with 2 seconds integration time. A multivariate algorithm allowed differentiation of normal and malignant tissue with a sensitivity and specificity of 78,5% and 78,9% respectively. The results show the possibility of discerning normal from malignant bladder tissue by means of Raman spectroscopy using a small fiber based system. Despite the low number of samples the results indicate that it might be possible to use this technique to grade identified bladder wall lesions during endoscopy.

  10. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  11. Monitoring of blood oxygenation in brain by resonance Raman spectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Thomsen, Kirsten; Lønstrup, Micael

    2018-01-01

    Blood oxygenation in cerebral vessels is an essential parameter to evaluate brain function and to investigate the coupling between local blood flow and neuronal activity. We apply resonance Raman spectroscopy in vivo to study hemoglobin oxygenation in cortex vessels of anesthetized ventilated mice....... We demonstrate that the pairs of Raman peaks at 1355 and1375 cm-1(symmetric vibrations of pyrrol half-rings in the heme molecule), 1552 and 1585 cm-1and 1602 and 1638 cm-1(vibrations of methine bridges in heme molecule) are reliable markers for quantitative estimation of the relative amount...

  12. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.

    Science.gov (United States)

    Scheers, Johan; Niedzicki, Leszek; Zukowska, Grażyna Z; Johansson, Patrik; Wieczorek, Władysław; Jacobsson, Per

    2011-06-21

    Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI:acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li(+), however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.

  13. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  14. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  15. Study by micro-Raman spectroscopy of wall paints (external parts and cross-sections) from reales alcazares of Seville (Spain)

    Science.gov (United States)

    Perez-Rodriguez, José Luis; Centeno, Miguel Angel; Robador, María Dolores; Siguenza, Belinda; Durán, Adrián

    2013-04-01

    The Reales Alcazares of Sevilla was originally builded by the Arabic in the year 913. The Mudejar Palace was built by Christian King Pedro I between 1364 and 1366. At the end of XV century the Catholic Kings, Isabel and Fernando made important transformations especially in the Mudejar Palace. Recently, wall paints from Catholic Kings periods were found during works of conservations in the first floor of the Palace. The study of these paints by non-destructive techniques was considered of great interest in order to determine the technology of manufacture and the originality of the artwork. The main objective of this work was to apply the Raman spectroscopy technique on the surface of the wall and on the different layers of the cross-sections prepared in order to characterize the pigments and the plaster present in these wall paints. Little information was obtained using a portable Raman spectrometer. In this case the dispersive integrated Horiba Jobin-Yvon LabRaman HR800 system was employed. Small samples of black, red, yellow, white and green colour were taken from the artwork. The surface of the samples were directly studed by the Raman spectroscopy instrument using red (785 nm) and green (522 nm) lasers, similarly to non-invasive experimental technique. This technique showed the presence of gypsum (SO4Ca.2H2O) and calcite (CaCO3) in all the studied samples However, the pigments responsible of different colours were not detected. The surface of these wall paints was covered with gypsum and calcite due to contamination. These mineras were also characterized by XRD and SEM-EDX. The presence of these compounds and the heterogeneous surface did not permit the characterization of the pigments responsible of the colour. In order to better characterization of the pigments and plaster used the study was carried out on cross-sections. The black colour was performed using carbon black. Two different red layers were detected one constituted by cinnabar and lead carbonate and

  16. Raman spectroscopy: a structural probe of glycosaminoglycans

    International Nuclear Information System (INIS)

    Bansil, R.; Stanley, H.E.; Yannas, I.V.

    1978-01-01

    The authors report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups, glycosidic linkages, C-OH and the N-acetyl group can be identified from the Raman spectra. Certain differences in the spectra of the different glycosaminoglycans can be interpreted in terms of the geometry of the various substituents, while other differences can be related to differences in chemical composition. (Auth.)

  17. Preparation, characterization, Raman, and terahertz spectroscopy study on carbon nanotubes, graphene nano-sheets, and onion like carbon materials

    International Nuclear Information System (INIS)

    Abouelsayed, A.; Anis, Badawi; Hassaballa, Safwat; Khalil, Ahmed S.G.; Rashed, Usama M.; Eid, Kamal A.; Al-Ashkar, Emad; El hotaby, W.

    2017-01-01

    We present the optical properties of carbon nanotubes, graphene nanosheets, and onion like carbon (OLC) samples with different cages size in wide frequency range from 0.06 to 1650 THz. The samples were characterized by high resolution transmission electron microscope (HRTEM), Raman, and UV–Vis-IR-THz spectroscopy. The broad absorption bands centered at around 10, 3, 2.5, 1.5, and 1.8 THz for SWCNTs, MWCNTs, graphene nanosheets, large cages (OLC 1 ), and small cages (OLC 2 ) samples, respectively, are assigned to plasmon resonance due to the localization of free carriers in a finite length. For SWCNTs, both the plasmon band position and the Drude weight (D) are located at higher values as compared with MWCNTs, graphene nanosheets, and OLC sample, suggesting that the dimensionality of the system plays a major role regarding the carrier mobility of the graphene structure. The differences in the estimated values of D, the Fermi energy (E f ), and density of carriers (N) in case of OLC samples can be due to the variation in sizes of the cages and the variation of the defects in the structure of the outermost layers of cages, where each cages consist of multi-layers of graphene enclosed one into another. - Highlights: • Preparation and spectroscopic studies on carbonaceous materials were performed. • Drude-Lorentz model were used for fitting the optical conductivity spectra. • The plasmonic resonances have been observed in THz frequency range. • The charge density N has been effected by disordered of the grapheme structure. • The σ DC values is decreased in case of 2D carbonaceous materials.

  18. Preparation, characterization, Raman, and terahertz spectroscopy study on carbon nanotubes, graphene nano-sheets, and onion like carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Abouelsayed, A., E-mail: as.abouelsayed@gmail.com [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth St. (fromer El Tahrir St.), Dokki, P.O. 12622, Giza (Egypt); Anis, Badawi [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth St. (fromer El Tahrir St.), Dokki, P.O. 12622, Giza (Egypt); Hassaballa, Safwat [Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884 (Egypt); Khalil, Ahmed S.G. [Center for Environmental and Smart Technology, Fayoum University, Fayoum (Egypt); Egypt Nanotechnology Center, Cairo University, Giza (Egypt); Arab Academy for Science, Technology and Maritime Transport, Smart Village Campus, Giza (Egypt); Rashed, Usama M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884 (Egypt); Eid, Kamal A.; Al-Ashkar, Emad; El hotaby, W. [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth St. (fromer El Tahrir St.), Dokki, P.O. 12622, Giza (Egypt)

    2017-03-01

    We present the optical properties of carbon nanotubes, graphene nanosheets, and onion like carbon (OLC) samples with different cages size in wide frequency range from 0.06 to 1650 THz. The samples were characterized by high resolution transmission electron microscope (HRTEM), Raman, and UV–Vis-IR-THz spectroscopy. The broad absorption bands centered at around 10, 3, 2.5, 1.5, and 1.8 THz for SWCNTs, MWCNTs, graphene nanosheets, large cages (OLC{sub 1}), and small cages (OLC{sub 2}) samples, respectively, are assigned to plasmon resonance due to the localization of free carriers in a finite length. For SWCNTs, both the plasmon band position and the Drude weight (D) are located at higher values as compared with MWCNTs, graphene nanosheets, and OLC sample, suggesting that the dimensionality of the system plays a major role regarding the carrier mobility of the graphene structure. The differences in the estimated values of D, the Fermi energy (E{sub f}), and density of carriers (N) in case of OLC samples can be due to the variation in sizes of the cages and the variation of the defects in the structure of the outermost layers of cages, where each cages consist of multi-layers of graphene enclosed one into another. - Highlights: • Preparation and spectroscopic studies on carbonaceous materials were performed. • Drude-Lorentz model were used for fitting the optical conductivity spectra. • The plasmonic resonances have been observed in THz frequency range. • The charge density N has been effected by disordered of the grapheme structure. • The σ{sub DC} values is decreased in case of 2D carbonaceous materials.

  19. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    Science.gov (United States)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  20. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  1. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  2. Cyanide adsorption on gold electrodes : a combined surface enhanced Raman spectroscopy and density functional theory study

    NARCIS (Netherlands)

    Beltramo, G.L.; Shubina, T.E.; Mitchell, S.J.; Koper, M.T.M.

    2004-01-01

    A combined SERS and DFT study of cyanide adsorption on a gold electrode is presented. From our analysis, the high-frequency mode at 2100 cm-1 is ascribed to the C–N stretching frequency at (1 0 0) and (1 1 0) sites. The lower frequency modes at 370 and 300 cm-1 are ascribed to the Au–CN stretching

  3. Resonance Raman spectroscopy in one-dimensional carbon materials

    Directory of Open Access Journals (Sweden)

    Dresselhaus Mildred S.

    2006-01-01

    Full Text Available Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has become a worldwide leader, that is on the physics of quasi-one dimensional carbon nanotubes. We conclude this article by presenting results from a very recent resonance Raman study of exciting new materials, that are strictly one-dimensional carbon chains formed by the heat treatment of very pure double-wall carbon nanotube samples.

  4. Identification of Color Development Potential of Quartz by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Gomides Alkmim, D.; Soares Lameiras, F.

    2013-01-01

    Colorless quartz is usually exposed to ionizing radiation (gamma rays or high energy electron beams) in order to acquire different colors for jewelry. This is due to the presence of traces of some elements such as aluminum, iron, hydrogen, lithium, or sodium, which are responsible for the extrinsic colors developed after irradiation. Most quartz crystals are extracted colorless from nature and it is necessary to separate those that can develop colors from those that cannot. This can be done through irradiation tests, which take a long time. Other option is to collect the infrared signature of colorless quartz. However, infrared spectroscopic analysis is quite expensive, especially when using portable devices. Raman spectroscopy is now available as an inexpensive and portable technique that could provide identification of the samples of colorless quartz still in the field, facilitating the prediction for their economic exploitation. In addition, Raman spectroscopy usually requires a minimum or no sample preparation. This paper presents an investigation of the feasibility of using Raman spectroscopy as a substitute for infrared spectroscopy to predict the potential for color development of quartz. A band at 3595 cm -1 was observed, only along the c axis of a prasiolite excited by a high power 514 nm laser. This band was nor observed in quartz samples that do not develop color after irradiation, hence requiring further studies. (Author)

  5. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    Science.gov (United States)

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  6. Thermodynamical, kinetic and structural properties of simple and mixed complexes of zirconium (IV) with the hydroxyl and carbonate ions. Study by potentiometry, Raman spectroscopy and NMR spectroscopy

    International Nuclear Information System (INIS)

    Veyland, A.

    1999-01-01

    Most of zirconium production is used by the nuclear industry for the cladding of nuclear fuels and for the storage of radioactive wastes. The aim of this work is the qualitative and quantitative study of the complexes made by zirconium with the hydroxyl and carbonate ions in order to evaluate the long-term pollution risks linked with the corrosion of confinement containers. The zirconium(IV)/hydroxyl system is studied by proto-metry and follows a protocol which reduces the local over-concentrations of reagent and the precipitation of zirconium hydroxide. In potassium nitrate environment and in a pH range of 1.5 to 3.5, three soluble species are evidenced: Zr(OH) 3 + , Zr 2 (OH) 7 + and Zr(OH) 4 . Their apparent constant of formation and the solubility product of zirconium hydroxide are determined with 4 ionic forces. Using these results, the corresponding thermodynamic constants are calculated by applying the theory of specific interactions. The formation of zirconium (IV) hydroxo-carbonate complexes is evidenced by proto-metry and 17 O and 13 C NMR. The number of carbonates fixed by zirconium varies from 0 to 4. The dialysis indicates that the degree of poly-condensation of species is an inverse function of the number of complex carbonates. The Raman polarized spectra and the 13 C NMR results demonstrate for all complexes the bidentate character of the complexation mode of the carbonates. The dynamical study made by 13 C NMR of the exchange between complexed carbonates of the tetra-carbonate-zirconate ion and free carbonates in solution allows to determine the kinetic constants and the corresponding velocity law. An associative mechanism is proposed, in agreement with the results obtained by mass spectroscopy with electro-spray ionization. These new thermodynamical and kinetic data allow to model the speciation of zirconium in natural waters. (J.S.)

  7. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Malherbe, C.; Hutchinson, I. B.; Ingley, R.; Boom, A.; Carr, A. S.; Edwards, H.; Vertruyen, B.; Gilbert, B.; Eppe, G.

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested.

  8. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Jing; Lin, Juqiang; Huang, Zufang; Sun, Liqing; Shao, Yonghong; Lu, Peng; Shi, Wei; Lin, Jinyong; Chen, Rong

    2012-12-01

    The molecular characterization of ABO blood types, which is clinically significant in blood transfusion, has clinical and anthropological importance. Polymerase chain reaction sequence-based typing (PCR-SBT) is one of the most commonly used methods for the analysis of genetic bases of ABO blood types. However, such methods as PCR-SBT are time-consuming and are high in demand of equipments and manipulative skill. Here we showed that membrane electrophoresis based SERS method employed for studying the molecular bases of ABO blood types can provide rapidand easy-operation with high sensitivity and specificity. The plasma proteins were firstly purified by membrane electrophoresis and then mixed with silver nanoparticles to perform SERS detection. We use this method to classify different blood types, including blood type A (n=13), blood type B (n=9) and blood type O (n=10). Combination of principal component analysis (PCA) and liner discriminant analysis (LDA) was then performed on the SERS spectra of purified albumin, showing good classification results among different blood types. Our experimental outcomes represent a critical step towards the rapid, convenient and accurate identification of ABO blood types.

  9. Raman spectroscopy of garnet-group minerals

    Science.gov (United States)

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  10. Application of Raman Microspectroscopic and Raman imaging techniques for cell biological studies

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Bakker schut, T.C.; Bakker Schut, T.C.; Sijtsema, N.M.; Grond, M.; Grond, M.; Maraboeuf, F.; de Grauw, C.J.; de Grauw, C.J.; Figdor, Carl; Greve, Jan

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  11. Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies

    NARCIS (Netherlands)

    PUPPELS, G J; SCHUT, T C B; SIJTSEMA, N M; GROND, M; MARABOEUF, F; DEGRAUW, C G; FIGDOR, C G; GREVE, J

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  12. The molecular cues for the biological effects of ionizing radiation dose and post-irradiation time on human breast cancer SKBR3 cell line: A Raman spectroscopy study.

    Science.gov (United States)

    Jafarzadeh, Naser; Mani-Varnosfaderani, Ahmad; Gilany, Kambiz; Eynali, Samira; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2018-03-01

    Radiotherapy is one of the main modalities of cancer treatment. The utility of Raman spectroscopy (RS) for detecting the distinct radiobiological responses in human cancer cells is currently under investigation. RS holds great promises to provide good opportunities for personalizing radiotherapy treatments. Here, we report the effects of the radiation dose and post-irradiation time on the molecular changes in the human breast cancer SKBR3 cells, using RS. The SKBR3 cells were irradiated by gamma radiation with different doses of 0, 1, 2, 4, and 6 Gy. The Raman signals were acquired 24 and 48 h after the gamma radiation. The collected Raman spectra were analyzed by different statistical methods such as principal component analysis, linear discriminant analysis, and genetic algorithm. A thorough analysis of the obtained Raman signals revealed that 2 Gy of gamma radiation induces remarkable molecular and structural changes in the SKBR3 cells. We found that the wavenumbers in the range of 1000-1400 cm -1 in Raman spectra are selective for discriminating between the effects of the different doses of irradiation. The results also revealed that longer post-irradiation time leads to the relaxation of the cells to their initial state. The molecular changes that occurred in the 2Gy samples were mostly reversible. On the other hand, the exposure to doses higher than 4Gy induced serious irreversible changes, mainly seen in 2700-2800 cm -1 in Raman spectra. The classification models developed in this study would help to predict the radiation-based molecular changes induced in the cancer cells by only using RS. Also, this designed framework may facilitate the process of biodosimetry. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Breast cancer diagnosis using FT-RAMAN spectroscopy

    Science.gov (United States)

    Bitar, Renata A.; Martin, Airton A.; Criollo, Carlos J. T.; Ramalho, Leandra N. Z.

    2005-04-01

    In this study FT-RAMAN spectra of breast tissue from 35 patients were obtained and separated into nine groups for histopathologic analysis, which are as follows: normal breast tissue, fibrocystic condition, in situ ductal carcinoma, in situ ductal carcinoma with necrosis, infiltrate ductal carcinoma, infiltrate inflammatory ductal carcinoma, infiltrate medullar ductal carcinoma, infiltrate colloid ductal carcinoma, and infiltrate lobular carcinoma. Using spectrum averages taken from each group a qualitative analysis was performed to compare these molecular compositions to those known to be present in abnormal concentrations in pathological situations, e.g. the development of desmoplastic lesions with a stroma of dense collagen in tumoral breast tissues which substitute adipose stroma of non-diseased breast tissue. The band identified as amino acids, offered basis for observation in the existence of alterations in the proteins, thus proving Raman Spectroscopic capacity in identification of primary structures of proteins; secondary protein structure was also identified through the peptic links, Amide I and Amide III, which have also been identified by various authors. Alterations were also identified in the peaks and bandwidths of nucleic acids demonstrating the utilization of Raman Spectroscopy in the analysis of the cells nucleus manifestations. All studies involving Raman Spectroscopy and breast cancer have shown excellent result reliability and therefore a basis for the technical theory.

  14. The hallmarks of breast cancer by Raman spectroscopy

    Science.gov (United States)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  15. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  16. Study of the vitamins A, E and C esters penetration into the skin by confocal Raman spectroscopy in vivo

    Science.gov (United States)

    Mogilevych, Borys; Isensee, Debora; Rangel, Joao L.; Dal Pizzol, Carine; Martinello, Valeska C. A.; Dieamant, Gustavo C.; Martin, Airton A.

    2015-06-01

    Vitamins A, E and C play important role in skin homeostasis and protection. Hence, they are extensively used in many cosmetic and cosmeceutic products. However, their molecules are unstable, and do not easily penetrate into the skin, which drastically decreases its efficiency in topical formulations. Liposoluble derivative of the vitamin A - retinyl palmitate, vitamin E - tocopheryl acetate, and vitamin C - tetraisopalmitoyl ascorbic acid, are more stable, and are frequently used as an active ingredient in cosmetic products. Moreover, increased hydrophobicity of these molecules could lead to a higher skin penetration. The aim of this work is to track and compare the absorption of the liposoluble derivatives of the vitamins and their encapsulated form, into the healthy human skin in vivo. We used Confocal Raman Spectroscopy (CRS) that is proven to be helpful in label-free non-destructive investigation of the biochemical composition and molecular conformational analysis of the biological samples. The measurements were performed in the volar forearm of the 10 healthy volunteers. Skin was treated with both products, and Raman spectra were obtained after 15 min, 3 hours, and 6 hours after applying the formulation. 3510 Skin Composition Analyzer (River Diagnostics, The Netherlands) with 785 nm laser excitation was used to acquire information in the fingerprint region. Significant difference in permeation of the products was observed. Whereas only free form of retinyl palmitate penetrate the skin within first 15 minutes, all three vitamin derivatives were present under the skin surface in case of nanoparticulated form.

  17. Fourier transform Raman spectroscopy of polyacrylamide gels for radiation dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.; Murry, P.; Pope, J.; Rintoul, L.; George, G.

