WorldWideScience

Sample records for raman sensor system

  1. POTENTIALS OF RAMAN BASED SENSOR SYSTEM FOR AN ONLINE ANALYSIS OF HUMAN INHALE AND EXHALE

    Directory of Open Access Journals (Sweden)

    T. Seeger

    2015-11-01

    Full Text Available A gas sensor based on spontaneous Raman scattering is proposed for the compositional analysis of single breath events. A description of the sensor as well as of the calibration procedure, which also allows the quantification of condensable gases, is presented. Moreover, a comprehensive characterization of the system is carried out in order to determine the measurement uncertainty. Finally, the sensor is applied to consecutive breath events and allowed measurements with 250 ms time resolution. The Raman sensor is able to detect all the major gas components, i.e. N2, O2, CO2, and H2O at ambient pressure with a high temporal resolution. Concentration fluctuations within a single breath event could be resolved.

  2. Photonics crystal fiber Raman sensors

    Science.gov (United States)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  3. The long range distributed fiber raman photon temperature sensor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A 31 km long range distributed optical fiber Raman photon temperature sensor (DOFRPTS) system have been developed based on temperature effect of the amplified spontaneous Raman scattering in fiber, and using fiber laser as a pumped source. The results show that temperature measuring uncertainty is ±2 ℃, temperature resolution is 0.1 ℃, measurement time is 432 s, spatial resolution is less than 4 m.

  4. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  5. Optical Sensors based on Raman Effects

    DEFF Research Database (Denmark)

    Jernshøj, Kit Drescher

    Formålet med denne afhandling er at give en systematisk og uddybende videnskabelig diskussion af molekylær Raman spredning, som kan danne grundlag for udviklingen af molekylespecifikke optiske sensorer til on-site, ikke-destruktiv måling. Afhandlingen falder i tre dele, to teoriafsnit, hvor første...... del omhandler den tilgangelige molekylære information ved overfladeforstærket resonans Raman spredning (SERRS), samt hvordan adgangen til denne information kan optimeres. Anden del omhandler, hvordan det molekylære informationsindhold kan forøges ved at kombinere polariserede Raman og resonans Raman...... målinger på frie molekyler med multivariat analyse. I tredje og sidste del, som er et eksperimentelt afsnit, præsenteres og diskuteres overfladeforstærkede Raman målinger (SERS) på tre udvalgte pesticider. Afhandlingen indledes med en diskussion af teorien bag SERRS med speciel fokus på den molekylære...

  6. Raman microspectroscopy based sensor of algal lipid unsaturation

    Science.gov (United States)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  7. Optical Sensors based on Raman Effects

    DEFF Research Database (Denmark)

    Jernshøj, Kit Drescher

    Formålet med denne afhandling er at give en systematisk og uddybende videnskabelig diskussion af molekylær Raman spredning, som kan danne grundlag for udviklingen af molekylespecifikke optiske sensorer til on-site, ikke-destruktiv måling. Afhandlingen falder i tre dele, to teoriafsnit, hvor første...... data fra denne type eksperimenter betyde et øget informationsindhold til anvendelse i den multivariate analyse. Diskussionen er bygget op omkring tre forskellige typer klassifikationsproblemer, hvor der i den første type sker en perturbering, som resulterer i enten en nedgang i symmetri eller en...... energiopsplitning for den ene molekylære specie ud af to tilstede i en opløsning. I det andet type klassifikationsproblem bygger det øgede informationsindhold på en forskydning af den elektroniske absorption og endelig i det tredje klassifikationsproblem er det en molekylær aggregering, der finder sted. I...

  8. A Raman spectroscopy bio-sensor for tissue discrimination in surgical robotics.

    Science.gov (United States)

    Ashok, Praveen C; Giardini, Mario E; Dholakia, Kishan; Sibbett, Wilson

    2014-01-01

    We report the development of a fiber-based Raman sensor to be used in tumour margin identification during endoluminal robotic surgery. Although this is a generic platform, the sensor we describe was adapted for the ARAKNES (Array of Robots Augmenting the KiNematics of Endoluminal Surgery) robotic platform. On such a platform, the Raman sensor is intended to identify ambiguous tissue margins during robot-assisted surgeries. To maintain sterility of the probe during surgical intervention, a disposable sleeve was specially designed. A straightforward user-compatible interface was implemented where a supervised multivariate classification algorithm was used to classify different tissue types based on specific Raman fingerprints so that it could be used without prior knowledge of spectroscopic data analysis. The protocol avoids inter-patient variability in data and the sensor system is not restricted for use in the classification of a particular tissue type. Representative tissue classification assessments were performed using this system on excised tissue.

  9. Calibration of Diamond As a Raman Spectroscopy Pressure Sensor

    Science.gov (United States)

    Ono, S.

    2014-12-01

    In high pressures and high temperatures, the equations of state of reference materials, such as gold, platinum, and sodium chloride, have usually been used for the precise determination of the sample pressure. However, it is difficult to use this technique in laboratory-based experiments, because the synchrotron radiation source is often required. Although the fluorescence of ruby has been commonly used as the pressure sensor in previous laboratory-based experiments, it is impracticable at high temperatures. It is known that the first-order Raman mode of diamond anvil has been considered as a strong candidate because its Raman signal is intense and the diamond is always used as the anvil material. It is the purpose of this study to present the dependences of pressure and temperature on the Raman shift at the culet face of the diamond anvil.Gold powder, which was mixed with NaCl powder, was used as the pressure reference. The high-pressure and high-temperature experiments were performed using a hydrothermal diamond anvil cell (HTDAC). The sample was probed using angle-dispersive X-ray diffraction and Raman spectrometer system, located at the synchrotron beam line, at the BL10XU of SPring-8. The pressure was determined from the unit cell volume of gold using the equation of state for gold. The pressure and temperature dependences of the Raman shift were investigated [1]. The difference between our and previous studies increased rapidly with increasing pressure at pressures above 50 GPa, which is a fatal uncertainty for the pressure calibration. One possible explanation for this inconsistency is an influence of the stress condition in the sample chamber, because a significant deviatoric stress is accumulated during compression. The stress condition of the DAC experiment on the generated pressure is complicated because of some factors (e.g., the crystallographic orientation, design of the anvil, size of the culet, pressure transmitting medium, gasket material, and

  10. The research of improvements in Raman distributed temperature sensor

    Science.gov (United States)

    Zhang, Ge; Zhang, Li-na; Zhang, Shu-juan

    2014-12-01

    Temperature measurement system has been applied in industrial areas extensively. The fiber optic distributed temperature system is one of the most popular means. Measurement error is relatively large when using the distributed temperature sensors (DTS) based on Raman scattering to measure ambient temperature in harsh environments. In this paper, we propose a novel calibration technique to measure the temperature highly accurately over a wide range of temperatures. We also propose an improved double-ended configuration that is insusceptible to the differential loss change in the fiber. By using the improved double-ended configuration, through the anti-Stokes and Stokes signal intensity comparison, the differential mode signal loss in the temperature measurement can be suppressed in optical fiber. So, the measurement results of automatic calibration are irrespectively with the wastage of optical fiber sensors. The result shows that we can obtain the temperature parameters accuracy in wide temperature range, and temperature measurement system has high robustness in harsh environments, suitable for field use.

  11. Angular output of hollow, metal-lined, waveguide Raman sensors

    Energy Technology Data Exchange (ETDEWEB)

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  12. Proliferation detection using a remote resonance Raman chemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A.J.; Chen, C.L.; Dougherty, D.R.

    1993-08-01

    The authors discussed the potential of the resonance Raman chemical sensor as a remote sensor that can be used for gases, liquids or solids. This spectroscopy has the fundamental advantage that it is based on optical fingerprints that are insensitive to environmental perturbations or excitation frequency. By taking advantage of resonance enhancement, the inelastic scattering cross-section can increase anywhere from 4 to 6 orders of magnitude which translates into increased sensing range or lower detection limits. It was also shown that differential cross-sections as small as 10{sup {minus}27} cm{sup 2}/sr do not preclude the use of this technique as being an important component in one`s remote-sensing arsenal. The results obtained in the early 1970s on various pollutants and the more recent work on atmospheric water cast a favorable light on the prospects for the successful development of a resonance Raman remote sensor. Currently, of the 20 CW agent-related {open_quotes}signature{close_quotes} chemicals that the authors have investigated, 18 show enhancements ranging from 3 to 6 orders of magnitude. The absolute magnitudes of the measured resonance enhanced Raman cross-sections for these 18 chemicals suggest that detection and identification of trace quantities of the {open_quotes}signature{close_quotes} chemicals, through a remote resonance Raman chemical sensor, could be achieved.

  13. Fiber sensors for molecular detection using Raman and surface enhanced raman scattering

    Science.gov (United States)

    Yang, Xuan

    In this dissertation, highly sensitive optical fiber sensors based on Raman spectroscopy (RS) and surface-enhanced Raman scattering (SERS) are studied with focus on applications in various chemical and biological detections. In particular, two main categories of optical fibers have been used as the sensing platforms: one is the conventional multimode optical fiber and the other is the hollow core photonic crystal fiber (HCPCF). For the conventional multimode optical fiber, we've developed two types of probes using SERS techniques: the first is based on a double substrate "sandwich" structure with colloidal metal nanoparticles, and the second is based on interference lithography-defined nanopillar array structure on the fiber facet with the metal film deposition. For the HCPCF, the photonic bandgap guiding mechanism provides an ideal sensing platform because the confinement of both light and sample inside the fiber enables direct interaction between the propagating wave and the analyte. We demonstrate that by filling up the air channel(s) of the fiber with gas or liquid samples, it can significantly increase the sensitivity of the sensors in either regular Raman or SERS applications. For RS applications, these fiber sensors were tested with ambient gases, organic vapors, and biomedically important glucose molecule. For SERS application, these fiber sensors were evaluated with Rhodamine 6G, trans-1,2-bis(4-pyridyl)-ethylene, toluene vapor, 2,4-dinitrotoluene vapor, proteins and bacteria. We also demonstrate that these fiber sensors can be integrated with the portable Raman spectrometer in order to make it practical for out-of-laboratory applications. The techniques developed in this study are expected to have significant impact in chemical, biological, environmental, national security, and other applications.

  14. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions.

  15. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  16. Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-11

    High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241) to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project. The following tasks were included: creation of an expanded library of Raman spectra of a UOC sample set, creation of optimal chemometric analysis methods to classify UOC samples by their type and level of impurities, and exploration of the various Raman wavelengths to identify the ideal instrument settings for UOC sample interrogation.

  17. Portable fiber sensors based on surface-enhanced Raman scattering.

    Science.gov (United States)

    Yang, Xuan; Tanaka, Zuki; Newhouse, Rebecca; Xu, Qiao; Chen, Bin; Chen, Shaowei; Zhang, Jin Z; Gu, Claire

    2010-12-01

    Two portable molecular sensing systems based on surface-enhanced Raman scattering (SERS) have been experimentally demonstrated using either a tip-coated multimode fiber (TCMMF) or a liquid core photonic crystal fiber (LCPCF) as the SERS probe. With Rhodamine 6G as a test molecule, the TCMMF-portable SERS system achieved 2-3 times better sensitivity than direct sampling (focusing the laser light directly into the sample without the fiber probe), and a highly sensitive LCPCF-portable SERS system reached a sensitivity up to 59 times that of direct sampling, comparable to the sensitivity enhancement achieved using fiber probes in the bulky Renishaw system. These fiber SERS probes integrated with a portable Raman spectrometer provide a promising scheme for a compact and flexible molecular sensing system with high sensitivity and portability.

  18. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    Science.gov (United States)

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  19. Smart Sensor Systems

    Science.gov (United States)

    Hunter, G. W.; Stetter, J. R.; Hesketh, P. J.; Liu, C. C.

    Sensors and sensor systems are vital to our awareness of our surroundings and provide safety, security, and surveillance, as well as enable monitoring of our health and environment. A transformative advance in the field of sensor technology has been the development of "Smart Sensor Systems". The definition of a Smart Sensor may vary, but typically at a minimum a Smart Sensor is the combination of a sensing element with processing capabilities provided by a microprocessor. That is, Smart Sensors are basic sensing elements with embedded intelligence. The sensor signal is fed to the microprocessor, which processes the data and provides an informative output to an external user. A more expansive view of a Smart Sensor System, which is used in this article, is illustrated in Fig. 19.1: a complete self-contained sensor system that includes the capabilities for logging, processing with a model of sensor response and other data, self-contained power, and an ability to transmit or display informative data to an outside user. The fundamental idea of a smart sensor is that the integration of silicon microprocessors with sensor technology cannot only provide interpretive power and customized outputs, but also significantly improve sensor system performance and capabilities.

  20. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    Sensor networks are being widely deployed for measurement, detection and surveillance applications. In these new applications, users issue long-running queries over a combination of stored data and sensor data. Most existing applications rely on a centralized system for collecting sensor data....... These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...

  1. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  2. Deep UV Raman/Fluorescence (DUV-RF) Stand-Off Sensor for Lunar Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal is to develop a miniature, low power consumption, fused deep UV Raman and native fluorescence (DUV-RF) 1 meter stand-off sensor. The proposed...

  3. Deep UV Raman/Fluorescence (DUV-RF) Stand-Off Sensor for Lunar Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal enables development a miniature, low power consumption, fused deep UV Raman and native fluorescence (DUV-RF) stand-off sensor. The proposed fused...

  4. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  5. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor

    Institute of Scientific and Technical Information of China (English)

    Deming LIU; Shuang LIU; Hairong LIU

    2009-01-01

    A wavelength division multiplexer (WDM) was used to extract the Raman scattering signal from a data fiber. The temperature performance of Raman scattering spectrum was studied theoretically and experimentally. On the base of this study, a distributed fiber-optic temperature sensor (DFTS) system was developed. The sensing distance was 4 km. The temperature accuracy and the distance resolution reached to ±1℃ and ±1 m, respec-tively. The system is stable and adequate for commercial usage, such as the power industry, the underground tunnel, the subway, and the pipe laying, and also for the mission applications, such as the warship and the airplane.

  6. Design of distributed Raman temperature sensing system based on single-mode optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ziheng XU; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Wengang WANG

    2009-01-01

    The distributed optical fiber temperature sensor system based on Raman scattering has developed rapidly since it was invented in 1970s. The optical wavelengths used in most of the distributed temperature optical fiber sensor system based on the Raman scattering are around from 840 to 1330 nm, and the system operates with multimode optical fibers. However, this wavelength range is not suitable for long-distance transmission due to the high attenuation and dispersion of the transmission optical fiber. A novel distributed optical fiber Raman temperature sensor system based on standard single-mode optical fiber is proposed. The system employs the wavelength of 1550 nm as the probe light and the standard communication optical fiber as the sensing medium to increase the sensing distance. This system mainly includes three modules: the probe light transmitting module, the light magnifying and transmission module, and the signal acquisition module.

  7. Few mode fibers based quasi-single mode Raman distributed temperature sensor

    Science.gov (United States)

    Wu, Hao; Wang, Meng; Liu, Tongqing; Yang, Chen; Tong, Weijun; Fu, Songnian; Tang, Ming

    2017-04-01

    We demonstrate a distributed temperature sensor based on quasi-single mode (QSM) Raman scattering in few mode fibers (FMFs). The FMF allows much larger input pump power before the initiate of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based Raman distributed temperature sensor (RDTS). Distributed temperature sensing is realized using conventional RDTS hardware over 20km FMFs within 90s, with a spatial resolution of 3m. The temperature resolution is 2.3°C @10km and 6.7°C @20km, respectively.

  8. Low frequency Raman scattering for high resolution low temperature optical fiber sensors

    Science.gov (United States)

    Rabia, M. K.; Jurdyc, A.-M.; Le Brusq, J.; Champagnon, B.; Vouagner, D.

    2017-09-01

    Raman distributed optical fiber temperature sensors are based on the intensity ratio of the anti-Stokes to the Stokes Raman band at 440 cm-1 of silica. In this paper we predict that the sensitivity of the Raman measurements for low temperatures can be improved by considering the Boson peak in the low frequency Raman scattering domain at 60 cm-1. In this way Raman temperature sensors can be performed down to cryogenic temperatures. It is further shown that the Boson peak is less dependent than the 440 cm-1 band to the polarization of light. For the usual excitation at 1550 nm the anti-Stokes Boson peak at 1536 nm is in the low loss transmission window of the silica fibers.

  9. Development of the Raman lidar system for remote hydrogen gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Young; Baik, Sung Hoon; Park, Seung Kyu; Park, Nak Gyu; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Detection of hydrogen (H{sub 2}) gas leakage is very important for safety of the nuclear power plant because H{sub 2} gas is very flammable and explosive. H{sub 2} gas is generated by oxidizing the nuclear fuel cladding during the critical accident and generated H{sub 2} gas leads to serious secondary damages in the containment building of nuclear power plant. Thus, various H{sub 2} gas detection techniques are used in the nuclear power plant such as catalytic combustion sensors, semiconducting oxide sensors, thermal conductivity sensors and electrochemical sensor. A Raman lidar (Light Detection And Ranging) system for remote detection of the H{sub 2} gas can cover the area in the containment building of a nuclear power plant. H{sub 2} gas has a very strong Raman Effect, and H{sub 2} Raman cells have been widely used for laser wavelength conversion. In this study, Raman lidar system was developed for H{sub 2} gas detection used in the containment building of nuclear power plant. In this study, remote hydrogen gas detection devices and measuring algorithm are developed by using the Raman lidar method. Through the experiment, we proved that our developed Raman lidar system was possible to measure the N{sub 2} and H{sub 2} gas scattering signal remotely.

  10. Raman spectroscopy system with hollow fiber probes

    Science.gov (United States)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  11. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    Science.gov (United States)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  12. Fiber optic direct Raman imaging system based on a hollow-core fiber bundle

    Science.gov (United States)

    Inoue, S.; Katagiri, T.; Matsuura, Y.

    2015-03-01

    A Raman imaging system which combined a hollow fiber bundle and a direct imaging technique was constructed for high-speed endoscopic Raman imaging. The hollow fiber bundle is fabricated by depositing a silver thin film on the inner surface of pre-drawn glass capillary bundle. It performs as a fiber optic probe which transmits a Raman image with high signal-to-noise ratio because the propagating light is confined into the air core inducing little light scattering. The field of view on the sample is uniformly irradiated by the excitation laser light via the probe. The back-scattered image is collected by the probe and captured directly by an image sensor. A pair of thin film tunable filters is used to select target Raman band. This imaging system enables flexible and high-speed Raman imaging of biological tissues.

  13. Soldier systems sensor fusion

    Science.gov (United States)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  14. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  15. Recent development of two new UV Raman standoff explosive detection systems

    Science.gov (United States)

    Waterbury, Rob; Babnick, Robert; Cooper, Justin L.; Ford, Alan R.; Herrera, Francisco; Hopkins, Adam J.; Pohl, Ken; Profeta, Luisa T. M.; Sandoval, Juan; Vunck, Darius

    2016-05-01

    Alakai Defense Systems has created two new short range UV Raman standoff explosive detection sensors. These are called the Critical Infrastructure Protection System (CIPS) and Portable Raman Improvised Explosive Detection System (PRIED) and work at standoff ranges of 10cm and 1-10m respectively. Both these systems are designed to detect neartrace quantities of explosives and Homemade Explosives. A short description of the instruments, design trades, and CONOPS of each design is presented. Data includes a wide variety of explosives, precursors, TIC/TIM's, narcotics, and CWA simulants

  16. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  17. Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor

    Science.gov (United States)

    Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.

  18. Raman Amplification in WDM Optical Communication Systems: A System Perceptive

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srinivas, Talabattula

    2016-12-01

    Statistical study on stimulated Raman scattering (SRS) crosstalk has been done by many researchers while ignoring pulse walk-off effect due to analytically unsolvable nonlinear coupled equations. To our knowledge there is no treatise, which deals with pulse walk-off effect except statistically for few cases in case of wideband WDM Raman amplification systems. In this paper, we investigate the effect of group velocity dispersion induced crosstalk. We have tried to solve nonlinear coupled Raman gain equations for few channels by using the numerical technique called finite difference method. Finally we have provided results of the simulation for few cases. It is ever known that pulse walk-off effect (time-dependent effect) is responsible for transient effects hence the modeling has also done in this paper to simulate the effect of abrupt channel addition and removal response.

  19. Research on Raman Crosstalk in Broadband Wavelength Division Multiplexed Systems

    Institute of Scientific and Technical Information of China (English)

    XUE Fei; QIU Kun

    2004-01-01

    After a theoretical model is put forward on the base of accurate description of the Raman gain profile and the physical quantity,maximum Raman crosstalk(MRC),which quantificationally depicts the intensity of Raman crosstalk is defined.The influences of launch power,fiber effective core area,fiber nonlinear index,fiber length,channel number and channel interval on MRC are deduced.The result indicates that compared with low speed and narrowband optical fiber communication system,serious Raman crosstalk lies in high speed and broadband system,which impacts the performance of the system badly.The result is useful for forecasting Raman crosstalk in broadband and high speed optical fiber communication system.

  20. [Study of the Raman-AFM system for simultaneous measurements of Raman spectrum and micro/nano-structures].

    Science.gov (United States)

    Shi, Bin; Zhang, Hai-jun; Wu, Lan; Zhang, Dong-xian

    2012-04-01

    This paper proposes a novel technique of Raman-atomic force microscopy (AFM) combining micro region Raman spectroscopy and AFM imaging. An in-situ probe unit which can simultaneously realize the detection of Raman spectrum and the measurement of AFM image was designed, and a related Raman-AFM system was constructed. Using this system, some experiments were carried out to acquire micro region Raman spectra and AFM images of ZnO nano-particle and TiO2 film. The results show that the Raman spectra of both samples are in agreement with theoretical vaues, and the AFM images represent their micro/nano-structures quite well. These researches prove the feasibility of the Raman-AFM technique which has the potential of being widely applied in the fields of Raman spectroscopy and micro/nano-technology.

  1. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; He, Yao

    2016-08-15

    During the past few decades, thanks to silicon nanomaterials' outstanding electronic/optical/mechanical properties, large surface-to-volume ratio, abundant surface chemistry, facile tailorability and good compatibility with modern semiconductor industry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance surface-enhanced Raman scattering (SERS) sensors for the detection of various chemical and biological species. Among these, two-dimensional silicon nanostructures made of metal nanoparticle-modified silicon wafers and three-dimensional silicon nanostructures made of metal nanoparticle-decorated SiNW arrays are of particular interest, and have been extensively exploited as promising silicon-based SERS-active substrates for the construction of high-performance SERS sensors. With an aim to retrospect these important and exciting achievements, we herein focus on reviewing recent representative studies on silicon-based SERS sensors for sensing applications from a broad perspective and possible future direction, promoting readers' awareness of these novel powerful silicon-based SERS sensing technologies. Firstly, we summarize the two unique merits of silicon-based SERS sensors, and those are high sensitivity and good reproducibility. Next, we present recent advances of two- and three-dimensional silicon-based SERS sensors, especially for real applications. Finally, we discuss the major challenges and prospects for the development of silicon-based SERS sensors.

  2. Raman backscatter as a remote laser power sensor in high-energy-density plasmas

    CERN Document Server

    Moody, J D; Divol, L; Michel, P; Robey, H F; LePape, S; Ralph, J; Ross, J S; Glenzer, S H; Kirkwood, R K; Landen, O L; MacGowan, B J; Nikroo, A; Williams, E A

    2013-01-01

    Stimulated Raman backscatter (SRS) is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching SRS between a shot reducing outer vs a shot reducing inner power we infer that ~half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. This is the first instantaneous non-disruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.

  3. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  4. Wearable sensor systems for infants.

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-02-05

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  5. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  6. Wearable Sensor Systems for Infants

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432

  7. A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering

    Science.gov (United States)

    Lioe, DeXing; Mars, Kamel; Takasawa, Taishi; Yasutomi, Keita; Kagawa, Keiichiro; Hashimoto, Mamoru; Kawahito, Shoji

    2016-03-01

    A CMOS image sensor using high-speed lock-in pixels for stimulated Raman scattering (SRS) spectroscopy is presented in this paper. The effective SRS signal from the stimulated emission of SRS mechanism is very small in contrast to the offset of a probing laser source, which is in the ratio of 10-4 to 10-5. In order to extract this signal, the common offset component is removed, and the small difference component is sampled using switched-capacitor integrator with a fully differential amplifier. The sampling is performed over many integration cycles to achieve appropriate amplification. The lock-in pixels utilizes high-speed lateral electric field charge modulator (LEFM) to demodulate the SRS signal which is modulated at high-frequency of 20MHz. A prototype chip is implemented using 0.11μm CMOS image sensor technology.

  8. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  9. Raman Scattering in Coherently Prepared Atomic System

    Institute of Scientific and Technical Information of China (English)

    LIN Fu-Cheng(林福成); Yongjoo Rhee; Jonghoon Yi; Hyunmin Park

    2001-01-01

    Atoms in the coherent superposition state prepared by a pulse pair are used as a novel optical memory material where a single interrogation pulse will produce a new pulse pair preserving the relative amplitudes and phases of the preparing pulse pair. Such a coherent superposition state can also be specially tailored along the propagation path to generate Raman scattering in a relatively short distance with very high efficiency.

  10. Gold Nanoparticle-based Surface-enhanced Raman Scattering Fe(III) Ion Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ly, Nguyen Hoang; Joo, Sang-Woo [Soongsil University, Seoul (Korea, Republic of); Cho, Kwang Hwi [School of Systems Biomedical Science, Seoul (Korea, Republic of)

    2015-01-15

    We performed density functional theory (DFT) calculations of 4-aminobenzo-15-crown-5 (4AB15C5) in conjugation with 4-mercaptobenzoic acid (4MCB) with the polarizable continuum model (PCM) while considering the aqueous media. After specific binding of the ferric ion onto the 4MCB.4AB15C5 compound, the Raman frequencies and intensities were estimated by DFT calculations with the PCM. It was predicted that the Raman intensities became significantly increased upon binding of the ferric ion. 4MCB.4AB15C5 could be assembled on gold nanoparticles (AuNPs) via the cleavage of the thiol bond. Colorimetric and UV.Vis absorption spectroscopy indicated that AuNPs became significantly aggregated in the presence of 1.10 mM of the ferric ion. Surface-enhanced Raman scattering (SERS) of 4MCB.4AB15C5 was used to identify the dissimilar spectral behaviors that yield a difference in intensity in the presence of the ferric ion. These changes were not observed in the other biological ions Zn{sup 2+}, Mn{sup 2+}, Fe{sup 2+}, Na{sup +}, K{sup +}, Ca{sup 2+}, Mg{sup 2+}, NH{sup 4+}, and Co{sup 2+}. This study indicated that 4AB15C5 could be used to detect ferric ions in aqueous AuNP solutions by a combined method of colorimetric, UV.Vis absorption, and Raman spectroscopy. AuNPs.[4MCB. 4AB15C5] can thus be utilized as a selective turn-on sensor to Fe3{sup +} in aqueous solutions above 1 mM.