    1998-01-01

    Polyacrylamide (PAG) gels are used in magnetic resonance imaging radiation dosimetry. The PAG dosimeter is based on the radiation-induced co-polymerisation and cross-linking of acrylic monomers infused in a gel matrix. PAG was manufactured with a composition of 5% gelatine, 3% acrylamide and 3% N,N'methylene-bis-acrylamide by mass, with distilled water as the remaining constituent [Baldock, 1998]. FT-Raman spectroscopy studies were undertaken to investigate cross-linking changes during the co-polymerisation of PAG in the spectral range of 200 - 3500 cm -1 . Vibrational bands of 1285 cm -1 and 1256 cm -1 were assigned to the acrylamide and bis-acrylamide single CH 2 δ CH2 binding modes. These bands were found to decrease in amplitude with increasing absorbed radiation dose, as a result of co-polymerisation. Principal Component Regression was performed on FT-Raman spectra of PAG samples irradiated to 50 Gy and two components were found to be sufficient to account for 98.7% of variance in the data. Cross validation was used to establish the absorbed radiation dose of an unknown PAG sample from the FT-Raman spectra. The calculated correlation coefficient between measured and predictive samples was 0.997 with a standard error of estimate of 0.976 and a standard error of prediction of 1.140. These results demonstrate the potential of FT-Raman spectroscopy for ionising radiation dosimetry using polyacrylamide gels

  18. Kinetics of iron redox reactions in silicate liquids: A high-temperature X-ray absorption and Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V. [Physique des Mineraux et Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris cedex 05 (France); CEA VALRHO Marcoule, SCDV, LEBV, BP 17171, 30207 Bagnols/Ceze (France); Neuville, D.R. [Physique des Mineraux et Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris cedex 05 (France)]. E-mail: neuville@ipgp.jussieu.fr; Cormier, L. [IMPMC, CNRS UMR 7590, Universites Paris 6 and 7 and IPGP, 4 place Jussieu, 75252 Paris cedex 05 (France); Roux, J. [Physique des Mineraux et Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris cedex 05 (France); Hazemann, J.-L. [Laboratoire de cristallographie, UPR 5031, CNRS, 38043 Grenoble (France); Pinet, O. [CEA VALRHO Marcoule, SCDV, LEBV, BP 17171, 30207 Bagnols/Ceze (France); Richet, P. [Physique des Mineraux et Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2006-06-30

    The oxidation kinetics of a Fe-bearing supercooled liquid of the system SiO{sub 2}-CaO-MgO-Na{sub 2}O-FeO has been determined near the glass transition range by X-ray absorption near edge structure (XANES) and Raman spectroscopies. Both techniques yield room-temperature iron redox ratios in accord with wet chemical, Moessbauer and electron microprobe analyses. Similar oxidation kinetics have also been observed with both methods. At constant temperature, the kinetics obey an exponential law with a characteristic time that follows an Arrhenian temperature dependence. As redox changes are too fast to be accounted for in terms of diffusion of either ionic or molecular oxygen, these results lend further support to the idea that the rate-limiting factor for oxidation near the glass transition is diffusion of network-modifying cations along with a flux of electron holes.

  19. Micro spatial analysis of seashell surface using laser-induced breakdown spectroscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Li, Yuandong; Li, Ying [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China); Wang, Yangfan; Wang, Shi; Bao, Zhenmin [Life Science College, Ocean University of China, Qingdao 266003 (China); Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Lab, Ocean University of China, Qingdao 266100 (China)

    2015-08-01

    The seashell has been studied as a proxy for the marine researches since it is the biomineralization product recording the growth development and the ocean ecosystem evolution. In this work a hybrid of Laser Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy was introduced to the composition analysis of seashell (scallop, bivalve, Zhikong). Without any sample treatment, the compositional distribution of the shell was obtained using LIBS for the element detection and Raman for the molecule recognition respectively. The elements Ca, K, Li, Mg, Mn and Sr were recognized by LIBS; the molecule carotene and carbonate were identified with Raman. It was found that the LIBS detection result was more related to the shell growth than the detection result of Raman. The obtained result suggested the shell growth might be developing in both horizontal and vertical directions. It was indicated that the LIBS–Raman combination could be an alternative way for the shell researches. - Highlights: • A LIBS–Raman hybrid system was developed. • A seashell has been analyzed for the elementary and molecular distribution with a system. • The shell growth development was studied on the surface and in the depth.

  20. Determining Gender by Raman Spectroscopy of a Bloodstain.

    Science.gov (United States)

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; Lednev, Igor K

    2017-02-07

    The development of novel methods for forensic science is a constantly growing area of modern analytical chemistry. Raman spectroscopy is one of a few analytical techniques capable of nondestructive and nearly instantaneous analysis of a wide variety of forensic evidence, including body fluid stains, at the scene of a crime. In this proof-of-concept study, Raman microspectroscopy was utilized for gender identification based on dry bloodstains. Raman spectra were acquired in mapping mode from multiple spots on a bloodstain to account for intrinsic sample heterogeneity. The obtained Raman spectroscopic data showed highly similar spectroscopic features for female and male blood samples. Nevertheless, support vector machines (SVM) and artificial neuron network (ANN) statistical methods applied to the spectroscopic data allowed for differentiating between male and female bloodstains with high confidence. More specifically, the statistical approach based on a genetic algorithm (GA) coupled with an ANN classification showed approximately 98% gender differentiation accuracy for individual bloodstains. These results demonstrate the great potential of the developed method for forensic applications, although more work is needed for method validation. When this method is fully developed, a portable Raman instrument could be used for the infield identification of traces of body fluids and to obtain phenotypic information about the donor, including gender and race, as well as for the analysis of a variety of other types of forensic evidence.

  1. Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy

    International Nuclear Information System (INIS)

    Mi, Hongyi; Mikael, Solomon; Allen, Todd; Sridharan, Kumar; Butt, Darryl; Blanchard, James P.; Ma, Zhenqiang

    2014-01-01

    In order to observe Zircaloy-4 (Zr-4) cladding oxidation within a spent fuel canister, cladding oxidized in air at 500 °C was investigated by micro-Raman spectroscopy to measure the oxide layer thickness. Systematic Raman scans were performed to study the relationship between typical Raman spectra and various oxide layer thicknesses. The thicknesses of the oxide layers developed for various exposure times were measured by cross-sectional Scanning Electron Microscopy (SEM). The results of this work reveal that each oxide layer thickness has a corresponding typical Raman spectrum. Detailed analysis suggests that the Raman scattering peaks around wave numbers of 180 cm −1 and 630 cm −1 are the best choices for accurately determining the oxide layer thickness. After Gaussian–Lorentzian deconvolution, these two peaks can be quantitatively represented by four peaks. The intensities of the deconvoluted peaks increase consistently as the oxide layer becomes thicker and sufficiently strong signals are produced, allowing one to distinguish the bare and oxidized cladding samples, as well as samples with different oxide layer thicknesses. Hence, a process that converts sample oxide layer thickness to optical signals can be achieved

  2. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  3. Optimization of Sample Preparation processes of Bone Material for Raman Spectroscopy.

    Science.gov (United States)

    Chikhani, Madelen; Wuhrer, Richard; Green, Hayley

    2018-03-30

    Raman spectroscopy has recently been investigated for use in the calculation of postmortem interval from skeletal material. The fluorescence generated by samples, which affects the interpretation of Raman data, is a major limitation. This study compares the effectiveness of two sample preparation techniques, chemical bleaching and scraping, in the reduction of fluorescence from bone samples during testing with Raman spectroscopy. Visual assessment of Raman spectra obtained at 1064 nm excitation following the preparation protocols indicates an overall reduction in fluorescence. Results demonstrate that scraping is more effective at resolving fluorescence than chemical bleaching. The scraping of skeletonized remains prior to Raman analysis is a less destructive method and allows for the preservation of a bone sample in a state closest to its original form, which is beneficial in forensic investigations. It is recommended that bone scraping supersedes chemical bleaching as the preferred method for sample preparation prior to Raman spectroscopy. © 2018 American Academy of Forensic Sciences.

  4. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies

    Science.gov (United States)

    Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro

    2018-06-01

    The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.

  5. Raman spectroscopy and oral exfoliative cytology

    Science.gov (United States)

    Sahu, Aditi; Shah, Nupur; Mahimkar, Manoj; Garud, Mandavi; Pagare, Sandeep; Nair, Sudhir; Krishna, C. Murali

    2014-03-01

    Early detection of oral cancers can substantially improve disease-free survival rates. Ex vivo and in vivo Raman spectroscopic (RS) studies on oral cancer have demonstrated the applicability of RS in identifying not only malignant and premalignant conditions but also cancer-field-effects: the earliest events in oral carcinogenesis. RS has also been explored for cervical exfoliated cells analysis. Exfoliated cells are associated with several advantages like non-invasive sampling, higher patient compliance, transportation and analysis at a central facility: obviating need for on-site instrumentation. Thus, oral exfoliative cytology coupled with RS may serve as a useful adjunct for oral cancer screening. In this study, exfoliated cells from healthy controls with and without tobacco habits, premalignant lesions (leukoplakia and tobacco-pouch-keratosis) and their contralateral mucosa were collected using a Cytobrush. Cells were harvested by vortexing and centrifugation at 6000 rpm. The cellular yield was ascertained using Neubauer's chamber. Cell pellets were placed on a CaF2 window and Raman spectra were acquired using a Raman microprobe (40X objective) coupled HE-785 Raman spectrometer. Approximately 7 spectra were recorded from each pellet, following which pellet was smeared onto a glass slide, fixed in 95% ethanol and subjected to Pap staining for cytological diagnosis (gold standard). Preliminary PC-LDA followed by leave-one-out cross validation indicate delineation of cells from healthy and all pathological conditions. A tendency of classification was also seen between cells from contralateral, healthy tobacco and site of premalignant lesions. These results will be validated by cytological findings, which will serve as the basis for building standard models of each condition.

  6. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  7. From Femtosecond Dynamics to Breast Cancer Diagnosis by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Abramczyk, H.; Placek, I.; Brozek-Pluska, B.; Kurczewski, K.; Morawiec, Z.; Tazbir, M.

    2007-01-01

    This paper presents new results based on Raman spectroscopy and demonstrates its utilisation as a diagnostic and development tool with the key advantage in breast cancer research. Applications of Raman spectroscopy in cancer research are in the early stages of development. However, research presented here as well as performed in a few other laboratories demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The main goals of bio-Raman spectroscopy at this stage are threefold. Firstly, the aim is to develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimize the technique as a diagnostic tool for the non-invasive real time medical applications. Thirdly, the aim is to formulate some hypothesis based on Raman spectroscopy on the molecular mechanism which drives the transformation of normal human cells into highly malignant derivatives. To the best of our knowledge, this is the most statistically reliable report on Raman spectroscopy-based diagnosis of breast cancers among the world women population

  8. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  9. In-situ Raman spectroscopy. A method to study and control the growth of microcrystalline silicon for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, Stefan

    2012-08-22

    This work deals with the design and application of a novel experiment, which enables in-situ Raman measurements during the parallel plate plasma enhanced chemical vapor deposition (PECVD) of {mu}cSi:H. Measurements of the crystalline volume fraction (I{sub C}{sup RS}) and the temperature of a growing film are carried out using the novel setup. To enable in-situ Raman measurement of central regions of the coated substrate in a PECVD system, optical access under normal incidence is necessary. An experimental setup in which an optical feed-through was integrated into a PECVD electrode was developed. This setup introduces a disturbance to the electrical field which sustains the plasma. By designing metallic shields the impact of the feed through was reduced considerably at low optical losses. The homogeneity of films deposited with the novel setup in different growth regimes was studied. A correlation between the magnitude of the inhomogeneity caused by the feed-through and the characteristics of the deposition regimes is found. Raman spectroscopy demands the illumination of a sample with a laser and the collection of the scattered radiation. Due to absorption of the laser light the temperature of the illuminated film is increased. Since the temperature determines the properties of a growing film the laser-induced temperature increase was studied. By pulsing the laser radiation of minimal temperature increase at maximal signal intensity was obtained. The crystalline volume fraction of a growing {mu}cSi:H layer was determined in-situ with the novel setup. A minimal temporal resolution of less than 17.5 s at sufficient signal-to-noise-ratio was achieved, which corresponds to less than 9 nm of deposited material during one measurement interval at the industrial standard growth rate of 0.5 nm/s. The obtained results were compared to depth resolved measurements which were carried out after the deposition. An excellent agreement between both methods validates the reliability

  10. Investigation of biomineralization by Raman spectroscopy

    Science.gov (United States)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  11. Application of Raman spectroscopy to forensic fibre cases.

    Science.gov (United States)

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  12. The effect of two bleaching agents on the phosphate concentration of the enamel evaluated by Raman spectroscopy: An ex vivo study

    Directory of Open Access Journals (Sweden)

    Sokkalingam Mothilal Venkatesan

    2012-01-01

    Full Text Available Aim : The aim of this ex vivo study was to evaluate the effect of in-office bleaching agents,-35% and 38% hydrogen peroxide containing bleaching agents, on the phosphate concentration of the enamel evaluated by Raman spectroscopy. Materials and Methods : Forty noncarious, craze-free human maxillary incisors, extracted for periodontal reasons, were used in this study. Baseline Raman spectra from each specimen were obtained before the application of the bleaching agent to assess the phosphate content present in the teeth. The teeth were divided into two groups: Group A - bleached with pola office bleach (35% hydrogen peroxide, potassium nitrate (light activated. Group B - bleached with opalescence Xtra bleach (38% hydrogen peroxide potassium nitrate and fluoride (chemical activated. After the bleaching procedure, the treated specimens were taken to obtain Raman spectra to assess the phosphate loss after bleaching treatment. Results : The results showed that the chemically activated bleaching agent showed less phosphate loss when compared with the light activated bleaching agent. Conclusion : Within the limitations of this study, it can be concluded that the chemically activated bleaching agent showed minimal phosphate loss when compared to light activated bleaching agent. The chemically activated bleaching agent was better than the light activated bleaching agent when values were evaluated statistically.

  13. Rationale for single molecule detection by means of Raman spectroscopy

    International Nuclear Information System (INIS)

    Gaponenko, S.V.; Guzatov, D.V.

    2009-01-01

    A consistent quantum electrodynamical description is proposed of Raman scattering of light by a molecule in a medium with a modified photon density of states. Enhanced local density of states near a metal nanobody is shown to increase a scattering rate by several orders of magnitude, thus providing a rationale for experimental detection of single molecules by means of Raman spectroscopy. For an ellipsoidal particle 10 14 -fold enhancement of the Raman scattering cross-section is obtained. (authors)

  14. Test report for remote vs. contact Raman spectroscopy

    International Nuclear Information System (INIS)

    Kyle, K.R.

    1994-05-01

    This report details the evaluation of two methods of spatially characterizing the chemical composition of tank core samples using Raman spectroscopy. One method involves a spatially-scanned fiber optic probe. The fiber optic probe must be in contact with a sample to interrogate its chemical composition. The second method utilizes a line-of-sight technique involving a remote imaging spectrometer that can perform characterization over an entire surface. Measurements using the imaging technique are done remotely, requiring no contact with the sample surface. The scope of this document studies the effects of laser power, distance from each type of probe to the sample surface, and interferences unique to the two methods. This report also documents the results of comparative studies of sensitivity to ferrocyanide, a key contaminant of concern in the underground storage tanks at DOE's Hanford site. The effect of other factors on signal intensity such as moisture content is explored. The results from the two methods are compared, and a recommendation for a Raman hot cell core scanning system is presented based on the test results. This work is part of a joint effort involving several DOE laboratories for the design and development of Raman spectroscopy systems for tank waste characterization at Westinghouse Hanford Company under the auspices of the U.S. Department of Energy's Underground Storage Tank Integrated Demonstration

  15. Analysis of tooth tissues using Raman spectroscopy

    International Nuclear Information System (INIS)

    Timchenko, E.V.; Timchenko, P.E.; Kulabukhova, A.Yu.; Volova, L.T.; Rosenbaum, A.Yu.

    2016-01-01

    The results of experimental studies of healthy tooth tissue and tooth tissues during caries disease are presented. Features of Raman spectrum of tooth tissues during caries disease are obtained: the main changes are detected at wavenumbers 956 cm -1 .1069 cm -1 . corresponding to phosphates. and 1241 cm -1 . 1660 cm -1 . corresponding to collagen III and collagen I. respectively. Were introduced criteria allowing to detect caries and to identify weakening of tooth tissues. preceding the caries. The reliability of research results is confirmed by scanning electron microscopy. (paper)

  16. Contributions of Raman spectroscopy to the understanding of bone strength.

    Science.gov (United States)

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  17. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  18. Identification of bacteria in drinking water with Raman spectroscopy

    NARCIS (Netherlands)

    van de Vossenberg, J.; Tervahauta, H.; Maquelin, K.; Blokker-Koopmans, C.H.W.; Uytewaal-Aaarts, M.; Kooij, D.; van Wezel, A.P.; van der Gaag, B.

    2013-01-01

    Raman spectroscopy was used to discriminate between Legionella strains and between E. coli and coliform strains. The relationship between triplicate Raman spectra derived from Legionella bacteria was compared with that derived from a blind set of samples and amplified fragment length polymorphism

  19. Surface-Enhanced Raman Spectroscopy for Heterogeneous Catalysis Research

    NARCIS (Netherlands)

    Harvey, C.E.

    2013-01-01

    Raman spectroscopy is valuable characterization technique for the chemical analysis of heterogeneous catalysts, both under ex-situ and in-situ conditions. The potential for Raman to shine light on the chemical bonds present in a sample makes the method highly desirable for detailed catalyst

  20. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  1. A Raman Study of Titanate Nanotubes | Liu | South African Journal ...

    African Journals Online (AJOL)

    The effect of the addition of NaOH or KOH on commercial Degussa Titania P25 was investigated using TEM, Raman and in situ Raman spectroscopy. Treatment of titania with conc. NaOH generated a tubular material corresponding to a sodium titanate. An in situ Raman study on the sodium titanate nanotubes as a function ...

  2. Raman Spectroscopy with simple optic components; Espectrometria Raman con componentes opticos simples

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Mario; Cunya, Eduardo; Olivera, Paula [Direccion de Investigacion y Desarrollo, Instituto Peruano de Energia Nuclear, Lima (Peru)

    2014-07-01

    Raman Spectroscopy is .a high resolution photonics technique that provides chemical and structural information of almost any material, organic or inorganic compound. In this report we describe the implementation of a system based on the principle of Raman scattering, developed to analyze solid samples. The spectrometer integrates an optical bench coupled to an optical fiber and a green laser source of 532 nm. The spectrometer was tested obtaining the Naphthalene and the Yellow 74 Pigment Raman patterns. (authors).

  3. Two-dimensional electronic femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Ogilvie J.P.

    2013-03-01

    Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.

  4. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    Science.gov (United States)

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  5. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  6. Piperidine adsorption on two different silver electrodes: A combined surface enhanced Raman spectroscopy and density functional theory study

    International Nuclear Information System (INIS)

    Hao Yanling; Fang Yan

    2007-01-01

    The surface enhanced Raman scattering (SERS) spectra of piperidine in silver colloid solution, on roughened silver electrode and on roughened silver electrode modified with silver nanoparticles were studied, and the high-quality SERS spectra of piperidine on roughened silver electrode modified with silver nanoparticles were obtained for the first time. Surface selection rules derived from the EM enhancement model were employed to deduce piperidine orientations on the different surfaces. On the basis of this, two models of piperidine adsorbed on the surface of the silver nanoparticles were built, and DFT-B3PW91/LanL2dz was applied to calculate the Raman frequencies. It proves that, at higher potential values, the piperidine is perpendicularly standing on the roughened silver electrode surface though its lone-electron pair, but in silver colloid solution and on the silver nanoparticles modified silver electrode the piperidine molecular lies flat on the silver surface. In the meantime, the potential dependent SERS of piperidine on the modified electrode were studied

  7. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    Science.gov (United States)

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  8. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  9. CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin

    NARCIS (Netherlands)

    Brandt, N.N.; Chikishev, A.Yu.; Chikishev, A.Y.; Greve, Jan; Koroteev, N.I.; Otto, Cornelis; Sakodinskaya, I.K.; Sakodynskaya, I.K.

    2000-01-01

    We report on the comparative analysis of the conformation-sensitive bands of free enzyme (chymotrypsin), liganded enzyme (chymotrypsin anthranilate) and enzyme complex with 18-crown-6. The studies were carried out by Raman scattering spectroscopy and polarization-sensitive coherent anti-Stokes Raman

  10. Emulsion (Co)polymerization of styrene and butyl acrylate monitored by On-line Raman Spectroscopy

    NARCIS (Netherlands)

    van den Brink, H.J.T.; Pepers, M.L.H.; Herk, van A.M.; German, A.L.

    2000-01-01

    The homo- and copolymerizations of styrene and n-butyl acrylate were studied by on-line in-situ Raman spectroscopy.Results from the solution (homo)polymerizations proved to be very useful in the quantification of the Raman data from the emulsion homopolymerization. From the homopolymerization data

  11. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Science.gov (United States)

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  12. Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy

    International Nuclear Information System (INIS)

    Cazzanelli, E; Kuzmin, A; Mariotto, G; Mironova-Ulmane, N

    2003-01-01

    The Raman scattering by phonons and magnons was studied for the first time in the polycrystalline solid solutions Ni c Mg 1-c O. The experimental Raman spectrum for c = 0.9 is similar to that of NiO and consists of six well resolved bands, whose origins are the disorder-induced one-phonon scattering (bands at 400 and 500 cm -1 ), two-phonon scattering (bands at 750, 900, and 1100 cm -1 ), and two-magnon scattering (the broad band at ∼ 1400 cm -1 ). We found that the dependence of the two-magnon band in solid solutions on the composition and temperature is consistent with their magnetic phase diagram. We also observed that the relative contribution of two-phonon scattering decreases strongly upon dilution with magnesium ions and disappears completely at c < 0.5. Such behaviour is explained in terms of a disorder-induced effect, which increases the probability of the one-phonon scattering processes

  13. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  14. On the Contribution of Raman Spectroscopy to Forensic Science

    Science.gov (United States)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  15. Raman spectroscopy study of the tetragonal-to-monoclinic transition in zirconium oxide scales and determination of overall oxygen diffusion by nuclear microanalysis of O18

    International Nuclear Information System (INIS)

    Godlewski, J.; Lambertin, M.; Gros, J.P.; Wadier, J.F.; Weidinger, H.

    1991-01-01

    This paper reports on two allotropic forms of zirconium oxide, monoclinic and tetragonal that have been identified in the scales formed on zirconium alloys. The transition from tetragonal to monoclinic has been followed by Z-ray measurements and Raman laser spectroscopy. Information on the average content of the tetragonal phase was obtained by X-ray diffraction, whereas Raman laser analyses on tapered sections revealed its distribution through the scale thickness. Oxidation exposures were made in an autoclave, using H 2 O 18 and D 2 O 18 to determine the overall diffusion coefficients. In particular, oxide scales have been studied on Zircaloy-4 with three different precipitate sizes, and on a Zr-1Nb alloy, after exposure in an autoclave for between 3 and 100 days. The specimens were analyzed in detail in the vicinity of the kinetics transition point, where the acceleration of corrosion occurs. Raman spectroscopy analyses enabled the crystallographic nature of the ZrO 2 to be determined. Close to the interface, the tetragonal phase content is about 40%, when after the transition the tetragonal phase is transformed into monoclinic. The O 18 diffusion treatment was carried out in an autoclave at 400 degrees C under pressure on specimens previously oxidized for between 3 and 100 days in natural water vapor pressure. The diffusion profiles were determined by nuclear microanalysis using the O 18 (p, α) → N 15 reaction. Based on these profiles, the volume and grain boundary diffusion coefficients were calculated for each material and for each oxidation time

  16. Polarization Raman spectroscopy of GaN nanorod bundles

    International Nuclear Information System (INIS)

    Tite, T.; Lee, C. J.; Chang, Y.-M.

    2010-01-01

    We performed polarization Raman spectroscopy on single wurtzite GaN nanorod bundles grown by plasma-assisted molecular beam epitaxy. The obtained Raman spectra were compared with those of GaN epilayer. The spectral difference between the GaN nanorod bundles and epilayer reveals the relaxation of Raman selection rules in these GaN nanorod bundles. The deviation of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules is attributed to both the orientation of the crystal axis with respect to the polarization vectors of incident and scattered light and the structural defects in the merging boundary of GaN nanorods. The presence of high defect density induced by local strain at the merging boundary was further confirmed by transmission electron microscopy. The averaged defect interspacing was estimated to be around 3 nm based on the spatial correlation model.

  17. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  18. The Clinical Application of Raman Spectroscopy for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)

    Pin Gao

    2017-01-01

    Full Text Available Raman spectroscopy has been widely used as an important clinical tool for real-time in vivo cancer diagnosis. Raman information can be obtained from whole organisms and tissues, at the cellular level and at the biomolecular level. The aim of this paper is to review the newest developments of Raman spectroscopy in the field of breast cancer diagnosis and treatment. Raman spectroscopy can distinguish malignant tissues from noncancerous/normal tissues and can assess tumor margins or sentinel lymph nodes during an operation. At the cellular level, Raman spectra can be used to monitor the intracellular processes occurring in blood circulation. At the biomolecular level, surface-enhanced Raman spectroscopy techniques may help detect the biomarker on the tumor surface as well as evaluate the efficacy of anticancer drugs. Furthermore, Raman images reveal an inhomogeneous distribution of different compounds, especially proteins, lipids, microcalcifications, and their metabolic products, in cancerous breast tissues. Information about these compounds may further our understanding of the mechanisms of breast cancer.

  19. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  20. Optical characterization of semiconductors infrared, Raman, and photoluminescence spectroscopy

    CERN Document Server

    Perkowitz, Sidney

    1993-01-01

    This is the first book to explain, illustrate, and compare the most widely used methods in optics: photoluminescence, infrared spectroscopy, and Raman scattering. Written with non-experts in mind, the book develops the background needed to understand the why and how of each technique, but does not require special knowledge of semiconductors or optics. Each method is illustrated with numerous case studies. Practical information drawn from the authors experience is given to help establish optical facilities, including commercial sources for equipment, and experimental details. For industrial sci

  1. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    Science.gov (United States)

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance

  2. Investigation of Ferroelectric Domain Walls by Raman Spectroscopy

    Science.gov (United States)

    Stone, Gregory A.

    Ferroelectric materials are characterized by an intrinsic spontaneous electric dipole moment that can be manipulated by the application of an electric field. Regions inside the crystal, known as domains, can have the spontaneous dipole moments oriented in a different direction than the surrounding crystal. Due to favorable piezoelectric, pyroelectric, electro-optic, and nonlinear optical properties, ferroelectric materials are attractive for commercial applications. Many devices, such as nonlinear frequency converters, require precisely engineered domain patterns. The properties of domains and their boundaries, known as domain walls, are vital to the performance and limitations of these devices. As a result, ferroelectric domains and the domain walls have been the focus of many scientific studies. Despite all this work, questions remain regarding their properties. This work is aimed at developing a better understanding of the properties of the domain wall using confocal Raman spectroscopy. Raman spectra taken from domain walls in Lithium Niobate and Lithium Tantalate reveal two distinct changes in the Raman spectra: (1) Shifts in frequency of the bulk Raman modes, which persists over a range of 0.2-0.5 mu m from the domain wall. The absence of this effect in defect free stoichiometric Lithium Tantalate indicates that the shifts are related to defects inside the crystal. (2) The presence of Raman modes corresponding to phonons propagating orthogonal to the laser beam axis, which are not collected in the bulk crystal. The phonons also preferential propagate normal to the domain wall. These modes are detected up to 0.35 mum from the domain wall. The observation and separation of these effects was made possible by the optimized spatial resolution (0.23 mum) of a home-built scanning confocal microscope and the fact that degeneracy of the transverse and longitudinal phonon polarization is lifted by polar phonons in Lithium Niobate and Lithium Tantalate. Raman

  3. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  4. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    Science.gov (United States)

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  5. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  6. Minerals from Macedonia. XII. The dependence of quartz and opal color on trace element composition - AAS, FT IR and micro-Raman spectroscopy study

    International Nuclear Information System (INIS)

    Makreski, Petre; Jovanovski, Gligor; Stafilov, Trajce; Boev, Blazho

    2004-01-01

    The dependence of the color of quartz and opal natural minerals, collected from different localities in the Republic of Macedonia (Alinci, Belutche, Budinarci, Mariovo, Sasa, Sazhdevo, Chanishte, Cheshinovo, Zletovo) on their element composition is studied using Fourier transform infrared spectroscopy (FT IR), micro-Raman spectroscopy and atomic absorption spectrometry (AAS). In order to determine the content of different trace elements (Al, Cd, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn), 15 quartz and 2 opal mineral samples, using flame atomic absorption spectrometry (FAAS) and Zeeman electrothermal atomic absorption spectrometry (ETAAS) are studied. To avoid matrix interferences, the method for elimination of silicium is proposed. Optimal instrumental parameters for ETAAS determination (temperature and time for drying, pyrolysis and atomizing) are established by extensive testing for each investigated element. It is found that the milky white color of quartz minerals is due to the presence of traces of Ca, the appearance of black color is the result of the existence of Pb, Mn and Al impurities, and the occurrence of Fe and Cr introduce appearance of red and green color, respectively. Preliminary identification of the minerals is based on the comparison of our results, obtained by using the infrared and Raman vibrational spectroscopy, with the corresponding literature data for the analogous mineral species originating all over the world. An overview of the basic morphological and physico-chemical characteristics of the quartz and opal minerals and the geology of the localities is given. The colored pictures of the studied quartz and opal minerals are presented as well. (Author)

  7. Mode-dependent dispersion in Raman line shapes: Observation and implications from ultrafast Raman loss spectroscopy

    International Nuclear Information System (INIS)

    Umapathy, S.; Mallick, B.; Lakshmanna, A.

    2010-01-01

    Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse and a femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS.

  8. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies.

    Science.gov (United States)

    Birech, Zephania; Mwangi, Peter Waweru; Bukachi, Fredrick; Mandela, Keith Makori

    2017-01-01

    Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.)Chiov. Sprague Dawley (SD) rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1), leucine (1106, 1248, 1302, 1395 cm-1) and isolecucine (1108, 1248, 1437 and 1585 cm-1) were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.)Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1), leucine (1395 cm-1) and isoleucine (1437 cm-1) in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds) diabetes and pre-diabetes screening in blood (human or rat's) with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing comparative

  9. Application of Raman spectroscopy in type 2 diabetes screening in blood using leucine and isoleucine amino-acids as biomarkers and in comparative anti-diabetic drugs efficacy studies.

    Directory of Open Access Journals (Sweden)

    Zephania Birech

    Full Text Available Diabetes is an irreversible condition characterized by elevated blood glucose levels. Currently, there are no predictive biomarkers for this disease and the existing ones such as hemoglobin A1c and fasting blood glucose are used only when diabetes symptoms are noticed. The objective of this work was first to explore the potential of leucine and isoleucine amino acids as diabetes type 2 biomarkers using their Raman spectroscopic signatures. Secondly, we wanted to explore whether Raman spectroscopy can be applied in comparative efficacy studies between commercially available anti-diabetic drug pioglitazone and the locally used anti-diabetic herbal extract Momordica spinosa (Gilg.Chiov. Sprague Dawley (SD rat's blood was used and were pipetted onto Raman substrates prepared from conductive silver paste smeared glass slides. Prominent Raman bands associated with glucose (926, 1302, 1125 cm-1, leucine (1106, 1248, 1302, 1395 cm-1 and isolecucine (1108, 1248, 1437 and 1585 cm-1 were observed. The Raman bands centered at 1125 cm-1, 1395 cm-1 and 1437 cm-1 associated respectively to glucose, leucine and isoleucine were chosen as biomarker Raman peaks for diabetes type 2. These Raman bands displayed decreased intensities in blood from diabetic SD rats administered antidiabetic drugs pioglitazone and herbal extract Momordica spinosa (Gilg.Chiov. The intensity decrease indicated reduced concentration levels of the respective biomarker molecules: glucose (1125 cm-1, leucine (1395 cm-1 and isoleucine (1437 cm-1 in blood. The results displayed the power and potential of Raman spectroscopy in rapid (10 seconds diabetes and pre-diabetes screening in blood (human or rat's with not only glucose acting as a biomarker but also leucine and isoleucine amino-acids where intensities of respectively assigned bands act as references. It also showed that using Raman spectroscopic signatures of the chosen biomarkers, the method can be an alternative for performing

  10. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  11. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  12. Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.

    Science.gov (United States)

    Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V

    2016-04-01

    The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  14. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-03-15

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  15. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    Science.gov (United States)

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    The successful development of a noninvasive blood glucose sensor that can operate reliably over sustained periods of time has been a much sought after but elusive goal in diabetes management. Since diabetes has no well-established cure, control of elevated glucose levels is critical for avoiding severe secondary health complications in multiple organs including the retina, kidney and vasculature. While fingerstick testing continues to be the mainstay of blood glucose detection, advances in electrochemical sensing-based minimally invasive approaches have opened the door for alternate methods that would considerably improve the quality of life for people with diabetes. In the quest for better sensing approaches, optical technologies have surfaced as attractive candidates as researchers have sought to exploit the endogenous contrast of glucose, notably its absorption, scattering, and polarization properties. Vibrational spectroscopy, especially spontaneous Raman scattering, has exhibited substantial promise due to its exquisite molecular specificity and minimal interference of water in the spectral profiles acquired from the blood-tissue matrix. Yet, it has hitherto been challenging to leverage the Raman scattering signatures of glucose for prediction in all but the most basic studies and under the least demanding conditions. In this Account, we discuss the newly developed array of methodologies that address the key challenges in measuring blood glucose accurately using Raman spectroscopy and unlock new prospects for translation to sustained noninvasive measurements in people with diabetes. Owing to the weak intensity of spontaneous Raman scattering, recent research has focused on enhancement of signals from the blood constituents by designing novel excitation-collection geometries and tissue modulation methods while our attempts have led to the incorporation of nonimaging optical elements. Additionally, invoking mass transfer modeling into chemometric algorithms has

  16. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    Science.gov (United States)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  17. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    Science.gov (United States)

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of thyroid tissue by Raman spectroscopy

    Science.gov (United States)

    Teixeira, C. S. B.; Bitar, R. A.; Santos, A. B. O.; Kulcsar, M. A. V.; Friguglietti, C. U. M.; Martinho, H. S.; da Costa, R. B.; Martin, A. A.

    2010-02-01

    Thyroid gland is a small gland in the neck consisting of two lobes connected by an isthmus. Thyroid's main function is to produce the hormones thyroxine (T4), triiodothyronine (T3) and calcitonin. Thyroid disorders can disturb the production of these hormones, which will affect numerous processes within the body such as: regulating metabolism and increasing utilization of cholesterol, fats, proteins, and carbohydrates. The gland itself can also be injured; for example, neoplasias, which have been considered the most important, causing damage of to the gland and are difficult to diagnose. There are several types of thyroid cancer: Papillary, Follicular, Medullary, and Anaplastic. The occurrence rate, in general is between 4 and 7%; which is on the increase (30%), probably due to new technology that is able to find small thyroid cancers that may not have been found previously. The most common method used for thyroid diagnoses are: anamnesis, ultrasonography, and laboratory exams (Fine Needle Aspiration Biopsy- FNAB). However, the sensitivity of those test are rather poor, with a high rate of false-negative results, therefore there is an urgent need to develop new diagnostic techniques. Raman spectroscopy has been presented as a valuable tool for cancer diagnosis in many different tissues. In this work, 27 fragments of the thyroid were collected from 18 patients, comprising the following histologic groups: goitre adjacent tissue, goitre nodular tissue, follicular adenoma, follicular carcinoma, and papillary carcinoma. Spectral collection was done with a commercial FTRaman Spectrometer (Bruker RFS100/S) using a 1064 nm laser excitation and Ge detector. Principal Component Analysis, Cluster Analysis, and Linear Discriminant Analysis with cross-validation were applied as spectral classification algorithm. Comparing the goitre adjacent tissue with the goitre nodular region, an index of 58.3% of correct classification was obtained. Between goitre (nodular region and

  19. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  20. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Science.gov (United States)

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  1. Laser Raman and resonance Raman spectroscopies of natural semiconductor mineral cinnabar, α-HgS, from various mines

    International Nuclear Information System (INIS)

    Gotoshia, Sergo V; Gotoshia, Lamara V

    2008-01-01

    Natural minerals α-HgS from various mines have been studied by laser Raman spectroscopy and resonance Raman spectroscopy. The crystals differ from each other in the content of selenium impurity, included in samples from some mines. Based on the Raman spectra and the factor-group analysis the classification of the first order phonons and then the comparison of the results with the results from other works were carried out. The Raman spectra analysis of minerals from various mines show the selenium impurity gap vibration at 203 cm -1 and 226 cm -1 frequencies, respectively. On the basis of statistical measurements of the Raman spectra one can conclude that impurity frequencies of α-HgS may be generally used for the identification of the mine. Resonance Raman scattering for pure minerals has been studied by a dye laser. Phonon resonance in the indirect semiconductor α-HgS is found to be far more intense than the indirect resonance detected until now in various semiconductors in the proximity of the first indirect band E g , for instance, in GaP. In our opinion, this may be conditioned by cinnabar band structure peculiarities. Low resonance has also been fixed in 'dirty' minerals at the spectral band frequency of 203 cm -1 characterizing gap vibration of isomorphic impurity Se in cinnabar

  2. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  3. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C-H...O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Czech Academy of Sciences Publication Activity Database

    Sato, H.; Dybal, Jiří; Murakami, R.; Noda, I.; Ozaki, Y.

    744-747, - (2005), s. 35-46 ISSN 0022-2860 R&D Projects: GA AV ČR IAA4050208 Keywords : infrared and Raman spectroscopy * quantum chemical calculation * C-H...O hydrogen bonding Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.440, year: 2005

  4. Optical trapping and Raman spectroscopy of solid particles.

    Science.gov (United States)

    Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-06-21

    The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.

  5. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    OpenAIRE

    Mlyn?rikov?, Katar?na; Samek, Ota; Bernatov?, Silvie; R??i?ka, Filip; Je?ek, Jan; H?ronikov?, Andrea; ?iler, Martin; Zem?nek, Pavel; Hol?, Veronika

    2015-01-01

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organis...

  6. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A. [Institut de Ciencia dels Materials, Universitat de Valencia, Paterna (Spain); Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H. [European Synchrotron Radiation Facility, Experiments Division, Grenoble (France); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2013-10-15

    The radial alloy distribution of In{sub x} Ga{sub 1-x}N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Radial composition of single InGaN nanowires: a combined study by EDX, Raman spectroscopy, and X-ray diffraction

    International Nuclear Information System (INIS)

    Gomez-Gomez, M.; Garro, N.; Cantarero, A.; Segura-Ruiz, J.; Martinez-Criado, G.; Chu, M.H.; Denker, C.; Malindretos, J.; Rizzi, A.