  11. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  12. Towards eye-safe standoff Raman imaging systems

    Science.gov (United States)

    Glimtoft, Martin; Bââth, Petra; Saari, Heikki; Mäkynen, Jussi; Näsilä, Antti; Östmark, Henric

    2014-05-01

    Standoff Raman imaging systems have shown the ability to detect single explosives particles. However, in many cases, the laser intensities needed restrict the applications where they can be safely used. A new generation imaging Raman system has been developed based on a 355 nm UV laser that, in addition to eye safety, allows discrete and invisible measurements. Non-dangerous exposure levels for the eye are several orders of magnitude higher in UVA than in the visible range that previously has been used. The UV Raman system has been built based on an UV Fabry-Perot Interferometer (UV-FPI) developed by VTT. The design allows for precise selection of Raman shifts in combination with high out-of-band blocking. The stable operation of the UV-FPI module under varying environmental conditions is arranged by controlling the temperature of the module and using a closed loop control of the FPI air gap based on capacitive measurement. The system presented consists of a 3rd harmonics Nd:YAG laser with 1.5 W average output at 1000 Hz, a 200 mm Schmidt-Cassegrain telescope, UV-FPI filter and an ICCD camera for signal gating and detection. The design principal leads to a Raman spectrum in each image pixel. The system is designed for field use and easy manoeuvring. Preliminary results show that in measurements of <60 s on 10 m distance, single AN particles of <300 μm diameter can be identified.

  13. THz-Raman Identification of labile products in the system "phenol-semiquinone-quinone"

    CERN Document Server

    Polubotko, E A Iasenko V P Chelibanov A M

    2016-01-01

    The paper presents the results of SERS studies of the dynamic behavior of "phenol-semiquinone-quinone" system. This system is a key part of chemiluminescent sensors for reactive oxygen species. The dynamics of the system seems to be very important in the processes that determine the secondary metabolism at the cellular level in molecular biology. THz Raman spectra were recorded for the labile products formed in the processes initiated by proton transfer. A mechanism of the proton-transfer-initiated reaction is proposed.

  14. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  15. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  16. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering.

    Science.gov (United States)

    Feng, Simin; Dos Santos, Maria Cristina; Carvalho, Bruno R; Lv, Ruitao; Li, Qing; Fujisawa, Kazunori; Elías, Ana Laura; Lei, Yu; Perea-López, Nestor; Endo, Morinobu; Pan, Minghu; Pimenta, Marcos A; Terrones, Mauricio

    2016-07-01

    As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.

  17. Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents

    Science.gov (United States)

    Hug, William F.; Bhartia, Rohit; Taspin, Alexandre; Lane, Arthur; Conrad, Pamela; Sijapati, Kripa; Reid, Ray D.

    2005-11-01

    Laser induced native fluorescence (LINF) is the most sensitive method of detection of biological material including microorganisms, virus', and cellular residues. LINF is also a sensitive method of detection for many non-biological materials as well. The specificity with which these materials can be classified depends on the excitation wavelength and the number and location of observation wavelengths. Higher levels of specificity can be obtained using Raman spectroscopy but a much lower levels of sensitivity. Raman spectroscopy has traditionally been employed in the IR to avoid fluorescence. Fluorescence rarely occurs at wavelength below about 270nm. Therefore, when excitation occurs at a wavelength below 250nm, no fluorescence background occurs within the Raman fingerprint region for biological materials. When excitation occurs within electronic resonance bands of the biological target materials, Raman signal enhancement over one million typically occurs. Raman sensitivity within several hundred times fluorescence are possible in the deep UV where most biological materials have strong absorption. Since the Raman and fluorescence emissions occur at different wavelength, both spectra can be observed simultaneously, thereby providing a sensor with unique sensitivity and specificity capability. We will present data on our integrated, deep ultraviolet, LINF/Raman instruments that are being developed for several applications including life detection on Mars as well as biochemical warfare agents on Earth. We will demonstrate the ability to discriminate organic materials based on LINF alone. Together with UV resonance Raman, higher levels of specificity will be demonstrated. In addition, these instruments are being developed as on-line chemical sensors for industrial and municipal waste streams and product quality applications.

  18. Improving spatial resolution in fiber Raman distributed temperature sensor by using deconvolution algorithm

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Xue Feng; Wei Zhang; Xiaoming Liu

    2009-01-01

    The deconvolution algorithm is adopted on the fiber Raman distributed temperature sensor (FRDTS) to improve the spatial resolution without reducing the pulse width of the light source. Numerical simulation shows that the spatial resolution is enhanced by four times using the frequency-domain deconvolution algorithm with high temperature accuracy. In experiment, a spatial resolution of 15 m is realized using a master oscillator power amplifier light source with 300-ns pulse width. In addition, the dispersion-induced limitation of the minimum spatial resolution achieved by deconvolution algorithm is analyzed. The results indicate that the deconvolution algorithm is a beneficial complement for the FRDTS to realize accurate locating and temperature monitoring for sharp temperature variations.

  19. Trace detection of analytes using portable raman systems

    Science.gov (United States)

    Alam, M. Kathleen; Hotchkiss, Peter J.; Martin, Laura E.; Jones, David Alexander

    2015-11-24

    Apparatuses and methods for in situ detection of a trace amount of an analyte are disclosed herein. In a general embodiment, the present disclosure provides a surface-enhanced Raman spectroscopy (SERS) insert including a passageway therethrough, where the passageway has a SERS surface positioned therein. The SERS surface is configured to adsorb molecules of an analyte of interest. A concentrated sample is caused to flow over the SERS surface. The SERS insert is then provided to a portable Raman spectroscopy system, where it is analyzed for the analyte of interest.

  20. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... identify the sensor configuration. The method as such is generic and is shown in the paper to work convincingly on refrigeration systems with significant nonlinear behaviors...

  1. Geodetic sensor systems and sensor networks: positioning and applications

    NARCIS (Netherlands)

    Verhagen, S.; Grejner-Brzezinska, D.; Retscher, G.; Santos, M.; Ding, X.; Gao, Y.; Jin, S.

    2009-01-01

    This contribution focuses on geodetic sensor systems and sensor networks for positioning and applications. The key problems in this area will be addressed together with an overview of applications. Global Navigation Satellite Systems (GNSS) and other geodetic techniques play a central role in many a

  2. Geodetic sensor systems and sensor networks: positioning and applications

    NARCIS (Netherlands)

    Verhagen, S.; Grejner-Brzezinska, D.; Retscher, G.; Santos, M.; Ding, X.; Gao, Y.; Jin, S.

    2009-01-01

    This contribution focuses on geodetic sensor systems and sensor networks for positioning and applications. The key problems in this area will be addressed together with an overview of applications. Global Navigation Satellite Systems (GNSS) and other geodetic techniques play a central role in many

  3. Using optoelectronic sensors in the system PROTEUS

    Science.gov (United States)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Piszczek, M.

    2010-10-01

    The paper presents the concept of optoelectronic devices for human protection in rescue activity. The system consists of an ground robots with predicted sensor. The multisensor construction of the system ensures significant improvement of security of using on-situ like chemical or explosive sensors. The article show a various scenario of use for individual sensor in system PROTEUS.

  4. Wearable Sensor Systems for Infants

    OpenAIRE

    Zhihua Zhu; Tao Liu; Guangyi Li; Tong Li; Yoshio Inoue

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such sys...

  5. On-Line Multichannel Raman Spectroscopic Detection System For Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An on-line multichannel Raman spectroscopic detection system for capillary electrophoresis was established by using an Ar+ laser and a cryogenically cooled ICCD. Resonant excitation Raman spectra of methyl red and methyl orange were employed to test the system. The result shows that it could yield on-line electrophoretogram and time series of Raman spectra.

  6. Optical sensors and their applications for probing biological systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina

    and mammalian cells. First, we performed Surface Enhanced Raman Spectroscopy (SERS) studies on intact plant materials via using silver plasmonic nanostructures. Our studies showed strong Raman signals which resemble to the presence of typical constituents such as carbohydrates, proteins and lipids of different......There is a great interest in exploring and developing new optical sensitive methodologies for probing complex biological systems. In this project we developed non-invasive and sensitive biosensor strategies for studying physiologically relevant chemical and physical properties of plant...... biological sample to provide a SERS-template where silver nanoparticles can grow, thus providing a new insight into SERS-based sensors for chemically sensing in-situ plant constituents. Optical manipulation techniques have been used to investigate mechanical properties of soft membrane cells, i.e. mammalian...

  7. Automatic tracking sensor camera system

    Science.gov (United States)

    Tsuda, Takao; Kato, Daiichiro; Ishikawa, Akio; Inoue, Seiki

    2001-04-01

    We are developing a sensor camera system for automatically tracking and determining the positions of subjects moving in three-dimensions. The system is intended to operate even within areas as large as soccer fields. The system measures the 3D coordinates of the object while driving the pan and tilt movements of camera heads, and the degree of zoom of the lenses. Its principal feature is that it automatically zooms in as the object moves farther away and out as the object moves closer. This maintains the area of the object as a fixed position of the image. This feature makes stable detection by the image processing possible. We are planning to use the system to detect the position of a soccer ball during a soccer game. In this paper, we describe the configuration of the developing automatic tracking sensor camera system. We then give an analysis of the movements of the ball within images of games, the results of experiments on method of image processing used to detect the ball, and the results of other experiments to verify the accuracy of an experimental system. These results show that the system is sufficiently accurate in terms of obtaining positions in three-dimensions.

  8. Raman spectroscopy and in situ Raman spectroelectrochemistry of isotopically engineered graphene systems.

    Science.gov (United States)

    Frank, Otakar; Dresselhaus, Mildred S; Kalbac, Martin

    2015-01-20

    CONSPECTUS: The special properties of graphene offer immense opportunities for applications to many scientific fields, as well as societal needs, beyond our present imagination. One of the important features of graphene is the relatively simple tunability of its electronic structure, an asset that extends the usability of graphene even further beyond present experience. A direct injection of charge carriers into the conduction or valence bands, that is, doping, represents a viable way of shifting the Fermi level. In particular, electrochemical doping should be the method of choice, when higher doping levels are desired and when a firm control of experimental conditions is needed. In this Account, we focus on the electrochemistry of graphene in combination with in situ Raman spectroscopy, that is, in situ Raman spectroelectrochemistry. Such a combination of methods is indeed very powerful, since Raman spectroscopy not only can readily monitor the changes in the doping level but also can give information on eventual stress or disorder in the material. However, when Raman spectroscopy is employed, one of its main strengths lies in the utilization of isotope engineering during the chemical vapor deposition (CVD) growth of the graphene samples. The in situ Raman spectroelectrochemical study of multilayered systems with smartly designed isotope compositions in individual layers can provide a plethora of knowledge about the mutual interactions (i) between the graphene layers themselves, (ii) between graphene layers and their directly adjacent environment (e.g., substrate or electrolyte), and (iii) between graphene layers and their extended environment, which is separated from the layer by a certain number of additional graphene layers. In this Account, we show a few examples of such studies, from monolayer to two-layer and three-layer specimens and considering both turbostratic and AB interlayer ordering. Furthermore, the concept and the method can be extended further

  9. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber

    CERN Document Server

    Yang, Fan

    2016-01-01

    We report a highly sensitive all-fiber hydrogen sensor based on continuous-wave stimulated Raman gain spectroscopy with a hollow-core photonic crystal fiber operating around 1550 nm. A pump-probe configuration is used, in which the frequency difference between the pump and the probe lasers is tuned to the S0(0) transition of para-hydrogen with a Raman shift of 354 cm-1. Preliminary experiments demonstrate a detection limit down to 17 ppm with a 250 s averaging time, and further improvement is possible. The all-fiber configuration operating in the telecommunication wavelength band would enable cost-effective and compact sensors for high sensitivity and high-resolution trace analysis.

  10. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...

  11. Wireless Sensor Network Based Smart Parking System

    National Research Council Canada - National Science Library

    Jeffrey Joseph; Roshan Gajanan Patil; Skanda Kumar Kaipu Narahari; Yogish Didagi; Jyotsna Bapat; Debabrata Das

    2014-01-01

    ... system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment...

  12. Smart surface-enhanced Raman scattering traceable drug delivery systems.

    Science.gov (United States)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-07-07

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.

  13. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  14. Smart surface-enhanced Raman scattering traceable drug delivery systems

    Science.gov (United States)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  15. A Nonlinear Mirror Structure to Improve the Performance of the Distributed Fiber Temperature Sensor Based on Raman Backscattering

    Institute of Scientific and Technical Information of China (English)

    Yang Chen; Yong Liu; Xiao-Li Zhou; Li-Xun Zhang; Zhi-Yong Dai; Yong-Zhi Liu

    2008-01-01

    A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.

  16. Sensor systems for the Altair Lunar Lander:

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, R

    2009-12-22

    The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the

  17. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    Science.gov (United States)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  18. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    Science.gov (United States)

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  19. A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

    NARCIS (Netherlands)

    Maruyama, Y.; Blacksberg, J.; Charbon, E.

    2013-01-01

    A 1024 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and

  20. A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

    NARCIS (Netherlands)

    Maruyama, Y.; Blacksberg, J.; Charbon, E.

    2013-01-01

    A 1024 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and med

  1. Advanced unrepeatered systems using novel Raman amplification schemes

    Science.gov (United States)

    Chang, Do-il; Pelouch, Wayne; Burtsev, Sergey; Perrier, Philippe; Fevrier, Herve

    2015-01-01

    Unrepeatered transmission systems provide a cost-effective solution to transmit high capacity channels in submarine networks to communicate between coastal population centers or in terrestrial networks to connect remote areas where service access is difficult. The main goal of unrepeatered systems has traditionally been to achieve the longest reach, however, increasing traffic demands now require unrepeatered systems to support both longer reach and higher transport capacity. As a result, transmission rate of unrepeatered systems has quickly moved from 10 Gb/s to 40 Gb/s or 100 Gb/s. This paper reviews the key basic technologies, with a specific focus on Raman amplification, required for long-reach, high-capacity unrepeatered optical transmission systems. We will discuss novel Raman amplification schemes, enhanced remote optically pumped amplifiers (ROPA), ultra-low loss / large effective area fibers, and coherent transmission with advanced modulation format and high FEC coding gain. We will also report recent experimental demonstrations that show how these technologies have been combined to achieve industry's leading capacity and reach transmission.

  2. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  3. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system.

    Science.gov (United States)

    Ko, Alex C-T; Hewko, Mark; Sowa, Michael G; Dong, Cecilia C S; Cleghorn, Blaine; Choo-Smith, Lin-P'ing

    2008-04-28

    A new fibre-optic coupled polarization-resolved Raman spectroscopic system was developed for simultaneous collection of orthogonally polarized Raman spectra in a single measurement. An application of detecting incipient dental caries based on changes observed in Raman polarization anisotropy was also demonstrated using the developed fibre-optic Raman spectroscopic system. The predicted reduction of polarization anisotropy in the Raman spectra of caries lesions was observed and the results were consistent with those reported previously with Raman microspectroscopy. The capability of simultaneous collection of parallel- and cross-polarized Raman spectra of tooth enamel in a single measurement and the improved laser excitation delivery through fibre-optics demonstrated in this new design illustrates its future clinical potential.

  4. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  5. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  6. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  7. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  8. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  9. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  10. Process monitoring using ultrasonic sensor systems.

    Science.gov (United States)

    Henning, Bernd; Rautenberg, Jens

    2006-12-22

    Continuous in-line measurement of substance concentration in liquid mixtures is valuable in improving industrial processes in terms of material properties, energy efficiency and process safety. Ultrasonic sensor systems meet the practical requirements of a chemical sensor quite well. Currently ultrasonic sensor systems are widely used as acoustic chemical sensors to measure concentration of selected substances or to monitor the course of polymerisation, crystallisation or fermentation processes. Useable acoustic properties for the characterisation of liquid mixtures are sound velocity, sound absorption and acoustic impedance. This contribution will give a short overview of the state of the art and several trends for the use of ultrasonic sensor systems in process applications. Novel investigations show the very promising possibility to analyse liquid multi-phase mixtures like suspensions, emulsions and dispersions.

  11. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  12. Wide-Field, Deep UV Raman Hyperspectral Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, proposes a revolutionary wide-field Raman hyperspectral imaging system capable of...

  13. Experimental characterization of dispersion maps with Raman gain in 160 Gb/s transmission systems

    DEFF Research Database (Denmark)

    Zhenbo, Xu; Seoane, Jorge; Siahlo, Andrei;

    2004-01-01

    We investigate the combined effects of dispersion compensation and Raman amplification in SMF-based transmission span of 160 Gb/s system. The post compensation map shows better power tolerance.......We investigate the combined effects of dispersion compensation and Raman amplification in SMF-based transmission span of 160 Gb/s system. The post compensation map shows better power tolerance....

  14. Prostate cancer detection using a combination of Raman spectroscopy and stiffness sensing

    OpenAIRE

    Lindahl, Olof; Nyberg, Morgan; Jalkanen, Ville; Ramser, Kerstin

    2014-01-01

    Prostate cancer (PCa) is the most common cancer form for men in Europe. A sensor system combining Raman spectroscopy and stiffness sensing with a resonance sensor has recently been developed by us for prostate cancer detection. In this study the sensor system has been used for measurements on two slices of fresh human prostate tissue. The stiffness sensor could detect locations slices with significantly different stiffness contrasts (p < 0.05). Raman spectroscopic measurements could be per...

  15. Wearable Sensor System for Human Dynamics Analysis

    OpenAIRE

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko; Zheng, Rencheng

    2010-01-01

    A new wearable sensor system was developed for measuring tri-directional ground reaction force (GRF) and segment orientations. A stationary force plate can not measure more than one stride; moreover, in studies of stair ascent and descent measurements, a complex system consisting of many stationary force plates and a data fusion method must be constructed (Stacoff et al., 2005; Della and Bonato, 2007). The wearable sensor system proposed in this chapter can be applied to successive walking tr...

  16. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  17. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  18. GLIMPS sensor and taggant delivery systems

    Science.gov (United States)

    Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Lum, Chris

    2001-02-01

    A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The GLIMPS projectile is intended to be a general purpose delivery system for a variety of sensor payloads including visual, acoustic, and chemical sensors. The GLIMPS projectile flight characteristics are similar to existing 40-mm rounds, with a useful range of up to 300 m. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a telemetry system for transmission of sensor data at up to 1/4 mile range. A second design is also being considered. It is a small taggant projectile that uses an adhesive to attach a tracking transmitter or other small payload to a vehicle at up to 50 m range. While initially developed as a military system, both projectiles can be used to enhance law enforcement operations.

  19. DASCAR sensor suite and video data system

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J. [Oak Ridge National Lab., TN (United States); Barickman, F.S. [National Highway Traffic Safety Administration, East Liberty, OH (United States). Vehicle Research and Test Center; Goodman, M.J. [National Highway Traffic Safety Administration, Washington, DC (United States). Office of Crash Avoidance Research

    1996-12-31

    A research program oriented toward the development of a portable data acquisition system for crash avoidance research has been conducted. This paper discusses the background to the project and the requirements for the data acquisition system. it also provides a brief system overview and describes two of the system`s five major elements, the sensor suite and the video data system, in detail. Components, functions, and specifications are covered Finally the paper addresses the central data collection/analysis facility which was assembled to manage the sensor and video data, and presents the potential uses of the data acquisition system.

  20. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  1. ISDSN Sensor System Phase One Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Gail Heath

    2011-09-01

    This Phase 1 Test Report documents the test activities and results completed for the Idaho National Laboratory (INL) sensor systems that will be deployed in the meso-scale test bed (MSTB) at Florida International University (FIU), as outlined in the ISDSN-MSTB Test Plan. This report captures the sensor system configuration tested; test parameters, testing procedure, any noted changes from the implementation plan, acquired test data sets, and processed results.

  2. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    Science.gov (United States)

    Vudyasetu, Praveen K.; Camacho, Ryan M.; Howell, John C.

    2010-11-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  3. DASCAR sensor suite and video data system

    Science.gov (United States)

    Carter, Richard J.; Barickman, Frank S.; Goodman, Michael J.

    1997-02-01

    A research program oriented toward the development of a portable data acquisition system for crash avoidance research has been conducted. This paper discusses the background to the project and the requirements for the data acquisition system. It also provides a brief system overview and describes two of the system's five major elements, the sensor suite and the video data system, in detail. Components, functions, and specifications are covered. Finally the paper addresses the central data collection/analysis facility which was assembled to mange the sensor and video data, and presents the potential uses of the data acquisition system.

  4. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  5. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  6. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  7. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-11-30

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10(-6) M is established.

  8. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  9. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  10. Onboard Image Processing System for Hyperspectral Sensor

    Directory of Open Access Journals (Sweden)

    Hiroki Hihara

    2015-09-01

    Full Text Available Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS, which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  11. Onboard Image Processing System for Hyperspectral Sensor.

    Science.gov (United States)

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-09-25

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  12. Autonomous Robot System for Sensor Characterization

    Energy Technology Data Exchange (ETDEWEB)

    David Bruemmer; Douglas Few; Frank Carney; Miles Walton; Heather Hunting; Ron Lujan

    2004-03-01

    This paper discusses an innovative application of new Markov localization techniques that combat the problem of odometry drift, allowing a novel control architecture developed at the Idaho National Engineering and Environmental Laboratory (INEEL) to be utilized within a sensor characterization facility developed at the Remote Sensing Laboratory (RSL) in Nevada. The new robotic capability provided by the INEEL will allow RSL to test and evaluate a wide variety of sensors including radiation detection systems, machine vision systems, and sensors that can detect and track heat sources (e.g. human bodies, machines, chemical plumes). By accurately moving a target at varying speeds along designated paths, the robotic solution allows the detection abilities of a wide variety of sensors to be recorded and analyzed.

  13. System Identification of MEMS Vibratory Gyroscope Sensor

    OpenAIRE

    Juntao Fei; Yuzheng Yang

    2011-01-01

    Fabrication defects and perturbations affect the behavior of a vibratory MEMS gyroscope sensor, which makes it difficult to measure the rotation angular rate. This paper presents a novel adaptive approach that can identify, in an online fashion, angular rate and other system parameters. The proposed approach develops an online identifier scheme, by rewriting the dynamic model of MEMS gyroscope sensor, that can update the estimator of angular rate adaptively and converge to its true value asy...

  14. Analog baseband circuits for sensor systems

    OpenAIRE

    2008-01-01

    This thesis is composed of six publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis focuses on research into analog baseband circuits for sensor systems. The research is divided into three different topics: the integration of analog baseband circuits into a radio receiver for sensor applications; the integration of an ΔΣ modulator A/D converter into a GSM/WCDMA radio receiver for mobile phones, and the integration of algorit...

  15. Novel Corrosion Sensor for Vision 21 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.

  16. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    CERN Document Server

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  17. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10(-12) M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  18. Raman-based distributed temperature sensor using simplex code and gain controlled EDFA

    Science.gov (United States)

    Bassan, F. R.; Penze, R. S.; Leonardi, A. A.; Fracarolli, J. P. V.; Floridia, C.; Rosolem, J. B.; Fruett, F.

    2015-09-01

    In this work we present a comparison between simplex coded and optical amplified simplex coded Raman based Distributed Temperature Sensing (DTS). An increase in performance is demonstrated using erbium doped fiber amplifier (EDFA) with proper gain control scheme that allows a DTS operates with simplex code. Using 63-bit simplex code and gain controlled EDFA we demonstrated the temperature resolution and dynamic range improvement in 16 °C @ 10 km and 4 dB, respectively.

  19. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing

  20. In vivo comparative documentation of skin hydration by confocal Raman microscopy, SkinSensor, Skicon, and NovaMeter

    Science.gov (United States)

    Zhang, Guojin; Papillon, Aline; Ruvolo, Eduardo, Jr.; Bargo, Paulo R.; Kollias, Nikiforos

    2010-02-01

    The stratum corneum provides a vital physical barrier that protects against external insults and excessive internal water loss. Water activity is thought as a key factor to maintain proper skin barrier integrity via regulating enzyme activities and lipid phase behavior. Consequently, maintenance of an optimal hydration level in SC becomes an important clinical and cosmetic concern. The objective methods to assess SC hydration are based on either electrical or optical measurements. Electrical techniques used in the current study include high frequency conductance (Skicon), impedance (Nova DPM) and DC I-V curve (Skinsensor). Confocal Raman Microscopy was utilized to document water profile versus depth, and this technique is based on inelastic scattering of monochromatic light from different chemical species of skin. Water patches were applied on the 14 subjects' forearm for 20 minutes and 1.5 hrs. Skin hydration levels for individuals were documented by utilizing the mentioned above instruments in vivo. Results show that patterns of water profiles upon the hydration are significantly different among the individuals and these differences may be related to skin barrier function integrity. The intrinsic water content and water absorption upon the hydration were summed corresponding to different depths (3 μm and 15 μm) from the data obtained by confocal Raman microscopy. These results were correlated to the readings from electrical approaches. Superficial (3 μm) but not deeper layer (15 μm) water contents correlated well with the readings from SkinSensor. Neither depth measurements correlate well with the Skicon. There is strong correlation between the data acquired with Skicon and SkinSensor.

  1. Multiagent robotic systems' ambient light sensor

    Science.gov (United States)

    Iureva, Radda A.; Maslennikov, Oleg S.; Komarov, Igor I.

    2017-05-01

    Swarm robotics is one of the fastest growing areas of modern technology. Being subclass of multi-agent systems it inherits the main part of scientific-methodological apparatus of construction and functioning of practically useful complexes, which consist of rather autonomous independent agents. Ambient light sensors (ALS) are widely used in robotics. But speaking about swarm robotics, the technology which has great number of specific features and is developing, we can't help mentioning that its important to use sensors on each robot not only in order to help it to get directionally oriented, but also to follow light emitted by robot-chief or to help to find the goal easier. Key words: ambient light sensor, swarm system, multiagent system, robotic system, robotic complexes, simulation modelling

  2. Allegany Ballistics Lab: sensor test target system

    Science.gov (United States)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  3. Study of corrosion in archaeological gilded irons by Raman imaging and a coupled scanning electron microscope-Raman system

    Science.gov (United States)

    Veneranda, Marco; Costantini, Ilaria; de Vallejuelo, Silvia Fdez-Ortiz; Garcia, Laura; García, Iñaki; Castro, Kepa; Azkarate, Agustín; Madariaga, Juan Manuel

    2016-12-01

    In this work, analytical and chemical imaging tools have been applied to the study of a gilded spur found in the medieval necropolis of Erenozar (Bizkaia, Spain). As a first step, a lot of portable equipment has been used to study the object in a non-invasive way. The hand-held energy-dispersive X-ray fluorescence equipment allowed us to characterize the artefact as a rare example of an iron matrix item decorated by means of a fire gilding technique. On the other hand, the use of a portable Raman system helped us to detect the main degradation compounds affecting the spur. Afterwards, further information was acquired in the laboratory by analysing detached fragments. The molecular images obtained using confocal Raman microscopy permitted us to characterize the stratigraphic succession of iron corrosions. Furthermore, the combined use of this technique with a scanning electron microscope (SEM) was achieved owing to the use of a structural and chemical analyser interface. In this way, the molecular characterization, enhanced by the magnification feature of the SEM, allowed us to identify several micrometric degradation compounds. Finally, the effectiveness of one of the most used desalination baths (NaOH) was evaluated by comparing its effects with those provided by a reference bath (MilliQ). The comparison proved that basic treatment avoided any side effects on the spur decorated by fire gilding, compensating for the lack of bibliographic documentation in this field. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  4. Sensor Data Qualification System (SDQS) Implementation Study

    Science.gov (United States)

    Wong, Edmond; Melcher, Kevin; Fulton, Christopher; Maul, William

    2009-01-01

    The Sensor Data Qualification System (SDQS) is being developed to provide a sensor fault detection capability for NASA s next-generation launch vehicles. In addition to traditional data qualification techniques (such as limit checks, rate-of-change checks and hardware redundancy checks), SDQS can provide augmented capability through additional techniques that exploit analytical redundancy relationships to enable faster and more sensitive sensor fault detection. This paper documents the results of a study that was conducted to determine the best approach for implementing a SDQS network configuration that spans multiple subsystems, similar to those that may be implemented on future vehicles. The best approach is defined as one that most minimizes computational resource requirements without impacting the detection of sensor failures.