    2013-01-01

    The radial alloy distribution of In x Ga 1-x N nanowires grown by plasma-assisted molecular beam epitaxy has been investigated by three different techniques with nanometric spatial resolution and capability to study single nanowires. Energy-dispersive X-ray spectroscopy radial line-scans revealed a gradient in the alloy composition of individual nanowires. Resonant Raman scattering and spatially resolved X-ray diffraction showed the existence of three distinctive regions with different alloy composition. The combination of the three techniques provides robust evidence of the spontaneous formation of a core-shell structure with a thin Ga-richer shell wrapping an In-rich core at the bottom part of the nanowires. This composition-modulated nanostructure offers an attractive way to explore new device concepts in fully epitaxial nanowire-based solar cells. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Surface enhanced raman spectroscopy analytical, biophysical and life science applications

    CERN Document Server

    Schlücker, Sebastian

    2013-01-01

    Covering everything from the basic theoretical and practical knowledge to new exciting developments in the field with a focus on analytical and life science applications, this monograph shows how to apply surface-enhanced Raman scattering (SERS) for solving real world problems. From the contents: * Theory and practice of SERS * Analytical applications * SERS combined with other analytical techniques * Biophysical applications * Life science applications including various microscopies Aimed at analytical, surface and medicinal chemists, spectroscopists, biophysicists and materials scientists. Includes a Foreword by the renowned Raman spectroscopist Professor Wolfgang Kiefer, the former Editor-in-Chief of the Journal of Raman Spectroscopy.

  9. Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Elamin E. Ibrahim

    2012-01-01

    Full Text Available Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite.

  10. The substrate matters in the Raman spectroscopy analysis of cells

    Science.gov (United States)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  11. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder.

    Science.gov (United States)

    Walker, Greg; Römann, Philipp; Poller, Bettina; Löbmann, Korbinian; Grohganz, Holger; Rooney, Jeremy S; Huff, Gregory S; Smith, Geoffrey P S; Rades, Thomas; Gordon, Keith C; Strachan, Clare J; Fraser-Miller, Sara J

    2017-12-04

    This study uses a multimodal analytical approach to evaluate the rates of (co)amorphization of milled drug and excipient and the effectiveness of different analytical methods in detecting these changes. Indomethacin and tryptophan were the model substances, and the analytical methods included low-frequency Raman spectroscopy (785 nm excitation and capable of measuring both low- (10 to 250 cm -1 ) and midfrequency (450 to 1800 cm -1 ) regimes, and a 830 nm system (5 to 250 cm -1 )), conventional (200-3000 cm -1 ) Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRPD). The kinetics of amorphization were found to be faster for the mixture, and indeed, for indomethacin, only partial amorphization occurred (after 360 min of milling). Each technique was capable of identifying the transformations, but some, such as low-frequency Raman spectroscopy and XRPD, provided less ambiguous signatures than the midvibrational frequency techniques (conventional Raman and FTIR). The low-frequency Raman spectra showed intense phonon mode bands for the crystalline and cocrystalline samples that could be used as a sensitive probe of order. Multivariate analysis has been used to further interpret the spectral changes. Overall, this study demonstrates the potential of low-frequency Raman spectroscopy, which has several practical advantages over XRPD, for probing (dis-)order during pharmaceutical processing, showcasing its potential for future development, and implementation as an in-line process monitoring method.

  12. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    Science.gov (United States)

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.

  13. Intermolecular interaction of photoexcited Cu(/TMpy-P4) with water studied by transient resonance Raman and picosecond absorption spectroscopies

    NARCIS (Netherlands)

    Kruglik, S.; Kruglik, Sergei G.; Ermolenkov, Vladimir V.; Shvedko, Alexander G.; Orlovich, Valentine A.; Galievsky, Victor A.; Chirvony, Vladimir S.; Otto, Cornelis; Turpin, Pierre-Yves

    1997-01-01

    photoinduced complex between Cu(TMpy-P4) and water molecules, reversibly axially coordinated to the central metal, was observed in picosecond transient absorption and nanosecond resonance Raman experiments. This complex is rapidly created (τ1 = 15 ± 5 ps) in the excited triplet (π, π*) state of

  14. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    field tries to drive the electron with its frequency. If the applied field is of the form E = E0eiωt , the driving ..... (CARS),8 coherent Stokes Raman scattering (CSRS), ... gain or loss process in which only two beams are required and it is a self ...

  15. Infrared and Raman Spectroscopy Principles and Spectral Interpretation

    CERN Document Server

    Larkin, Peter

    2011-01-01

    Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation

  16. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  17. Study on mineral components of rat calvaria by means of X-ray powder diffraction analysis and Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Norihiro [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    The present study was designed to examine the occurrence of the precursor minerals of hydroxyapatite (HA) during the process of HA formation in the rat calvaria. Dried and powdered rat calvaria and synthetic samples, such as HA, dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), ({beta}-calcium pyrophosphate) and ({beta}-tricalcium phosphate), were used. Determinations were carried out by X-ray powder diffraction and Raman microprobe spectrometry. In general, significant widening of the diffraction peaks was shown to occur after the plasma ashing was performed for the X-ray diffraction. As a result, two adjacent peaks seen normally in the diffraction angles (2 {theta}) 30-35 deg, which is a characteristic feature of HA, were found to fuse with each other, forming a widened single peak. Also, there was a tendency for the intensity of the diffraction peaks to increase with age. With regard to the effect of plasma ashing on the crystallograms of synthetic specimens, all specimens manifested sharp peak patterns except DCPD and OCP. In contrast, a widening of diffraction peaks was observed in the DCPD and OCP samples, indicating that crystallinity had changed during the pretreatment. Results obtained from both vital and synthetic samples after heat treatment at 1000 deg C were as follow: Clearcut diffraction patterns, characteristics of HA, were obtained in all of the calvaria samples. Further, {beta}-TCP was produced by heat treatment of OCP, and its pattern was detected in the samples from rats younger than 6 days of age. Amounts of {beta}-TCP in percentage were disclosed to be 40.2% in embryonal samples, 28.4% in newborn samples, and 18.6% in 6-day-old samples. But no {beta}-TCP could be detected in the 12-week-old samples, indicating that the amount of {beta}-TCP in calvaria decreased with age. We also found that ashing pretreatment did not cause any changes in the samples of HA, {beta}-CPP, and {beta}-TCP. Further, DCPD and {beta}-CPP samples shared

  18. Study on mineral components of rat calvaria by means of X-ray powder diffraction analysis and Raman microprobe spectroscopy

    International Nuclear Information System (INIS)

    Tamura, Norihiro

    2000-01-01

    The present study was designed to examine the occurrence of the precursor minerals of hydroxyapatite (HA) during the process of HA formation in the rat calvaria. Dried and powdered rat calvaria and synthetic samples, such as HA, dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), (β-calcium pyrophosphate) and (β-tricalcium phosphate), were used. Determinations were carried out by X-ray powder diffraction and Raman microprobe spectrometry. In general, significant widening of the diffraction peaks was shown to occur after the plasma ashing was performed for the X-ray diffraction. As a result, two adjacent peaks seen normally in the diffraction angles (2 θ) 30-35 deg, which is a characteristic feature of HA, were found to fuse with each other, forming a widened single peak. Also, there was a tendency for the intensity of the diffraction peaks to increase with age. With regard to the effect of plasma ashing on the crystallograms of synthetic specimens, all specimens manifested sharp peak patterns except DCPD and OCP. In contrast, a widening of diffraction peaks was observed in the DCPD and OCP samples, indicating that crystallinity had changed during the pretreatment. Results obtained from both vital and synthetic samples after heat treatment at 1000 deg C were as follow: Clearcut diffraction patterns, characteristics of HA, were obtained in all of the calvaria samples. Further, β-TCP was produced by heat treatment of OCP, and its pattern was detected in the samples from rats younger than 6 days of age. Amounts of β-TCP in percentage were disclosed to be 40.2% in embryonal samples, 28.4% in newborn samples, and 18.6% in 6-day-old samples. But no β-TCP could be detected in the 12-week-old samples, indicating that the amount of β-TCP in calvaria decreased with age. We also found that ashing pretreatment did not cause any changes in the samples of HA, β-CPP, and β-TCP. Further, DCPD and β-CPP samples shared the same diffraction pattern, and OCP

  19. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).

    Science.gov (United States)

    Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas

    2018-08-15

    Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that

  20. Determination of diffusion coefficients of hydrogen in fused silica between 296 and 523 K by Raman spectroscopy and application of fused silica capillaries in studying redox reactions

    Science.gov (United States)

    Shang, L.; Chou, I-Ming; Lu, W.; Burruss, Robert; Zhang, Y.

    2009-01-01

    Diffusion coefficients (D) of hydrogen in fused silica capillaries (FSC) were determined between 296 and 523 K by Raman spectroscopy using CO2 as an internal standard. FSC capsules (3.25 × 10−4 m OD, 9.9 × 10−5 m ID, and ∼0.01 m long) containing CO2 and H2were prepared and the initial relative concentrations of hydrogen in these capsules were derived from the Raman peak-height ratios between H2 (near 587 cm−1) and CO2 (near 1387 cm−1). The sample capsules were then heated at a fixed temperature (T) at one atmosphere to let H2 diffuse out of the capsule, and the changes of hydrogen concentration were monitored by Raman spectroscopy after quench. This process was repeated using different heating durations at 296 (room T), 323, 375, 430, 473, and 523 K; the same sample capsule was used repeatedly at each temperature. The values of D (in m2 s−1) in FSC were obtained by fitting the observed changes of hydrogen concentration in the FSC capsule to an equation based on Fick’s law. Our D values are in good agreement with the more recent of the two previously reported experimental data sets, and both can be represented by:lnD=-(16.471±0.035)-44589±139RT(R2=0.99991)">lnD=-(16.471±0.035)-44589±139RT(R2=0.99991)where R is the gas constant (8.3145 J/mol K), T in Kelvin, and errors at 1σ level. The slope corresponds to an activation energy of 44.59 ± 0.14 kJ/mol.The D in FSC determined at 296 K is about an order of magnitude higher than that in platinum at 723 K, indicating that FSC is a suitable membrane for hydrogen at temperature between 673 K and room temperature, and has a great potential for studying redox reactions at these temperatures, especially for systems containing organic material and/or sulphur.

  1. Raman spectroscopy of poly (3-hydroxybutyrate) modified with poly (vinyl acetate) by radiation- induced copolymerization

    International Nuclear Information System (INIS)

    Gonzalez, Maykel; Galego Fernandez, Norma; Ortiz del Toro, Pedro; Rapado, Manuel; Paredes

    2007-01-01

    Poly (3-hydroxybutyrate) (PHB) is an important material used in the field of medicine. However in common conditions, PHB has some deficiencies. It is very brittle and slightly hydrophobic polymer. This somewhat limit its applications. Radiation chemistry can be used to improve its chemical properties. In the present study, the substrate, modified by radiation-induced graft copolymerization with vinyl acetate (VAc), was characterized using FTIR and Raman spectroscopy. FTIR spectroscopy did not reveal any significant bands but Raman spectroscopy revealed the formation of a new band that characterize the material

  2. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Otaki, Takashi; Tanabe, Yuta; Kojima, Takashi; Miura, Masaru; Ikeda, Yukihiro; Koide, Tatsuo; Fukami, Toshiro

    2018-05-05

    In recent years, to guarantee a quality-by-design approach to the development of pharmaceutical products, it is important to identify properties of raw materials and excipients in order to determine critical process parameters and critical quality attributes. Feedback obtained from real-time analyses using various process analytical technology (PAT) tools has been actively investigated. In this study, in situ monitoring using low-frequency (LF) Raman spectroscopy (10-200 cm -1 ), which may have higher discriminative ability among polymorphs than near-infrared spectroscopy and conventional Raman spectroscopy (200-1800 cm -1 ), was investigated as a possible application to PAT. This is because LF-Raman spectroscopy obtains information about intermolecular and/or lattice vibrations in the solid state. The monitoring results obtained from Furosemide/Nicotinamide cocrystal indicate that LF-Raman spectroscopy is applicable to in situ monitoring of suspension and fluidized bed granulation processes, and is an effective technique as a PAT tool to detect the conversion risk of cocrystals. LF-Raman spectroscopy is also used as a PAT tool to monitor reactions, crystallizations, and manufacturing processes of drug substances and products. In addition, a sequence of conversion behaviors of Furosemide/Nicotinamide cocrystals was determined by performing in situ monitoring for the first time. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Two-Dimensional Raman Correlation Spectroscopy Study of Poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] Copolymers.

    Science.gov (United States)

    Noda, Isao; Roy, Anjan; Carriere, James; Sobieski, Brian J; Chase, D Bruce; Rabolt, John F

    2017-07-01

    Two-dimensional correlation analysis was applied to the time-dependent evolution of Raman spectra during the isothermal crystallization of bioplastic, poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] or PHBHx copolymer. Simultaneous Raman measurement of both carbonyl stretching and low-frequency crystalline lattice mode regions made it possible to carry out the highly informative hetero-mode correlation analysis. The crystallization process of PHBHx involves: (1) the early nucleation stage; (2) the primary growth of well-ordered crystals of PHBHx; and (3) the secondary crystal growth phase. The latter stage probably occurs in the inter-lamellar region, with an accompanying reduction of the amorphous component, which occurs most dominantly during the primary crystal growth. The development of a fully formed lamellar structure comprising the 2 1 helices occurs after the primary growth of crystals. In the later stage, secondary inter lamellar space crystallization occurs after the full formation of packed helices comprising the lamellae.

  4. Conceptual Design Study for Coherent Anti-Stokes Raman Spectroscopy (CARS) Diagnostics in the AMMRC Ballistic Compressor Facility.

    Science.gov (United States)

    1980-03-01

    Hydrogen has a large Raman cross section and simple CARS spectrum making it an ideal thermometric species. It also has the advantage at this time that the...modes of operation have been considered. Hydrogen appears to be an ideal thermometric species for CARS diagnostics at high pressures. The large...low thermal conductivity in the host material. Yttrium aluminum garnet (YAG), on the other hand, has a good thermal conductivity and therefore when

  5. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  6. Strain characterization of FinFETs using Raman spectroscopy

    International Nuclear Information System (INIS)

    Kaleli, B.; Hemert, T. van; Hueting, R.J.E.; Wolters, R.A.M.

    2013-01-01

    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscopy. - Highlights: ► Strain is characterized in nanoscale devices with Raman spectroscopy. ► There is a fin width dependence of the originated strain. ► Strain levels obtained from this technique is in correlation with device simulations

  7. Characterization of redeposited carbon layers on TEXTOR limiter by Laser Raman spectroscopy

    International Nuclear Information System (INIS)

    Egashira, K.; Tanabe, T.; Yoshida, M.; Nakazato, H.; Philipps, V.; Brezinsek, S.; Kreter, A.

    2011-01-01

    Highlights: ► Laser Raman technique has applied to analyze the deposited carbon layers on TEXTOR test limiters of C and W. ► The carbon deposited layers showed the Raman spectra composed of G-peak and D-peak. ► For W limiter, hydrogen concentrations in the deposited carbon layers and their thicknesses correlated to the two peaks. ► The Laser Raman spectroscopy is a promising tool for in situ analysis of carbon redeposit layers on plasma facing W materials. - Abstract: Laser Raman spectroscopy is quite sensitive to detect the changes of graphite structure. In this study, the Laser Raman technique was applied to analyze the deposited carbon layers on TEXTOR test limiters of carbon (C) and tungsten (W) produced by intentional carbon deposition experiments by methane gas puffing. The carbon deposited layers showed the Raman spectra composed of two broad peaks, G-peak and D-peak, centered at around 1580 and 1355 cm −1 respectively. For W limiter, the G-peak position and the integrated intensity of the two peaks well correlate to hydrogen concentrations in the deposited carbon layers and their thicknesses, respectively. Hence Laser Raman spectroscopy is a promising tool for the in situ analysis of carbon redeposit layers on plasma facing W materials and probably on Be materials.

  8. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    Science.gov (United States)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  9. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  10. High-pressure behavior of α-boron studied on single crystals by X-ray diffraction, Raman and IR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina, E-mail: irina.chuvashova@gmail.com [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Bykova, Elena; Bykov, Maxim [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Svitlyk, Volodymyr [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Gasharova, Biliana [Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Mathis, Yves-Laurent [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); IBPT, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Caracas, Razvan [CNRS, Laboratoire de Géologie de Lyon, ENS de Lyon, UCBL Lyon 1, Université de Lyon (France); Dubrovinsky, Leonid [Bayerisches Geoinstitut, University of Bayreuth, D-95440 Bayreuth (Germany); Dubrovinskaia, Natalia [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany)

    2017-01-15

    In the present study single crystals of rhombohedral α-B were investigated under pressure to 60 GPa by means of single-crystal X-ray diffraction. The bulk modulus of α-B was found to be K=224(7) GPa (K′=3.0(3)). Measurements of interatomic distances as a function of pressure revealed that the intericosahedral two-center two-electron (2c–2e) bonds are almost as stiff as some of intraicosahedral ones. The three-center two-electron (3c–2e) intericosahedral bonds show much higher compliance compared to other bonds in α-B. The vibrational properties of α-B under pressure were investigated by Raman spectroscopy at pressures up to 160 GPa and IR spectroscopy at pressures up to 53 GPa. - Graphical abstract: The rhombohedral α-B is highly incompressible and extremely stable: it maintains its crystal structure up to 160 GPa and its intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones. - Highlights: • Structural stability of α-B has been investigated up to 160 GPa on single crystals. • Single-crystal x-ray diffraction reveals that α-B is highly incompressible. • Compressibility of B{sub 12} icosahedra is considerably lower than that of the bulk material. • Intericosahedral 2e2c bonds are almost as stiff as some of intraicosahedral ones.

  11. Parallelism between gradient temperature raman spectroscopy and differential scanning calorimetry results

    Science.gov (United States)

    Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...

  12. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Science.gov (United States)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  13. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  14. Polarized Raman spectroscopy of chemically vapour deposited diamond films

    International Nuclear Information System (INIS)

    Prawer, S.; Nugent, K.W.; Weiser, P.S.

    1994-01-01

    Polarized micro-Raman spectra of chemically vapour deposited diamond films are presented. It is shown that important parameters often extracted from the Raman spectra such as the ratio of the diamond to non-diamond component of the films and the estimation of the level of residual stress depend on the orientation of the diamond crystallites with respect to the polarization of the incident laser beam. The dependence originates from the fact that the Raman scattering from the non-diamond components in the films is almost completely depolarized whilst the scattering from the diamond components is strongly polarized. The results demonstrate the importance of taking polarization into account when attempting to use Raman spectroscopy in even a semi-quantitative fashion for the assessment of the purity, perfection and stress in CVD diamond films. 8 refs., 1 tab. 2 figs

  15. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  16. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy

    Science.gov (United States)

    Czaja, Tomasz; Baranowska, Maria; Mazurek, Sylwester; Szostak, Roman

    2018-05-01

    FT-Raman quantitative analysis of nutritional parameters of yoghurts was performed with the help of partial least squares models. The relative standard errors of prediction for fat, lactose and protein determination in the quantified commercial samples equalled to 3.9, 3.2 and 3.6%, respectively. Models based on attenuated total reflectance spectra of the liquid yoghurt samples and of dried yoghurt films collected with the single reflection diamond accessory showed relative standard errors of prediction values of 1.6-5.0% and 2.7-5.2%, respectively, for the analysed components. Despite a relatively low signal-to-noise ratio in the obtained spectra, Raman spectroscopy, combined with chemometrics, constitutes a fast and powerful tool for macronutrients quantification in yoghurts. Errors received for attenuated total reflectance method were found to be relatively higher than those for Raman spectroscopy due to inhomogeneity of the analysed samples.