  5. Accuracy of the Laser Raman system for KATRIN

    CERN Document Server

    Schlösser, M; Hötzel, M; Käfer, W

    2012-01-01

    The aim of the Karlsruhe Tritium Neutrino experiment (KATRIN) is the direct (model-independent) measurement of the neutrino mass. For that purpose a windowless gaseous tritium source is used, with a tritium throughput of 40 g/day. In order to reach the design sensitivity of 0.2 eV/c^{2} (90% C.L.) the key parameters of the tritium source, i.e. the gas inlet rate and the gas composition, have to be stabilized and monitored at the 0.1% level (1 sigma). Any small change of the tritium gas composition will manifest itself in non-negligible effects on the KATRIN measurements; therefore, Laser Raman spectroscopy (LARA) is the method of choice for the monitoring of the gas composition because it is a non-invasive and fast in-line measurement technique. In these proceedings, the requirements of KATRIN for statistical and systematical uncertainties of this method are discussed. An overview of the current performance of the LARA system in regard to precision will be given. In addition, two complementary approaches of i...

  6. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  7. Novel Corrosion Sensor for Vision 21 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Heng Ban

    2005-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this project is to develop a technology for on-line corrosion monitoring based on a new concept. This objective is to be achieved by a laboratory development of the sensor and instrumentation, testing of the measurement system in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. The initial plan for testing at the coal-fired pilot-scale furnace was replaced by testing in a power plant, because the operation condition at the power plant is continuous and more stable. The first two-year effort was completed with the successful development sensor and measurement system, and successful testing in a muffle furnace. Because of the potential high cost in sensor fabrication, a different type of sensor was used and tested in a power plant burning eastern bituminous coals. This report summarize the experiences and results of the first two years of the three-year project, which include laboratory

  8. Raman Spectroscopy and instrumentation for monitoring soil carbon systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.

    2003-12-08

    This work describes developments in the application of Raman scattering and surface-enhanced Raman scattering (SERS) towards the assessment/characterization of carbon in soil. In the past, the nonspecific total carbon mass content of soil samples has generally been determined through mass loss techniques and elemental analysis. However, because of the concern over CO{sub 2} buildup in the atmosphere and its possible role in the ''Greenhouse Effect,'' there is a need for better-defined models of global cycling of carbon. As a means towards this end, there is a need to know more about the structure and functionality of organic materials in soil. Raman spectroscopy may therefore prove to be an exceptional tool in soil carbon analysis. Based on vibrational transitions of irradiated molecules, it provides structural information that is often suitable for sample identification. Furthermore, Raman scattering yields very fine spectral features which offer the potential for multicomponent sample analysis with minimal or no sample pretreatment. Although the intensity of Raman scattering is generally extremely low, the surface-enhanced Raman scattering (SERS) effect can greatly enhance Raman signals (10{sup 6}-10{sup 8} range) through the adsorption of compounds on specially roughened metal surfaces. In our laboratory, we have investigated copper, gold and silver as possible substrate metals in the fabrication of SERS substrates. These substrates have included metal-coated microparticles, metal island films, and redox-roughened metal foils. We have evaluated several laser excitation sources spanning the 515-785 nm range for both Raman and SERS analysis. For this particular study, we have selected fulvic and humic acids as models for establishing the feasibility of using Raman and SERS in soil carbon analysis. Our studies thus far have demonstrated that copper substrates perform best in the SERS detection of humic and fulvic acids, particularly when coupled

  9. Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.

    2008-01-01

    The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.

  10. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved

  11. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: Funds were used to purchase a Renishaw inVia Reflex Spectrometer System for Raman and Photoluminescence spectral...optics for spatial imaging, a temperature-controlled sample compartment, and photoluminescence imaging. The instrument is used by undergraduate...Unlimited UU UU UU UU 05-01-2016 15-Aug-2014 14-Aug-2015 Final Report: Purchase of a Raman and Photoluminescence Imaging System for Characterization of

  12. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai

    2011-12-08

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  13. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  14. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  15. Bioinspired optical sensors for unmanned aerial systems

    Science.gov (United States)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  16. Data acquisition for sensor systems

    CERN Document Server

    Taylor, H Rosemary

    1997-01-01

    'Data acquisition' is concerned with taking one or more analogue signals and converting them to digital form with sufficient accu­ racy and speed to be ready for processing by a computer. The increasing use of computers makes this an expanding field, and it is important that the conversion process is done correctly because information lost at this stage can never be regained, no matter how good the computation. The old saying - garbage in, garbage out - is very relevant to data acquisition, and so every part of the book contains a discussion of errors: where do they come from, how large are they, and what can be done to reduce them? The book aims to treat the data acquisition process in depth with less detailed chapters on the fundamental principles of measure­ ment, sensors and signal conditioning. There is also a chapter on software packages, which are becoming increasingly popular. This is such a rapidly changing topic that any review of available pro­ grams is bound to be out of date before the book re...

  17. New Micro-Raman Spectroscopy Systems for High-Temperature Studies in the Diamond Anvil Cell

    Science.gov (United States)

    Shim, S.; Lamm, R.; Rekhi, S.; Catalli, K.; Santillan, J.; Lundin, S.

    2005-12-01

    In order to measure high-quality Raman spectra at high temperature and pressure in either the resistance- or laser-heated diamond-anvil cell, we have developed two Raman systems at MIT, a dispersive and a nanosecond time-resolved Raman spectroscopy systems. The excitation source of the dispersive Raman system is an Ar/Kr mixed ion laser which has nine available laser lines with wavelengths between 457 and 752 nm. Near UV laser lines allow us to measure Raman spectra up to 1200 K by shifting the spectral range of Raman modes away from intense thermal radiation. Near IR lines can be used for highly fluorescent materials. Three 500 mm spectrometers (Trivista spectrometer, Acton Research) are configured to operate in either single, triple subtractive, or triple additive mode combined with a liquid nitrogen cooled CCD detector. Holographic notch filters allow for high throughput in the single mode, which is ideal for weak Raman scattering. The subtractive triple mode allows detection of phonon modes to 5 cm-1 from the Raleigh line. The nanosecond time-resolved Raman system is designed for measurements above 1000 K. Previous studies at ambient pressure have shown that time-resolved Raman spectroscopy is the most effective technique to reject strong thermal radiation above 1000 K. We achieve nanosecond time resolution by synchronizing a frequency-doubled pulse Nd:YLF laser (527 nm, 0.1-10 kHz rep rate, 10-100 ns pulse width) with an intensified gated CCD detector (>5 ns gate width). This system is combined with a laser heating system (Nd:YLF laser, 1053 nm, TEM00, 45 W). Temperature is measured using both spectroradiometry and Raman thermometry methods. Our systems are designed to study phase relations and thermodynamic properties of mantle minerals at high P-T. Using these systems, we have measured the phase transition in (Mg0.9Fe0.1)SiO3 pyroxene at 300-1700 K and 0 GPa, and the dehydration of serpentine at 2-8 GPa and 300-900 K. We also have found that the time

  18. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  19. STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.

    2014-05-01

    In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.

  20. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  1. Flood early warning system: sensors and internet

    NARCIS (Netherlands)

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi, K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the probabi

  2. Optimization of wireless Bluetooth sensor systems.

    Science.gov (United States)

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  3. The Application of Raman Spectroscopy for Analysis of Multicomponent Systems

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    1998-01-01

    gas and oils. Until now we have obtained Raman spectra on bottled gas (propane and butane) mixed with oxygen, condensate (from DONG A/S), many different oils, and natural gas (under normal conditions).Our goal is to obtain spectra of natural gas taken directly from the well. We have designed...

  4. Future Intelligent Transportation Systems and Sensors

    Science.gov (United States)

    Hosaka, Akio

    A road vehicle traffic contributes to the social improvement greatly, but it has big problems such as safety, congestion, environment, energy, elder people driving and adaptation to information society. ITS (Intelligent Transportation Systems) is expected as a direction solving these. The intellectual function about a road vehicle traffic depended on most of human beings. ITS helps intellectual functions such as information sensing, situation recognition, judgment, planning and operation. A sensor detecting information is an important key in ITS. I describe expectation to a sensor in ITS.

  5. System Identification of MEMS Vibratory Gyroscope Sensor

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2011-01-01

    Full Text Available Fabrication defects and perturbations affect the behavior of a vibratory MEMS gyroscope sensor, which makes it difficult to measure the rotation angular rate. This paper presents a novel adaptive approach that can identify, in an online fashion, angular rate and other system parameters. The proposed approach develops an online identifier scheme, by rewriting the dynamic model of MEMS gyroscope sensor, that can update the estimator of angular rate adaptively and converge to its true value asymptotically. The feasibility of the proposed approach is analyzed and proved by Lyapunov's direct method. Simulation results show the validity and effectiveness of the online identifier.

  6. System of Optoelectronic Sensors for Breath Analysis

    Directory of Open Access Journals (Sweden)

    Mikołajczyk Janusz

    2016-09-01

    Full Text Available The paper describes an integrated laser absorption system as a potential tool for breath analysis for clinical diagnostics, online therapy monitoring and metabolic disorder control. The sensors operate basing on cavity enhanced spectroscopy and multi-pass spectroscopy supported by wavelength modulation spectroscopy. The aspects concerning selection of operational spectral range and minimization of interference are also discussed. Tests results of the constructed devices collected with reference samples of biomarkers are also presented. The obtained data provide an opportunity to analyse applicability of optoelectronic sensors in medical screening.

  7. A Detailed Experimental Study on Single-Pump Raman/EDFA Hybrid Amplifiers: Static, Dynamic, and System Performance Comparison

    Science.gov (United States)

    Lee, Ju Han; Chang, You Min; Han, Young Geun; Chung, Haeyang; Hyuck Kim, Sang; Lee, Sang Bae

    2005-11-01

    This paper presents an experimental study on the performance comparison of three different schemes of single-pump dispersion-compensating fiber (DCF)-based Raman/erbium-doped fiber amplifier (EDFA) hybrid amplifiers together with a DCF-based Raman-only amplifier in terms of static properties, dynamic properties, and system impact: Raman-only amplifier (Type I), Raman/EDFA hybrid amplifiers recycling residual Raman pump in a cascaded EDF located either after (Type II) or prior to (Type III) a DCF, and a Raman-assisted EDFA (Type IV), the concept of which was proposed by Kurosawa With respect to the overall gain and system impact based on bit error rate (BER) measurements in a transmission system, the hybrid amplifier of Type II was found to have the best performance among the four types while the Raman-only amplifier shows the best tolerance to transient response.

  8. Raman Spectroscopy of Single Nanoparticles in a Double-Nanohole Optical Tweezer System

    CERN Document Server

    Jones, Steven; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal is observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification.

  9. Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system

    Science.gov (United States)

    Jones, Steven; Balushi, Ahmed A. Al; Gordon, Reuven

    2015-10-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal was observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification.

  10. Replaceable Sensor System for Bioreactor Monitoring

    Science.gov (United States)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  11. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    Science.gov (United States)

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  12. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  13. Advanced sensor systems for biotelemetry

    Science.gov (United States)

    Hines, John W. (Inventor); Somps, Christopher J. (Inventor); Ricks, Robert D. (Inventor); Mundt, Carsten W. (Inventor)

    2003-01-01

    The present invention relates to telemetry-based sensing systems that continuously measures physical, chemical and biological parameters. More specifically, these sensing systems comprise a small, modular, low-power implantable biotelemetry system capable of continuously sensing physiological characteristics using implantable transmitters, a receiver, and a data acquisition system to analyze and record the transmitted signal over several months. The preferred embodiment is a preterm labor and fetal monitoring system. Key features of the invention include Pulse Interval Modulation (PIM) that is used to send temperature and pressure information out of the biological environment. The RF carrier frequency is 174-216 MHz and a pair of RF bursts (pulses) is transmitted at a frequency of about 1-2 Hz. The transmission range is 3 to 10 feet, depending on the position of the transmitter in the body and its biological environment. The entire transmitter is encapsulated in biocompatible silicone rubber. Power is supplied by on-board silver-oxide batteries. The average power consumption of the current design is less than 30 .mu.W., which yields a lifetime of approximately 6-9 months. Chip-on-Board technology (COB) drastically reduces the size of the printed circuit board from 38.times.28 mm to 22.times.8 mm. Unpackaged dies are flip-chip bonded directly onto the printed circuit board, along with surface mount resistors and capacitors. The invention can monitor additional physiological parameters including, but not limited to, ECG, blood gases, glucose, and ions such as calcium, potassium, and sodium.

  14. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    Science.gov (United States)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  15. Multi-Sensor Aerosol Products Sampling System

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  16. Evaluation of integrated Raman-DSC technology in early pharmaceutical development: characterization of polymorphic systems.

    Science.gov (United States)

    Huang, Jun; Dali, Manisha

    2013-12-01

    Differential Scanning Calorimetry and Raman spectroscopy are both powerful tools used heavily in pharmaceutical development. For many studies such as polymorph characterization these two techniques are complimentary and provide data on different yet important aspects of material properties when combined together. In this work we describe an integrated Raman-DSC technology that simultaneously generates both DSC thermogram and Raman spectra of the pharmaceutical material being studied. The integrated system consists of a DSC with a Raman fiber optic probe inserted right on top of the sample furnace. The technology integrates synchronized Raman acquisition into DSC scan, enabling collection of molecular and structural information coupled with observation of thermal events. We first establish the technology by optimizing the instrumental set-up that offers relatively high-quality results for simultaneous DSC and Raman data collection. We then demonstrate the application of the technology by studying the polymorphs of d-mannitol, a common pharmaceutical excipient and BMS-A, an investigational drug candidate that exhibits multiple coexisting polymorphs. In both cases, the Raman-DSC technology was able to provide valuable information on the process of phase change and polymorph identification. Although similar information may be obtained by using various characterization techniques together, the integrated Raman-DSC indicated special advantages for industrial development such as high efficiency, material sparing and comprehensive data analysis. Moreover the technology provides an alternative to better correlate real-time phase behavior to molecular understanding. The technology thus has the potential to be used for Process Analytical Technology (PAT) purpose.

  17. Universal Signal Conditioning System for Amperometric Sensors

    Directory of Open Access Journals (Sweden)

    CRISTEA, D. G.

    2012-02-01

    Full Text Available In this article the research for developing whole-cell biochips has been presented using both bioluminescent and electrochemical methods. The research was on integrating an electrode cell with both electrochemical and bioluminescent detection using a single VLSI chip. The authors have investigated the signal conditioning system that can work with any kind of amperometric and bioluminescent sensor. During this research the authors focused on the analog front-end unit. The work includes investigating the electronic model for simulation for an electrochemical cell and conceiving a fully integrated 8X8 electrochemical sensor array. The authors are focusing on signal conditioning system and its functionality. The main concern for the authors was to maintain the complexity and the number of electronic devices as low as possible.

  18. Unattended Sensor System with CLYC Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-21

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  19. Guidelines for Managing Sensors in Cyber Physical Systems with Multiple Sensors

    Directory of Open Access Journals (Sweden)

    Pradeepkumar Ashok

    2011-01-01

    Full Text Available Cyber physical systems (CPSs typically have numerous sensors monitoring the various physical processes involved. Some sensor failures are inevitable and may have catastrophic effects. The relational nature of the diverse measurands can be very useful in detecting faulty sensors, monitoring the health of the system, and reducing false alarms. This paper provides procedures on how one may integrate data from the various sensors, by careful design of a sensor relationship network. Once such a network has been adopted, choices become available in real time for enhancing the reliability, safety, and performance of the overall system.

  20. Gas Main Sensor and Communications Network System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2006-05-31

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

  1. Flood early warning system: sensors and internet

    OpenAIRE

    Pengel, B.E.; Krzhizhanovskaya, V.V.; Melnikova, N.B.; Shirshov, G.S.; Koelewijn, A.R.; Pyayt, A.L.; Mokhov, I.I.; Chavoshian, A.; Takeuchi,K.

    2013-01-01

    The UrbanFlood early warning system (EWS) is designed to monitor data from very large sensornetworks in flood defences such as embankments, dikes, levees, and dams. The EWS, based on the internet, uses real-time sensor information and Artificial Intelligence (AI) to immediately calculate the probability of dike failure, the ensuing scenarios of dike breaching, predicted flood spreading and escape routes for people from the affected areas. Results are presented on interactive decision support ...

  2. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  3. SOC NANOBASED INTEGRATED WIRELESS SENSOR SYSTEM

    Directory of Open Access Journals (Sweden)

    Penghua Sun

    2014-11-01

    Full Text Available Smart nanotechnology materials have been recently utilized in sensing applications. Carbon nanotube (CNT based SoC sensor systems have potential applications in various fields, including medical, energy, consumer electronics, computers, and HVAC (heating, ventilation, and air conditioning among others. In this study, a nanotechnology multisensory system was designed and simulated using Labview Software. The mathematical models were developed for sensing three physical quantities: temperature, gas, and pressure. Four CNT groups on a chip (two for gas sensor, one for temperature, and a fourth one for pressure were utilized in order to perform sensing multiple parameters. The proposed fabrication processes and the materials used were chosen to avoid the interference of these parameters on each other when detecting one of them. The simulation results were translated into analog voltage from Labview software, transmitted via Bluetooth network, and received on desktop computers within the vicinity of the sensor system. The mathematical models and simulation results showed as high as 95% accuracy in measuring temperature, and the 5% error was caused from the interference of the surrounding gas. Within 7% change in pressure was impacted by both temperature and gas interference.

  4. All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening.

    Science.gov (United States)

    Jochum, Tobias; Rahal, Leila; Suckert, Renè J; Popp, Jürgen; Frosch, Torsten

    2016-03-21

    In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.

  5. Performance analysis of multi-pump Raman+EDFA hybrid amplifiers for WDM systems

    Science.gov (United States)

    Jardim Martini, Márcia M.; Pontes, Maria José; Ribeiro, Moisés. R. N.; Kalinowski, Hypolito José

    2014-08-01

    An approximated technique to optimize the gain profile of multi-pump broadband hybrid amplifiers (Raman+EDFA) under residual pump recycling is applied to a WDM system. The Optimized hybrid amplifier configurations with multi-pumping were analyzed considering different number of input channels in order to check the global gain saturation and the changes in the global gain profile that occur due to signal-pump, signal-signal, and pump-pump interactions. This work extends the optimization of the gain profile from Raman+EDFA hybrid amplifiers and studies the signal-signal interactions, signal-pumping and pumping-pumping WDM systems. Multiple input channels allowed the gain characterization of the Raman+EDFA hybrid amplifier in terms of global gain, ripple, and noise figure considering applications for WDM systems.

  6. Wireless SAW Interrogator and Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless, passive, Surface Acoustic Wave (SAW), Orthogonal Frequency Coded (OFC) temperature sensors, operating in a multi-sensor environment, developed at the...

  7. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  8. In Situ Diagnostic Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low-profile, embedded sensors are proposed for condition monitoring and health management (HM) of thermal protection systems. The sensors will be fabricated using a...

  9. Study of the Raman-AFM System for Simultaneous Measurements of Raman Spectrum and Micro/Nano-Structures%用于Raman光谱与微纳米结构同步检测的Raman-AFM系统研究

    Institute of Scientific and Technical Information of China (English)

    史斌; 章海军; 吴兰; 张冬仙

    2012-01-01

    研究和发展了一种将微区拉曼(Raman)光谱检测与原子力显微镜(AFM)微纳米扫描成像相结合的新型Raman-AFM技术.设计了Raman光谱与AFM扫描成像的原位检测探头;研制出相应的Raman-AFM系统;利用该系统,对ZnO纳米颗粒和TiO2纳米薄膜开展了微区Raman光谱与微纳米结构的检测实验.研究表明,所获得的Raman光谱检测结果与理论值良好吻合,同时,AFM扫描检测得到的图像很好地表征了样品的微纳米结构,从而实现了微区Raman光谱与AFM图像的原位及同步检测,验证了这一技术的可行性,为Raman光谱技术与微纳米技术领域的实际应用提供了技术基础.%This paper proposes a novel technique of Raman-atomic force microscopy (AFM) combining micro region Raman spec-troscopy and AFM imaging. An in-situ probe unit which can simultaneously realize the detection of Raman spectrum and the measurement of AFM image was designed, and a related Raman-AFM system was constructed. Using this system, some experiments were carried out to acquire micro region Raman spectra and AFM images of ZnO nano-particle and TiO2 film. The results show that the Raman spectra of both samples are in agreement with theoretical vaues, and the AFM images represent their mi-cro/nano-structures quite well. These researches prove the feasibility of the Raman-AFM technique which has the potential of being widely applied in the fields of Raman spectroscopy and micro/nano-technology.

  10. Research on the photochemical kinetics process of gold nanoparticle-doped photopolymer system using Raman spectroscopy

    Science.gov (United States)

    Li, Ruoping; Yang, Jingliang; Li, Yanmeng; Han, Junhe; Huang, Mingju

    2016-10-01

    A photopolymer system doped with gold nanoparticles (Au NPs) was studied using Surface Enhanced Raman Scattering (SERS) technique in this work. In the system, polyvinyl alcohol is a binder, acrylamide and methylene-bisacrylamide are two monomers, methylene blue (MB) is a photosensitizer and triethanolamine is an initiator. Two types of Au NPs-- bare Au NPs with 13nm and 25nm diameter, and their corresponding SiO2 shell-isolated Au (Au@SiO2) NPs with 2nm shell thickness, were prepared and doped into the photopolymer for reducing the shrinkage of holograms. The shield of SiO2 shell avoids the dark reaction originating from electron transfer between Au NPs and MB molecules. More importantly, under 633nm laser excitation, the resonance Raman scattering of MB can be triggered, and the Raman signal of MB can be enhanced greatly due to the local enhanced electromagnetic field by Au@SiO2 NPs. Both of them made the in-situ Raman detection of the photopolymer more feasible. The experimental results not only show the excitation process of MB but also display the polymerization process of the photopolymer. In addition, the excitation rate of MB and the polymerization rate of monomers can also be obtained using their time Raman spectra. This provides an experimental tool for detecting the photochemical kinetics process of the photopolymer.

  11. Information Fusion of Online Oil Monitoring System Using Multiple Sensors

    Institute of Scientific and Technical Information of China (English)

    高慧良; 周新聪; 程海明; 赵春华; 严新平

    2004-01-01

    Machine lubrication contains abundant information on the equipment operation.Nowadays, most measuring methods are based on offline sampling or on online measuring with a single sensor.An online oil monitoring system with multiple sensors was designed.The measurement data was processed with a fuzzy intelligence system.Information from integrated sensors in an oil online monitoring system was evaluated using fuzzy logic.The analyses show that the multiple sensors evaluation results are more reliable than online monitoring systems with single sensors.

  12. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  13. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  14. Wavefront sensors for adaptive optical systems

    Science.gov (United States)

    Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.

    2010-10-01

    A high precision Shack-Hartmann wavefront (WF) sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640x640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourier-demodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  15. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  16. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    Science.gov (United States)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  17. NOVEL CORROSION SENSOR FOR VISION 21 SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Heng Ban

    2004-12-01

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this proposed project is to develop a technology for on-line corrosion monitoring based on a new concept. This report describes the initial results from the first-year effort of the three-year study that include laboratory development and experiment, and pilot combustor testing.

  18. Raman and non Raman EIT resonances in a degenerate four level system

    CERN Document Server

    Ahmedov, Haji

    2013-01-01

    Interference effects in a degenerate four level system subjected to two optical and one radio frequency (rf) fields are studied. The degeneracy of a metastable level (which is common for the rf field and one of the optical field) leads to EIT resonances properties of which depend not only on the optical field frequency and the rf field amplitude, but also on the geometry of polarizations of the optical and the rf fields. The properties of these resonances can be manipulated to design a desired atomic response.

  19. Development of wireless sensor network for landslide monitoring system

    Science.gov (United States)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.

    2017-05-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.

  20. Differential temperature sensor system and method

    Science.gov (United States)

    Savchenkov, Anatoliy A. (Inventor); Yu, Nan (Inventor); Maleki, Lute (Inventor); Iltchenko, Vladimir S. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor)

    2010-01-01

    A differential temperature sensor system and method of determining a temperature shift of an optical resonator and its surroundings are provided. The differential temperature sensor system includes a light generating device capable of generating a beam having a carrier frequency, a modulator capable of modulating the beam with a sideband frequency, and an optical resonator capable of supporting an ordinary mode and an extraordinary mode. The system includes an ordinary mode-lock setup capable of locking the carrier frequency of the beam to the ordinary mode of the optical resonator and an extraordinary mode-lock setup capable of locking the sideband frequency of the beam to the extraordinary mode of the optical resonator by providing a specific radio frequency to the modulator substantially corresponding to a frequency shift between the ordinary mode and the extraordinary mode of the optical resonator resulting from a temperature change of the optical resonator. A processor precisely calculates the differential temperature based upon the frequency shift between the ordinary mode and extraordinary mode of the optical resonator.

  1. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  2. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  3. Micro Coriolis mass flow sensor for chemical micropropulsion systems

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Groenesteijn, Jarno; Dijkstra, Pieter J.; Lötters, Joost Conrad

    2012-01-01

    We have designed a micromachined micro Coriolis flow sensor for the measurement of hydrazine (N2H4, High Purity Grade) propellant flow in micro chemical propulsion systems. The sensor measures mass flow up to 10 mg/s for a single thruster or up to 40 mg/s for four thrusters. The sensor will first be

  4. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  5. Multi-Terabit Long-Haul Transmission System Utilizing Distributed Raman Amplification Technologies

    Institute of Scientific and Technical Information of China (English)

    Takao Naito; Toshiki Tanaka

    2003-01-01

    Here we summarize multi-terabit long-haul transmission experiment and distributed Raman amplification (DRA) technologies. As well, we investigate the configuration of dispersion-managed fibers for the DRA-based system from the viewpoint of the fiber non-linear effect and required pumping power.

  6. Distributed sensor system decision analysis using team strategies

    Science.gov (United States)

    Choe, Howard C.; Kazakos, Dimitri

    1991-07-01

    A distributed (or decentralized) multiple sensor system is considered under binary hypothesis environments. The system is deployed with a host sensor and multiple slave sensors. All sensors have their own independent decision makers (DM) which are capable of declaring local decisions based only on their own observation of the environment. The communication between the host sensor (HS) and the slave sensors (SS) is conditional upon the host sensor's command. Each communication that takes place involves a communication cost which plays an important role in approaches taken in this study. The conditional communication with cost initiates the team strategy in making the final decisions at the host sensor. The objectives are not only to apply the team strategy method in the decision making process, but also to minimize the expected system cost (or the probability or error in making decisions) by optimizing thresholds in the host sensor. The analytical expression of the expected system cost is numerically evaluated for Gaussian statistics over threshold locations in the host sensor to find an optimal threshold location for a given communication cost. The computer simulations of various sensor systems for Gaussian observations are also performed to understand the behavior of each system with respect to correct detections, false alarms, and target misses.

  7. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  8. Recent Advances in Long-distance FBG Sensor Systems at UESTC

    Institute of Scientific and Technical Information of China (English)

    RAO Yun-Jiang; RAN Zeng-Ling

    2006-01-01

    Recent progress in long-distance in-Fiber Bragg Grating (FBG) sensor systems at University of Electronic Science & Technology of China (UESTC) is reviewed in this paper. Two novel approaches with a 50km transmission distance are proposed and demonstrated. The first one is based on the combination of bidirectional Raman amplification and a dual Erbium-Doped Fiber (EDF) configuration. A good Signal-to-Noise Ratio (SNR) of ~16dB is achieved with only a pump power of ~280 mW, which is ~10 dB higher than that without amplification. The second is based on a novel tunable fiber ring laser configuration with hybrid Raman/EDFA configuration. Experimental results show that an excellent optical SNR of ~60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of ~170 mW and a low EDFA pump power of ~40 mW at wavelength of 980 nm. It is anticipated that these long-distance FBG sensing systems could find important applications in health monitoring of large infra-structures, such as oil or gas pipelines, ultra-long bridges and tunnels, river banks, and so on.

  9. Sensor Fault Tolerant Generic Model Control for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.

  10. Confocal Raman spectroscopy system for noncontact scanning of ocular tissues: an in vitro study

    Science.gov (United States)

    Jongsma, Franciscus H.; Erckens, Roel J.; Wicksted, James P.; Bauer, Noel J.; Hendrikse, Fred; March, Wayne F.; Motamedi, Massoud

    1997-11-01

    A long-working-distance fiber-optic-based confocal Raman spectroscopy (CRS) system, operating in the backscatter mode, was developed for rapid noninvasive characterization of ocular tissue. In vitro near-real-time axial scanning through ocular tissue was achieved using a CCD camera and a high-numerical- aperture long-working-distance microscope objective in a telecentric configuration. The system provides high spatial resolution (20 to 150 micrometers) of transparent ocular tissues up to 13 mm deep into the eye in a noncontact fashion while utilizing low argon-laser power and rapid scanning times (25 mJ), yielding a SNR range from 30 to 75. To test the performance of the system for characterizing ocular tissue, Raman spectra from rabbit eyes were obtained in vitro. Axial scans of the cornea, the aqueous humor, an the lens provided discrete and specific Raman spectra from each tissue, in both the lower and the higher wave-number region. Characteristic Raman signals common to all tissues are the OH vibrations (1650 and 3100 to 3700 cm-1) and the vibrations corresponding to amino acids (phenylalanine at 1003 cm-1, tryptophan at 760 and 881 cm-1, and tyrosine at 646 cm-1). The ocular lens can be identified by three distinct peaks (aromatic and aliphatic CH stretching and OH bending modes), of which the aromatic CH stretching mode (approximately equals 3057 cm-1) is lens-specific. The cornea can be identified by the presence of two distinct peaks (aliphatic CH stretching and OH bending) and the absence of the aromatic CH stretching mode. The aqueous humor can be identified by the presence of the OH bending mode and the lack of the both CH stretching modes. A long-working-distance confocal Raman spectroscopy system may offer a novel technique for the noncontact spatially resolved biochemical characterization of various tissue layers of the anterior segment of the eye.

  11. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO4-)

    Energy Technology Data Exchange (ETDEWEB)

    Hatzinger, Paul B. [Shaw Environmental, Inc., Lawrenceville, NJ (United States); Eres, Gyula [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubb, Aaron M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO4-) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples in the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO4- in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO4- with a detection limit of ~10-6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO4- at levels above 10-6

  12. An Efficient Management System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mei-Yu Lee

    2010-12-01

    Full Text Available Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  13. An efficient management system for wireless sensor networks.

    Science.gov (United States)

    Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu

    2010-01-01

    Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.

  14. A Sensor System for Detection of Hull Surface Defects

    Directory of Open Access Journals (Sweden)

    Juan Suardíaz

    2010-07-01

    Full Text Available This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results.

  15. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system

    Science.gov (United States)

    Zinin, Pavel V.; Prakapenka, Vitali B.; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K.

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  16. Combined laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system.

    Science.gov (United States)

    Zinin, Pavel V; Prakapenka, Vitali B; Burgess, Katherine; Odake, Shoko; Chigarev, Nikolay; Sharma, Shiv K

    2016-12-01

    We developed a multi-functional in situ measurement system under high pressure equipped with a laser ultrasonics (LU) system, Raman device, and laser heating system (LU-LH) in a diamond anvil cell (DAC). The system consists of four components: (1) a LU-DAC system (probe and pump lasers, photodetector, and oscilloscope) and DAC; (2) a fiber laser, which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside a DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system to focus laser beams on the sample and image it in the DAC. The system is unique and allows us to do the following: (a) measure the shear and longitudinal velocities of non-transparent materials under HPHT; (b) measure temperature in a DAC under HPHT conditions using Planck's law; (c) measure pressure in a DAC using a Raman signal; and (d) measure acoustical properties of small flat specimens removed from the DAC after HPHT treatment. In this report, we demonstrate that the LU-LH-DAC system allows measurements of velocities of the skimming waves in iron at 2580 K and 22 GPa.

  17. Raman-based system for DNA sequencing-mapping and other separations

    Science.gov (United States)

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  18. Measurement system for resistive metal oxide sensors matrix

    Science.gov (United States)

    Róg, Piotr; Rydosz, Artur; Brudnik, Andrzej

    2016-12-01

    The measurement system for laboratory array of gas sensors was constructed. The system can be used to measure the response characteristic of resistive metal oxide (MOx) gas sensors. Proposed system is flexible and reconfigurable easy, to perform high and low resistivity measurements.

  19. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  20. Wearable Sensors in Healthcare and Sensor-Enhanced Health Information Systems: All Our Tomorrows?

    Science.gov (United States)

    Gietzelt, Matthias; Schulze, Mareike; Kohlmann, Martin; Song, Bianying; Wolf, Klaus-Hendrik

    2012-01-01

    Wearable sensor systems which allow for remote or self-monitoring of health-related parameters are regarded as one means to alleviate the consequences of demographic change. This paper aims to summarize current research in wearable sensors as well as in sensor-enhanced health information systems. Wearable sensor technologies are already advanced in terms of their technical capabilities and are frequently used for cardio-vascular monitoring. Epidemiologic predictions suggest that neuropsychiatric diseases will have a growing impact on our health systems and thus should be addressed more intensively. Two current project examples demonstrate the benefit of wearable sensor technologies: long-term, objective measurement under daily-life, unsupervised conditions. Finally, up-to-date approaches for the implementation of sensor-enhanced health information systems are outlined. Wearable sensors are an integral part of future pervasive, ubiquitous and person-centered health care delivery. Future challenges include their integration into sensor-enhanced health information systems and sound evaluation studies involving measures of workload reduction and costs. PMID:22844645

  1. Odor identification sensor system; Nioi shikibetsu sensa shisutemu

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Tadashi.; Suzuki, Kendo

    1999-09-01

    The development of the device human five senses substitution is being asked. In this, though the nose of the living body is imitated and it proceeds with the development, as for a sense, it is still far beyond the performance of the human nose to smell bad by the various chemical sensors and the information processing technology. It smells by using the metal oxide semiconductor ceremony sensor it has the sex that various smells is chosen, and we develop a sensor, and proceed with the realization of the questionable distinction sensor system, which used these sensors. (NEDO)

  2. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  3. Nanoparticle Based Surface-Enhanced Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M

    2005-01-03

    Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.

  4. Printed Carbon Nanotube Electronics and Sensor Systems.

    Science.gov (United States)

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advanced interfacing techniques for sensors measurement circuits and systems for intelligent sensors

    CERN Document Server

    Roy, Joyanta; Kumar, V; Mukhopadhyay, Subhas

    2017-01-01

    This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.

  6. Prototyping an Operational System with Multiple Sensors for Pasture Monitoring

    Directory of Open Access Journals (Sweden)

    Tim Wark

    2013-07-01

    Full Text Available Combining multiple proximal sensors within a wireless sensor network (WSN enhances our capacity to monitor vegetation, compared to using a single sensor or non-networked setup. Data from sensors with different spatial and temporal characteristics can provide complementary information. For example, point-based sensors such as multispectral sensors which monitor at high temporal frequency but, at a single point, can be complemented by array-based sensors such as digital cameras which have greater spatial resolution but may only gather data at infrequent intervals. In this article we describe the successful deployment of a prototype system for using multiple proximal sensors (multispectral sensors and digital cameras for monitoring pastures. We show that there are many technical issues involved in such a deployment, and we share insights relevant for other researchers who may consider using WSNs for an operational deployment for pasture monitoring under often difficult environmental conditions. Although the sensors and infrastructure are important, we found that other issues arise and that an end-to-end workflow is an essential part of effectively capturing, processing and managing the data from a WSN. Our deployment highlights the importance of testing and ongoing monitoring of the entire workflow to ensure the quality of data captured. We demonstrate that the combination of different sensors enhances our ability to identify sensor problems necessary to collect accurate data for pasture monitoring.

  7. Presence detection under optimum fusion in an ultrasonic sensor system.

    Science.gov (United States)

    Srinivasan, Sriram; Pandharipande, Ashish

    2012-04-01

    Reliable presence detection is a requirement in energy-efficient occupancy-adaptive indoor lighting systems. A system of multiple ultrasonic sensors is considered for presence detection, and the performance gain from optimum fusion is studied. Two cases are considered wherein an individual sensor determines presence based on (i) local detection by processing echoes at its receiver, and (ii) the optimum Chair-Varshney fusion rule using multiple sensor detection results. The performance gains of using optimum fusion over local detection are characterized under different sensor system configurations and it is shown that improved detection sensitivity is obtained over a larger detection coverage region.

  8. Energy storage management system with distributed wireless sensors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  9. Control method for video guidance sensor system

    Science.gov (United States)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  10. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  11. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf, Ph.D.

    2003-02-27

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

  12. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate

    Science.gov (United States)

    Srichan, Chavis; Ekpanyapong, Mongkol; Horprathum, Mati; Eiamchai, Pitak; Nuntawong, Noppadon; Phokharatkul, Ditsayut; Danvirutai, Pobporn; Bohez, Erik; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-03-01

    In this work, a novel platform for surface-enhanced Raman spectroscopy (SERS)-based chemical sensors utilizing three-dimensional microporous graphene foam (GF) decorated with silver nanoparticles (AgNPs) is developed and applied for methylene blue (MB) detection. The results demonstrate that silver nanoparticles significantly enhance cascaded amplification of SERS effect on multilayer graphene foam (GF). The enhancement factor of AgNPs/GF sensor is found to be four orders of magnitude larger than that of AgNPs/Si substrate. In addition, the sensitivity of the sensor could be tuned by controlling the size of silver nanoparticles. The highest SERS enhancement factor of ∼5 × 104 is achieved at the optimal nanoparticle size of 50 nm. Moreover, the sensor is capable of detecting MB over broad concentration ranges from 1 nM to 100 μM. Therefore, AgNPs/GF is a highly promising SERS substrate for detection of chemical substances with ultra-low concentrations.

  13. GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2004-09-30

    Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

  14. Security Techniques for Sensor Systems and the Internet of Things

    Science.gov (United States)

    Midi, Daniele

    2016-01-01

    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We…

  15. Transmission stability and Raman-induced amplitude dynamics in multichannel soliton-based optical waveguide systems

    Science.gov (United States)

    Peleg, Avner; Nguyen, Quan M.; Tran, Thinh P.

    2016-12-01

    We study transmission stability and dynamics of pulse amplitudes in N-channel soliton-based optical waveguide systems, taking into account second-order dispersion, Kerr nonlinearity, delayed Raman response, and frequency dependent linear gain-loss. We carry out numerical simulations with systems of N coupled nonlinear Schrödinger (NLS) equations and compare the results with the predictions of a simplified predator-prey model for Raman-induced amplitude dynamics. Coupled-NLS simulations for single-fiber transmission with 2 ≤ N ≤ 4 frequency channels show stable oscillatory dynamics of soliton amplitudes at short-to-intermediate distances, in excellent agreement with the predator-prey model's predictions. However, at larger distances, we observe transmission destabilization due to resonant formation of radiative sidebands, which is caused by Kerr nonlinearity. The presence of linear gain-loss in a single fiber leads to a limited increase in transmission stability. Significantly stronger enhancement of transmission stability is achieved in a nonlinear N-waveguide coupler due to efficient suppression of radiative sideband generation by the linear gain-loss. As a result, the distances along which stable Raman-induced dynamics of soliton amplitudes is observed are significantly larger in the waveguide coupler system compared with the single-fiber system.

  16. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  17. Wireless sensor systems and methods, and methods of monitoring structures

    Science.gov (United States)

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

    2007-02-20

    A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

  18. Pressure estimation using the ‘diamond Raman scale’ at low pressures in diamond anvil cell experiments using a highly confocal Raman system

    Science.gov (United States)

    Fujii, Taku; Ohfuji, Hiroaki

    2015-02-01

    Pressure estimation using the frequency shift of the diamond Raman peak from the anvil culet is readily and widely used in diamond anvil cell experiments along with the conventional ruby fluorescence method. Here, we propose a modified diamond Raman scale particularly designed for pressure measurement below ~10 GPa. A series of experiments were conducted using a highly confocal Raman system and H2O, ethanol/methanol mixture and NaCl samples loaded in a rhenium gasket which was pre-indented to 40-60 or 100-110 μm thick. The result showed that the frequency of the diamond Raman peak from the anvil culet increases linearly with pressure between 1 and 13 GPa, when using a sufficiently pre-indented (40-60 μm thick) gasket. The frequency shifts are calibrated against the pressure determined by the ruby fluorescence method, which is an alternative pressure scale. In addition, a preliminary measurement at high temperature up to 575 K suggests the potential application of this method for high temperature experiments.

  19. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  20. A novel readout system for wireless passive pressure sensors

    Science.gov (United States)

    Zhang, Huixin; Hong, Yingping; Ge, Binger; Liang, Ting; Xiong, Jijun

    2014-03-01

    This paper presents a novel readout system for wireless passive pressure sensors based on the inductively coupled inductor and cavity (LC) resonant circuits. The proposed system consists of a reader antenna inductively coupled to the sensor circuit, a readout circuit, and a personal computer (PC) post processing unit. The readout circuit generates a voltage signal representing the sensor's capacitance. The frequency of the reader antenna driving signal is a constant, which is equal to the sensor's resonant frequency at zero pressure. Based on mechanical and electrical modeling, the pressure sensor design based on the high temperature co-fired ceramic (HTCC) technology is conducted and discussed. The functionality and accuracy of the readout system are tested with a voltage-capacitance measurement system and demonstrated in a realistic pressure measurement environment, so that the overall performance and the feasibility of the readout system are proved.

  1. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  2. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  3. Efficient evaluation of impairment induced by distributed fiber Raman amplifier using error vector magnitude techniques in unrepeated coherent communication system

    Science.gov (United States)

    Shan, Yuanyuan; Sun, Junqiang

    2016-06-01

    We investigate the impairment induced by relative intensity noise (RIN) of Raman pump in an ultra-long unrepeated multi-level modulated coherent optical communication system. By adopting error vector magnitude (EVM) techniques, we proposed a simple and high efficient numerical method to calculate and analyze the impact of Raman pump RIN on the coherent receiver system. Both intensity and phase noise are taken into consideration in our numerical simulations when choosing Raman pump lasers with different RIN and using different signals. Our simulation result shows that higher-order phase-modulated signal is more sensitive to RIN of the Raman pump. Comparing to the phase noise, intensity noise induced by RIN of the Raman pump can generally be ignored. Apart from the well-known walk-off parameter, nonlinear parameters and Raman-gain coefficient also play important roles in the complex noise transfer process. Our calculation makes it possible to quickly and accurately evaluate the hybrid distributed fiber Raman amplification (DFRA) along with remotely-pumped erbium-doped fiber amplification (EDFA) in ultra-long unrepeated transmission systems.

  4. Safety Guide-Line and Requirements for Distributed Raman Amplification and its Applications to WDM Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    Masahito; Tomizawa; Akira; Hirano; Yutaka; Miyamoto

    2003-01-01

    This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both " eye-hazard" and " fire-hazards" .

  5. Safety Guide-Line and Requirements for Distributed Raman Amplification and its Applications to WDM Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    Masahito Tomizawa; Akira Hirano; Yutaka Miyamoto

    2003-01-01

    This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both “eye-hazard” and “fire-hazards”.

  6. Development of an in situ fiber optic Raman system to monitor hydrothermal vents.

    Science.gov (United States)

    Battaglia, Tina M; Dunn, Eileen E; Lilley, Marvin D; Holloway, John; Dable, Brian K; Marquardt, Brian J; Booksh, Karl S

    2004-07-01

    The development of a field portable fiber optic Raman system modified from commercially available components that can operate remotely on battery power and withstand the corrosive environment of the hydrothermal vents is discussed. The Raman system is designed for continuous monitoring in the deep-sea environment. A 785 nm diode laser was used in conjunction with a sapphire ball fiber optic Raman probe, single board computer, and a CCD detector. Using the system at ambient conditions the detection limits of SO(4)(2-), CO(3)(2-) and NO(3)(-) were determined to be approximately 0.11, 0.36 and 0.12 g l(-1) respectively. Mimicking the cold conditions of the sea floor by placing the equipment in a refrigerator yielded slightly worse detection limits of approximately 0.16 g l(-1) for SO(4)(-2) and 0.20 g l(-1) for NO(3)(-). Addition of minerals commonly found in vent fluid plumes also decreased the detection limits to approximately 0.33 and 0.34 g l(-1) respectively for SO(4)(-2) and NO(3)(-).

  7. An Isolation Intrusion Detection System for Hierarchical Wireless Sensor Networks

    OpenAIRE

    Rung-Ching Chen; Chia-Fen Hsieh; Yung-Fa Huang

    2010-01-01

    A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor environmental conditions, such as battlefield data and personal health information, and some environment limited resources. To avoid malicious damage is important while information is transmitted in wireless network. Thus, Wireless Intrusion Detection Systems are crucial to safe operation in wireless sensor networks. Wireless networks are subject ...

  8. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  9. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  10. Hybrid LIBS and Raman Spectroscopy Standoff Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA's need for an instrument for robotic in situ geochemical exploration of the solar system, Physical Optics Corporation (POC) proposes to develop a new...

  11. Fiber Optic Temperature Sensors for Thermal Protection Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes an innovative fiber optic-based, multiplexable, highly ruggedized, integrated sensor system for real-time...

  12. 85 km Long Reach PON System Using a Reflective SOA-EA Modulator and Distributed Raman Fiber Amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Öhman, Filip; Yvind, Kresten

    2006-01-01

    We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit......We report on a bidirectional 85 km long reach PON system supported by distributed fiber Raman amplification with a record 7.5 Gb/s remote carrier modulated upstream signal by employing a reflective SOA-EA monolithically integrated circuit...

  13. Application of wireless sensor system on security network

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    In this research we developed wireless sensor system for security application. We have used geophone to detect seismic signals which are generated by footsteps. Geophones are resonant devices. Therefore, vibration on the land can generate seismic waveforms which could be very similar to the signature by footstep. The signals from human footstep have weak signals to noise ratio and the signal strength is subject to the distance between the sensor and human. In order to detect weak signals from footstep, we designed and fabricated 2-stage amplification circuit which consists of active and RC filters and amplifiers. The bandwidth of filter is 0.7Hz-150Hz and the gain of amplifier is set to 1000. The wireless sensor system also developed to monitor the sensing signals at the remote place. The wireless sensor system consists of 3 units; a wireless sensor unit, a wireless receiver unit, and a monitoring unit. The wireless sensor unit transmits amplified signals from geophone with Zigbee, and the wireless receiver unit which has both Zigbee and Wi-Fi module receives signals from the sensor unit and transmits signals to the monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve the low power consumption and wide range coverage.

  14. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    Energy Technology Data Exchange (ETDEWEB)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC.

  15. Sensor concentrator unit for the Continuous Automated Vault Inventory System

    Energy Technology Data Exchange (ETDEWEB)

    Nodine, R.N.; Lenarduzzi, R.

    1997-06-01

    The purpose of this document is to describe the use and operation of the sensor concentrator in the Continuous Automated Vault Inventory System (CAVIS). The CAVIS electronically verifies the presence of items of stored special nuclear material (SNM). US Department of Energy orders require that stored SNM be inventoried periodically to provide assurance that the material is secure. Currently this inventory is a highly manual activity, requiring personnel to enter the storage vaults. Using a CAVIS allows the frequency of physical inventories to be significantly reduced, resulting in substantial cost savings, increased security, and improved safety. The electronic inventory of stored SNM requires two different types of sensors for each item. The two sensors measure different parameters of the item, usually weight and gamma rays. A CAVIS is constructed using four basic system components: sensors, sensor concentrators, a data collection unit, and a database/user interface unit. One sensor concentrator supports the inventory of up to 20 items (40 sensors) and continuously takes readings from the item sensors. On request the sensor concentrator outputs the most recent sensor readings to the data collection unit. The information transfer takes place over a RS485 communications link. The data collection unit supports from 1 to 120 sensor concentrators (1 to 2,400 items) and is referred to as the Sensor Polling and Configuration System (SPCS). The SPCS is connected by a secure Transmission Control Protocol/Internet Protocol (TCP/IP) network to the database/user interface unit, which is referred to as the Graphical Facility Information Center (GraFIC). A CAVIS containing more than 2,400 items is supported by connecting additional SPCS units to the GraFIC.

  16. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    Energy Technology Data Exchange (ETDEWEB)

    Vo-Dinh, Tuan (Knoxville, TN)

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  17. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    Science.gov (United States)

    Vo-Dinh, Tuan

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  18. System modeling based measurement error analysis of digital sun sensors

    Institute of Scientific and Technical Information of China (English)

    WEI; M; insong; XING; Fei; WANG; Geng; YOU; Zheng

    2015-01-01

    Stringent attitude determination accuracy is required for the development of the advanced space technologies and thus the accuracy improvement of digital sun sensors is necessary.In this paper,we presented a proposal for measurement error analysis of a digital sun sensor.A system modeling including three different error sources was built and employed for system error analysis.Numerical simulations were also conducted to study the measurement error introduced by different sources of error.Based on our model and study,the system errors from different error sources are coupled and the system calibration should be elaborately designed to realize a digital sun sensor with extra-high accuracy.

  19. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  20. Commissioning of the KATRIN Raman system for monitoring of the WGTS gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian; Bornschein, Beate; James, Timothy M.; Off, Andreas; Rupp, Simone; Seitz-Moskaliuk, Hendrik; Sturm, Michael; Wecker, Matthias [Karlsruhe Institute of Technology (Germany); Schloesser, Magnus [Universidad Complutense de Madrid (Spain); Karlsruhe Institute of Technology (Germany); Telle, Helmut H. [Universidad Complutense de Madrid (Spain)

    2015-07-01

    The Karlsruhe Tritium Neutrino (KATRIN) Experiment aims at determining the neutrino mass by the investigation of the endpoint energy-region of the tritium β-spectrum. Tritium in its molecular form ({sup 3}H{sub 2}) is injected into the Windowless Gaseous Tritium Source (WGTS) of KATRIN, and thus molecular effects, e.g. ro-vibrational excitations levels, have to be considered in the neutrino mass analysis in order to reach the design sensitivity of 200 meV/c{sup 2} (90% C.L.). As the source gas also contains impurities of the other hydrogen isotopes protium and deuterium - giving rise to different molecular excitation levels - continuous and precise monitoring of the source gas composition is required. Raman spectroscopy is the method of choice for this task as it is an inline and non-contact analysis method. In this talk, results from the recently performed commissioning phase of the KATRIN Raman system are presented: over the course of more than 50 days, consecutive Raman spectra (recorded with acquisition times of 60 s) of circulating tritium gas were acquired and analysed in real-time. In addition, valuable information on the system performance during long-term operation was gained.

  1. Mammalian Cell-Based Sensor System

    Science.gov (United States)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  2. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  3. Detection and Identification System of Bacteria and Bacterial Endotoxin Based on Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Elsayeh

    2016-03-01

    Full Text Available Sepsis is a global health problem that causes risk of death. In the developing world, about 60 to 80 % of death cases are caused by Sepsis. Rapid methods for detecting its causes, represent one of the major factors that may reduce Sepsis risks. Such methods can provide microbial detection and identification which is critical to determine the right treatment for the patient. Microbial and Pyrogen detection is important for quality control system to ensure the absence of pathogens and Pyrogens in the manufacturing of both medical and food products. Raman spectroscopes represent a q uick and accurate identification and detection method, for bacteria and bacterial endotoxin, which this plays an important role in delivering high quality biomedical products using the power of Raman spectroscopy. It is a rapid method for chemical structure detection that can be used in identifying and classifying bacteria and bacterial endotoxin. Such a method acts as a solution for time and cost effective quality control procedures. This work presents an automatic system based on Raman spectroscopy to detect and identify bacteria and bacterial endotoxin. It uses the frequency properties of Raman scattering through the interaction between organic materials and electromagnetic waves. The scattered intensities are measured and wave number converted into frequency, then the cepstral coefficients are extracted for both the detection and identification. The methodology depends on normalization of Fourier transformed cepstral signal to extract their classification features. Experiments’ results proved effective identification and detection of bacteria and bacterial endotoxin even with concentrations as low as 0.0003 Endotoxin unit (EU/ml and 1 Colony Forming Unit (CFU/ml using signal processing based enhancement technique.

  4. Onboard Image Processing System for Hyperspectral Sensor

    National Research Council Canada - National Science Library

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    .... Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size...

  5. WISS - Wireless, Intelligent Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low power, robust communications protocols such as IEEE 802.15.4/Zigbee have made the concept of smart sensor networks attractive across many applications. These...

  6. Role of passive remote sensors. Sensor System Panel report

    Science.gov (United States)

    1982-01-01

    Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.

  7. Developing a Cooperative Intrusion Detection System for Wireless Sensor Networks

    Science.gov (United States)

    2010-11-01

    needs for WSNs and can be integrated into sensor network applications. The protocols must be adapted to use these frameworks. TinySec [11], ZigBee [12...conference on Embedded Networked Sensor Systems, November 2004. [12] ZigBee Alliance: ZigBee Specification. Technical Report Document 053474r06, June 2005

  8. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  9. Advanced RADAR Sensors Modeling for Driving Assistance Systems Testing.

    OpenAIRE

    KEDZIA, Jean-Claude; DESOUZA, Philippe; Gruyer, Dominique

    2016-01-01

    With Advanced Driver Assistance Systems (ADAS) getting always more sophisticated, the related Virtual Prototyping platforms have to propose a very high level of accuracy with improved flexibility regarding vehicles, sensors, environments and scenarios. In this paper a new strategy is introduced for RADAR sensors modeling aimed at allowing high accuracy while limiting the related development efforts.

  10. What Does Big Data Mean for Wearable Sensor Systems?

    Science.gov (United States)

    Lovell, N. H.; Yang, G. Z.; Horsch, A.; Lukowicz, P.; Murrugarra, L.; Marschollek, M.

    2014-01-01

    Summary Objectives The aim of this paper is to discuss how recent developments in the field of big data may potentially impact the future use of wearable sensor systems in healthcare. Methods The article draws on the scientific literature to support the opinions presented by the IMIA Wearable Sensors in Healthcare Working Group. Results The following is discussed: the potential for wearable sensors to generate big data; how complementary technologies, such as a smartphone, will augment the concept of a wearable sensor and alter the nature of the monitoring data created; how standards would enable sharing of data and advance scientific progress. Importantly, attention is drawn to statistical inference problems for which big datasets provide little assistance, or may hinder the identification of a useful solution. Finally, a discussion is presented on risks to privacy and possible negative consequences arising from intensive wearable sensor monitoring. Conclusions Wearable sensors systems have the potential to generate datasets which are currently beyond our capabilities to easily organize and interpret. In order to successfully utilize wearable sensor data to infer wellbeing, and enable proactive health management, standards and ontologies must be developed which allow for data to be shared between research groups and between commercial systems, promoting the integration of these data into health information systems. However, policy and regulation will be required to ensure that the detailed nature of wearable sensor data is not misused to invade privacies or prejudice against individuals. PMID:25123733

  11. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  12. Energy autonomous sensor systems : Towards a ubiquitous sensor technology

    NARCIS (Netherlands)

    Belleville, M.; Fanet, H.; Fiorini, P.; Nicole, P.; Pelgrom, M.J.M.; Piguet, C.; Hahn, R.; Hoof, C. van; Vullers, R.; Tartagni, M.; Cantatore, E.