  17. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  18. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Detecting Temporal and Spatial Effects of Epithelial Cancers with Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew D. Keller

    2008-01-01

    Full Text Available Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.

  20. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  1. Raman spectroscopy in quality control of Chinese herbal medicine

    Directory of Open Access Journals (Sweden)

    Dan-Dan Chen

    2017-05-01

    Conclusion: An updated systematic review of the published literature has been conducted to analyze the most important milestones and latest achievements in this topic. Raman spectroscopy is playing an increasingly important role in the quality control of CHM and effectively promotes the modernization of CHM.

  2. Raman spectroscopy as a tool for investigating lipid protein interactions

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Helix Nielsen, Claus

    2009-01-01

    ]) as well as improved technical equipment for signal capture (such as improved sensitivity of charge-coupled devices [CCDs]). Combined, these technological advances have brought Raman spectroscopy into a new era in which hitherto inaccessible or hardly accessible research areas now are becoming possible...

  3. Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy

    NARCIS (Netherlands)

    Efremov, E.V.; Ariese, F.; Mank, A.J.G.; Gooijer, C.

    2006-01-01

    Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally

  4. Determination of cellulose I crystallinity by FT-Raman spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph

    2009-01-01

    Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the...

  5. Study of structure of the TiO{sub 2}–MoO{sub 3} bilayer films by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elias de Barros; Sigoli, Fernando Aparecido; Mazali, Italo Odone, E-mail: mazali@iqm.unicamp.br

    2014-12-15

    Highlights: • TiO{sub 2}–MoO{sub 3} bilayer thin films were easily prepared by dip-coating technique. • Ti and Mo metallo-organic compounds were used as source of its respective oxide. • TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3} were identified. • The bilayer structure was investigated by Raman spectroscopy. - Abstract: In this work, TiO{sub 2}–MoO{sub 3} films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3}. It was observed that the Raman bands intensities attributed to TiO{sub 2} and MoO{sub 3} oxides were dependent on the number of decomposition–deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO{sub 2}–MoO{sub 3} films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications.

  6. High-pressure Raman spectroscopy of phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Zalden, Peter [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Wuttig, Matthias [I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen (Germany); JARA – Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen (Germany); Lindenberg, Aaron M. [SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, California 94025 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, PULSE Institute, Menlo Park, California 94025 (United States)

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  7. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  8. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    Science.gov (United States)

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Development of F.T. Raman Spectroscopy

    Science.gov (United States)

    1989-06-19

    Virginia, 22217 5000, U.S.A*.ELMNNO NONOACSINN. End of Year Report on the contract 2 PERSONAL AU7I40R(S) P.J. Hda and M. Fl cm 3a TYPE OF REPORT 13b. TIME...to do, have .- considerable progress. The area in which we have .ated involves the zeolites. We have sorbed pyridine tc .- of -eolites ( acidic and...react-ion using F.T. Raman methods and then to eX.plore rmechaniszzs, types of acid sites involved and the role o.: temperature. -:olla-’-rators

  10. Batch and Continuous Flow Preparation of Hantzsch 1,4-Dihydropyridines under Microwave Heating and Simultaneous Real-time Monitoring by Raman Spectroscopy. An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Sylvain Christiaens

    2014-07-01

    Full Text Available Dialkyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates have been prepared in a batch mode under conventional heating as well as under continuous flow conditions in the Miniflow 200SS, Sairem’s microwave-assisted batch and continuous flow equipment. Real-time monitoring of the reactions by Raman spectroscopy enabled to compare both heating modes and to determine (optimized reaction times.

  11. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    A. C. Gómez-Monsiváis

    2017-03-01

    Full Text Available Currently, the ethanol electro-oxidation reaction has attracted considerable attention in fuel cells because of new green ethanol synthetic methods based on biomass processes that have emerged. In this study, PtFe/C and Pt/C nanoparticles were synthesized by a chemical reduction method and tested in the ethanol electro-oxidation reaction. Furthermore, the electrocatalytic effect of the PtFe bimetallic catalyst was analyzed by in situ surface-enhanced Raman spectroscopy (SERS coupled to an electrochemical cell. X-ray diffractograms showed typical face-centered cubic structures with crystallite sizes of 3.31 and 3.94 for Pt/C and PtFe/C, respectively. TEM micrographs revealed nanoparticle sizes of 2 ± 0.4 nm and 3 ± 0.6 nm for Pt/C and PtFe/C respectively. PtFe/C exhibited a Pt90Fe10 composition by both X-ray fluorescence and energy-dispersive X-ray spectroscopy. A better electrocatalytic activity as function of concentration was obtained through the incorporation of a small amount of Fe into the Pt lattice and the presence of Fe2+/Fe3+ (observed by X-ray photoelectron spectroscopy. According to SERS experiments, the presence of these iron species promotes the chemisorption of ethanol, the formation of formic acid as main product and renewal of the catalytic sites, resulting in current densities that were at least three fold higher than the values obtained for the Pt/C nanocatalyst.

  12. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy

    Science.gov (United States)

    2014-06-11

    Failloux, N., Bonnet, 1., Baron, M. H., & Perrier, E. (2003). Quantitative analysis of vitamin A degradation by raman spectroscopy. Applied Spectroscopy...analysis of the Raman-active modes of the anti-tumor agent 6- mercaptopurine . Journal of Raman Spectroscopy, 32(1), 1-8. doi: Doi 10.1002/1097- 4555

  13. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Dresselhaus, M. S.; Kalbáč, Martin

    2015-01-01

    Roč. 48, č. 1 (2015), s. 111-118 ISSN 0001-4842 R&D Projects: GA MŠk LH13022; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Raman spectroscopy * spectroelectrochemistry * graphene Subject RIV: CG - Electrochemistry Impact factor: 22.003, year: 2015

  14. Micro-Raman spectroscopy studies of changes in lipid composition in breast and prostate cancer cells treated with MPA and R1881 hormones

    Science.gov (United States)

    Potcoava, Mariana C.; Futia, Gregory L.; Aughenbaugh, Jessica; Schlaepfer, Isabel; Gibson, Emily A.

    2014-03-01

    Increasing interest in the role of lipids in cancer cell proliferation or resistance to drug therapies has motivated the need to develop better tools for cellular lipid analysis. Quantification of lipids in cells is typically done by destructive chromatography protocols that do not provide spatial information on lipid distribution and prevent dynamic live cell studies. Methods that allow the analysis of lipid content in live cells is therefore of great importance for research. Using Raman micro-spectroscopy we investigated whether the female hormone medroxyprogesterone acetate (MPA) and the synthetic androgen R1881 affect the lipid expression in breast (T47D) and prostate (LNCaP) cancer cells. Differences were noted in the spectral regions at 830-1800 cm-1 and 2800-3000 cm-1 when comparing different drug treatments. Significant changes were noticed for saturated (1063 - 1125 cm-1, 1295 cm-1 and 1439 cm-1), unsaturated (1262 cm-1 and 1656 cm-1, and 1720 - 1748 cm-1) chemical bonds, suggesting that the composition of the lipid droplets was changed by the hormone treatments. Also, significant differences were observed in the high frequency regions of lipids and proteins at 2851 cm-1 and around 2890 cm-1. Principal component analysis with Linear Discriminant Analysis (PCA-LDA) of the Raman spectra was able to differentiate between cancer cells that were treated with MPA, R1881 or vehicle (P < 0.05). Future work includes analysis to determine exact lipid composition and concentrations as well as development of clinical techniques to characterize differences in patient tumor lipid profiles to determine response to drug treatment and prognosis.

  15. Use of low-frequency Raman spectroscopy and chemometrics for the quantification of crystallinity in amorphous griseofulvin tablets

    DEFF Research Database (Denmark)

    Mah, Pei T.; Fraser, Sara J.; Reish, Matthew E.

    2015-01-01

    in stored amorphous samples earlier than the mid-frequency 785 nm Raman system. Overall, this study suggests that low-frequency Raman spectroscopy has at least equally good performance compared to mid-frequency Raman for quantitative analysis of crystallinity in the pharmaceutical setting. More generally......Low-frequency Raman spectroscopy, which directly probes phonon lattice modes of crystal structures, has much unexplored potential for sensitive qualitative and quantitative analysis of crystallinity in drugs and excipients. In this study, the level of crystallinity in tablets containing amorphous...

  16. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis.

    Science.gov (United States)

    Devitt, George; Howard, Kelly; Mudher, Amrit; Mahajan, Sumeet

    2018-03-21

    The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.

  17. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    Science.gov (United States)

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  18. Speciation in Aqueous MgSO4 Fluid at High Pressures and Temperatures Studied by First-Principles Modeling and Raman Spectroscopy

    Science.gov (United States)

    Jahn, S.; Schmidt, C.

    2008-12-01

    Aqueous fluids play an essential role in mass and energy transfer in the lithosphere. Their presence has also a large effect on physical properties of rocks, e.g. the electrical conductivity. Many chemical and physical properties of aqueous fluids strongly depend on the speciation, but very little is known about this fundamental parameter at high pressures and temperatures, e.g. at subduction zone conditions. Here we use a combined approach of first-principles molecular dynamics simulation and Raman spectroscopy to study the molecular structure of aqueous 2~mol/kg MgSO4 fluids up to pressures of 3~GPa and temperatures of 750~°C. MgSO4-H2O is selected as a model system for sulfate bearing subduction zone fluids. The simulations are performed using Car-Parrinello dynamics, a system size of 120 water and four MgSO4 molecules with production runs of at least 10~ps at each P and T. Raman spectra were obtained in situ using a Bassett-type hydrothermal diamond anvil cell with external heating. Both simulation and spectroscopic data show a dynamic co-existence of various associated molecular species as well as dissociated Mg2+ and SO42- in the single phase fluid. Fitting the Raman signal in the frequency range of the ν1-SO42- stretching mode yields the P-T dependence of the relative proportions of different peaks. The latter can be assigned to species based on literature data and related to the species found in the simulation. The dominant associated species found in the P-T range of interest here are Mg-SO4 ion pairs with one (monodentate) and two (bidentate) binding sites. At the highest P and T, an additional peak is identified. At low pressures and high temperature (T>230~°C), kieserite, MgSO4·H2O, nucleated in the experiment. At the same conditions the simulations show a clustering of Mg, which is interpreted as a precursor of precipitation. In conclusion, the speciation of aqueous MgSO4 fluid shows a complex behavior at high P and T that cannot be extrapolated

  19. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  20. Hydrogen Bonding in Proteins and Water Studied by Far-IR and Low-Wavenumber Raman Spectroscopy

    International Nuclear Information System (INIS)

    Greve, Tanja Maria; Birklund Andersen, Kristine; Engdahl, Anders; Nelander, Bengt; Faurskov Nielsen, Ole

    2008-01-01

    Far-IR spectra with a synchrotron radiation source were for the first time recorded through a microscope coupled to an FTIR-spectrometer. A comparison with spectra recorded with an ordinary globar source revealed that no artifacts occurred with synchrotron radiation. A comparison of ATR (Si-prism) and transmission spectra of a tetrapeptide showed that the ATR-microscope technique could be applied. ATR- and transmission spectra were recorded of polyglycine and compared to the low wavenumber Raman spectrum in the R(v)-representation. A protein band at 115-125 cm -1 was assigned to hydrogen bond modes. Collectively these modes might drive conformational changes in proteins. Based mainly on previously published results the determination of water with a structure like that in bulk liquid water was performed for human and animal skin samples. Changes in water content were reported for freezing and thawing of human skin biopsies and for human skin with benign or malignant skin diseases.

  1. Diffusion measurements in binary liquid mixtures by Raman spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Hansen, Susanne Brunsgaard; Shapiro, Alexander

    2007-01-01

    It is shown that Raman spectroscopy allows determination of the molar fractions in mixtures subjected to molecular diffusion. Spectra of three binary systems, benzene/n-hexane, benzene/cyclohexane, and benzene/ acetone, were obtained during vertical (exchange) diffusion at several different heights...... in the literature were found, even in a thermostatically controlled diffusion cell, recording spectra through circulating water. For the system benzene/acetone, the determined diffusion coefficients were in good agreement with the literature data. The limitations of the Raman method are discussed...

  2. Differentiating the growth phases of single bacteria using Raman spectroscopy

    Science.gov (United States)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  3. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    Science.gov (United States)

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (PRaman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (pRaman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  5. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    Science.gov (United States)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  6. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    International Nuclear Information System (INIS)

    Shiryaev, A A; Voloshchuk, A M; Averin, A A; Artamonova, S D.; Volkov, V V

    2017-01-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with S BET values obtained from N 2 adsorption. (paper)

  7. Near-infrared Raman spectroscopy for assessing biochemical changes of cervical tissue associated with precarcinogenic transformation.

    Science.gov (United States)

    Duraipandian, Shiyamala; Mo, Jianhua; Zheng, Wei; Huang, Zhiwei

    2014-11-07

    Raman spectroscopy measures the inelastically scattered light from tissue that is capable of identifying native tissue biochemical constituents and their changes associated with disease transformation. This study aims to characterize the Raman spectroscopic properties of cervical tissue associated with the multi-stage progression of cervical precarcinogenic sequence. A rapid-acquisition fiber-optic near-infrared (NIR) Raman diagnostic system was employed for tissue Raman spectral measurements at 785 nm excitation. A total of 68 Raman spectra (23 benign, 29 low-grade squamous intraepithelial lesions (LSIL) and 16 high grade squamous intraepithelial lesions (HSIL)) were measured from 25 cervical tissue biopsy specimens, as confirmed by colposcopy-histopathology. The semi-quantitative biochemical modeling based on the major biochemicals (i.e., DNA, proteins (histone, collagen), lipid (triolein) and carbohydrates (glycogen)) in cervical tissue uncovers the stepwise accumulation of biomolecular changes associated with progressive cervical precarcinogenesis. Multi-class partial least squares-discriminant analysis (PLS-DA) together with leave-one tissue site-out, cross-validation yielded the diagnostic sensitivities of 95.7%, 82.8% and 81.3%; specificities of 100.0%, 92.3% and 88.5%,for discrimination among benign, LSIL and HSIL cervical tissues, respectively. This work suggests that the Raman spectral biomarkers have identified the potential to be used for monitoring the multi-stage cervical precarcinogenesis, forming the foundation of applying NIR Raman spectroscopy for the early diagnosis of cervical precancer in vivo at the molecular level.

  8. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  9. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  10. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  11. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    Science.gov (United States)

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  12. Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy

    International Nuclear Information System (INIS)

    Yeoh, W.K.; Zheng, R.K.; Ringer, S.P.; Li, W.X.; Xu, X.; Dou, S.X.; Chen, S.K.; MacManus-Driscoll, J.L.

    2011-01-01

    Raman spectroscopy is employed to study both the strain and the carbon substitution level in SiC-doped MgB 2 bulk samples. Raman spectroscopy was demonstrated to be a better method to distinguish the individual influences of strain and carbon than standard X-ray diffraction. It is found that the lattice parameter correlation method for C content determination is invalid for highly strained samples. Our result also provides an alternative explanation for lattice variation in non-carbon-doped MgB 2 , which is basically due to lattice strain.

  13. Identifying a common origin of toner printed counterfeit banknotes by micro-Raman spectroscopy.

    Science.gov (United States)

    Skenderović Božičević, Martina; Gajović, Andreja; Zjakić, Igor

    2012-11-30

    This study explores the applicability of micro-Raman spectroscopy as a non-destructive technique for the analysis of color toner printed counterfeits. The main aim of the research paper was to find out whether Raman spectroscopy is a suitable method for establishing the connection between different specimens of counterfeits suspected to be printed with the same toner on the same machine. Specimens of different types of toners printed on different types of paper are analyzed by means of the micro-Raman spectroscopy system with the excitation line at 514.5 nm. For each specimen cyan, magenta and yellow toners are analyzed separately. The yellow toners displayed the most distinctive Raman spectra. The results show that micro-Raman spectroscopy can be successfully applied as a method for the analysis of color toner printed counterfeits, such as banknotes and documents, in order to establish links between more or less different specimens of counterfeits by measuring the properties of a color toner. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  15. Determination of human coronary artery composition by Raman spectroscopy.

    Science.gov (United States)

    Brennan, J F; Römer, T J; Lees, R S; Tercyak, A M; Kramer, J R; Feld, M S

    1997-07-01

    We present a method for in situ chemical analysis of human coronary artery using near-infrared Raman spectroscopy. It is rapid and accurate and does not require tissue removal; small volumes, approximately 1 mm3, can be sampled. This methodology is likely to be useful as a tool for intravascular diagnosis of artery disease. Human coronary artery segments were obtained from nine explanted recipient hearts within 1 hour of heart transplantation. Minces from one or more segments were obtained through grinding in a mortar and pestle containing liquid nitrogen. Artery segments and minces were excited with 830 nm near-infrared light, and Raman spectra were collected with a specially designed spectrometer. A model was developed to analyze the spectra and quantify the amounts of cholesterol, cholesterol esters, triglycerides and phospholipids, and calcium salts present. The model provided excellent fits to spectra from the artery segments, indicating its applicability to intact tissue. In addition, the minces were assayed chemically for lipid and calcium salt content, and the results were compared. The relative weights obtained using the Raman technique agreed with those of the standard assays within a few percentage points. The chemical composition of coronary artery can be quantified accurately with Raman spectroscopy. This opens the possibility of using histochemical analysis to predict acute events such as plaque rupture, to follow the progression of disease, and to select appropriate therapeutic interventions.

  16. An in situ Raman spectroscopy system for long-term corrosion experiments in high temperature water up to 673 K

    International Nuclear Information System (INIS)

    Domae, Masafumi; Tani, Jun-ichi; Fujiwara, Kazutoshi; Katsumura, Yosuke

    2006-01-01

    A Raman spectroscopy system has been developed, in order to identify oxides formed on the surfaces of metals and steels in high temperature water up to 673 K. A supercritical water loop system including a Raman cell was installed. The design of the loop system is up to 673 K and 40 MPa. The Raman cell has a diamond window without window-to-metal packing. Raman spectrum of alumina plate was measured at room temperature, at 523 and at 673 K under pressure of 25 MPa. A long-term measurement was also performed at 523 K and 25 MPa for 117.5 h. In all cases intense Raman peaks attributed to alumina were observed. Raman spectrum of anatase particles in suspension was measured at 673 K and 25 MPa. The results show that the Raman spectroscopy system developed in the present study works well not only for plate sample but also for suspension. Raman spectra observed for titanium plate in high temperature water of 673 K and 25 MPa show growth of several Raman peaks with time up to 257 h. The peaks disappeared after cooled down to room temperature. The experimental results have demonstrated importance of in situ Raman spectroscopy. (author)

  17. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  18. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  19. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    Science.gov (United States)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  20. Monitoring emulsion homopolymerization reactions using FT-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. Reis

    2005-03-01

    Full Text Available The present work describes a methodology for estimation of monomer concentration during homopolymerization reactions by Raman spectroscopy. The estimation is done using linear models based on two different approaches: a univariate approach and a multivariate approach (with principal component regression, PCR, or partial least squares regression, PLS. The linear models are fitted with data from spectra collected from synthetic samples, i.e., samples prepared by dispersing a known concentration of monomer in polymer emulsions. Homopolymerizations of butyl acrylate and of vinyl acetate were monitored by collecting samples from the reactor, and results show that the methodology is efficient for the model fitting and that Raman spectroscopy is a promising technique for on-line monitoring of the emulsion polymerization process.