    2010-01-01

    Energy efficiency of electronic systems has emerged as one of the most important trends in integrated circuits research in recent years. The results of this continued effort are visible in all kinds of electronic functions: DSPs (reaching the 10 μW/MMAC according Gene's law), data converters (the FO

  13. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  14. Sensor Selection method for IoT systems – focusing on embedded system requirements

    Directory of Open Access Journals (Sweden)

    Hirayama Masayuki

    2016-01-01

    Full Text Available Recently, various types of sensors have been developed. Using these sensors, IoT systems have become hot topics in embedded system domain. However, sensor selections for embedded systems are not well discussed up to now. This paper focuses on embedded system’s features and architecture, and proposes a sensor selection method which is composed seven steps. In addition, we applied the proposed method to a simple example – a sensor selection for computer scored answer sheet reader unit. From this case study, an idea to use FTA in sensor selection is also discussed.

  15. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  16. Capillarity-based preparation system for optical colorimetric sensor arrays

    Science.gov (United States)

    Luo, Xiao-gang; Yi, Xin; Bu, Xiang-nan; Hou, Chang-jun; Huo, Dan-qun; Yang, Mei; Fa, Huan-bao; Lei, Jin-can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  17. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  18. Ultrasensitive, Specific, Recyclable, and Reproducible Detection of Lead Ions in Real Systems through a Polyadenine-Assisted, Surface-Enhanced Raman Scattering Silicon Chip.

    Science.gov (United States)

    Shi, Yu; Wang, Houyu; Jiang, Xiangxu; Sun, Bin; Song, Bin; Su, Yuanyuan; He, Yao

    2016-04-05

    It is of great significance to accurately and reliably detect trace lead(II) (Pb(2+)) ions, preferably at sub-nM level due to the possible long-term accumulation of Pb(2+) in the human body, which may cause serious threats to human health. However, a suitable Pb(2+) sensor meeting the demands is still scanty. Herein, we develop a polyadenine-assisted, surface-enhanced Raman scattering (SERS) silicon chip (0.5 cm × 0.5 cm) composed of core (Ag)-satellite (Au) nanoparticles (Ag-Au NPs)-decorated silicon wafers (Ag-Au NPs@Si) for high-performance Pb(2+) detection. Typically, strong SERS signals could be measured when DNAzyme conjugated on the SERS silicon chip is specifically activated by Pb(2+), cleaving the substrate strand into two free DNA strands. A good linearity exists between the normalized Raman intensities and the logarithmic concentrations of Pb(2+) ranging from 10 pM to 1 μM with a good correlation coefficient, R(2) of 0.997. Remarkably, Pb(2+) ions with a low concentration of 8.9 × 10(-12) M can be readily determined via the SERS silicon chip ascribed to its superior SERS enhancement, much lower than those (∼nM) reported by other SERS sensors. Additionally, the developed chip features good selectivity and recyclability (e.g., ∼11.1% loss of Raman intensity after three cycles). More importantly, the as-prepared chip can be used for accurate and reliable determination of unknown Pb(2+) ions in real systems including lake water, tap water and industrial wastewater, with the RSD value less than 12%.

  19. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  20. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  1. Raman Based Dispersive Systems for Short Pulse Generation and Optical Signal Processing

    Science.gov (United States)

    Kalyoncu, Salih Kagan

    Spatiotemporal dispersive systems have been widely utilized for nonlinear optics and optical signal processing applications. This thesis is dedicated to the investigation of dispersive and nonlinear properties of optical fibers, temporal dispersion for real time operation and spatially dispersed pulse shaping systems. In particular, this thesis is focused on Raman based dispersive systems based on such promising techniques as dispersion management, photonic time stretching and space-to-wavelength mapping for synchronous pulse generation and all-optical RF arbitrary waveform generation incorporated with mature MEMS technology. The first part of this thesis discusses a novel technique of using dispersion managed system for synchronous first and second order pulsed Raman lasers that can achieve frequency spacing of up to 1000 cm-1, which are widely utilized for CARS microscopy applications. In particular, I focus on analytical and numerical analysis of pulsed stability derived for Raman lasers by using dispersion-managed telecom fibers and pumping at near 1530 nm telecom wavelengths. I show the evolution of the first and second order Stokes signals at the output for different peak pump power and the net anomalous dispersion combinations. I determine the stability condition for dispersion-managed synchronous Raman lasers up to second order. In the second part of the thesis, the noise performance of the amplified time stretched systems is investigated. Amplified time stretched systems enabling real time applications such as high-speed analog-to-digital converters, RF arbitrary waveform generation and dispersive imaging are performance limited by the noise cumulated in the system. In particular, I analyze the noise performance and hence the effective number of bits (ENOB) performance of time stretch ADCs with distributed and lumped amplifications. I estimate that distributed amplification in time stretch system with >10GHz analog bandwidth exhibit up to 16dB higher SNR

  2. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  3. Fibre optic surface plasmon resonance sensor system designed for smartphones.

    Science.gov (United States)

    Bremer, Kort; Roth, Bernhard

    2015-06-29

    A fibre optic surface plasmon resonance (SPR) sensor system for smartphones is reported, for the first time. The sensor was fabricated by using an easy-to-implement silver coating technique and by polishing both ends of a 400 µm optical fibre to obtain 45° end-faces. For excitation and interrogation of the SPR sensor system the flash-light and camera at the back side of the smartphone were employed, respectively. Consequently, no external electrical components are required for the operation of the sensor system developed. In a first application example a refractive index sensor was realised. The performance of the SPR sensor system was demonstrated by using different volume concentrations of glycerol solution. A sensitivity of 5.96·10(-4) refractive index units (RIU)/pixel was obtained for a refractive index (RI) range from 1.33 to 1.36. In future implementations the reported sensor system could be integrated in a cover of a smartphone or used as a low-cost, portable point-of-care diagnostic platform. Consequently it offers the potential of monitoring a large variety of environmental or point-of-care parameters in combination with smartphones.

  4. Development of a Portable Fiberoptic Surface Enhanced Raman Sensor for In-Situ Detection and Monitoring of Perchlorate and Energetics

    Science.gov (United States)

    2012-01-01

    2010, 9 (1), 60–67. (15) Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin , S. B. Nano Lett. 2010, 10, 2749–2754. (16) Zou, S. L...265. 3 B. Raman, D. C. Meier, J. K. Evju and S. Semancik, Sens. Actuators, B, 2009, 137, 617–629. 4 E. M. A. Ali , H. G. M. Edwards and I. J. Scowen, J

  5. Software structure for broadband wireless sensor network system

    Science.gov (United States)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  6. Energy autonomous sensor systems for automotive condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fraeulin, Christian [A. RAYMOND GmbH und Co. KG, Weil am Rhein (Germany); Nurnus, Joachim; Punt, Wladimir [Micropelt GmbH, Freiburg (Germany)

    2011-07-01

    With the number of automotive sensors increasing, the effort for connecting all these sensors becomes more and more of an issue. A possible way to overcome these issues is to use energy-autonomous sensors that, besides the basic sensor function, include means to transmit the measurement data wirelessly as well as to generate the electrical energy they need to operate. Generating the electrical energy can be done by harvesting energy from ambient sources that are available in abundance, among others these can be heat and vibration. Although these principles are not new, so far little attempts have been made to incorporate these technologies into cost-sensitive segments like the automotive market. In this paper we present two energy-autonomous sensor demonstrators for automotive applications: a temperature sensor powered with a thermoelectric harvester, thus using a tiny amount of the physical property it wants to measure, and a pressure sensor powered by vibration energy. For both applications, managing the limited amount of available energy is one of the mayor tasks in developing this kind of systems. Therefore both systems use special means in hard- and software to cope with that task. While the automotive market is a very interesting one for energy-autonomous sensors, many other possible applications can be considered, among them the solar market and industrial condition monitoring. (orig.)

  7. High Channel Count, Low Cost, Multiplexed FBG Sensor Systems

    Institute of Scientific and Technical Information of China (English)

    J. J. Pan; FengQing Zhou; Kejian Guan; Joy Jiang; Liang Dong; Albert Li; Xiangdong Qiu; Jonathan Zhang

    2003-01-01

    With rich products development experience in WDM telecommunication networks, we introduce a few of high channel count, multiplexed FBG fiber optic sensor systems featured in reliable high performance and low cost.

  8. Active Multimodal Sensor System for Target Recognition and Tracking.

    Science.gov (United States)

    Qu, Yufu; Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-06-28

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system.

  9. Battlefield De-Confliction Sensor And Information System

    Science.gov (United States)

    Breckinridge, James B.

    1997-01-01

    A battlefield de-confliction and assessment sensor system architecture is described that uses a hyper-spectral imaging spectomerer instrument onboard a robitc aerial vehicle (UAV) to identify, characterize,and track missiles and aircraft.

  10. Remote optical sensor system for E-field measurements

    Science.gov (United States)

    Heinzelmann, Robert; Stoehr, Andreas; Alder, Thomas; Kalinowski, D.; Schmidt, Manuel; Gross, Matthias; Jaeger, Dieter

    1998-12-01

    The concept of a remote optical sensor system for frequency selective electric field measurements will be presented. The system will be applicable to field measurement problems up to frequencies in the microwave regime. Additionally, it will provide minimum interference with the measured field, due to the optical fiber coupled sensor head. The electrooptic key components within the head of this sensor system are an array of photovoltaic cells and an electroabsorption waveguide modulator. Based on experimental results these components will be discussed and evaluated for the application within the sensor system. Furthermore, a novel fiber modulator coupling technique employing the monolithic integration of the device with InP V-grooves will be presented.

  11. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  12. Cyber-physical system design with sensor networking technologies

    CERN Document Server

    Zeadally, Sherali

    2016-01-01

    This book describes how wireless sensor networking technologies can help in establishing and maintaining seamless communications between the physical and cyber systems to enable efficient, secure, reliable acquisition, management, and routing of data.

  13. Passive Wireless Sensor System for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  14. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.

    Science.gov (United States)

    Hu, Yaxi; Lu, Xiaonan

    2016-05-01

    An innovative "one-step" sensor conjugating molecularly imprinted polymers and surface enhanced Raman spectroscopic-active substrate (MIPs-SERS) was investigated for simultaneous extraction and determination of melamine in tap water and milk. This sensor was fabricated by integrating silver nanoparticles (AgNPs) with MIPs synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent), and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the specific affinity of MIPs-AgNPs to melamine and the rapid adsorption equilibration rate. Principal component analysis segregated SERS spectral features of tap water and milk samples with different melamine concentrations. Partial least squares regression models correlated melamine concentrations in tap water and skim milk with SERS spectral features. The limit of detection (LOD) and limit of quantification (LOQ) of melamine in tap water were determined as 0.0019 and 0.0064 mmol/L, while the LOD and LOQ were 0.0165 and 0.055 mmol/L for the determination of melamine in skim milk. However, this sensor is not ideal to quantify melamine in tap water and skim milk. By conjugating MIPs with SERS-active substrate (that is, AgNPs), reproducibility of SERS spectral features was increased, resulting in more accurate detection. The time required to determine melamine in tap water and milk were 6 and 25 min, respectively. The low LOD, LOQ, and rapid detection confirm the potential of applying this sensor for accurate and high-throughput detection of melamine in tap water and milk.

  15. Calibration system of underwater robot sensor based on CID algorithm

    Science.gov (United States)

    Wang, Xiaolong; Wang, Sen; Gao, Lifu; Wu, Shan; Wei, Shuheng

    2017-06-01

    In the calibration of static characteristic of the sensor, the original measured data are usually a nonlinear distribution. Based on this situation, underwater robot sensor static calibration system is designed. The system consists of four parts: a sensor, I-V conversion with amplifying circuit, microcontroller STM32F107 and a PC. The lower computer and the upper computer communicate by USB. A kind of adaptive cyclic iterative denoising (CID) algorithm is presented for data processing. Finally the curve will be fitted with compensation processing.

  16. A fiber Bragg based semi distributed pressure sensor system for in-vivo vascular applications

    NARCIS (Netherlands)

    Nieuwland, R.A.; Cheng, L.K.; Lemmen, M.H.J.; Oostenbrink, R.H.; Harmsma, P.J.; Schreuder, J.J.

    2014-01-01

    An overview of a fiber Bragg based sensor system, developed for in-vivo vascular pressure and temperature sensing, is presented. The focus is on sensor miniaturization and interrogator optimization to reach a viable sensor system.

  17. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    OpenAIRE

    Juntao Fei; Hongfei Ding

    2010-01-01

    This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...

  18. Interactive display/graphics systems for remote sensor data analysis

    Science.gov (United States)

    Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.

    1970-01-01

    A color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer are used to develop a variety of interactive displays which aid in analyzing remote sensor data. These interactive displays are used to: (1) analyze data from a multispectral scanner; (2) develop automatic pattern recognition systems based on multispectral scanner measurements; and (3) analyze data from non-imaging sensors such as the infrared radiometer and microwave scatterometer.

  19. Navigation sensors and systems in GNSS degraded and denied environments

    Institute of Scientific and Technical Information of China (English)

    George T. Schmidt

    2015-01-01

    Position, velocity, and timing (PVT) signals from the Global Positioning System (GPS) are used throughout the world but the availability and reliability of these signals in all environments has become a subject of concern for both civilian and military applications. This presentation sum-marizes recent advances in navigation sensor technology, including GPS, inertial, and other navi-gation aids that address these concerns. Also addressed are developments in sensor integration technology with several examples described, including the Bluefin-21 system mechanization.

  20. Navigation sensors and systems in GNSS degraded and denied environments

    Directory of Open Access Journals (Sweden)

    George T. Schmidt

    2015-02-01

    Full Text Available Position, velocity, and timing (PVT signals from the Global Positioning System (GPS are used throughout the world but the availability and reliability of these signals in all environments has become a subject of concern for both civilian and military applications. This presentation summarizes recent advances in navigation sensor technology, including GPS, inertial, and other navigation aids that address these concerns. Also addressed are developments in sensor integration technology with several examples described, including the Bluefin-21 system mechanization.

  1. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    OpenAIRE

    Juntao Fei; Hongfei Ding

    2011-01-01

    This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...

  2. Semi-automatic Story Creation System in Ubiquitous Sensor Environment

    Science.gov (United States)

    Yoshioka, Shohei; Hirano, Yasushi; Kajita, Shoji; Mase, Kenji; Maekawa, Takuya

    This paper proposes an agent system that semi-automatically creates stories about daily events detected by ubiquitous sensors and posts them to a weblog. The story flow is generated from query-answering interaction between sensor room inhabitants and a symbiotic agent. The agent questions the causal relationships among daily events to create the flow of the story. Preliminary experimental results show that the stories created by our system help users understand daily events.

  3. Grey systems for intelligent sensors and information processing

    Institute of Scientific and Technical Information of China (English)

    Chen Chunlin; Dong Daoyi; Chen Zonghai; Wang Haibo

    2008-01-01

    In a measurement system,new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system.A grey measurement system is discussed from the point of view of intelligent sensors and incomplete information processing compared with a numerical and symbolized mea8urement system.The methods of grey representation and information processing are proposed for data collection and reasoning.As a case study,multi-ultrasonic sensor systems are demonstrated to verify the effectiveness of the proposed methods.

  4. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  5. Integrated tunneling sensor for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Sadewasser, S.; Abadal, G.; Barniol, N.

    2006-01-01

    distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...

  6. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is provide

  7. Novel Hall sensors developed for magnetic field imaging systems

    Science.gov (United States)

    Cambel, Vladimír; Karapetrov, Goran; Novosad, Valentyn; Bartolomé, Elena; Gregušová, Dagmar; Fedor, Ján; Kúdela, Robert; Šoltýs, Ján

    2007-09-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat.

  8. Bluetooth Roaming for Sensor Network System in Clinical Environment.

    Science.gov (United States)

    Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa

    2015-01-01

    A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.

  9. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  10. Nitrogen oxide -- Sensors and systems for engine management

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, J.M.; Bryan, W.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Miller, C.E. [General Motors, Inc., Flint, MI (United States). A.C. Rochester Div.

    1997-06-24

    The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

  11. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    Science.gov (United States)

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  12. A Wireless Sensor Network Air Pollution Monitoring System

    CERN Document Server

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

  13. Optimization of pumping schemes for 160-Gb/s single channel Raman amplified systems

    DEFF Research Database (Denmark)

    Xu, Lin; Rottwitt, Karsten; Peucheret, Christophe;

    2004-01-01

    Three different distributed Raman amplification schemes-backward pumping, bidirectional pumping, and second-order pumping-are evaluated numerically for 160-Gb/s single-channel transmission. The same longest transmission distance of 2500 km is achieved for all three pumping methods with a 105-km...... span composed of superlarge effective area fiber and inverse dispersion fiber. For longest system reach, second-order pumping and backward pumping have larger pump power tolerance than bidirectional pumping, while the optimal span input signal power margin of second-order pumping is the largest...

  14. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  15. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  16. Improving the robustness of Surface Enhanced Raman Spectroscopy based sensors by Bayesian Non-negative Matrix Factorization

    DEFF Research Database (Denmark)

    2014-01-01

    Due to applications in areas such as diagnostics and environmental safety, detection of molecules at very low concentrations has attracted recent attention. A powerful tool for this is Surface Enhanced Raman Spectroscopy (SERS) where substrates form localized areas of electromagnetic “hot spots...... a Bayesian Non-negative Matrix Factorization (NMF) approach to identify locations of target molecules. The proposed method is able to successfully analyze the spectra and extract the target spectrum. A visualization of the loadings of the basis vector is created and the results show a clear SNR enhancement...

  17. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  18. Sensor fusion methods for high performance active vibration isolation systems

    Science.gov (United States)

    Collette, C.; Matichard, F.

    2015-04-01

    Sensor noise often limits the performance of active vibration isolation systems. Inertial sensors used in such systems can be selected through a wide variety of instrument noise and size characteristics. However, the most sensitive instruments are often the biggest and the heaviest. Consequently, high-performance active isolators sometimes embed many tens of kilograms in instrumentation. The weight and size of instrumentation can add unwanted constraint on the design. It tends to lower the structures natural frequencies and reduces the collocation between sensors and actuators. Both effects tend to reduce feedback control performance and stability. This paper discusses sensor fusion techniques that can be used in order to increase the control bandwidth (and/or the stability). For this, the low noise inertial instrument signal dominates the fusion at low frequency to provide vibration isolation. Other types of sensors (relative motion, smaller but noisier inertial, or force sensors) are used at higher frequencies to increase stability. Several sensor fusion configurations are studied. The paper shows the improvement that can be expected for several case studies including a rigid equipment, a flexible equipment, and a flexible equipment mounted on a flexible support structure.

  19. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    Science.gov (United States)

    Pilát, Zdenëk; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-03-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment in order to identify and sort biological objects, such as living cells of various prokaryotic and eukaryotic organisms. Our main objective was to create a robust and universal platform for non-contact sorting of microobjects based on their Raman spectral properties. This approach allowed us to collect information about the chemical composition of the objects, such as the presence and composition of lipids, proteins, or nucleic acids without using artificial chemical probes such as fluorescent markers. The non-destructive and non-contact nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used differently treated cells of algae to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  20. Surface and subsurface inspection of food safety and quality using a line-scan Raman system

    Science.gov (United States)

    This paper presents a line-scan Raman platform for food safety and quality research, which can be configured for Raman chemical imaging (RCI) mode for surface inspection and spatially offset Raman spectroscopy (SORS) mode for subsurface inspection. In the RCI mode, macro-scale imaging was achieved u...

  1. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  2. Design of capacitance sensor system for void fraction measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-ping; NIU Gang; WANG Jing

    2005-01-01

    Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology.Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow.The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.

  3. Review on the Traction System Sensor Technology of a Rail Transit Train.

    Science.gov (United States)

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-06-11

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.

  4. Surface-enhanced in-situ Raman-sensor applied in the arctic area for analyses of water and sediment

    Science.gov (United States)

    Kolomijeca, Anna; Kwon, Yong-Hyok; Kronfeldt, Heinz-Detlef

    2012-06-01

    Investigations on the seafloor in the arctic area are of great scientific interest as well as of progressive economic importance. Therefore, measurements in the water column and of sediments were carried out by applying different analytical methods. In JCR 253 arctic cruise a microsystem diode laser with reflection Bragg grating emitting at 671 nm was introduced and integrated into an optode housing which was laboratory pressure tested up to 200 bar. The connection to the mobile spectrometer is realized through an optical fiber. All performed measurements were carried out on the James-Clark-Ross research vessel during a three week experiment in August 2011. Conventional Raman spectra and SERS spectra of arctic surface water and sediment acquired from locations around 78° N and 9° E will be presented. Selected SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances in the water down to very small (pmol/l) concentrations. Additionally, the applicability of shifted excitation Raman difference spectroscopy (SERDS) and a combination of SERS with SERDS for analytical applications during sea-trials for in-situ analyses of sea-water and sediments will be discussed.

  5. An Architecture for Intelligent Systems Based on Smart Sensors

    Science.gov (United States)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  6. Multiband sensors for wireless electromagnetic field monitoring system - SEMONT

    OpenAIRE

    Milutinov, Miodrag; id_orcid 0000-0002-1725-3405; Đurić, Nikola; Pekarić-Nađ, Neda; Mišković, Dragiša; Knežević, Dragan

    2012-01-01

    Substantial effort has been made to employ wireless sensor network and Internet technologies for environmental and habitat protection. Several monitoring systems are designed to collect data regarding temperature, humidity, pressure and some other environmental parameters, amongst which recently there is the exposure to electromagnetic field. In this paper, some basic features of the multiband sensors that are incorporated into the Serbian electromagnetic field monitoring network - SEMONT are...

  7. Data Fusion in Distributed Multi-sensor System

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; YU Min

    2004-01-01

    This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors' data processing. First, a residual χ2-test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real-time data. A pseudolite (PL) simulation example is given.

  8. Design of PH sensor signal acquisition and display system

    Science.gov (United States)

    Qian, Huifa; Zhang, Quanzhu; Deng, Yonghong

    2017-06-01

    With the continuous development of sensor manufacturing technology, how to better deal with the signal is particularly important. PH value of the sensor voltage generated by the signal as a signal, through the MCU acquisition A / D conversion, and ultimately through the digital display of its PH value. The system uses hardware and software to achieve the results obtained with the high-precision PH meter to strive to improve the accuracy and reduce error.

  9. Energy harvesting autonomous sensor systems design, analysis, and practical implementation

    CERN Document Server

    Tan, Yen Kheng

    2013-01-01

    This book is the considered the first to describe sensor-oriented energy harvesting issues. Its content is derived from the author's research on the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). This network harvests energy from a variety of ambient energy sources and converts it into electrical energy to power batteries. The book discusses various types of energy harvesting (EH) systems and their respective main components.

  10. Optimal Sensor and Actuator Location for Unstable Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat

    2013-01-01

    on the processes. Dually the problem of placing actuators on the processes is equally important. In this paper, the problem of determining optimal sensor and actuator locations for the linear systems is addressed. The problem of the sensor locations is viewed as the problem of maximizing the output energy...... proposed so far, only support stable systems. However, in industrial practices it is often the case that the system, which is needed to be controlled, is not stable. The method which is proposed in this paper is a general method in the sense that it supports both stable and unstable systems. The technique...

  11. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  12. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  13. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  14. Results obtained with the Tropospheric Ozone DIAL System Using a YAG Laser and Raman Cells

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.

    2012-12-01

    This poster will detail the findings of the ground based Differential Absorption Lidar (DIAL) system built and operated at the NASA Goddard Space Flight Center (Beltsville, MD 38.99° N, 76.84° W) in 2012. Current atmospheric satellites cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, NASA has funded the ground based Tropospheric Ozone Lidar Network (TOLNET) which currently consists of five stations across the US. The Goddard instrument is based on the Differential Absorption Lidar (DIAL) technique, and has initially transmitted two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm, and the DIAL technique exploits this difference between the two returned signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman Cells, filled with high pressure Hydrogen and Deuterium. Stimulated Raman Scattering within the focus shifts the pump wavelength, and the first Stokes shift in each cell produces the required wavelengths. With the knowledge of the ozone absorption coefficient at these two wavelengths, the vertical number density can then be derived. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make long term ozone profile measurements in the Washington, DC - Baltimore area.

  15. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  16. A Multi-Agent System Architecture for Sensor Networks

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  17. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  18. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  19. Simple fiber optic sensor for applications in security systems

    Science.gov (United States)

    Zyczkowski, M.; Karol, M.; Markowski, P.; Napierala, M. S.

    2014-10-01

    In this paper we demonstrate measurement results of the modalmetric fiber optic sensor used for the monitoring of the fiber optic link integrity to protect it against unauthorized access to classified information. The presented construction is based on the detection of changes of the modes distribution in a multimode fiber. Any mechanical stress on the multimode fiber causes changes of polarization and distribution of propagating modes, hence it changes the distribution of modes at the end of the multimode fiber. Observation of these changes using a narrow core single-mode fiber allows to use the structure as an optical fiber sensor. We used several kilometers long optical links to conduct field tests of laboratory sensor. On this basis the prototype module of modalmetric fiber optic sensor wasbuilt. The modification of optoelectronic part, the variation of sensor length and the change of the method of light reflection at the end of the fiber enable the use of the modalmetric fiber optic sensor in many applications. The sensor finds wide range of applications in security systems. It can be applied to protect the museum's collection, transmission lines and to protect objects of critical infrastructure.

  20. Sensor-actuator system for dynamic chloride ion determination.

    Science.gov (United States)

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Distributed-sensor-system decision analysis using team strategies

    Science.gov (United States)

    Choe, Howard C.; Kazakos, Demetrios

    1992-11-01

    A distributed (or decentralized) multiple sensor system is considered under binary hypothesis environments. The system is deployed with a host sensor (HS) and multiple slave sensors (SSs). All sensors have their own independent decision makers which are capable of declaring local decisions based solely on their own observation of the environment. The communication between the HS and the SSs is conditional upon the HS's command. Each communication that takes place involves a communication cost which plays an important role in the approaches taken in this study. The conditional communication with the cost initiates the team strategy in making the final decisions at the HS. The objectives are not only to apply the team strategy method in the decision making process, but also to minimize the expected system cost (or the probability of error in making decisions) by optimizing thresholds in the HS> The analytical expression of the expected system cost (C) is numerically evaluated for Gaussian statistics over threshold locations in the HS to find an optimal threshold location for a given communication cost. The computer simulations of various sensor systems for Gaussian observations are also performed in order to understand the behavior of each system with respect to correct detections, false, alarms, and target misses.

  2. General model of signal propagation in a Raman amplified single-mode fiber based coherent optical communication system

    Science.gov (United States)

    Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-12-01

    The distributed Raman amplifier (DRA) has been widely utilized in state-of-the-art coherent optical communication systems using multi-level modulation formatted signals in order to improve transmission performance. A general model based on Jones vector notation governing the signal propagation under Raman amplified link is proposed. Primary physics including both linear and nonlinear effects have been taken into account. The numerical approach for solving the equations is illustrated in detail. Using the model, system characterization and optimization can be easily performed. We also compare our model with the commonly used coarse-step method. It is found that the coarse-step method will exaggerate the cross-polarization modulation induced impairments by over 6 dB and will become unusable when the pump power is as high as several Watts. The proposed model provides a guideline for the simulation of Raman amplified coherent transmission systems.

  3. Damage Detection Sensor System for Aerospace and Multiple Applications

    Science.gov (United States)

    Williams, M.; Lewis, M.; Gibson, T.; Medelius, P.; Lane, J.

    2017-01-01

    The damage detection sensory system is an intelligent damage detection ‘skin’ that can be embedded into rigid or flexible structures, providing a lightweight capability for in-situ health monitoring for applications such as spacecraft, expandable or inflatable structures, extravehicular activities (EVA) suits, smart wearables, and other applications where diagnostic impact damage monitoring might be critical. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The operation of the sensor detection system is currently based on the use of parallel conductive traces placed on a firm or flexible surface. Several detection layers can be implemented, where alternate layers are arranged in orthogonal direction with respect to the adjacent layers allowing for location and depth calculations. Increased flexibility of the damage detection sensor system designs will also be introduced.

  4. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    Directory of Open Access Journals (Sweden)

    Nitha V. Panicker

    2016-01-01

    Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.

  5. Pulmonary disease management system with distributed wearable sensors.

    Science.gov (United States)

    Fu, Yongji; Ayyagari, Deepak; Colquitt, Nhedti

    2009-01-01

    A pulmonary disease management system with on-body and near-body sensors is introduced in this presentation. The system is wearable for continuous ambulatory monitoring. Distributed sensor data is transferred through a wireless body area network (BAN) to a central controller for real time analysis. Physiological and environmental parameters are monitored and analyzed using prevailing clinical guidelines for self-management of environmentally-linked pulmonary ailments. The system provides patients with reminders, warnings, and instructions to reduce emergency room and physician visits, and improve clinical outcomes.

  6. Data fusion of multiple kinect sensors for a rehabilitation system.

    Science.gov (United States)

    Huibin Du; Yiwen Zhao; Jianda Han; Zheng Wang; Guoli Song

    2016-08-01

    Kinect-like depth sensors have been widely used in rehabilitation systems. However, single depth sensor processes limb-blocking, data loss or data error poorly, making it less reliable. This paper focus on using two Kinect sensors and data fusion method to solve these problems. First, two Kinect sensors capture the motion data of the healthy arm of the hemiplegic patient; Second, merge the data using the method of Set-Membership-Filter (SMF); Then, mirror this motion data by the Middle-Plane; In the end, control the wearable robotic arm driving the patient's paralytic arm so that the patient can interactively and initiatively complete a variety of recovery actions prompted by computer with 3D animation games.

  7. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  8. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  9. A Method of Data Aggregation for Wearable Sensor Systems.

    Science.gov (United States)

    Shen, Bo; Fu, Jun-Song

    2016-06-23

    Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can't adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of 'happened-before' to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network's lifetime, especially for highly dynamic data sources.

  10. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  11. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for pow

  12. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  13. Automatic Attendance and Mobile Learning System in Sensor ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Automatic Attendance and Mobile Learning System in Sensor-Enabled. Heterogeneous and .... heterogeneous real time dynamic data and retrieve .... Conference on Intelligent Transportation System 2011. [19] MustsfahY. ... multi layered filtering clutter and independent Component Analysis”, IEEE2012. [21] Jeremiah R B., ...

  14. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for pow

  15. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for

  16. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap.

  17. Research on WDM optical fiber transmission system based on fiber Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    Fei Xue(薛飞); Kun Qiu(邱昆); Yue Chen(陈玥)

    2003-01-01

    After wavelength division multiplexing (WDM) optical fiber transmission system based on fiber Raman amplifier (FRA) is investigated in detail, the influence of the collocation of dispersion compensation fiber (DCF), the dispersion coefficient, dispersion slope (DS), effective core area, nonlinear index, length of FRA, launch power and the bandwidth of Bessel filter on bit error rate (BER) is deduced. The influence of Rayleigh backscattering noise on optical signal noise ratio (OSNR) is also investigated, which affects the performance of long haul transmission badly. The result indicates that the broadband long haul transmission can be realized through the reasonable design of the fiber. The result is useful to the optimal design of the WDM optical fiber transmission system based on FRA.

  18. Monitoring water distribution systems: understanding and managing sensor networks

    Directory of Open Access Journals (Sweden)

    D. D. Ediriweera

    2010-09-01

    Full Text Available Sensor networks are currently being trialed by the water distribution industry for monitoring complex distribution infrastructure. The paper presents an investigation in to the architecture and performance of a sensor system deployed for monitoring such a distribution network. The study reveals lapses in systems design and management, resulting in a fifth of the data being either missing or erroneous. Findings identify the importance of undertaking in-depth consideration of all aspects of a large sensor system with access to either expertise on every detail, or to reference manuals capable of transferring the knowledge to non-specialists. First steps towards defining a set of such guidelines are presented here, with supporting evidence.

  19. Systems and Sensors for Debris-flow Monitoring and Warning.

    Science.gov (United States)

    Arattano, Massimo; Marchi, Lorenzo

    2008-04-04

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells

  20. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  1. ALIBAVA A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, R; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for micro-strip silicon sensors has been developed. The system uses an analogue pipelined readout chip, which was developed for the LHC experiments. The system will be used to characterise the properties of both non-irradiated and irradiated micro-strip sensors. Heavily irradiated sensors will be operated at the Super LHC (SLHC). The system hardware has two main parts: a daughter board and a mother board. The daughter board contains two readout chips, analogue data buffering, power supply regulation and chip-to-sensor fan-in structures. The mother board is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. There is provision for an external trigger input (e.g. scintillator trigger) and a synchronised trigger output for pulsing an external excitation source (e.g. laser system). A prototype of the system will be presented.

  2. Research on Sensor Cooperation for Distributed Emergency Response System

    Directory of Open Access Journals (Sweden)

    Haoming Guo

    2012-04-01

    Full Text Available With advantages of IOT (internet of things and sensor technique, a new communication mechanism between sensors is enhanced upon which distributed emergency response systems are built. This mechanism enables sensors to cooperate with each other in a decentralized way to improve efficiency in case of emergencies. During the process, the alert messages are exchanged among sensors cooperatively to prepare and implement monitoring activities. The system center won’t be overloaded by flooding messages. However, due to the lack of centralized information processing, there will be message loops and identity confusions, which would affect system’s reliability and credibility. For this problem, an approach called Decentralized Message Broadcasting Process is introduced to address the issue. In the approach, a message protocol is developed. The sensors are wrapped as device node services and work as message relay stations when they receive messages from others. Messages are utilized not only as information about event but also as reference to identify and filter. The requirement of reliability and credibility over the distributed emergency response system is achieved. Upon the approach, a platform is built for CEA’ SPON to support the decentralized earthquake emergency response research applications.

  3. Digitally Programmable Analogue Circuits for Sensor Conditioning Systems

    Science.gov (United States)

    Zatorre, Guillermo; Medrano, Nicolás; Sanz, María Teresa; Aldea, Concepción; Calvo, Belén; Celma, Santiago

    2009-01-01

    This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 μm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components. PMID:22412331

  4. A Universal Intelligent System-on-Chip Based Sensor Interface

    Directory of Open Access Journals (Sweden)

    Gabriele Ferri

    2010-08-01

    Full Text Available The need for real-time/reliable/low-maintenance distributed monitoring systems, e.g., wireless sensor networks, has been becoming more and more evident in many applications in the environmental, agro-alimentary, medical, and industrial fields. The growing interest in technologies related to sensors is an important indicator of these new needs. The design and the realization of complex and/or distributed monitoring systems is often difficult due to the multitude of different electronic interfaces presented by the sensors available on the market. To address these issues the authors propose the concept of a Universal Intelligent Sensor Interface (UISI, a new low-cost system based on a single commercial chip able to convert a generic transducer into an intelligent sensor with multiple standardized interfaces. The device presented offers a flexible analog and/or digital front-end, able to interface different transducer typologies (such as conditioned, unconditioned, resistive, current output, capacitive and digital transducers. The device also provides enhanced processing and storage capabilities, as well as a configurable multi-standard output interface (including plug-and-play interface based on IEEE 1451.3. In this work the general concept of UISI and the design of reconfigurable hardware are presented, together with experimental test results validating the proposed device.

  5. Digitally programmable analogue circuits for sensor conditioning systems.

    Science.gov (United States)

    Zatorre, Guillermo; Medrano, Nicolás; Sanz, María Teresa; Aldea, Concepción; Calvo, Belén; Celma, Santiago

    2009-01-01

    This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 μm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components.

  6. Digitally Programmable Analogue Circuits for Sensor Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Santiago Celma

    2009-05-01

    Full Text Available This work presents two current-mode integrated circuits designed for sensor signal preprocessing in embedded systems. The proposed circuits have been designed to provide good signal transfer and fulfill their function, while minimizing the load effects due to building complex conditioning architectures. The processing architecture based on the proposed building blocks can be reconfigured through digital programmability. Thus, sensor useful range can be expanded, changes in the sensor operation can be compensated for and furthermore, undesirable effects such as device mismatching and undesired physical magnitudes sensor sensibilities are reduced. The circuits were integrated using a 0.35 mm standard CMOS process. Experimental measurements, load effects and a study of two different tuning strategies are presented. From these results, system performance is tested in an application which entails extending the linear range of a magneto-resistive sensor. Circuit area, average power consumption and programmability features allow these circuits to be included in embedded sensing systems as a part of the analogue conditioning components.

  7. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2011-01-01

    Full Text Available This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the proposed adaptive control strategy. Numerical simulation is investigated to verify the effectiveness of the proposed control scheme.

  8. Operating systems and network protocols for wireless sensor networks.

    Science.gov (United States)

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  9. Systematic description of direct push sensor systems: A conceptual framework for system decomposition as a basis for the optimal sensor system design

    Science.gov (United States)

    Bumberger, Jan; Paasche, Hendrik; Dietrich, Peter

    2015-11-01

    Systematic decomposition and evaluation of existing sensor systems as well as the optimal design of future generations of direct push probes are of high importance for optimized geophysical experiments since the employed equipment is a constrain on the data space. Direct push technologies became established methods in the field of geophysical, geotechnical, hydrogeological, and environmental sciences for the investigation of the near subsurface. By using direct push sensor systems it is possible to measure in-situ parameters with high vertical resolution. Such information is frequently used for quantitative geophysical model calibration of interpretation of geotechnical and hydrological subsurface conditions. Most of the available direct push sensor systems are largely based on empirical testing and consecutively evaluated under field conditions. Approaches suitable to identify specific characteristics and problems of direct push sensor systems have not been established, yet. We develop a general systematic approach for the classification, analysis, and optimization of direct push sensor systems. First, a classification is presented for different existing sensor systems. The following systematic description, which is based on the conceptual decomposition of an existing sensor system into subsystems, is a suitable way to analyze and explore the transfer behavior of the system components and therefore of the complete system. Also, this approach may serve as guideline for the synthesis and the design of new and optimized direct push sensor systems.

  10. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    Science.gov (United States)

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  11. Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

    Science.gov (United States)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2008-01-01

    Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.

  12. Sensor Based Effective Monitoring of Coal Handling System (CHS

    Directory of Open Access Journals (Sweden)

    Kuttalakkani.M

    2013-06-01

    Full Text Available Coal level detection is an important aspect to assess the performance of a coal-fired power plant. Coal has to be transported, via a coal handling system. The fuel in a coal-fired power plant is stored in silos, bunkers or stock piles. Coal is stored in silos in a small plant, Bunkers for handling a day’s operation and Stock piling methods for large plants. So, fuel handling had to done efficiently. To accurately sense the coal height, Real-time feedback is deployed within the bunker or stock pile. The real time range information is then fedback to the control system. Of the different types of ranging sensors, radar based system is used. Also a real-time temperature monitoring system is developed to protect the coal. The range and temperature data from sensors are sent to the main system through GSM modem by means of SMS. The range information is used to start the conveyor belt to draw the coal from coal yard. If the temperature exceeds the limit, the SMS will be sent through the software or it will call the respective person to monitor the process. A fire sensor is also used to extinguish the fire by initiating the water spraying system. A PIC Microcontroller is interfaced all the sensors for effective handling of thermal power plant.

  13. Sensor Network Infrastructure for a Home Care Monitoring System

    Directory of Open Access Journals (Sweden)

    Filippo Palumbo

    2014-02-01

    Full Text Available This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage. The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  14. Detection and Identification System of Bacteria and Bacterial Endotoxin Based on Raman Spectroscopy

    National Research Council Canada - National Science Library

    Muhammad Elsayeh; Ahmed H.Kandil

    2016-01-01

    .... Raman spectroscopes represent a q uick and accurate identification and detection method, for bacteria and bacterial endotoxin, which this plays an important role in delivering high quality biomedical...

  15. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    Science.gov (United States)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  16. A Simple and Highly Sensitive Thymine Sensor for Mercury Ion Detection Based on Surface Enhanced Raman Spectroscopy and the Mechanism Study

    National Research Council Canada - National Science Library

    Hao Yang; Sui-Bo Ye; Yu Fu; Weihong Zhang; Fangyan Xie; Li Gong; Ping-Ping Fang; Jian Chen; Yexiang Tong

    2017-01-01

    ...+ ions over 7 types of alkali, heavy metal and transition-metal ions. Moreover, the LOD of the sensor can even achieve 1 ppb in practical application in the nature system, which is half the maximum allowable level (10 nM, 2 ppb...

  17. A double-interferometer laser system for cold 87Rb atom gyroscopes based on stimulated Raman transitions

    CERN Document Server

    Song, Ningfang; Li, Wei; Li, Yang; Liu, Jixun; Xu, Xiaobin; Pan, Xiong

    2014-01-01

    We proposed and implemented a double-interferometer laser system to manipulate cold 87Rb atoms to interfere. A frequency-modulated continuous-wave technique was applied to determine and compensate the optical path difference between the two Raman beams. With a coherent self-heterodyne method, the beat signal's FWHM linewidth was measured and the obtained linewidth of ~1Hz mainly limited by the resolution bandwidth of the spectrum analyzer indicates a good coherence degree of the two Raman beams, paving the way to realize a highly sensitive atom gyroscope.

  18. MIMO Precoding for Networked Control Systems with Energy Harvesting Sensors

    Science.gov (United States)

    Cai, Songfu; Lau, Vincent K. N.

    2016-09-01

    In this paper, we consider a MIMO networked control system with an energy harvesting sensor, where an unstable MIMO dynamic system is connected to a controller via a MIMO fading channel. We focus on the energy harvesting and MIMO precoding design at the sensor so as to stabilize the unstable MIMO dynamic plant subject to the energy availability constraint at the sensor. Using the Lyapunov optimization approach, we propose a closed-form dynamic energy harvesting and dynamic MIMO precoding solution, which has an event-driven control structure. Furthermore, the MIMO precoding solution is shown to have an eigenvalue water-filling structure, where the water level depends on the state estimation covariance, energy queue and the channel state, and the sea bed level depends on the state estimation covariance. The proposed scheme is also compared with various baselines and we show that significant performance gains can be achieved.

  19. Colorimetric Sensor Arrays System Based on FPGA for Image Recognition

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Jian-Hua Xu; Ya-Dong Jiang

    2009-01-01

    A FPGA-based image recognition system is designed for colorimetric sensor array in order to recognize a wide range of volatile organic compounds. The gas molecule is detected by the responsive sensor array and the responsive image is obtained. The image is decomposed to RGB color components using CMOS image sensor. An embedded image recognition archi- tecture based on Xilinx Spartan-3 FPGA is designed to implement the algorithms of image recognition. The algorithm of color coherence vector is discussed in detail[X1] compared with the algorithm of color histograms, and experimental results demonstrate that both of the two algorithms could be analyzed effectively to represent different volatile organic compounds according to their different responsive images in this system.

  20. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  1. Characterization of Dutch dairy farms using sensor systems for cow management.

    Science.gov (United States)

    Steeneveld, W; Hogeveen, H

    2015-01-01

    To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms

  2. Hybrid Exploration Agent Platform and Sensor Web System

    Science.gov (United States)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  3. Doppler radar sensor positioning in a fall detection system.

    Science.gov (United States)

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn

    2012-01-01

    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  4. Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network

    Science.gov (United States)

    Dhaya, R.; Sadasivam, V.; Kanthavel, R.

    2012-12-01

    Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.

  5. Alibava : A portable readout system for silicon microstrip sensors

    CERN Document Server

    Marco-Hernández, Ricardo; Casse, G; García, C; Greenall, A; Lacasta, C; Lozano, M; Martí i García, S; Martínez, R; Miñano, M; Pellegrini, G; Smith, N A; Ullán, M

    2007-01-01

    A portable readout system for silicon microstrip sensors is currently being developed. This system uses a front-end readout chip, which was developed for the LHC experiments. The system will be used to investigate the main properties of this type of sensors and their future applications. The system is divided in two parts: a daughter board and a mother board. The first one is a small board which contains two readout chips and has fan-ins and sensor support to interface the sensors. The last one is intended to process the analogue data that comes from the readout chips and from external trigger signals, to control the whole system and to communicate with a PC via USB. The core of this board is a FPGA that controls the readout chips, a 10 bit ADC, an integrated TDC and an USB controller. This board also contains the analogue electronics to process the data that comes from the readout chips. There is also provision for an external trigger input (e.g. scintillator trigger) and a 'synchronised' trigger output for ...

  6. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  7. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    Science.gov (United States)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  8. Wireless energizing system for an automated implantable sensor

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  9. 200 Gbit/s, 10,000 km Single-Channel Transmission by Midway OPC System Using Distributed Raman Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Pasu; Kaewplung; Tuptim; Angkaew

    2003-01-01

    We realized a 200-Gbit/s 10,000-km data transmission by employing distributed Raman amplifiers to construct reverse power distribution in the second half of midway optical phase conjugation transmission system in order to compensate nonlinear waveform distortion.

  10. e2v CCD and CMOS sensors and systems designed for astronomical applications

    Science.gov (United States)

    Jorden, Paul; Jerram, Paul; Jordan, Douglas; Pratlong, Jérôme; Robbins, Mark

    2016-08-01

    e2v continues to evolve its product range of sensors and systems, with CCD and CMOS sensors. We describe recent developments of high performance image sensors and precision system components. Several low noise backthinned CMOS sensors have been developed for scientific applications. CCDs have become larger whilst retaining very low noise and high quantum efficiency. Examples of sensors and sub-systems are presented including the recently completed 1.2 GigaPixel J-PAS cryogenic camera.

  11. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  12. LD2000 System with 3S and Multi-sensor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces a car-borne road information collecting and updating system (LD2000) developed by Wuhan Technical University of Surveying and Mapping.This system is capable of collecting road network information and creating digital road network effectively by means of GPS,GIS and multi-sensor integration.The design and development of LD2000 system are also presented in this paper.

  13. Development and installation of Picostrain sensors in structural systems

    Science.gov (United States)

    Sener, Joseph C.; Latta, Bernard M.; Ross, Jimmy D.

    2004-07-01

    The concept of the Picostrain sensor technology is based on a standard, commercially available, electrical cable assembly embedded in pavement or structural members. The concept has been developed through the 1990s and patented by the Idaho Transportation Department (ITD) in 2003. The objective of this new technology is to build an inexpensive, easily installed and maintained sensor system for the purposes of vehicle classification (VC), vehicle identification (VI), weigh-in-motion (WIM), and vehicle tracking (VT) applications along with real-time monitoring and evaluation of structural performance under static and dynamic traffic loading. It is intended, in the future, that these sensors will be further developed to replace curently utilized expensive embedded pavement and structural sensors for ultimate improvement of transportation decision-making and planning. This will also help to document the movement of people and goods along with the evironmental, social, economic and financial parameters with an emphasis on tracking movements in social life for security based upon the use of this durable and reliable transducers. Approximately, 400 sensors have been installed on and in the reinforced concrete structural members of the West Park Center River Crossing Bridge (Bridge) and the Micron Engineering Center (MEC) building (Building) at Boise State University (BSU) in Boise, Idaho, USA, since 1998. These sensors were installed: in bridge pile caps, piers, girders and decks; bridge abutment embankments; building footings, columns, beams, floor slabs; and, have been linked to instrument cabinets on site. These sensors installed structures may now be called "smart" structures since they contain a resident sensing system capable of maintaining a constant watch over the integrity of the structure. These sensing systems will be able to evaluate the applied loads, as well as the static and dynamic response of the structure. This paper introduces and describes the new

  14. Bedside arterial blood gas monitoring system using fluorescent optical sensors

    Science.gov (United States)

    Bartnik, Daniel J.; Rymut, Russell A.

    1995-05-01

    We describe a bedside arterial blood gas (ABG) monitoring system which uses fluorescent optical sensors in the measurement of blood pH, PCO2 and PO2. The Point-of-Care Arterial Blood Gas Monitoring System consists of the SensiCathTM optical sensor unit manufactured by Optical Sensors Incorporated and the TramTM Critical Care Monitoring System with ABG Module manufactured by Marquette Electronics Incorporated. Current blood gas measurement techniques require a blood sample to be removed from the patient and transported to an electrochemical analyzer for analysis. The ABG system does not require removal of blood from the patient or transport of the sample. The sensor is added to the patient's existing arterial line. ABG measurements are made by drawing a small blood sample from the arterial line in sufficient quantity to ensure an undiluted sample at the sensor. Measurements of pH, PCO2 and PO2 are made within 60 seconds. The blood is then returned to the patient, the line flushed and results appear on the bedside monitor. The ABG system offers several advantages over traditional electrochemical analyzers. Since the arterial line remains closed during the blood sampling procedure the patient's risk of infection is reduced and the caregiver's exposure to blood is eliminated. The single-use, disposable sensor can be measure 100 blood samples over 72 hours after a single two-point calibration. Quality Assurance checks are also available and provide the caregiver the ability to assess system performance even after the sensor is patient attached. The ABG module integrates with an existing bedside monitoring system. This allows ABG results to appear on the same display as ECG, respiration, blood pressure, cardiac output, SpO2, and other clinical information. The small module takes up little space in the crowded intensive care unit. Performance studies compare the ABG system with an electrochemical blood gas analyzer. Study results demonstrated accurate and precise blood

  15. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  16. A small, lightweight multipollutant sensor system for ground ...

    Science.gov (United States)

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons (aerostats) and unmanned aerial vehicles (UAVs). The system is particularly applicable to open area sources, such as forest fires, due to its light weight (3.5 kg), compact size (6.75 L), and internal power supply. The sensor system, termed “Kolibri”, consists of sensors measuring CO2 and CO, and samplers for particulate matter (PM) and volatile organic compounds (VOCs). The Kolibri is controlled by a microcontroller which can record and transfer data in real time through a radio module. Selection of the sensors was based on laboratory testing for accuracy, response delay and recovery, cross-sensitivity, and precision. The Kolibri was compared against rack-mounted continuous emissions monitoring system (CEMs) and another mobile sampling instrument (the “Flyer”) that has been used in over ten open area pollutant sampling events. Our results showed that the time series of CO, CO2, and PM2.5 concentrations measured by the Kolibri agreed well with those from the CEMs and the Flyer, with a laboratory-tested percentage error of 4.9%, 3%, and 5.8%, respectively. The VOC emission factors obtained using the Kolibri were consistent with existing literature values that relate concentration

  17. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer

    CERN Document Server

    Xu, Zhida; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-01-01

    We demonstrated a highly sensitive, waferscale, highly uniform plasmonic nanomushroom substrate based on plastic for nakedeye plasmonic colorimetry and surface enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dualmode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 10^8 and labelfree quantitative analysis by naked eye colorimetry with a sensitivity of 611 nm RIU-1. The SERS EF of FlexBrite in the wet state was found to be 4.81 X 10^8, 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The labelfree detection of biotin streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic based dual-mode nano-mushroom substrate has the potential to be used as a sensing pla...

  18. Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer.

    Science.gov (United States)

    Xu, Zhida; Jiang, Jing; Wang, Xinhao; Han, Kevin; Ameen, Abid; Khan, Ibrahim; Chang, Te-Wei; Liu, Gang Logan

    2016-03-21

    We demonstrated a highly-sensitive, wafer-scale, highly-uniform plasmonic nano-mushroom substrate based on plastic for naked-eye plasmonic colorimetry and surface-enhanced Raman spectroscopy (SERS). We gave it the name FlexBrite. The dual-mode functionality of FlexBrite allows for label-free qualitative analysis by SERS with an enhancement factor (EF) of 10(8) and label-free quantitative analysis by naked-eye colorimetry with a sensitivity of 611 nm RIU(-1). The SERS EF of FlexBrite in the wet state was found to be 4.81 × 10(8), 7 times stronger than in the dry state, making FlexBrite suitable for aqueous environments such as microfluid systems. The label-free detection of biotin-streptavidin interaction by both SERS and colorimetry was demonstrated with FlexBrite. The detection of trace amounts of the narcotic drug methamphetamine in drinking water by SERS was implemented with a handheld Raman spectrometer and FlexBrite. This plastic-based dual-mode nano-mushroom substrate has the potential to be used as a sensing platform for easy and fast analysis in chemical and biological assays.

  19. Mining sensor data from complex systems

    NARCIS (Netherlands)

    Vespier, Ugo

    2015-01-01

    Today, virtually everything, from natural phenomena to complex artificial and physical systems, can be measured and the resulting information collected, stored and analyzed in order to gain new insight. This thesis shows how complex systems often exhibit diverse behavior at different temporal scales

  20. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  1. Characterization of Residual Stress in Microelectromechanical Systems (MEMS) Devices Using Raman Spectroscopy

    Science.gov (United States)

    2002-04-01

    885–891, 1999. 8. M. S. Benrakkad, M. A. Benitez , J. Esteve, J. M. Lpez-Villegas, J. Samitier, and J. R. Morante. Stress measurement by micro-Raman...Society, 133(9):1913–1917, September 1986. 10. P. S. Pizani and C. E. M. Campos . Raman probing of thermal damage depth pro- file in annealed GaAs. Journal

  2. Development and deployment of a precision underwater positioning system for in situ laser Raman spectroscopy in the deep ocean

    Science.gov (United States)

    White, Sheri N.; Kirkwood, William; Sherman, Alana; Brown, Mark; Henthorn, Richard; Salamy, Karen; Walz, Peter; Peltzer, Edward T.; Brewer, Peter G.

    2005-12-01

    The field of ocean geochemistry has recently been expanded to include in situ laser Raman spectroscopic measurements in the deep ocean. While this technique has proved to be successful for transparent targets, such as fluids and gases, difficulty exists in using deep submergence vehicle manipulators to position and control the very small laser spot with respect to opaque samples of interest, such as many rocks, minerals, bacterial mats, and seafloor gas hydrates. We have developed, tested, and successfully deployed by remotely operated vehicle (ROV) a precision underwater positioner (PUP) which provides the stability and precision movement required to perform spectroscopic measurements using the Deep Ocean Raman In situ Spectrometer (DORISS) instrument on opaque targets in the deep ocean for geochemical research. The positioner is also adaptable to other sensors, such as electrodes, which require precise control and positioning on the seafloor. PUP is capable of translating the DORISS optical head with a precision of 0.1 mm in three dimensions over a range of at least 15 cm, at depths up to 4000 m, and under the normal range of oceanic conditions (T, P, current velocity). The positioner is controlled, and spectra are obtained, in real time via Ethernet by scientists aboard the surface vessel. This capability has allowed us to acquire high quality Raman spectra of targets such as rocks, shells, and gas hydrates on the seafloor, including the ability to scan the laser spot across a rock surface in sub-millimeter increments to identify the constituent mineral grains. These developments have greatly enhanced the ability to obtain in situ Raman spectra on the seafloor from an enormous range of specimens.

  3. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  4. Data acquisition system for ion-selective potentiometric sensors

    Science.gov (United States)

    Filipkowski, Andrzej; Ogrodzki, Jan; Opalski, Leszek J.; Rybaniec, Radoslaw; Wieczorek, Piotr Z.