  1. Raman spectroscopy as a tool for ecology and evolution.

    Science.gov (United States)

    Germond, Arno; Kumar, Vipin; Ichimura, Taro; Moreau, Jerome; Furusawa, Chikara; Fujita, Hideaki; Watanabe, Tomonobu M

    2017-06-01

    Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution. © 2017 The Authors.

  2. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    Science.gov (United States)

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  3. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    Science.gov (United States)

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  4. Operando Raman Micro Spectroscopy of Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2016-01-16

    the cathode , transitions ion exchange sites from the sulfonic acid to the dissociated sulfonate form. Visualization of density functional theory...catalysts dispersed in an alcoholic dispersion of solubilized ionomer (e.g., Nafion). Teflon dispersion is included in cathode inks to lower the surface...tolerant of condensed water, is complementary to FTIR. Operando Raman spectroscopy of solid oxide fuel cells has been reported.28–30 Although there are

  5. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Mlynariková, K.; Samek, Ota; Bernatová, Silvie; Růžička, F.; Ježek, Jan; Hároniková, A.; Šiler, Martin; Zemánek, Pavel; Holá, V.

    2015-01-01

    Roč. 15, č. 11 (2015), s. 29635-29647 ISSN 1424-8220 R&D Projects: GA MŠk ED0017/01/01; GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Raman spectroscopy * bacteria * yeasts * culture media Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.033, year: 2015

  6. Composition profiling of seized ecstasy tablets by Raman spectroscopy.

    Science.gov (United States)

    Bell, S E; Burns, D T; Dennis, A C; Matchett, L J; Speers, J S

    2000-10-01

    Raman spectroscopy with far-red excitation has been investigated as a simple and rapid technique for composition profiling of seized ecstasy (MDMA, N-methyl-3,4-methylenedioxyamphetamine) tablets. The spectra obtained are rich in vibrational bands and allow the active drug and excipient used to bulk the tablets to be identified. Relative band heights can be used to determine drug/excipient ratios and the degree of hydration of the drug while the fact that 50 tablets per hour can be analysed allows large numbers of spectra to be recorded. The ability of Raman spectroscopy to distinguish between ecstasy tablets on the basis of their chemical composition is illustrated here by a sample set of 400 tablets taken from a large seizure of > 50,000 tablets that were found in eight large bags. The tablets are all similar in appearance and carry the same logo. Conventional analysis by GC-MS showed they contained MDMA. Initial Raman studies of samples from each of the eight bags showed that despite some tablet-to-tablet variation within each bag the contents could be classified on the basis of the excipients used. The tablets in five of the bags were sorbitol-based, two were cellulose-based and one bag contained tablets with a glucose excipient. More extensive analysis of 50 tablets from each of a representative series of sample bags have distribution profiles that showed the contents of each bag were approximately normally distributed about a mean value, rather than being mixtures of several discrete types. Two of the sorbitol-containing sample sets were indistinguishable while a third was similar but not identical to these, in that it contained the same excipient and MDMA with the same degree of hydration but had a slightly different MDMA/sorbitol ratio. The cellulose-based samples were badly manufactured and showed considerable tablet-to-tablet variation in their drug/excipient ratio while the glucose-based tablets had a tight distribution in their drug/excipient ratios

  7. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    Science.gov (United States)

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  8. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  9. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  10. Summary report of FY 1995 Raman spectroscopy technology development

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system's specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ''six-around-on'' fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes' signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe's silica Raman background

  11. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  12. Revealing New Structural Insights from Surfactant Micelles through DLS, Microrheology and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Samiul Amin

    2015-06-01

    Full Text Available The correlation between molecular changes and microstructural evolution of rheological properties has been demonstrated for the first time in a mixed anionic/zwitterionic surfactant-based wormlike micellar system. Utilizing a novel combination of DLS-microrheology and Raman Spectroscopy, the effect of electrostatic screening on these properties of anionic (SLES and zwitterionic (CapB surfactant mixtures was studied by modulating the NaCl concentration. As Raman Spectroscopy delivers information about the molecular structure and DLS-microrheology characterizes viscoelastic properties, the combination of data delivered allows for a deeper understanding of the molecular changes underlying the viscoelastic ones. The high frequency viscoelastic response obtained through DLS-microrheology has shown the persistence of the Maxwell fluid response for low viscosity solutions at high NaCl concentrations. The intensity of the Raman band at 170 cm−1 exhibits very strong correlation with the viscosity variation. As this Raman band is assigned to hydrogen bonding, its variation with NaCl concentration additionally indicates differences in water structuring due to potential microstructural differences at low and high NaCl concentrations. The microstructural differences at low and high NaCl concentrations are further corroborated by persistence of a slow mode at the higher NaCl concentrations as seen through DLS measurements. The study illustrates the utility of the combined DLS, DLS-optical microrheology and Raman Spectroscopy in providing new molecular structural insights into the self-assembly process in complex fluids.

  13. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    Science.gov (United States)

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  14. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  15. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    Science.gov (United States)

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  16. In-situ UV-Visible and Raman spectroscopy for gas-liquid-solid systems

    NARCIS (Netherlands)

    Stemmet, C.P.; Schouten, J.C.; Nijhuis, T.A.

    2009-01-01

    This paper presents the use of UV-vis and Raman spectroscopy to measure the state of a solid in a multiphase reactor. A slurry of particles and a packed bubble column were used. As this study is a proof of principle a model for an active catalyst system, insoluble pH indicators deposited on the

  17. Review of multidimensional data processing approaches for Raman and infrared spectroscopy

    NARCIS (Netherlands)

    Gautam, R.; Vanga, S.; Ariese, F.

    2015-01-01

    Raman and Infrared (IR) spectroscopies provide information about the structure, functional groups and environment of the molecules in the sample. In combination with a microscope, these techniques can also be used to study molecular distributions in heterogeneous samples. Over the past few decades

  18. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    Science.gov (United States)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (pNT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  19. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  20. Vibrational Characterizations of Zn0.72Li0.28O/Si Thin Films Studied by Fourier Transform Raman Spectroscopy

    International Nuclear Information System (INIS)

    Myo Myat Thet; Win Kyaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    The Zn0.72Li0.28O/Si (x = 0.28mol%) thin layers were fabricated on p-Si(100) substrate with five different process temperature. Vibrational characterizations of those thin films were investigated by FT- Raman spectroscopy. The resulted spectral line characters have been compared with that of Zn0.72Li0.28O/Glass thin films. Some vibrational motions of starting materials and final(candidate) thin films molecules were found in two substrates of glass and Si and vibrational frequencies were assigned by using molecular spectroscopy. Most of the frequencies of starting and final materials were found to be shifted in each of the films of two different substrates.

  1. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors

    International Nuclear Information System (INIS)

    Wood, Sebastian; Hollis, Joseph Razzell; Kim, Ji-Seon

    2017-01-01

    Raman spectroscopy has emerged as a powerful and important characterisation tool for probing molecular semiconducting materials. The useful optoelectronic properties of these materials arise from the delocalised π -electron density in the conjugated core of the molecule, which also results in large Raman scattering cross-sections and a strong coupling between its electronic states and vibrational modes. For this reason, Raman spectroscopy offers a unique insight into the properties of molecular semiconductors, including: chemical structure, molecular conformation, molecular orientation, and fundamental photo- and electro-chemical processes—all of which are critically important to the performance of a wide range of optical and electronic organic semiconductor devices. Experimentally, Raman spectroscopy is non-intrusive, non-destructive, and requires no special sample preparation, and so is suitable for a wide range of in situ measurements, which are particularly relevant to issues of thermal and photochemical stability. Here we review the development of the family of Raman spectroscopic techniques, which have been applied to the study of conjugated molecular semiconductors. We consider the suitability of each technique for particular circumstances, and the unique insights it can offer, with a particular focus on the significance of these measurements for the continuing development of stable, high performance organic electronic devices. (topical review)

  2. Mapping residual stress fields from Vickers hardness indents using Raman microprobe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    Micro-Raman spectroscopy is used to map the residual stress fields in the vicinity of Vickers hardness indents. Both 514.5 and 488.0 nm, light is used to excite the effect and the resulting shifted and broadened Raman peaks are analyzed using computer deconvolution. Half-wave plates are used to vary the orientation of the incident later light`s polarization state with respect to crystal orientation. The Raman scattered light is then analyzed for polarization dependences which are indicative of the various components of the Raman scattering tensor. Such studies can yield valuable information about the orientation of stress components in a well known stress field. The results can then be applied to the determination of stress components in machined semiconductor materials.

  3. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio; Esposito, Francesco; Allione, Marco; Coluccio, Maria Laura; Tallerico, Rossana; Valpapuram, Immanuel; Tirinato, Luca; Das, Gobind; Giugni, Andrea; Torre, Bruno; Veltri, Pierangelo; Kruhne, Ulrich; Della Valle, Giuseppe; Di Fabrizio, Enzo M.

    2015-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where

  4. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    Science.gov (United States)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  5. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2009-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...

  6. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages.

    Science.gov (United States)

    Riolo, Daniela; Piazza, Alessandro; Cottini, Ciro; Serafini, Margherita; Lutero, Emilio; Cuoghi, Erika; Gasparini, Lorena; Botturi, Debora; Marino, Iari Gabriel; Aliatis, Irene; Bersani, Danilo; Lottici, Pier Paolo

    2018-02-05

    Raman spectroscopy has been positively evaluated as a tool for the in-line and real-time monitoring of powder blending processes and it has been proved to be effective in the determination of the endpoint of the mixing, showing its potential role as process analytical technology (PAT). The aim of this study is to show advantages and disadvantages of Raman spectroscopy with respect to the most traditional HPLC analysis. The spectroscopic results, obtained directly on raw powders, sampled from a two-axis blender in real case conditions, were compared with the chromatographic data obtained on the same samples. The formulation blend used for the experiment consists of active pharmaceutical ingredient (API, concentrations 6.0% and 0.5%), lactose and magnesium stearate (as excipients). The first step of the monitoring process was selecting the appropriate wavenumber region where the Raman signal of API is maximal and interference from the spectral features of excipients is minimal. Blend profiles were created by plotting the area ratios of the Raman peak of API (A API ) at 1598cm -1 and the Raman bands of excipients (A EXC ), in the spectral range between 1560 and 1630cm -1 , as a function of mixing time: the API content can be considered homogeneous when the time-dependent dispersion of the area ratio is minimized. In order to achieve a representative sampling with Raman spectroscopy, each sample was mapped in a motorized XY stage by a defocused laser beam of a micro-Raman apparatus. Good correlation between the two techniques has been found only for the composition at 6.0% (w/w). However, standard deviation analysis, applied to both HPLC and Raman data, showed that Raman results are more substantial than HPLC ones, since Raman spectroscopy enables generating data rich blend profiles. In addition, the relative standard deviation calculated from a single map (30 points) turned out to be representative of the degree of homogeneity for that blend time. Copyright © 2017

  7. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  8. Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Napolitani, E. [MATIS IMM-CNR at Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Impellizzeri, G. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Giarola, M. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); De Salvador, D. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Privitera, V.; Priolo, F. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Mariotto, G. [Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy); Carnera, A. [Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-08-31

    Germanium samples, implanted with aluminum and annealed, have been investigated by micro-Raman spectroscopy using different excitation lines with the aim of gaining insights about the Al distribution at different depths beneath the sample surface and to correlate the Raman spectra with the electrical and chemical profiles, obtained by Spreading Resistance Profiling (SRP) and Secondary Ions Mass Spectrometry (SIMS) measurements, respectively. The intensity of the Al–Ge Raman peak at about 370 cm{sup −1}, due to the local vibrational mode of the substitutional Al atoms in the Ge matrix, has been directly related to the SRP behavior, while no correlation has been observed with SIMS profiles. These findings show that the electrically active content is entirely due to the substitutional Al atoms. Finally, a clear down shift is observed for the Ge–Ge Raman peak at ∼ 300 cm{sup −1}, which also seems to be directly related to the active content of Al dopant atoms. This work shows that micro-Raman spectroscopy can be a suitable tool for the study of doping profiles in Ge. - Highlights: ► Al-implanted Ge and annealed were studied by micro-Raman spectroscopy. ► Using different laser lines we have investigated the implants at different depths. ► The Al–Ge Raman peak at about 370 cm{sup −1} is directly related to the SRP behavior. ► The electrically active content is entirely due to the substitutional Al atoms. ► Carrier effects are observed on the Ge–Ge peak at ∼ 300 cm{sup −1}.

  9. Investigation of germanium implanted with aluminum by multi-laser micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Sanson, A.; Napolitani, E.; Impellizzeri, G.; Giarola, M.; De Salvador, D.; Privitera, V.; Priolo, F.; Mariotto, G.; Carnera, A.

    2013-01-01

    Germanium samples, implanted with aluminum and annealed, have been investigated by micro-Raman spectroscopy using different excitation lines with the aim of gaining insights about the Al distribution at different depths beneath the sample surface and to correlate the Raman spectra with the electrical and chemical profiles, obtained by Spreading Resistance Profiling (SRP) and Secondary Ions Mass Spectrometry (SIMS) measurements, respectively. The intensity of the Al–Ge Raman peak at about 370 cm −1 , due to the local vibrational mode of the substitutional Al atoms in the Ge matrix, has been directly related to the SRP behavior, while no correlation has been observed with SIMS profiles. These findings show that the electrically active content is entirely due to the substitutional Al atoms. Finally, a clear down shift is observed for the Ge–Ge Raman peak at ∼ 300 cm −1 , which also seems to be directly related to the active content of Al dopant atoms. This work shows that micro-Raman spectroscopy can be a suitable tool for the study of doping profiles in Ge. - Highlights: ► Al-implanted Ge and annealed were studied by micro-Raman spectroscopy. ► Using different laser lines we have investigated the implants at different depths. ► The Al–Ge Raman peak at about 370 cm −1 is directly related to the SRP behavior. ► The electrically active content is entirely due to the substitutional Al atoms. ► Carrier effects are observed on the Ge–Ge peak at ∼ 300 cm −1

  10. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  11. Fiber-optic Raman spectroscopy for in vivo diagnosis of gastric dysplasia.

    Science.gov (United States)

    Wang, Jianfeng; Lin, Kan; Zheng, Wei; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; Huang, Zhiwei

    2016-06-23

    This study aims to assess the clinical utility of a rapid fiber-optic Raman spectroscopy technique developed for enhancing in vivo diagnosis of gastric precancer during endoscopic examination. We have developed a real-time fiber-optic Raman spectroscopy system capable of simultaneously acquiring both fingerprint (FP) (i.e., 800-1800 cm(-1)) and high-wavenumber (HW) (i.e., 2800-3600 cm(-1)) Raman spectra from gastric tissue in vivo at endoscopy. A total of 5792 high-quality in vivo FP/HW Raman spectra (normal (n = 5160); dysplasia (n = 155), and adenocarcinoma (n = 477)) were acquired in real-time from 441 tissue sites (normal (n = 396); dysplasia (n = 11), and adenocarcinoma (n = 34)) of 191 gastric patients (normal (n = 172); dysplasia (n = 6), and adenocarcinoma (n = 13)) undergoing routine endoscopic examinations. Partial least squares discriminant analysis (PLS-DA) together with leave-one-patient-out cross validation (LOPCV) were implemented to develop robust spectral diagnostic models. The FP/HW Raman spectra differ significantly between normal, dysplasia and adenocarcinoma of the stomach, which can be attributed to changes in proteins, lipids, nucleic acids, and the bound water content. PLS-DA and LOPCV show that the fiber-optic FP/HW Raman spectroscopy provides diagnostic sensitivities of 96.0%, 81.8% and 88.2%, and specificities of 86.7%, 95.3% and 95.6%, respectively, for the classification of normal, dysplastic and cancerous gastric tissue, superior to either the FP or HW Raman techniques alone. Further dichotomous PLS-DA analysis yields a sensitivity of 90.9% (10/11) and specificity of 95.9% (380/396) for the detection of gastric dysplasia using FP/HW Raman spectroscopy, substantiating its clinical advantages over white light reflectance endoscopy (sensitivity: 90.9% (10/11), and specificity: 51.0% (202/396)). This work demonstrates that the fiber-optic FP/HW Raman spectroscopy technique has great promise for enhancing in vivo diagnosis of gastric

  12. Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopy study

    Science.gov (United States)

    Bastos de Carvalho, Fabíola; Aciole, Gilberth Tadeu S.; Aciole, Jouber Mateus S.; Silveira, Landulfo, Jr.; Nunes dos Santos, Jean; Pinheiro, Antônio L. B.

    2011-03-01

    The aim of this study was to evaluate, through Raman spectroscopy, the repair of complete tibial fracture in rabbits fixed with wire osteosynthesis - WO, treated or not with infrared laser light (λ 780nm, 50mW, CW) associated or not to the use of HATCP and GBR. Surgical fractures were created under general anesthesia (Ketamine 0.4ml/Kg IP and Xilazine 0.2ml/Kg IP), on the tibia of 15 rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with WO. Animals of groups III and V were grafted with hydroxyapatite + GBR technique. Animals of groups IV and V were irradiated at every other day during two weeks (16J/cm2, 4 x 4J/cm2). Observation time was that of 30 days. After animal death the specimens were kept in liquid nitrogen for further analysis by Raman spectroscopy. Raman spectroscopy showed significant differences between groups (phydroxyapatite.

  13. Investigation of the interaction between magnetic nanoparticles surface-coated with carboxymethyldextran and blood cells using Raman spectroscopy

    International Nuclear Information System (INIS)

    Santana, J.F.B.; Soler, M.A.G.; Silva, S.W. da; Guedes, M.H.; Lacava, Z.G.M.; Azevedo, R.B.; Morais, P.C.

    2005-01-01

    This study reports on in vitro biological tests performed with a biocompatible magnetic fluid based on carboxymethyldextran-coated magnetite nanoparticles (CMDM). Micro Raman spectroscopy was used to investigate the effect of dispersing (CMDM) nanoparticles in mice blood. We focused our investigation in the use of the Raman spectroscopy for monitoring the hemoglobin structural changes, which may be associated with the oxygen-binding process

  14. In-vivo spinal nerve sensing in MISS using Raman spectroscopy

    Science.gov (United States)

    Chen, Hao; Xu, Weiliang; Broderick, Neil

    2016-04-01

    In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.

  15. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-01-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm −1 , while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm −1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases. (letter)

  16. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  17. Monitoring multiple components in vinegar fermentation using Raman spectroscopy.