    2009-06-01

    The paper presents an idea and directives on construction of a measurement system for estimation of ions' concentration in water. System presented in paper has been fully designed and manufactured in Warsaw University of Technology in Institute of Electronic Systems. The measurement system works with cheap ion-selective potentiometric sensors. System allows for potentiometric, transient response and voltamperometric measurements. Data fusion method has been implemented in the system to increase the estimation's accuracy. Presented solution contains of many modern electronic elements like 32bit ARM microcontroller, precise operational amplifiers and some hydraulics subsystems essential for chemical measurements.

  5. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  6. Electric fish as natural models for technical sensor systems

    Science.gov (United States)

    von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi

    2009-05-01

    Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.

  7. Assembly of a Pulmonary Artery Pressure Sensor System

    Directory of Open Access Journals (Sweden)

    J. Müntjes

    2010-01-01

    Full Text Available This paper presents an implantable system for telemonitoring the intravascular pressure in the pulmonary artery. By implanting a catheter-bound pressure and temperature sensor into the pulmonary artery, it is possible to monitor the actual value and the time variations of the intravascular pressure with a frequency of 128 Hz. Thus hospitalization of patients suffering from heart insufficiency can be avoided by early changes in therapy.Preliminary in vivo experiments have been conducted to verify the fixation mechanism and the positioning of the sensor at the right place in the pulmonary artery. It was shown that the proposed fixation mechanism and the packaging of the sensor promise to be stable.

  8. Wavefront sensors and algorithms for adaptive optical systems

    Science.gov (United States)

    Lukin, V. P.; Botygina, N. N.; Emaleev, O. N.; Konyaev, P. A.

    2010-07-01

    The results of recent works related to techniques and algorithms for wave-front (WF) measurement using Shack-Hartmann sensors show their high efficiency in solution of very different problems of applied optics. The goal of this paper was to develop a sensitive Shack-Hartmann sensor with high precision WF measurement capability on the base of modern technology of optical elements making and new efficient methods and computational algorithms of WF reconstruction. The Shack-Hartmann sensors sensitive to small WF aberrations are used for adaptive optical systems, compensating the wave distortions caused by atmospheric turbulence. A high precision Shack-Hartmann WF sensor has been developed on the basis of a low-aperture off-axis diffraction lens array. The device is capable of measuring WF slopes at array sub-apertures of size 640×640 μm with an error not exceeding 4.80 arcsec (0.15 pixel), which corresponds to the standard deviation equal to 0.017λ at the reconstructed WF with wavelength λ . Also the modification of this sensor for adaptive system of solar telescope using extended scenes as tracking objects, such as sunspot, pores, solar granulation and limb, is presented. The software package developed for the proposed WF sensors includes three algorithms of local WF slopes estimation (modified centroids, normalized cross-correlation and fast Fourierdemodulation), as well as three methods of WF reconstruction (modal Zernike polynomials expansion, deformable mirror response functions expansion and phase unwrapping), that can be selected during operation with accordance to the application.

  9. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  10. A Wearable Sensor System for Monitoring Cigarette Smoking

    Science.gov (United States)

    Sazonov, Edward; Lopez-Meyer, Paulo; Tiffany, Stephen

    2013-01-01

    Objective: Available methods of smoking assessment (e.g., self-report, portable puff-topography instruments) do not permit the collection of accurate measures of smoking behavior while minimizing reactivity to the assessment procedure. This article suggests a new method for monitoring cigarette smoking based on a wearable sensor system (Personal Automatic Cigarette Tracker [PACT]) that is completely transparent to the end user and does not require any conscious effort to achieve reliable monitoring of smoking in free-living individuals. Method: The proposed sensor system consists of a respiratory inductance plethysmograph for monitoring of breathing and a hand gesture sensor for detecting a cigarette at the mouth. The wearable sensor system was tested in a laboratory study of 20 individuals who performed 12 different activities including cigarette smoking. Signal processing was applied to evaluate the uniqueness of breathing patterns and their correlation with hand gestures. Results: The results indicate that smoking manifests unique breathing patterns that are highly correlated with hand-to-mouth cigarette gestures and suggest that these signals can potentially be used to identify and characterize individual smoke inhalations. Conclusions: With the future development of signal processing and pattern-recognition methods, PACT can be used to automatically assess the frequency of smoking and inhalation patterns (such as depth of inhalation and smoke holding) throughout the day and provide an objective method of assessing the effectiveness of behavioral and pharmacological smoking interventions. PMID:24172124

  11. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  12. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  13. The Reliability of Wireless Sensor Network on Pipeline Monitoring System

    Directory of Open Access Journals (Sweden)

    Hafizh Prihtiadi

    2017-06-01

    Full Text Available The wireless sensor network (WSN is an attractive technology, which combines embedded systems and communication networks making them more efficient and effective. Currently, WSNs have been developed for various monitoring applications. In this research, a wireless mesh network for a pipeline monitoring system was designed and developed. Sensor nodes were placed at each branch in the pipe system. Some router fails were simulated and the response of each node in the network was evaluated. Three different scenarios were examined to test the data transmission performance. The results proved that the wireless mesh network was reliable and robust. The system is able to perform link reconfiguration, automatic routing and safe data transmission from the beginning node to the end node.

  14. Resonance Raman study of the oxygenation cycle of optically trapped single red blood cells in a microfluidic system

    Science.gov (United States)

    Ramser, Kerstin; Logg, Katarina; Enger, Jonas; Goksor, Mattias; Kall, Mikael; Hanstorp, Dag

    2004-10-01

    The average environmental response of red blood cells (RBCs) is routinely measured in ensemble studies, but in such investigations valuable information on the single cell level is obscured. In order to elucidate this hidden information is is important to enable the selection of single cells with certain properties while subsequent dynamics triggered by environmental stimulation are recorded in real time. It is also desirable to manipulate and control the cells under phsyiological conditions. As shown here, this can be achieved by combining optical tweezers with a confocal Raman set-up equipped with a microfluidic system. A micro-Raman set-up is combined with an optical trap with separate optical paths, lasers and objectives, which enables the acquisition of resonance Raman profils of single RBCs. The microfluidic system, giving full control over the media surrounding the cell, consists of a pattern of channels and reservoirs produced by electron beam lithography and moulded in PDMS. Fresh Hepes buffer or buffer containing sodium dithionite are transported through the channels using electro-osmotic flow, while the direct Raman response of the single optically trapped RBC is registered in another reservoir in the middle of the channel. Thus, it is possible to monitor the oxygenation cycle in a single cell and to study photo-induced chemistry. This experimental set-up has high potential for monitoring the drug response or conformational changes caused by other environmental stimuli for many types of single functional cells since "in vivo" conditions can be created.

  15. FT-IR, Raman and thermoluminescence investigation of P 2O 5-BaO-Li 2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar Gabor, A.; Cozar, O.; Daraban, L.; Ardelean, I.

    2011-05-01

    The 0.5P 2O 5· xBaO·(0.5- x) Li 2O glass system (0 ⩽ x ⩽ 0.5 mol%) is investigated by FT-IR, Raman and thermoluminescence as a possible dosimetic material. FT-IR and Raman spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption band from IR spectra is attributed to the symmetric stretching vibrations of P = O double bonds. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ˜700 cm -1 is assigned to symmetric stretching vibrations of P-O-P groups and that from ˜1158 cm -1 is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO 2) in phosphate tetrahedron. Finally FT-IR and Raman spectroscopies revealed a local network structure mainly based on Q 2 and Q 3 tetrahedrons connected by P-O-P linkages. Luminescence investigations show that by adding modifier oxides to phosphate glass dose dependent TL signals result upon irradiation. Thus P 2O 5-BaO-Li 2O glass system is a possible candidate material for dosimetry in the high dose range (>10 Gy).

  16. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  17. Sensors and Systems to Enhance Aviation Safety Against Weather Hazards

    OpenAIRE

    1991-01-01

    Weather-related factors are among major causes of aviation hazards, passenger discomfort, poor airline schedule-keeping, and poor operating economy. A variety of new high-technology electronic sensors and systems for aviation weather are being developed and installed across the US. The aviation weather monitoring system of the future will be centered around Doppler weather radars which offer the best combination of coverage, resolution, and agility for this purpose, and are able to detect and...

  18. Micro electro mechanical systems based sensor for mechanomyography

    OpenAIRE

    Murphy, Chris; Campbell, Niall; Caulfield, Brian; Ward, Tomas; Deegan, Catherine

    2008-01-01

    The purpose of this work was to design a micro electrical mechanical sensor (MEMS) based system to measure the mechanomyogram of electrically stimulated muscle. The measuring device for the mechanomyography (MMG) system consisted of a dual axis accelerometer and a signal conditioning circuit designed specifically to enhance raw MMG signals . Currently electromyography (EMG) is the standard tool for measuring muscle contraction. During electrical stimulation however, EMG measure...

  19. The processing of information from sensors in intelligent systems

    Science.gov (United States)

    Kokovin, V. A.; Sytin, A. N.

    2017-01-01

    The article describes the processing of information obtained from sensors in intelligent systems. The paper analyzes the need of advanced treatment for a paralleling operation calculator which reduces the time of response to input events. A realization of a speculative processing algorithm in the FPGA by streaming control is based on a data flow model. This solution can be used in applications related to telecommunications networks of distributed control systems.

  20. Nanoscale force sensors to study supramolecular systems

    NARCIS (Netherlands)

    Cingil, E.H.

    2016-01-01

    Supramolecular systems are solutions, suspensions or solids, formed by physical and non-covalent interactions. These weak and dynamic bonds drive molecular self-assembly in nature, leading to formation of complex ordered structures in high precision. Understanding self-assembly and co-assembly is cr

  1. Nanoscale force sensors to study supramolecular systems

    NARCIS (Netherlands)

    Cingil, E.H.

    2016-01-01

    Supramolecular systems are solutions, suspensions or solids, formed by physical and non-covalent interactions. These weak and dynamic bonds drive molecular self-assembly in nature, leading to formation of complex ordered structures in high precision. Understanding self-assembly and co-assembly is

  2. Locomotive monitoring system using wireless sensor networks

    CSIR Research Space (South Africa)

    Croucamp, PL

    2014-07-01

    Full Text Available Theft of cables used for powering a locomotive not only stops the train from functioning but also paralyzes the signalling and monitoring system. This means that information on certain locomotive's cannot be passed onto other locomotives which may...

  3. The development of Army relevant peptide-based surface enhanced Raman scattering (SERS) sensors for biological threat detection

    Science.gov (United States)

    Farrell, Mikella E.; Strobbia, Pietro; Sarkes, Deborah A.; Stratis-Cullum, Dimitra N.; Cullum, Brian M.; Pellegrino, Paul M.

    2016-05-01

    The utility of peptide-based molecular sensing for the development of novel biosensors has resulted in a significant increase in their development and usage for sensing targets like chemical, biological, energetic and toxic materials. Using peptides as a molecular recognition element is particularly advantageous because there are several mature peptide synthesis protocols that already exist, peptide structures can be tailored, selected and manipulated to be highly discerning towards desired targets, peptides can be modified to be very stable in a host of environments and stable under many different conditions, and through the development of bifunctionalized peptides can be synthesized to also bind onto desired sensing platforms (various metal materials, glass, etc.). Two examples of the several Army relevant biological targets for peptide-based sensing platforms include Ricin and Abrin. Ricin and Abrin are alarming threats because both can be weaponized and there is no antidote for exposure. Combining the sensitivity of SERS with the selectivity of a bifunctional peptide allows for the emergence of dynamic hazard sensor for Army application.

  4. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    Science.gov (United States)

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

  5. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  6. Optimal Sensor Layouts in Underwater Locomotory Systems

    Science.gov (United States)

    Colvert, Brendan; Kanso, Eva

    2015-11-01

    Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.

  7. Design of a Distributed Microprocessor Sensor System

    Science.gov (United States)

    1990-04-01

    implemented through these methods, multiversion software and recovery the use of multiple identical software tasks running on blocks, are intended to... Multiversion software for real-time systems tolerant microprocessor that uses three processing is discussed by Shepherd32, Hitt33, Avizienis’, and...tasks and the there are no data available to determine the cost third is used for noncritical tasks. If a discrepancy effectiveness of multiversion

  8. Printable low-cost sensor systems for healthcare smart textiles

    Science.gov (United States)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  9. A Wireless Sensor Network Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kavi K. Khedo

    2010-05-01

    Full Text Available Sensor networks are currently an active research area mainly due to the potential of their applications. Inthis paper we investigate the use of Wireless Sensor Networks (WSN for air pollution monitoring inMauritius. With the fast growing industrial activities on the island, the problem of air pollution isbecoming a major concern for the health of the population. We proposed an innovative system namedWireless Sensor Network Air Pollution Monitoring System (WAPMS to monitor air pollution inMauritius through the use of wireless sensors deployed in huge numbers around the island. The proposedsystem makes use of an Air Quality Index (AQI which is presently not available in Mauritius. In order toimprove the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithmnamed Recursive Converging Quartiles (RCQ. The algorithm is used to merge data to eliminateduplicates, filter out invalid readings and summarise them into a simpler form which significantly reducethe amount of data to be transmitted to the sink and thus saving energy. For better power management weused a hierarchical routing protocol in WAPMS and caused the motes to sleep during idle time.

  10. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2012-05-01

    Full Text Available A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients properties of aerosols in the troposphere. The aerosol optical depth (AOD values derived from the CIMEL ranged from 0.33–0.91 (355 nm to 0.18–0.60 (532 nm, while the lidar ratio (LR values retrieved from the Raman lidar ranged within 75–100 sr (355 nm and 45–75 sr (532 nm. Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532 and Ångström-extinction-related (AER355/532 were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively, indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10 + 0.007( ± 0.007i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide

  11. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Science.gov (United States)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  12. Gait Dynamics Sensing Using IMU Sensor Array System

    Directory of Open Access Journals (Sweden)

    Slavomir Kardos

    2017-01-01

    Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.

  13. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  14. Power consumption analysis of operating systems for wireless sensor networks.

    Science.gov (United States)

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  15. Quantitative Raman characterization of cross-linked collagen thin films as a model system for diagnosing early osteoarthritis

    Science.gov (United States)

    Wang, Chao; Durney, Krista M.; Fomovsky, Gregory; Ateshian, Gerard A.; Vukelic, Sinisa

    2016-03-01

    The onset of osteoarthritis (OA)in articular cartilage is characterized by degradation of extracellular matrix (ECM). Specifically, breakage of cross-links between collagen fibrils in the articular cartilage leads to loss of structural integrity of the bulk tissue. Since there are no broadly accepted, non-invasive, label-free tools for diagnosing OA at its early stage, Raman spectroscopyis therefore proposed in this work as a novel, non-destructive diagnostic tool. In this study, collagen thin films were employed to act as a simplified model system of the cartilage collagen extracellular matrix. Cross-link formation was controlled via exposure to glutaraldehyde (GA), by varying exposure time and concentration levels, and Raman spectral information was collected to quantitatively characterize the cross-link assignments imparted to the collagen thin films during treatment. A novel, quantitative method was developed to analyze the Raman signal obtained from collagen thin films. Segments of Raman signal were decomposed and modeled as the sum of individual bands, providing an optimization function for subsequent curve fitting against experimental findings. Relative changes in the concentration of the GA-induced pyridinium cross-links were extracted from the model, as a function of the exposure to GA. Spatially resolved characterization enabled construction of spectral maps of the collagen thin films, which provided detailed information about the variation of cross-link formation at various locations on the specimen. Results showed that Raman spectral data correlate with glutaraldehyde treatment and therefore may be used as a proxy by which to measure loss of collagen cross-links in vivo. This study proposes a promising system of identifying onset of OA and may enable early intervention treatments that may serve to slow or prevent osteoarthritis progression.

  16. Novel approaches for improved performance of inertial sensors and integrated navigation systems

    OpenAIRE

    Edwan, Ezzaldeen

    2013-01-01

    Navigation is the science and art that answers the questions of knowing where you are at the current moment and where you will be in the next moment. Modern navigation systems are based mainly on satellite and inertial sensors. Inertial sensor systems are becoming very popular in navigation systems because they are self contained sensors. The goal of this research is to develop novel approaches for improving the performance of inertial sensor systems and their integration algorithms with exte...

  17. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform

    CERN Document Server

    Peyskens, Frédéric; Van Dorpe, Pol; Thomas, Nicolas Le; Baets, Roel

    2015-01-01

    Surface Enhanced Raman Spectroscopy (SERS) is a well-established technique for enhancing Raman signals. Recently photonic integrated circuits have been used, as an alternative to microscopy based excitation and collection, to probe SERS signals from external metallic nanoparticles. However, in order to develop quantitative on-chip SERS sensors, integration of dedicated nanoplasmonic antennas and waveguides is desirable. Here we bridge this gap by demonstrating for the first time the generation of SERS signals from integrated bowtie nanoantennas, excited and collected by a single mode waveguide, and rigorously quantify the enhancement process. The guided Raman power generated by a 4-Nitrothiophenol coated bowtie antenna shows an 8 x 10^6 enhancement compared to the free-space Raman scattering. An excellent correspondence is obtained between the theoretically predicted and observed absolute Raman power. This work paves the way towards fully integrated lab-on-a-chip systems where the single mode SERS-probe can b...

  18. An Autonomous Polarized Raman Lidar System Designed for Summit Camp, Greenland

    Science.gov (United States)

    Stillwell, Robert A.; Neely, Ryan R.; Pilewskie, Peter; O'Neill, Michael; Thayer, Jeffrey P.; Hayman, Matthew

    2016-06-01

    A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure water vapor mixing ratio, temperature, extinction, and cloud phase profiles through the troposphere, is designed for deployment to Summit Camp, Greenland (72° 36' N, 38° 25' W, 3250 [m]). This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes. The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature will reveal detailed microphysical information. A system description will be provided with an emphasis on the Monte Carlo safety analysis done to ensure eye safety in all relevant weather conditions.

  19. An Autonomous Polarized Raman Lidar System Designed for Summit Camp, Greenland

    Directory of Open Access Journals (Sweden)

    Stillwell Robert A.

    2016-01-01

    Full Text Available A dearth of high-spatial and temporal resolution measurements of atmospheric state variables in the Arctic directly inhibits scientific understanding of radiative and precipitation impacts on the changing surface environment. More reliable and frequent measurements are needed to better understand Arctic weather processes and constrain model predictions. To partially address the lack of Artic observations, a new autonomous Raman lidar system, which will measure water vapor mixing ratio, temperature, extinction, and cloud phase profiles through the troposphere, is designed for deployment to Summit Camp, Greenland (72° 36’ N, 38° 25’ W, 3250 [m]. This high-altitude Arctic field site has co-located ancillary equipment such as a Doppler millimeter cloud radar, microwave radiometers, depolarization lidars, ceiliometer, an infrared interferometer and twice-daily radiosondes. The current suite of instruments allows for a near comprehensive picture of the atmospheric state above Summit but increased spatial and temporal resolution of water vapor and temperature will reveal detailed microphysical information. A system description will be provided with an emphasis on the Monte Carlo safety analysis done to ensure eye safety in all relevant weather conditions.

  20. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable, nonassignable...

  1. Red/near-infrared reflectance sensor system for detecting plants

    Science.gov (United States)

    Von Bargen, Kenneth; Meyer, George E.; Mortensen, David A.; Merritt, Steven J.; Woebbecke, David M.

    1993-05-01

    Growing plants, soil types, and surfaces and residues on a soil surface have distinct natural light reflectances. These reflectance characteristics have been determined using current spectroradiometry technology. Detection of plants is possible based upon the distinct reflectance characteristics of plants, soil, and residues. An optical plant reflectance sensor was developed which utilizes a pair of red and near infrared sensitive photodetectors to measure the radiancy from the plant and soil. Another pair of sensors measures radiancy from a highly radiant reference surface to accommodate varying intensities of the natural light. The ratio of the target and reference radiancies is the target reflectance. Optical filters were used to select the spectral bandwidth sensitivities for the red and NIR photodetectors. The reflectance values were digitized for incorporation into a normalized difference index in order to provide a stronger indication that a live plant is present within the field of view of the sensor. This sensor system was combined with a microcontroller for activating a solenoid controlled spray nozzle on a single unit prototype spot agricultural sprayer.

  2. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    Science.gov (United States)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  3. Multi-sensor Aerosol Products Sampling System (MAPSS

    Directory of Open Access Journals (Sweden)

    M. Petrenko

    2012-05-01

    Full Text Available Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS, which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient of aerosol products from multiple spaceborne sensors, including MODIS (on Terra and Aqua, MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  4. Image quality vs. sensitivity: fundamental sensor system engineering

    Science.gov (United States)

    Schueler, Carl F.

    2008-08-01

    This paper focuses on the fundamental system engineering tradeoff driving almost all remote sensing design efforts, affecting complexity, cost, performance, schedule, and risk: image quality vs. sensitivity. This single trade encompasses every aspect of performance, including radiometric accuracy, dynamic range and precision, as well as spatial, spectral, and temporal coverage and resolution. This single trade also encompasses every aspect of design, including mass, dimensions, power, orbit selection, spacecraft interface, sensor and spacecraft functional trades, pointing or scanning architecture, sensor architecture (e.g., field-of-view, optical form, aperture, f/#, material properties), electronics, mechanical and thermal properties. The relationship between image quality and sensitivity is introduced based on the concepts of modulation transfer function (MTF) and signal-to-noise ratio (SNR) with examples to illustrate the balance to be achieved by the system architect to optimize cost, complexity, performance and risk relative to end-user requirements.

  5. Power Consumption Analysis of Operating Systems for Wireless Sensor Networks

    Science.gov (United States)

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J.

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems—TinyOS v1.0, TinyOS v2.0, Mantis and Contiki—running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks. PMID:22219688

  6. Embedded Sensor System for Early Pathology Detection in Building Construction

    Directory of Open Access Journals (Sweden)

    Carlos J. Escudero Cascon

    2009-08-01

    Full Text Available Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not.

  7. Embedded Sensor System for Early Pathology Detection in Building Construction

    CERN Document Server

    Torres, Santiago J Barro

    2009-01-01

    Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN) are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not.

  8. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2011-09-01

    Full Text Available A strong Saharan dust event occurred over the city of Athens, Greece (37.9° N, 23.6° E between 27 March and 3 April 2009. The BSC-DREAM8b model was used to forecast the dust event and to provide the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the National Technical University of Athens (NTUA 6-wavelength Raman lidar system only during the unclouded day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients properties of aerosols in the troposphere. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol dust microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index in different layers between 1.8 and 3.5 km a.s.l. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to infer an in situ aerosol composition consistent with the retrieved refractive index values. PM10 concentrations levels, PM10 composition results and SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray analysis results on sizes and mineralogy of particles from samples during the Saharan dust transport event were used to evaluate the retrieval.

  9. TaraxOS: An Operation System for Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Wen-Yong Wang; Wen-Gang Han; Yu Xiang

    2009-01-01

    An operation system (OS), named TaraxOS for wireless sensor networks is proposed. The functions of the TaraxOS such as interrupt, memory management and scheduling mechanism are researched and implemented. After introducing the node's working flow, the performances of the TaraxOS are analyzed and some limitations of the scheduling mechanism are discussed. The obtained results show that the proposed TaraxOS has some desirable characteristics including small code capacity, low power consumption, quick response and robustness.

  10. Silicon photonic sensors incorporated in a digital microfluidic system.

    Science.gov (United States)

    Lerma Arce, Cristina; Witters, Daan; Puers, Robert; Lammertyn, Jeroen; Bienstman, Peter

    2012-12-01

    Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in polydimethylsiloxane or other materials, which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where microliter- to picoliter-sized droplets are generated, transported, mixed, and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross-contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride, and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory.

  11. Nanotube-based Sensors and Systems for Outer Planetary Exploration

    Science.gov (United States)

    Noca, F.; Hunt, B. D.; Hoenk, M. E.; Choi, D.; Kowalczyk, R.; Williams, R.; Xu, J.; Koumoutsakos, P.

    2001-01-01

    Direct sensing and processing at the nanometer scale offer NASA the opportunity to expand its capabilities in deep space exploration, particularly for the search for signatures of life, the analysis of planetary oceans and atmospheres, and communications systems. Carbon nanotubes, with their unique mechanical, electrical, and radiation-tolerant properties, are a promising tool for this exploration. We are developing devices based on carbon nanotubes, including sensors, actuators, and oscillators. Additional information is contained in the original extended abstract.

  12. A High-Stability Capacitance Sensor System and Its Evaluation

    Science.gov (United States)

    2008-12-01

    15:45 from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...45 from IEEE Xplore . Restrictions apply. AVRAMOV-ZAMUROVIC AND LEE: HIGH-STABILITY CAPACITANCE SENSOR SYSTEM AND ITS EVALUATION 957 Fig. 4...Authorized licensed use limited to: US Naval Academy. Downloaded on May 13, 2009 at 15:45 from IEEE Xplore . Restrictions apply. 958 IEEE TRANSACTIONS

  13. Thermal control system for SSF sensor/electronics

    Science.gov (United States)

    Akau, R. L.; Lee, D. E.

    1993-01-01

    A thermal control system was designed for the Space Station Freedom (SSF) sensor/electronics box (SSTACK). Multi-layer insulation and heaters are used to maintain the temperatures of the critical components within their operating and survival temperature limits. Detailed and simplified SSTACK thermal models were developed and temperatures were calculated for worst-case orbital conditions. A comparison between the two models showed very good agreement. Temperature predictions were also compared to measured temperatures from a thermal-vacuum test.

  14. Sensor Craft Control Using Drone Craft with Coulomb Propulsion System

    OpenAIRE

    Joe, Hyunsik

    2005-01-01

    The Coulomb propulsion system has no exhaust plume impingement problem with neighboring spacecraft and does not contaminate their sensors because it requires essentially no propellant. It is suitable to close formation control on the order of dozens of meters. The Coulomb forces are internal forces of the formation and they influence all charged spacecraft at the same time. Highly nonlinear and strongly coupled equations of motion of Coulomb formation makes creating a Coulomb control method a...

  15. A monitoring sensor management system for grid environments

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Crowley, Brian; Gunter, Dan; Lee, Jason; Thompson, Mary

    2001-06-01

    Large distributed systems, such as computational grids,require a large amount of monitoring data be collected for a variety oftasks, such as fault detection, performance analysis, performance tuning,performance prediction and scheduling. Ensuring that all necessarymonitoring is turned on and that the data is being collected can be avery tedious and error-prone task. We have developed an agent-basedsystem to automate the execution of monitoring sensors and the collectionof event data.

  16. A monitoring sensor management system for grid environments

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Crowley, Brian; Gunter, Dan; Lee, Jason; Thompson, Mary

    2001-06-01

    Large distributed systems, such as computational grids,require a large amount of monitoring data be collected for a variety oftasks, such as fault detection, performance analysis, performance tuning,performance prediction and scheduling. Ensuring that all necessarymonitoring is turned on and that the data is being collected can be avery tedious and error-prone task. We have developed an agent-basedsystem to automate the execution of monitoring sensors and the collectionof event data.

  17. An Astigmatic Detection System for Polymeric Cantilever-based Sensors

    DEFF Research Database (Denmark)

    Hwu, En-Te; Liao, Hsien-Shun; Bosco, Filippo;

    2012-01-01

    We demonstrate the use of an astigmatic detection system (ADS) for resonance frequency identification of polymer microcantilever sensors. The ADS technology is based on a DVD optical head combined with an optical microscope (OM). The optical head has a signal bandwidth of 80 MHz, allowing thermal...... submicrometer-sized cantilevers. The resonant frequency of SU-8 microcantilevers is measured by both thermal fluctuation and excited vibration measurement modes of the ADS....