    Science.gov (United States)

    Uysal, Reyhan Selin; Soykut, Esra Acar; Boyaci, Ismail Hakki; Topcu, Ali

    2013-12-15

    In this study, the utility of Raman spectroscopy (RS) with chemometric methods for quantification of multiple components in the fermentation process was investigated. Vinegar, the product of a two stage fermentation, was used as a model and glucose and fructose consumption, ethanol production and consumption and acetic acid production were followed using RS and the partial least squares (PLS) method. Calibration of the PLS method was performed using model solutions. The prediction capability of the method was then investigated with both model and real samples. HPLC was used as a reference method. The results from comparing RS-PLS and HPLC with each other showed good correlations were obtained between predicted and actual sample values for glucose (R(2)=0.973), fructose (R(2)=0.988), ethanol (R(2)=0.996) and acetic acid (R(2)=0.983). In conclusion, a combination of RS with chemometric methods can be applied to monitor multiple components of the fermentation process from start to finish with a single measurement in a short time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  19. Structure in nascent carbon nanotubes revealed by spatially resolved Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Landois, Périne [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Pinault, Mathieu [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Huard, Mickaël [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Reita, Valérie [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Rouzière, Stéphan; Launois, Pascale [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Mayne-L' Hermite, Martine [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Bendiab, Nedjma, E-mail: nedjma.bendiab@grenoble.cnrs.fr [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France)

    2014-10-01

    The understanding of carbon nanotube (CNT) growth is crucial for the control of their production. In particular, the identification of structural changes of carbon possibly occurring near the catalyst particle in the very early stages of their formation is of high interest. In this study, samples of nascent CNT obtained during nucleation step and samples of vertically aligned CNT obtained during growth step are analysed by combined spatially resolved Raman spectroscopy and X-ray diffraction measurements. Spatially resolved Raman spectroscopy reveals that iron-based phases and carbon phases are co-localized at the same position, and indicates that sp{sup 2} carbon nucleates preferentially on iron-based particles during this nucleation step. Depth scan Raman spectroscopy analysis, performed on nascent CNT, highlights that carbon structural organisation is significantly changing from defective graphene layers surrounding the iron-based particles at their base up to multi-walled nanotube structures in the upper part of iron-based particles. - Highlights: • Spatial co-localization of iron and carbon structures in nascent carbon nanotubes • Imaging local carbon structure changes along catalyst particles by Raman spectroscopy. • In nascent nanotubes, significant structural changes occur along catalyst particle.

  20. Raman spectroscopy for DNA quantification in cell nucleus.

    Science.gov (United States)

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate. © 2014 International Society for Advancement of Cytometry.

  1. Laser Raman spectroscopy in heat and flow technology

    International Nuclear Information System (INIS)

    Leipertz, A.

    1981-01-01

    The laser Raman spectroscopy based on the inelastic scattering of incident laser photons on the molecules of the fluid to be investigated, has advantages which partly reach beyond the usual scattered light methods: The signales are molecule-specific, the vibration line of various gases can be spectrally well recognized, the field of application is wide, the energy state of the molecules is hardly influenced. By measuring the line intensity, one obtains the concentration of the observed gas components via the molecule number, the temperature and total pressure; from the uptake of the partial density of the single components one can obtain the density of the gas mixture; vibration temperature and rotation temperature can be measured independently. Measuring methods and construction of a Raman probe are given. (WB) [de

  2. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2018-02-01

    Full Text Available Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene.

  3. Rapid Classification of Ordinary Chondrites Using Raman Spectroscopy

    Science.gov (United States)

    Fries, M.; Welzenbach, L.

    2014-01-01

    Classification of ordinary chondrites is typically done through measurements of the composition of olivine and pyroxenes. Historically, this measurement has usually been performed via electron microprobe, oil immersion or other methods which can be costly through lost sample material during thin section preparation. Raman microscopy can perform the same measurements but considerably faster and with much less sample preparation allowing for faster classification. Raman spectroscopy can facilitate more rapid classification of large amounts of chondrites such as those retrieved from North Africa and potentially Antarctica, are present in large collections, or are submitted to a curation facility by the public. With development, this approach may provide a completely automated classification method of all chondrite types.

  4. Research of Raman spectroscopy to detect subsurface ingredient under non-transparent medium

    International Nuclear Information System (INIS)

    Zhang Xiaohua; Zhang Ji; Zhang Haifeng; Lu Jianxin; Sun Shuying; Wang Leijian; Xu Yongsheng; Wang Xiaojie; Tang Xiuzhang

    2014-01-01

    The measurement and contrast of NaNO 3 powder concealed in opaque/semi-transparent plastic bottles were carried out through conventional Raman spectroscopy configuration and spatially offset Raman spectroscopy configuration individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle was analyzed. The detection depth of conventional Raman spectroscopy is small and the ingredient of the subsurface under non-transparent medium can not be detected, and the spatially offset Raman spectroscopy broke through the neck of the conventional Raman spectroscopy detection. The measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic bottle) were realized. (authors)

  5. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Czech Academy of Sciences Publication Activity Database

    Procházka, D.; Mazura, M.; Samek, Ota; Rebrošová, K.; Pořízka, P.; Klus, J.; Procházková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    Roč. 139 (2018), s. 6-12 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GA15-20645S; GA ČR(CZ) GA16-12477S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser-induced breakdown spectroscopy * Raman spectroscopy * chemometrics * bacteria Impact factor: 3.241, year: 2016

  6. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  7. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  8. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  9. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2011-10-21

    This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.

  10. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  11. UV-visible and resonance Raman spectroscopy of halogen molecules in clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Janda, K.C.; Kerenskaya, G.; Goldsheleger, I.U.; Apkarian, V.A.; Fleischer, E.B. [California Univ., Irvine, CA (United States). Dept. of Chemistry

    2008-07-01

    Resonance Raman spectroscopy was used to study halogen clathrate hydrate solids. In particular, this paper presented an ultraviolet-visible spectra for a polycrystalline sample of chlorine clathrate hydrate and two single crystal samples of bromine clathrate hydrate. UV-visible spectroscopy was used to study the interactions between the halogen guest molecule and the host water lattice. The spectrum for chlorine hydrate had a strong temperature dependence, while the spectra for bromine clathrate hydrate single crystals had a stable cubic type 2 structure as well as a tetragonal structure. A metastable cubic type 1 structure was also observed. Resonance Raman spectroscopy showed how the molecules fit into the host cages. 25 refs., 2 tabs., 7 figs.

  12. Determination of ripeness stages of Mazafati variety of date fruit by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    R Khodabakhshian

    2016-04-01

    study was to evaluate the feasibility of a nondestructive method based on FT-Raman spectroscopy in distinction of Mazafati date fruits according to four mentioned ripeness stages. Materials and Methods: Sample preparation: Mazafati variety of date fruit was used for this study. During the harvest seasons of 2012 (July-August, the samples from each four stages of ripening namely Kimri, Khalal, Rutab and Tamr were collected from two different orchards in Bam, Kerman province, Iran. A number of 100 date samples were tested in this study, and the external features of the four stages are exemplified in Fig.1. To characterize the physical properties of studied samples, the selected physical properties such as initial moisture content, mass, geometric mean diameter, sphericity and density of studied samples were measured using represented methods by Mohsenin (1896, Jahromi et al. (2008 and Shakeri and Khodabakhshian (2011. At least, the samples were kept at 5C in a refrigerator for 7 days to distribute the moisture uniformly throughout the sample. Before spectral acquisition, the required quantities of date fruits in each ripeness stage was taken out of the frig and allowed to warm with room temperature for approximately 2 hr (Khodabakhshian et al., 2012. Chemical properties measurements: Tissue samples were cut from each fruit separately and were macerated with a commercial juice extractor, filtered and centrifuged. The supernatant juice was used for the determination of sugar content with a manual refractometer, and expressed as percent Brix in the juice. Dry weight percentage of samples (Between 3-5 g was determined by weighing them first, then dried them at 105ºC in a forced-air oven for 4 h and finally reweighed. PH value of date fruits was determined by a pH meter. Raman spectroscopic set-up: FT-Raman spectra on the whole fruits in the region 200-2500 cm-1 were recorded using a Thermo Nicolet NEXUS 870 spectrometer (Thermo Electron Corp, Madison, Wis., U.S.A equipped

  13. Transcutaneous Measurement of Blood Analyte Concentration Using Raman Spectroscopy

    Science.gov (United States)

    Barman, Ishan; Singh, Gajendra P.; Dasari, Ramachandra R.; Feld, Michael S.

    2008-11-01

    Diabetes mellitus is a chronic disorder, affecting nearly 200 million people worldwide. Acute complications, such as hypoglycemia, cardiovascular disease and retinal damage, may occur if the disease is not adequately controlled. As diabetes has no known cure, tight control of glucose levels is critical for the prevention of such complications. Given the necessity for regular monitoring of blood glucose, development of non-invasive glucose detection devices is essential to improve the quality of life in diabetic patients. The commercially available glucose sensors measure the interstitial fluid glucose by electrochemical detection. However, these sensors have severe limitations, primarily related to their invasive nature and lack of stability. This necessitates the development of a truly non-invasive glucose detection technique. NIR Raman Spectroscopy, which combines the substantial penetration depth of NIR light with the excellent chemical specificity of Raman spectroscopy, provides an excellent tool to meet the challenges involved. Additionally, it enables simultaneous determination of multiple blood analytes. Our laboratory has pioneered the use of Raman spectroscopy for blood analytes' detection in biological media. The preliminary success of our non-invasive glucose measurements both in vitro (such as in serum and blood) and in vivo has provided the foundation for the development of feasible clinical systems. However, successful application of this technology still faces a few hurdles, highlighted by the problems of tissue luminescence and selection of appropriate reference concentration. In this article we explore possible avenues to overcome these challenges so that prospective prediction accuracy of blood analytes can be brought to clinically acceptable levels.

  14. Characterization of oil-producing microalgae using Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Zemánek, Pavel; Jonáš, Alexandr; Telle, H.H.

    2011-01-01

    Roč. 8, č. 10 (2011), s. 701-709 ISSN 1612-2011 R&D Projects: GA MŠk OC08034; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Grant - others:EC(XE) PERG 06-GA-2009-256526 Institutional research plan: CEZ:AV0Z20650511 Keywords : Raman spectroscopy * algae * lipids * biofuel * iodine value * microorganisms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 9.970, year: 2011

  15. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy

    Science.gov (United States)

    Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.

    2018-02-01

    Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.

  16. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  17. Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate

    International Nuclear Information System (INIS)

    Fromm, F; Wehrfritz, P; Seyller, Th; Hundhausen, M

    2013-01-01

    Raman spectroscopy is frequently used to study the properties of epitaxial graphene grown on silicon carbide (SiC). In this work, we present a confocal micro-Raman study of epitaxial graphene on SiC(0001) in top-down geometry, i.e. in a geometry where both the primary laser light beam as well as the back-scattered light is guided through the SiC substrate. Compared to the conventional top-up configuration, in which confocal micro-Raman spectra are measured from the air side, we observe a significant intensity enhancement in top-down configuration, indicating that most of the Raman-scattered light is emitted into the SiC substrate. The intensity enhancement is explained in terms of dipole radiation at a dielectric surface. The new technique opens the possibility to probe graphene layers in devices where the graphene layer is covered by non-transparent materials. We demonstrate this by measuring gate-modulated Raman spectra of a top-gated epitaxial graphene field effect device. Moreover, we show that these measurements enable us to disentangle the effects of strain and charge on the positions of the prominent Raman lines in epitaxial graphene on SiC. (paper)

  18. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  19. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  20. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO42 during Heating by High Temperature Raman and 27Al NMR Spectroscopies

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-03-01

    Full Text Available Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO42 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W. The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO42 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO42 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.

  1. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.

    2013-07-30

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Raman Spectroscopy of Solid Oxide Fuel Cells: Technique Overview and Application to Carbon Deposition Analysis

    KAUST Repository

    Maher, R. C.; Duboviks, V.; Offer, G. J.; Kishimoto, M.; Brandon, N. P.; Cohen, L. F.

    2013-01-01

    Raman spectroscopy is a powerful characterization tool for improving the understanding of solid oxide fuel cells (SOFCs), capable of providing direct, molecularly specific information regarding the physical and chemical processes occurring within functional SOFCs in real time. In this paper we give a summary of the technique itself and highlight ex situ and in situ studies that are particularly relevant for SOFCs. This is followed by a case study of carbon formation on SOFC Ni-based anodes exposed to carbon monoxide (CO) using both ex situ and in situ Raman spectroscopy combined with computational simulations. In situ measurements clearly show that carbon formation is significantly reduced for polarized SOFCs compared to those held at open circuit potential (OCP). Ex situ Raman mapping of the surfaces showed clear variations in the rate of carbon formation across the surface of polarized anodes. Computational simulations describing the geometry of the cell showed that this is due to variations in gas access. These results demonstrate the ability of Raman spectroscopy in combination with traditional characterization tools, to provide detailed understanding of critical processes occurring within functional SOFCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  4. Study of simple super-critical fluids (CO2, C2D6) through neutron scattering, Raman spectroscopy and molecular dynamic simulations

    International Nuclear Information System (INIS)

    Longelin, St.

    2004-04-01

    Super-critical fluids are largely used in industrial sectors. However the knowledge of the physical phenomena in which they are involved stays insufficient because of their particular properties. A new model of adjusting molecular structures is proposed, this model has been validated through neutron scattering experiments with high momentum transfer on C 2 D 6 . The experimental representation of the critical universal function for C 2 D 6 and CO 2 has been obtained through the neutron echo spin and by relying on structure measurements made through neutron elastic scattering at small angles. Raman spectroscopy and molecular dynamics simulation have been used to feature structure and dynamics. Scattering as well as microscopic molecular density fluctuations have been analysed

  5. Light-Induced Tellurium Enrichment on CdZnTe Crystal Surfaces Detected by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hawkins, Samantha A.; Villa-Aleman, Eliel; Duff, Martine C.; Hunter, Doug B.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Black, David R.

    2008-01-01

    CdZnTe (CZT) crystals can be grown under controlled conditions to produce high-quality crystals to be used as room-temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro-Raman spectroscopy. The growth of Te rich areas on the surface was induced by low-power lasers. The growth was observed versus time with low-power Raman scattering and was observed immediately under higher-power conditions. The detector response was also measured after induced Te enrichment.

  6. LIGHT INDUCED TELLURIUM ENRICHMENT ON CDZNTE CRYSTAL SURFACES DETECTED BY RAMAN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Hawkins, S; Eliel Villa-Aleman, E; Martine Duff, M; Douglas Hunter, D

    2007-01-01

    Synthetic CdZnTe or 'CZT' crystals can be grown under controlled conditions to produce high quality crystals to be used as room temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro Raman spectroscopy. The growth of Te rich areas on the surface was induced by low powered lasers. The growth was observed versus time with low power Raman scattering and was observed immediately under higher power conditions. The detector response was also measured after induced Te enrichment

  7. Stand-off detection of chemicals by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Wu, Ming; Ray, Mark; Hang Fung, K.; Ruckman, Mark W.; Harder, David; Sedlacek, Arthur J. III

    2000-01-01

    Experimental results are reported on a mobile, stand-alone, solar-blind ultraviolet (UV) Raman lidar system for the stand-off detection and identification of liquid and solid targets at ranges of hundreds of meters. The lidar is a coaxial system capable of performing range-resolved measurements of gases and aerosols, as well as solids and liquids. The transmitter is a flash lamp pumped 30 Hz Nd:YAG laser with quadrupled output at 266 nm. The receiver subsystem is comprised of a 40 cm Cassegrain telescope, a holographic UV edge filter for suppressing the elastic channel, a 0.46 m Czerny-Turner spectrometer, and a time gated intensified charge-coupled device (CCD) detector. The rejection of elastic light scattering by the edge filter is better than one part in 10 5 , while the transmittance 500 cm-1 to the red of the laser line is greater than 50%. Raman data are shown for selected solids, neat liquids, and mixtures down to the level of 1% volume ratio. On the basis of the strength of the Raman returns, a stand-off detection limit of ∼500 g/m2 for liquid spills of common solvents at the range of one half of a kilometer is possible. (c) 2000 Society for Applied Spectroscopy

  8. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  9. A Novel Method for Bacterial UTI Diagnosis Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Evdokia Kastanos

    2012-01-01

    Full Text Available The current state of the art on bacterial classification using Raman and Surface Enhanced Raman Spectroscopy (SERS for the purpose of developing a rapid and more accurate method for urinary tract infection (UTI diagnosis is presented. SERS, an enhanced version of Raman offering much increased sensitivity, provides complex biochemical information which, in conjunction with advanced analysis and classification techniques, can become a valuable diagnostic tool. The variety of metal substrates used for SERS, including silver and gold colloids, as well as nanostructured metal surfaces, is reviewed. The challenges in preprocessing noisy and complicated spectra and the various methods used for feature creation as well as a novel method using spectral band ratios are described. The various unsupervised and supervised classification methods commonly used for SERS spectra of bacteria are evaluated. Current research on transforming SERS into a valuable clinical tool for the diagnosis of UTIs is presented. Specifically, the classification of bacterial spectra (a as positive or negative for an infection, (b as belonging to a particular species of bacteria, and (c as sensitive or resistant to an antibiotic are described. This work can lead to the development of novel technology with extremely important benefits for public health.

  10. Tackling field-portable Raman spectroscopy of real world samples

    Science.gov (United States)

    Shand, Neil C.

    2008-10-01

    A major challenge confronting first responders, customs authorities and other security-related organisations is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Currently, a range of hand portable Raman equipment is commercially available that is low cost and increasingly more sophisticated. These systems are generally based on the 785nm Stokes shifted Raman technique with many using dispersive grating spectrometers. This technique offers a broad range of capabilities including the ability to analyse illicit drugs, explosives, chemical weapons and pre-cursors but still has some fundamental constraints. 'Real world' samples, such as those found at a crime scene, will often not be presented in the most accessible manner. Simple issues such as glass fluorescence can make an otherwise tractable sample impossible to analyse in-situ. A new generation of portable Raman equipment is currently being developed to address these issues. Consideration is given to the use of longer wavelength for fluorescence reduction. Alternative optical designs are being tested to compensate for the signal reduction incurred by moving to longer wavelengths. Furthermore, the use of anti-Stokes spectroscopy is being considered as well as investigating the robustness and portability of traditional Fourier Transform interferometer designs along with future advances in detector technology and ultra small spectrometers.

  11. Antenna Design for Directivity-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Aftab Ahmed

    2012-01-01

    Full Text Available Antenna performance can be described by two fundamental parameters: directivity and radiation efficiency. Here, we demonstrate nanoantenna designs in terms of improved directivity. Performance of the antennas is demonstrated in Raman scattering experiments. The radiated beam is directed out of the plane by using a ground plane reflector for easy integration with commercial microscopes. Parasitic elements and parabolic and waveguide nanoantennas with a ground plane are explored. The nanoantennas were fabricated by a series of electron beam evaporation steps and focused ion beam milling. As we have shown previously, the circular waveguide nanoantenna boosts the measured Raman signal by 5.5x with respect to a dipole antenna over a ground plane; here, we present the design process that led to the development of that circular waveguide nanoantenna. This work also shows that the parabolic nanoantenna produces a further fourfold improvement in the measured Raman signal with respect to a circular waveguide nanoantenna. The present designs are nearly optimal in the sense that almost all the beam power is coupled into the numerical aperture of the microscope. These designs can find applications in microscopy, spectroscopy, light-emitting devices, photovoltaics, single-photon sources, and sensing.

  12. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer 12C/13C Graphene

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kong, J.; Janda, Pavel; Kavan, Ladislav; Dresselhaus, M. S.

    2011-01-01

    Roč. 11, č. 5 (2011), s. 1957-1963 ISSN 1530-6984 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA MŠk ME09060; GA MŠk LC510; GA ČR GC203/07/J067; GA ČR GAP204/10/1677 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * bilayer * Raman Spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 13.198, year: 2011

  13. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  14. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil.

    Science.gov (United States)

    Strzemski, Maciej; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Agacka-Mołdoch, Monika; Drączkowski, Piotr; Matosiuk, Dariusz; Kurach, Łukasz; Kocjan, Ryszard; Dresler, Sławomir

    2017-11-01

    Carlina genus plants e.g. Carlina acanthifolia subsp. utzka have been still used in folk medicine of many European countries and its biological activity is mostly associated with root essential oils. In the present paper, Raman spectroscopy (RS) was applied for the first time for evaluation of essential oil distribution in root of C. acnthifolia subsp. utzka and identification of root structures containing the essential oil. Furthermore, RS technique was applied to assess chemical stability of oil during drying of plant material or distillation process. Gas chromatography-mass spectrometry was used for qualitative and quantitative analysis of the essential oil. The identity of compounds was confirmed using Raman, ATR-IR and NMR spectroscopy. Carlina oxide was found to be the main component of the oil (98.96% ± 0.15). The spectroscopic study showed the high stability of essential oil and Raman distribution analysis indicated that the oil reservoirs were localized mostly in the structures of outer layer of the root while the inner part showed nearly no signal assigned to the oil. Raman spectroscopy technique enabled rapid, non-destructive direct analysis of plant material with minimal sample preparation and allowed straightforward, unambiguous identification of the essential oil in the sample. Copyright © 2017. Published by Elsevier B.V.

  15. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy.

    Science.gov (United States)

    Wang, Hong; Zhang, Shaohong; Wan, Limei; Sun, Hong; Tan, Jie; Su, Qiucheng

    2018-08-05

    Lung cancer is the leading cause of cancer-related death worldwide. Current clinical screening methods to detect lung cancer are expensive and associated with many complications. Raman spectroscopy is a spectroscopic technique that offers a convenient method to gain molecular information about biological samples. In this study, we measured the serum Raman spectral intensity of healthy volunteers and patients with different stages of non-small cell lung cancer. The purpose of this study was to evaluate the application of serum laser Raman spectroscopy as a low cost alternative method in the screening and staging of non-small cell lung cancer (NSCLC). The Raman spectra of the sera of peripheral venous blood were measured with a LabRAM HR 800 confocal Micro Raman spectrometer for individuals from five groups including 14 healthy volunteers (control group), 23 patients with stage I NSCLC (stage I group), 24 patients with stage II NSCLC (stage II group), 19 patients with stage III NSCLC (stage III group), 11 patients with stage IV NSCLC (stage IV group). Each serum sample was measured 3 times at different spots and the average spectra represented the signal of Raman spectra in each case. The Raman spectrum signal data of the five groups were statistically analyzed by analysis of variance (ANOVA), principal component analysis (PCA), linear discriminant analysis (LDA), and cross-validation. Raman spectral intensity was sequentially reduced in serum samples from control group, stage I group, stage II group and stage III/IV group. The strongest peak intensity was observed in the control group, and the weakest one was found in the stage III/IV group at bands of 848 cm -1 , 999 cm -1 , 1152 cm -1 , 1446 cm -1 and 1658 cm -1 (P Raman spectroscopy can effectively identify patients with stage I, stage II or stage III/IV Non-Small Cell Lung cancer using patient serum samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A real-time Raman spectroscopy study of the dynamics of laser-thinning of MoS2 flakes to monolayers

    Science.gov (United States)

    Gu, Enyao; Wang, Qiyuan; Zhang, Youwei; Cong, Chunxiao; Hu, Laigui; Tian, Pengfei; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2017-12-01

    Transition metal dichalcogenides (TMDCs) in monolayer form have attracted a great deal of attention for electronic and optical applications. Compared to mechanical exfoliation and chemical synthesis, laser thinning is a novel and unique "on-demand" approach to fabricate monolayers or pattern desired shapes with high controllability and reproducibility. Its successful demonstration motivates a further exploration of the dynamic behaviour of this local thinning process. Here, we present an in-situ study of void formation by laser irradiation with the assistance of temporal Raman evolution. In the analysis of time-dependent Raman intensity, an empirical formula relating void size to laser power and exposure time is established. Void in thinner MoS2 flakes grows faster than in thicker ones as a result of reduced sublimation temperature in the two-dimensional (2D) materials. Our study provides useful insights into the laser-thinning dynamics of 2D TMDCs and guidelines for an effective control over the void formation.

  17. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Hao, H.; Liu, H.X.; Cao, M.H.; Min, X.M.; Ouyang, S.X.

    2006-01-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi 4 Ti 4 O 15 (SBT) were studied in the range 40-590 C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm -1 modes related to the rotating and tilting of the TiO 6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm -1 peaks. (orig.)

  18. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    Science.gov (United States)

    Hao, H.; Liu, H. X.; Cao, M. H.; Min, X. M.; Ouyang, S. X.

    2006-10-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi4Ti4O15 (SBT) were studied in the range 40 590 °C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm-1 modes related to the rotating and tilting of the TiO6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm-1 peaks.

  19. Raman spectroscopy for the microbiological characterization and identification of medically relevant bacteria

    Science.gov (United States)

    Hamasha, Khozima Mahmoud

    The detection and identification of pathogenic bacteria has become more important than ever due to the increase of potential bioterrorism threats and the high mortality rate of bacterial infections worldwide. Raman spectroscopy has recently gained popularity as an attractive robust approach for the molecular characterization, rapid identification, and accurate classification of a wide range of bacteria. In this dissertation, Raman spectroscopy utilizing advanced statistical techniques was used to identify and discriminate between different pathogenic and non-pathogenic bacterial strains of E. coli and Staphylococcus aureus bacterial species by probing the molecular compositions of the cells. The five-carbon sugar xylitol, which cannot be metabolized by the oral and nasopharyngeal bacteria, had been recognized by clinicians as a preventive agents for dental caries and many studies have demonstrated that xylitol causes a reduction in otitis media (chronic inner ear infections) and other nasopharyngeal infections. Raman spectroscopy was used to characterize the uptake and metabolic activity of xylitol in pathogenic (viridans group Streptococcus) and nonpathogenic (E. coli) bacteria by taking their Raman spectra before xylitol exposure and after growing with xylitol and quantifying the significant differences in the molecular vibrational modes due to this exposure. The results of this study showed significant stable spectral changes in the S. viridians bacteria induced by xylitol and those changes were not the same as in some E. coli strains. Finally, Raman spectroscopy experiments were conducted to provide important information about the function of a certain protein (wag31) of Mycobacterium tuberculosis using a relative non-pathogenic bacterium called Mycobacterium smegmatis. Raman spectra of conditional mutants of bacteria expressing three different phosphorylation forms of wag31 were collected and analyzed. The results show that that the phosphorylation of wag31

  20. Applications of the Raman spectroscopy in the materials characterization

    International Nuclear Information System (INIS)

    Jimenez S, S.; Escobar A, L.; Camacho L, M. A.

    2011-01-01

    The study field of the science and technology of surfaces and materials have been of primordial importance in the last years due to the impact that they have the knowledge that it generates in diverse areas. For this reason, the Mexican Society of Science and Technology of Surfaces and Materials has focused a good part of their investigation activities toward the materials science and technology development. Inside the investigation fields carried out by members of this Society, are the following: semiconductors, thin films, hard coatings, deposit techniques, plasmas, biomaterials, Ab-initio calculations, characterization techniques, photo-thermal properties, solar cells, nano science, magnetism, superconductivity and related topics. Among the techniques used for this purpose is the Raman Spectroscopy (Rs), which has demonstrated to be a powerful and versatile tool in the materials study. In the last three congresses that the Society has organized, an average of 42 works related with this topic have been presented, what gave the rule to prepare this book whose objective is on one hand diffusing part of the works that carry out different groups integrated with members of the Society that use the Rs like an important tool in its investigation work. A second objective is that it can serve like support to the students that begin to be involved, or that they are already involved, in topics where the Rs can have a decisive paper in the development of its projects. It is also expected that some of the topics included in the book are of utility for professors and researches that already uses the Rs, or that it can be of help for those who are beginning in this technique as alternative or like complementary analysis tool. (Author)

  1. THE ROLE OF RAMAN SPECTROSCOPY IN THE ANALYTICAL CHEMISTRY OF POTABLE WATER

    Science.gov (United States)

    Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of chemical applications. For example, many recalcitrant industrial process monitoring problems have been solved in recent years with in-line Raman spectrometers. Raman is attr...

  2. ORIENTATIONAL MICRO-RAMAN SPECTROSCOPY ON HYDROXYAPATITE SINGLE-CRYSTALS AND HUMAN ENAMEL CRYSTALLITES

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    Single crystals of synthetic hydroxyapatite have been examined by orientational micro-Raman spectroscopy. The observed Raman bands include the PO43-/OH- internal and external. modes over the spectral range from 180 to 3600 cm(-1). The Raman-active symmetry tensors (A, E(1), and E(2)) of

  3. Study of Polymorphism of Borovanadate Glass of Sodium by Raman ...

    African Journals Online (AJOL)

    Study of Polymorphism of Borovanadate Glass of Sodium by Raman Spectroscopy Low Frequencies. MK Rabia, M Mayoufi, L Grosvalet, B Champagnon. Abstract. Sodium tetraborate (100 – x)(Na2B4O7.10H2O)– xV2O5, (x = 0 to 20 mole %) has been elaborated by splat cooling technique. Raman Measurements on the ...

  4. Using Deep UV Raman Spectroscopy to Identify In Situ Microbial Activity

    Science.gov (United States)

    Sapers, H. M.; Wanger, G.; Amend, J.; Orphan, V. J.; Bhartia, R.

    2017-12-01

    Microbial communities living in close association with lithic substrates play a critical role in biogeochemical cycles. Understanding the interactions between microorganisms and their abiotic substrates requires knowledge of microbial activity. Identifying active cells adhered to complex environmental substrates, especially in low biomass systems, remains a challenge. Stable isotope probing (SIP) provides a means to trace microbial activity in environmental systems. Active members of the community take up labeled substrates and incorporate the labels into biomolecules that can be detected through downstream analyses. Here we show for the first time that Deep UV (248 nm) Raman spectroscopy can differentiate microbial cells labeled with stable isotopes. Previous studies have used Raman spectroscopy with a 532 nm source to identify active bacterial cells by measuring a Raman shift between peaks corresponding to amino acids incorporating 13C compared to controls. However, excitation at 532 nm precludes detection on complex substrates due to high autofluorescence of native minerals. Excitation in the DUV range offers non-destructive imaging on mineral surfaces - retaining critical contextual information. We prepared cultures of E. coli grown in 50 atom% 13C glucose spotted onto Al wafers to test the ability of DUV Raman spectroscopy to differentiate labeled and unlabeled cells. For the first time, we are able to demonstrate a distinct and repeatable shift between cells grown in labeled media and unlabeled media when imaged on Al wafers with DUV Raman spectroscopy. The Raman spectra are dominated by the characteristic Raman bands of guanine. The dominant marker peak for guanine attributed to N7-C8 and C8-N9 ring stretching and C8-H in-plane bending, is visible at 1480 cm-1 in the unlabeled cells and is blue-shifted by 20 wavenumbers to 1461 cm-1 in the labeled cells. The ability of DUV Raman to effectively identify regions containing cells that have incorporated isotopic

  5. Gold Nanostructures for Surface-Enhanced Raman Spectroscopy, Prepared by Electrodeposition in Porous Silicon

    Directory of Open Access Journals (Sweden)

    Yukio H. Ogata

    2011-04-01

    Full Text Available Electrodeposition of gold into porous silicon was investigated. In the present study, porous silicon with ~100 nm in pore diameter, so-called medium-sized pores, was used as template electrode for gold electrodeposition. The growth behavior of gold deposits was studied by scanning electron microscope observation of the gold deposited porous silicon. Gold nanorod arrays with different rod lengths were prepared, and their surface-enhanced Raman scattering properties were investigated. We found that the absorption peak due to the surface plasmon resonance can be tuned by changing the length of the nanorods. The optimum length of the gold nanorods was ~600 nm for surface-enhanced Raman spectroscopy using a He-Ne laser. The reason why the optimum length of the gold nanorods was 600 nm was discussed by considering the relationship between the absorption peak of surface plasmon resonance and the wavelength of the incident laser for Raman scattering.

  6. Examining live cell cultures during apoptosis by digital holographic phase imaging and Raman spectroscopy

    Science.gov (United States)

    Khmaladze, Alexander

    2017-11-01

    Cellular apoptosis is a unique, organized series of events, leading to programmed cell death. In this work, we present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy measurements of live cell cultures yield information about cell shape and volume, changes to which are indicative of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopic measurements provide complementary information about cells, such as protein, lipid and nucleic acid content, and the spectral signatures associated with structural changes in molecules. Our work indicates that the chemical changes in proteins, which were detected by Raman measurements, preceded morphological changes, which were seen with digital holographic microscopy.

  7. Towards optical fibre based Raman spectroscopy for the detection of surgical site infection

    Science.gov (United States)

    Thompson, Alex J.; Koziej, Lukasz; Williams, Huw D.; Elson, Daniel S.; Yang, Guang-Zhong

    2016-03-01

    Surgical site infections (SSIs) are common post-surgical complications that remain significant clinical problems, as they are associated with substantial mortality and morbidity. As such, there is significant interest in the development of minimally invasive techniques that permit early detection of SSIs. To this end, we are applying a compact, clinically deployable Raman spectrometer coupled to an optical fibre probe to the study of bacteria, with the long term goal of using Raman spectroscopy to detect infection in vivo. Our system comprises a 785 nm laser diode for excitation and a commercial (Ocean Optics, Inc.) Raman spectrometer for detection. Here we discuss the design, optimisation and validation of this system, and describe our first experiences interrogating bacterial cells (Escherichia coli) in vitro.

  8. Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy

    Science.gov (United States)

    Lee, Hoonsoo; Lim, Hyoun-Sub; Cho, Byoung-Kwan

    2016-05-01

    The Cucumber Green Mottle Mosaic Virus (CGMMV) is a globally distributed plant virus. CGMMV-infected plants exhibit severe mosaic symptoms, discoloration, and deformation. Therefore, rapid and early detection of CGMMV infected seeds is very important for preventing disease damage and yield losses. Raman spectroscopy was investigated in this study as a potential tool for rapid, accurate, and nondestructive detection of infected seeds. Raman spectra of healthy and infected seeds were acquired in the 400 cm-1 to 1800 cm-1 wavenumber range and an algorithm based on partial least-squares discriminant analysis was developed to classify infected and healthy seeds. The classification model's accuracies for calibration and prediction data sets were 100% and 86%, respectively. Results showed that the Raman spectroscopic technique has good potential for nondestructive detection of virus-infected seeds.

  9. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Soukiassian, A; Tenne, D A; Schlom, D; Xi, X X; Cantarero, A

    2007-01-01

    We study high quality molecular-beam epitaxy grown BaTiO 3 /SrTiO 3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO 3 /SrTiO 3 layer thicknesses the effective sound velocities within each of the layers are obtained

  10. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Science.gov (United States)

    Bruchhausen, A.; Lanzillotti-Kimura, N. D.; Fainstein, A.; Soukiassian, A.; Tenne, D. A.; Schlom, D.; Xi, X. X.; Cantarero, A.

    2007-12-01

    We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.

  11. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    OpenAIRE

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, ?scar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and Pol...

  12. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  13. Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    T. M. DeCarlo

    2017-11-01

    Full Text Available Quantifying the saturation state of aragonite (ΩAr within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32−], but direct quantification of ΩAr (where ΩAr =  [CO32−][Ca2+]∕Ksp has proved elusive. Here we test a new technique for deriving ΩAr based on Raman spectroscopy. First, we analysed abiogenic aragonite crystals precipitated under a range of ΩAr from 10 to 34, and we found a strong dependence of Raman peak width on ΩAr with no significant effects of other factors including pH, Mg∕Ca partitioning, and temperature. Validation of our Raman technique for corals is difficult because there are presently no direct measurements of calcifying fluid ΩAr available for comparison. However, Raman analysis of the international coral standard JCp-1 produced ΩAr of 12.3 ± 0.3, which we demonstrate is consistent with published skeletal Mg∕Ca, Sr∕Ca, B∕Ca, δ11B, and δ44Ca data. Raman measurements are rapid ( ≤  1 s, high-resolution ( ≤  1 µm, precise (derived ΩAr ± 1 to 2 per spectrum depending on instrument configuration, accurate ( ±2 if ΩAr < 20, and require minimal sample preparation, making the technique well suited for testing the sensitivity of coral calcifying fluid ΩAr to ocean acidification and warming using samples from natural and laboratory settings. To demonstrate this, we also show a high-resolution time series of ΩAr over multiple years of growth in a Porites skeleton from the Great Barrier Reef, and we evaluate the response of ΩAr in juvenile Acropora cultured under elevated CO2 and temperature.

  14. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    Science.gov (United States)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  15. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    Science.gov (United States)

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  16. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    Science.gov (United States)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  17. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    International Nuclear Information System (INIS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Maiwald, Michael; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank

    2017-01-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions. (paper)

  18. Raman spectroscopy study of the crystal - melt phase transition of lanthanum, cerium and neodymium trichlorides; Issledovanie fazovogo perekhoda kristall-rasplav trikhloridov lantana, tseriya i neodima metodom spektroskopii KRS

    Energy Technology Data Exchange (ETDEWEB)

    Zakir' yanova, I D; Salyulev, A B [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Ekaterinburg (Russian Federation)

    2007-09-15

    Systematic structural studies of crystalline (over a wide temperature range) and molten LaCl{sub 3}, CeCl{sub 3}, and NdCl{sub 3} salts (near the crystal-melt phase transition temperature) are conducted employing Raman spectroscopy. A change in the trend of temperature dependences of characteristic frequencies is revealed in the pre-melting region of the compounds. This is attributed to an increase in the number of crystal defects due to weakening of a part of Ln-Cl bonds and decreasing of coordination number of chloride anions in the vicinity of rare earth cation.

  19. Polarization Raman spectroscopy to explain rodent models of brittle bone

    Science.gov (United States)

    Makowski, Alexander J.; Nyman, Jeffry S.; Mahadevan-Jansen, Anita

    2013-03-01

    Activation Transcription Factor 4 (Atf-4) is essential for osteoblast maturation and proper collagen synthesis. We recently found that these bones demonstrate a rare brittleness phenotype, which is independent of bone strength. We utilized a confocal Renishaw Raman microscope (50x objective; NA=.75) to evaluate embedded, polished cross-sections of mouse tibia from both wild-type and knockout mice at 8 weeks of age (24 mice, nmineral and collagen; however, compositional changes did not fully encompass biomechanical differences. To investigate the impact of material organization, we acquired colocalized spectra aligning the polarization angle parallel and perpendicular to the long bone axis from wet intact femurs. To validate our results, we used MMP9-/- mice, which have a brittleness phenotype that is not explained by compositional Raman measures. Polarization angle difference spectra show marked significant changes in orientation of these compositional differences when comparing wild type to knockout bones. Relative to wild-type, Atf4 -/- and MMP9 -/- bones show significant differences (t-test; pbones. Such findings could have alternate interpretations about net collagen orientation or the angular distribution of collagen molecules. Use of polarization specific Raman measurements has implicated a structural profile that furthers our understanding of models of bone brittleness. Polarization content of Raman spectra may prove significant in future studies of brittle fracture and human fracture risk.

  20. Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy

    Science.gov (United States)

    Jamieson, Lauren E.; Greaves, Jennifer; McLellan, Jayde A.; Munro, Kevin R.; Tomkinson, Nicholas C. O.; Chamberlain, Luke H.; Faulds, Karen; Graham, Duncan

    2018-05-01

    Intracellular uptake, distribution and metabolism of lipids are tightly regulated characteristics in healthy cells. An analytical technique capable of understanding these characteristics with a high level of species specificity in a minimally invasive manner is highly desirable in order to understand better how these become disrupted during disease. In this study, the uptake and distribution of three different alkyne tagged fatty acids in single cells were monitored and compared, highlighting the ability of Raman spectroscopy combined with alkyne tags for better understanding of the fine details with regard to uptake, distribution and metabolism of very chemically specific lipid species. This indicates the promise of using Raman spectroscopy directly with alkyne tagged lipids for cellular studies as opposed to subsequently clicking of a fluorophore onto the alkyne for fluorescence imaging.