  18. RD on 3D Sensors and MicroFabricated Systems

    CERN Document Server

    Da Via, C

    2013-01-01

    The aim of this proposed R&D Collaboration is the design, fabrication and industrialization of a new generation of low mass detector systems based on silicon micro-fabrication techniques. The main objective is the validation of such systems in HL-LHC detectors upgrades. In particular the collaboration would like to focus on the following research topics: • Novel 3D sensors layouts, with enhanced signal properties, high speed and active edges; •Integrated micro-channel cooling for effective low mass module thermal management; •System integration, simulation and reliability studies at experiments’ operational conditions.

  19. Implementation of the vehicle recognition systems using wireless magnetic sensors

    Indian Academy of Sciences (India)

    SERCAN VANCIN; EBUBEKIR ERDEM

    2017-06-01

    Wireless network sensors and their use in traffic monitoring, traffic density determination or vehicle speed detection and classification have recently been the focus of interest for researchers. This article describes how a new sensor circuit was designed to deliver instantaneous, real-time and novel solutions as a vehicle detection system, which is more powerful than the nodes used in other studies, and gives results with smaller error margins due to its serial communication qualification. With the proposed logic algorithm, it was possible tocategorise the instantaneous traffic status of a road in four levels: no traffic, mild traffic, heavy traffic and very heavy traffic. Additionally, with the nodes placed at the beginning and the end of the road, the number of vehicles per hour for a day was determined and traffic was analysed. Then, vehicles passing by were classified with a proposed classification algorithm and magnetic signature length (MSL) parameter as cars, minibuses, buses and trucks, and an accuracy rate of 95% was obtained. As the last application, the direction of motion ofthe vehicle on the x-axis as well as left-to-right or right-to-left directions was determined, and the result was 94% accurate. The simplicity of the proposed algorithms, the absence of any complex mathematical calculations, thelow cost of the sensor node and circuit and the low power consumption of the communication system demonstrate the superiority of this system in comparison with other studies.

  20. A Wireless Self-Powered Urinary Incontinence Sensor System

    Science.gov (United States)

    Tanaka, Ami; Utsunomiya, Fumiyasu; Douseki, Takakuni

    A self-powered urinary incontinence sensor system consisting of a urine-activated coin battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The urine-activated battery makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit and a 1-V surface acoustic wave (SAW) oscillator reduce the power dissipation of a wireless transmitter. The SAW oscillator quickly responds to the on-off control of the power supply, which is suitable for intermittent operation. To verify the effectiveness of the circuit scheme, the authors fabricated a prototype sensor system. When the volume of urine is 0.2 ml, the battery outputs a voltage of over 1.3 V; and the sensor system can transmit signals over a distance of 5 m.

  1. Operating systems for wireless sensor networks: a survey.

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  2. Operating Systems for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Omer Farooq

    2011-05-01

    Full Text Available This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN Operating Systems (OSs. In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  3. Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system

    Science.gov (United States)

    Huff, Terry Brandon

    A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the

  4. Elliptic Curve Cryptography with Security System in Wireless Sensor Networks

    Science.gov (United States)

    Huang, Xu; Sharma, Dharmendra

    2010-10-01

    The rapid progress of wireless communications and embedded micro-electro-system technologies has made wireless sensor networks (WSN) very popular and even become part of our daily life. WSNs design are generally application driven, namely a particular application's requirements will determine how the network behaves. However, the natures of WSN have attracted increasing attention in recent years due to its linear scalability, a small software footprint, low hardware implementation cost, low bandwidth requirement, and high device performance. It is noted that today's software applications are mainly characterized by their component-based structures which are usually heterogeneous and distributed, including the WSNs. But WSNs typically need to configure themselves automatically and support as hoc routing. Agent technology provides a method for handling increasing software complexity and supporting rapid and accurate decision making. This paper based on our previous works [1, 2], three contributions have made, namely (a) fuzzy controller for dynamic slide window size to improve the performance of running ECC (b) first presented a hidden generation point for protection from man-in-the middle attack and (c) we first investigates multi-agent applying for key exchange together. Security systems have been drawing great attentions as cryptographic algorithms have gained popularity due to the natures that make them suitable for use in constrained environment such as mobile sensor information applications, where computing resources and power availability are limited. Elliptic curve cryptography (ECC) is one of high potential candidates for WSNs, which requires less computational power, communication bandwidth, and memory in comparison with other cryptosystem. For saving pre-computing storages recently there is a trend for the sensor networks that the sensor group leaders rather than sensors communicate to the end database, which highlighted the needs to prevent from the man

  5. Hair-based sensors for micro-autonomous systems

    Science.gov (United States)

    Sadeghi, Mahdi M.; Peterson, Rebecca L.; Najafi, Khalil

    2012-06-01

    We seek to harness microelectromechanical systems (MEMS) technologies to build biomimetic devices for low-power, high-performance, robust sensors and actuators on micro-autonomous robot platforms. Hair is used abundantly in nature for a variety of functions including balance and inertial sensing, flow sensing and aerodynamic (air foil) control, tactile and touch sensing, insulation and temperature control, particle filtering, and gas/chemical sensing. Biological hairs, which are typically characterized by large surface/volume ratios and mechanical amplification of movement, can be distributed in large numbers over large areas providing unprecedented sensitivity, redundancy, and stability (robustness). Local neural transduction allows for space- and power-efficient signal processing. Moreover by varying the hair structure and transduction mechanism, the basic hair form can be used for a wide diversity of functions. In this paper, by exploiting a novel wafer-level, bubble-free liquid encapsulation technology, we make arrays of micro-hydraulic cells capable of electrostatic actuation and hydraulic amplification, which enables high force/high deflection actuation and extremely sensitive detection (sensing) at low power. By attachment of cilia (hair) to the micro-hydraulic cell, air flow sensors with excellent sensitivity ( 10 m/s) have been built. A second-generation design has significantly reduced the sensor response time while maintaining sensitivity of about 2 cm/s and dynamic range of more than 15 m/s. These sensors can be used for dynamic flight control of flying robots or for situational awareness in surveillance applications. The core biomimetic technologies developed are applicable to a broad range of sensors and actuators.

  6. Deep-Hole Inner Diameter Measuring System Based on Non-contact Capacitance Sensor

    Institute of Scientific and Technical Information of China (English)

    于永新; 张恒; 王宗超; 常以哲

    2010-01-01

    A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...

  7. Investigation of a CO2 round jet using an integrated Raman-LDA system

    Science.gov (United States)

    Ballal, D. R.; Chen, T. H.

    1987-01-01

    An experimental investigation of a CO2 round jet spreading into a low-turbulence, coflowing airstream has been performed. Velocity and concentration properties in axial (x/D up to 20) and radial (r/D up to + or - 2.5) planes have been measured using an integrated Raman-LDA optical diagnostic system. These properties include mean value, fluctuating intensity, Reynolds shear stress, skewness, kurtosis, turbulent kinetic energy, joint pdfs, turbulent scalar fluxes and turbulent Schmidt number. From these quantitative measurements, and available flow visualization evidence, a three-region description of the jet structure is developed. It is found that: (1) in the instability dominated region, circumferential vortex rings are formed around the jet boundary; (2) in the near-field region, pairing, growth, coalescence and stretching processes are important; and (3) these processes ultimately produce the small-scale turbulence of the far-field region. Furthermore, measured peak values of turbulent fluctuations confirm the coalescence and streching of vortices, skewness and kurtosis data highlight the production of small-scale turbulence, and measurements of joint pdfs suggest that radial flow transports the jet concentration outward. Finally, concentration spreads faster than velocity, resulting in a turbulent Schmidt number below unity. A comparison of these results with those of other workers is made and the outcome is discussed.

  8. Effects of sensor position on kinematic data obtained with an inertial sensor system during gait analysis of trotting horses.

    Science.gov (United States)

    Moorman, Valerie J; Frisbie, David D; Kawcak, Christopher E; McIlwraith, C Wayne

    2017-03-01

    OBJECTIVE To determine the effects of altering location of right forelimb and pelvic sensors on kinematic data obtained with a commonly used inertial sensor system during gait analysis of trotting horses. DESIGN Experimental study. ANIMALS 12 horses with mild to moderate lameness of at least 1 hind limb, with or without lameness of the forelimbs. PROCEDURES All horses were examined while trotting on a high-speed treadmill. The right forelimb sensor was tested at 3 anatomic locations in random order: dorsal midline and 2 cm medial and lateral to that midline. During another treadmill session, the pelvic sensor was tested at 5 anatomic locations in random order: dorsal midline, 2 cm to the right and left of midline, and 2 cm cranial and caudal to the tubera sacrale on the midline. Laterality of the pelvic sensor was analyzed in 2 ways: sensor toward the right or left and sensor toward or away from the lame or lamest hind limb. Maximum and minimum differences in head and pelvic motion and vector sum values were ranked and compared with values for the midline location by means of mixed-model ANOVA. RESULTS Altering the location of the right forelimb sensor by 2 cm medially or laterally had no significant effect on forelimb or hind limb kinematics. However, location of the pelvic sensor had a significant effect on minimum difference in pelvic motion, regardless of whether the data were analyzed by laterality (right vs left) or toward versus away from the lame hind limb. CONCLUSIONS AND CLINICAL RELEVANCE Results of this study indicated that a 2-cm change in the location of the pelvic sensor during kinematic gait analysis had a significant effect on hind limb kinematic data of the system used. Therefore, placement of this sensor needs to be anatomically accurate.

  9. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  10. Hadoop-Based Distributed Sensor Node Management System

    National Research Council Canada - National Science Library

    Jung, In-Yong; Kim, Ki-Hyun; Han, Byong-John; Jeong, Chang-Sung

    2014-01-01

    ... and retrieve sensor data periodically from DFS. Additionally, it provides a flexible management scheme for sensor node by reconfiguring firmware or updating configurations and data formats of sensor nodes based on mapreduce framework...

  11. Remote Power Systems for Sensors on the Northern Border

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lin J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kandt, Alicen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    The National Renewable Energy Laboratory (NREL) is working with the Department of Homeland Security (DHS) [1] to field sensors that accurately track different types of transportation across the northern border of the U.S.. To do this, the sensors require remote power so that they can be placed in the most advantageous geographical locations, often where no grid power is available. This enables the sensors to detect and track aircraft/vehicles despite natural features (e.g., mountains, ridges, valleys, trees) that often prevent standard methods (e.g., monostatic radar or visual observers) from detecting them. Without grid power, portable power systems were used to provide between 80 and 300 W continuously, even in bitter cold and when buried under feet of snow/ice. NREL provides details about the design, installation, and lessons learned from long-term deployment of a second-generation of novel power systems that used adjustable-angle photovoltaics (PV), lithium ion batteries, and fuel cells that provide power to achieve 100% up-time.

  12. Design and first tests of a Macroseismic Sensor System

    Science.gov (United States)

    Brueckl, Ewald; Polydor, Stefan; Ableitinger, Klaus; Rafeiner-Magor, Walter; Kristufek, Werner; Mertl, Stefan; Lenhardt, Wolfgang

    2017-04-01

    Seismic observatories are located in remote, low-noise areas for good reason and do not probe areas of dense and sensitive infrastructure. Complementary macroseismic data provide dense, qualitative information on ground motion in populated areas. Motivated by the QCN (Quake Catcher Network), a new low-cost sensor system (Macroseismic Sensor System = MSS) has been developed to support the evaluation of macroseismic data with quantitative information on ground movement in populated and industrial areas. Scholars, alumni and teachers from a technical high school contributed substantially to this development within the Sparkling Science project Schools & Quakes and the Citizen Science project QuakeWatch Austria. The MSS uses horizontal 4.5 Hz geophones and 16Bit AD conversion, and 100 Hz sampling, formatting to MiniSeed, and continuous data transmission via LAN or WLAN to a server are controlled by an integrated microcomputer (Raspberry Pi). Real-time generation of shake and source maps (based on proxies of the PGV in successive time windows) allows for differentiation between local seismic events (e.g., traffic noise, shock close to the sensor) and signals from earthquakes or quarry blasts. The inherent noise of the MSS is about 1% of the PGV corresponding to the lower boundary of intensity I = 2, which is below the ambient noise level at stations in highly populated or industrial areas. The MSS is already being tested at locations around a quarry with regular production blasts. An expansion to a local network in the Vienna Basin will be the next step.

  13. Data analysis of inertial sensor for train positioning detection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  14. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    Science.gov (United States)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  15. Highly sensitive optical sensor system for blood leakage detection

    Science.gov (United States)

    Ueda, Masahiro; Ishikawa, Kazuhiko; Jie, Chen; Sanae, Mizuno; Touma, Yasunori

    A highly sensitive method for the detection of blood leakage has been developed, and a practical sensor system for blood concentration measurement has been constructed. The present method is based on the attenuation of laser light by blood cells. The effects of the fluctuations of the incident laser light power are eliminated by normalizing the attenuated light intensity by the incident light intensity. A part of the incident laser light is reflected by a beam splitter mounted at the entrance of the test cell, of which the power is measured to provide base data for normalization. The optical path is extended to enhance sensitivity by using a pair of side mirrors. This multi-reflection method is very effective to increase sensitivity; the maximum sensitivity obtained for blood concentration is about 4 X 10 -6 by volume, which is significantly higher than that of the conventional sensors.

  16. Characterization of Dutch dairy farms using sensor systems for cow management

    NARCIS (Netherlands)

    Steeneveld, W.; Hogeveen, H.

    2015-01-01

    To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are

  17. Development and evaluation of a lightweight sensor system for emission sampling from open area sources

    Science.gov (United States)

    A new sensor system for mobile and aerial emission sampling was developed for open area sources, such as open burning. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, and black carbon, samplers for particulate matter with ...

  18. Development and evaluation of a lightweight sensor system for aerial emission sampling from open area sources

    Science.gov (United States)

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  19. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No. 7,379,630...

  20. 30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...

  1. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Science.gov (United States)

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No. 83...

  2. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  3. Multi-robot system using low-cost infrared sensors

    Directory of Open Access Journals (Sweden)

    Anubhav Kakkar

    2013-03-01

    Full Text Available This paper presents a proposed set of the novel technique, methods, and algorithm for simultaneous path planning, area exploration, area retrieval, obstacle avoidance, object detection, and object retrieval   autonomously by a multi-robot system. The proposed methods and algorithms are built considering the use of low cost infrared sensors with the ultimate function of efficiently exploring the given unknown area and simultaneously identifying desired objects by analyzing the physical characteristics of several of the objects that come across during exploration. In this paper, we have explained the scenario by building a coordinative multi-robot system consisting of two autonomously operated robots equipped with low-cost and low-range infrared sensors to perform the assigned task by analyzing some of the sudden changes in their environment. Along with identifying and retrieving the desired object, the proposed methodology also provide an inclusive analysis of the area being explored. The novelties presented in the paper may significantly provide a cost-effective solution to the problem of area exploration and finding a known object in an unknown environment by demonstrating an innovative approach of using the infrared sensors instead of high cost long range sensors and cameras. Additionally, the methodology provides a speedy and uncomplicated method of traversing a complicated arena while performing all the necessary and inter-related tasks of avoiding the obstacles, analyzing the area as well as objects, and reconstructing the area using all these information collected and interpreted for an unknown environment. The methods and algorithms proposed are simulated over a complex arena to depict the operations and manually tested over a physical environment which provided 78% correct results with respect to various complex parameters set randomly.

  4. 3D sensor placement strategy using the full-range pheromone ant colony system

    Science.gov (United States)

    Shuo, Feng; Jingqing, Jia

    2016-07-01

    An optimized sensor placement strategy will be extremely beneficial to ensure the safety and cost reduction considerations of structural health monitoring (SHM) systems. The sensors must be placed such that important dynamic information is obtained and the number of sensors is minimized. The practice is to select individual sensor directions by several 1D sensor methods and the triaxial sensors are placed in these directions for monitoring. However, this may lead to non-optimal placement of many triaxial sensors. In this paper, a new method, called FRPACS, is proposed based on the ant colony system (ACS) to solve the optimal placement of triaxial sensors. The triaxial sensors are placed as single units in an optimal fashion. And then the new method is compared with other algorithms using Dalian North Bridge. The computational precision and iteration efficiency of the FRPACS has been greatly improved compared with the original ACS and EFI method.

  5. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  6. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  7. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  8. SENSOR FUSION CONTROL SYSTEM FOR COMPUTER INTEGRATED MANUFACTURING

    Directory of Open Access Journals (Sweden)

    C.M. Kumile

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Manufacturing companies of today face unpredictable, high frequency market changes driven by global competition. To stay competitive, these companies must have the characteristics of cost-effective rapid response to the market needs. As an engineering discipline, mechatronics strives to integrate mechanical, electronic, and computer systems optimally in order to create high precision products and manufacturing processes. This paper presents a methodology of increasing flexibility and reusability of a generic computer integrated manufacturing (CIM cell-control system using simulation and modelling of mechatronic sensory system (MSS concepts. The utilisation of sensors within the CIM cell is highlighted specifically for data acquisition, analysis, and multi-sensor data fusion. Thus the designed reference architecture provides comprehensive insight for the functions and methodologies of a generic shop-floor control system (SFCS, which consequently enables the rapid deployment of a flexible system.

    AFRIKAANSE OPSOMMING: Hedendaagse vervaardigingsondernemings ervaar gereeld onvoorspelbare markveranderinge wat aangedryf word deur wêreldwye mededinging. Om kompeterend te bly moet hierdie ondernemings die eienskappe van kosteeffektiwiteit en snelle-respons op markfluktuasies toon. Megatronika streef daarna om meganiese, elektroniese en rekenaarstelsels optimaal te integreer om hoëpresisieprodukte en produksieprosesse daar te stel. Hierdie artikel suggereer 'n metodologie vir toenemende aanpasbaarheid en herbruikbaarheid van 'n generiese rekenaargeïntegreerde vervaardigingsel-beheersisteem deur die gebruik van simulasie en die modellering van megatroniese sensorsisteemkonsepte. Die aanwending van sensors binne die sel fasiliteer datavaslegging, ontleding en multisensordatafusie. Sodoende verskaf die ontwerpte argitektuur insig in die funksie en metodologie van 'n generiese stukwerkwinkelbeheersisteem wat die vinnige

  9. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  10. Decentralized System Identification Using Stochastic Subspace Identification for Wireless Sensor Networks

    OpenAIRE

    2015-01-01

    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor n...

  11. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  12. Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering.

    Science.gov (United States)

    Haizheng, Tao; Xiujian, Zhao; Wei, Tong; Shun, Mao

    2006-07-01

    Room temperature Raman spectra of samples on three serials within the GeS(2)-In(2)S(3)-KCl glassy system have been investigated systematically. According to XRD patterns and Raman spectra of several pseudo-binary systems, the Cl atoms, which was added into the GeS(2)-In(2)S(3) glasses through KCl, was considered to be leading to the breaking of In-In bonds among the S(3)In-InS(3) ethane-like units and the forming of InS(4-x)Cl(x), InS(6-x)Cl(x) mixed polyhedra. Considering the effect of K(+) ions upon mixed anion units (InS(4-x)Cl(x) and InS(6-x)Cl(x)) and the corresponding micro-structural model, the Raman spectral evolution of the GeS(2)-In(2)S(3)-KCl glasses can be elucidated successfully. The microstructure of the GeS(2)-In(2)S(3)-KCl glasses was considered to be that the potassium atoms, which exist in the form of chlorine atoms as its nearest neighbor, are homogeneously dispersed in the glassy net formed by the micro-structural units such as InS(4), InS(6), InS(4-x)Cl(x), InS(6-x)Cl(x), GeS(4) polyhedra and S(3)In(Ge)-In(Ge)S(3) ethane-like units.

  13. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  14. FUZZY MAPPING IN DATA SONIFICATION SYSTEM OF WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Arseny A. Markhotin

    2016-11-01

    Full Text Available Problem Statement. This paper describes the modeling of sonification system with possible types of wireless sensor network data. Fuzzy logic is used for the data-to-sound mapping. Methods. Devised sonification system includes input data model and sound synthesis core. It was created in Pure Data. For fuzzy output of mapped data the Fuzzy Logic Toolboxof MATLABwas used. Moreover, the system model has an ability to send data to the side application via UDP protocol. Results. We offer the method of timbre space organization for sonification system output and the following output of control sound characteristics depending on the type of input data. Practical Relevance. The offered approach of using fuzzy logic in sonification systems can be applied in development of new applications when the formalization of data-to-sound mapping is difficult and also complicated timbal space organization is required.

  15. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  16. The development of a wide-field, high-resolution UV Raman hyperspectral imager

    Science.gov (United States)

    Gomer, Nathaniel R.; Nelson, Matthew P.; Angel, S. M.

    2015-05-01

    Raman spectroscopy is a valuable tool for the investigation and analysis of explosive and biological analytes because it provides a unique molecular fingerprint that allows for unambiguous target identification. Raman can be advantageous when utilized with deep UV excitation, but typical deep UV Raman systems have numerous limitations that hinder their performance and make their potential integration onto a field portable platform difficult. These systems typically offer very low throughput, are physically large and heavy, and can only probe an area the size of a tightly focused laser, severely diminishing the ability of the system to investigate large areas efficiently. The majority of these limitations are directly related to a system's spectrometer, which is typically dispersive grating based and requires a very narrow slit width and long focal length optics to achieve high spectral resolution. To address these shortcomings, ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, are developing a revolutionary wide-field Raman hyperspectral imaging system capable of providing wide-area, high resolution measurements with greatly increased throughput in a small form factor, which would revolutionize the way Raman is conducted and applied. The innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery. This combination of technologies creates a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution measurements using defocused excitation, giving the system a greater area coverage and faster search rate than traditional Raman systems. This paper will focus on the need for an innovative UV Raman system, provide an overview of spatial heterodyne Raman spectroscopy, and discuss the development

  17. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  18. Development of a MEMS acoustic emission sensor system

    Science.gov (United States)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  19. MEMS sensors and wireless telemetry for distributed systems

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L. Jr.; Warmack, R.J.; Smith, S.F. [and others

    1998-02-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts-per-trillion detection can be demonstrated for certain species. The authors are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of their primary areas of interest is chemical sensing for environmental applications. Towards this end, they are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, the authors are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. They have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuitry they have designed and fabricated in 0.5 {micro}m CMOS has been tested and verified operational to above 1 GHz. The initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical (ISM) band. This paper presents measured data on the microcantilever-based mercury detector. They also present design data and measurements of the RF telemetry chip.

  20. Investigation on energy efficient sensor node placement in railway systems

    Directory of Open Access Journals (Sweden)

    Ayona Philipose

    2016-06-01

    Full Text Available Recently wireless sensor network (WSN has been widely used for monitoring railway tracks and rail tunnels. The key requirement in the design of such WSN is to minimize the energy consumption so as to maximize the network lifetime. This paper includes the performance of an improved medium access control (MAC protocol, namely, time adaptive-bit map assisted (TA-BMA protocol, for the purpose of communication between the sensors placed in a railway wagon. The train is considered to be moving at a constant speed, and the sensor nodes are stationary with respect to the motion of train. The effect of mobility on the proposed MAC protocol is determined using genetic algorithm (GA, and the observed increase in energy consumption on considering mobility is 18.51%. Performance analysis of the system model is carried out using QualNet (ver. 7.1, and the energy consumption in transmit mode, receive mode, percentage of time in sleep mode, end-to-end delay and throughput are investigated.

  1. Characterisation of Systems for Raman-Assisted High-Speed Wavelength Conversion

    DEFF Research Database (Denmark)

    Galili, Michael; Oxenløwe, Leif Katsuo; Zibar, Darko

    2005-01-01

    Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation......Raman-assisted wavelength conversion for ultra-high speed data is characterised in approaches: a novel scheme based on cross-phase modulation using specially designed notch filters and a 160 Gb/s experiment based on self-phase modulation...

  2. Design of Raman-parametric fiber amplifier for wavelength division multiplex transmission system

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Jiang; Chun Jiang; Xiaoming Zhang

    2008-01-01

    We optimize the novel configuration of a hybrid fiber amplifier-Raman assisted-fiber-based optical parametric amplifier (R-FOPA), in which the parametric gain and Raman gain profiles are combined to achieve a flat composite gain profile.The pump powers and the fiber length in the hybrid amplifier are effectively optimized by genetic algorithm (GA) scheme.The optimization results indicate that the R-FOPA can achieve a 200-nm flat bandwidth spectrum with the gain of 20 dB and ripple of less than 4 dB.

  3. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    OpenAIRE

    Qixin Zhu; Kaihong Lu; Guangming Xie; Yonghong Zhu

    2015-01-01

    For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the mode...

  4. Operating System Design in Future Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohamed K. Watfa

    2010-10-01

    Full Text Available Traditional operating systems do not take into consideration the limitations in space and energy of wireless sensor networks. Thus, contemporary architectural demands in terms of power, heat, size and cost will not be satisfactorily met by such uniprocessing design. Also, the transition to multithreaded, multi-core designs places a greater responsibility on programmers and software for improving performance which is becoming increasingly important as sensor nodes are migrating towards dual processor designs. By analyzing and summarizing the activity of a system, one could locate sections of code that have a potential to generate enhanced performance. First, this paper studies the differences between different operating system designs introducing a thread-driven scheduling algorithm which focuses on the value of preemption to overcome the energy tradeoff brought by event-driven systems. We then devise efficient techniques that will enable us to locate sections in OS code that could behave more efficiently when parallelized, especially in terms of energy consumption. Finally, we provide simulation results that will validate our proposed techniques.

  5. A sensor system for the navigation of an underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. [Univ. of Oxford (United Kingdom)]|[Silsoe Research Inst., Bedfordshire (United Kingdom); Frost, A. [Silsoe Research Inst., Bedfordshire (United Kingdom); Probert, P. [Univ. of Oxford (United Kingdom)

    1999-07-01

    A sensor system for an underwater vehicle is described. The vehicle is equipped with inclinometers, gyroscopes, a magnetometer, a pressure gauge, and a sonar system. The sensor models used for the inclinometers and gyroscopes are straightforward; however, the magnetometer can be corrupted by variations in the earth`s field caused by: external objects and internal magnetic fields. The authors show how to use inclinometer data to adjust for a limited set of external field variation. The authors also show how to calibrate the magnetometer to compensate for static and thruster-dependent internal fields. The sonar unit uses range differentials between cheap time-of-flight sonar to follow a target. This reduces signal processing since data association is only required on target acquisition, and removes the need to scan an entire landscape, which is usually slow. The gyroscopes are fused via a second indirect filter system. The vehicle attitude is represented as a quaternion; these have a low computational burden, and lack discontinuities and singularities. The simplicity of the indirect filter permits very fast update rates, so that the system may follow rapid vehicle rotations.

  6. Interfacial pressure and shear sensor system for fingertip contact applications.

    Science.gov (United States)

    Valero, Maria; Hale, Nick; Tang, Jing; Jiang, Liudi; McGrath, Mike; Gao, Jianliang; Laszczak, Piotr; Moser, David

    2016-12-01

    This Letter presents a capacitive-based sensor system for fingertip contact applications. It is capable of simultaneously measuring normal (pressure) and tangential (shear) stresses at the interface between a fingertip and external objects. This could be potentially exploitable for applications in the fields of upper limb prosthetics, robotics, hand rehabilitation and so on. The system was calibrated and its performance was tested using a test machine. To do so, specific test protocols reproducing typical stress profiles in fingertip contact interactions were designed. Results show the system's capability to measure the applied pressure and stresses, respectively, with high linearity between the measured and applied stresses. Subsequently, as a case study, a 'press-drag-lift' based fingertip contact test was conducted by using a finger of a healthy subject. This was to provide an initial evaluation for real-life applications. The case study results indicate that both interface pressure and shear were indeed measured simultaneously, which aligns well with the designed finger test protocols. The potential applications for the sensor system and corresponding future works are also discussed.

  7. Distributed fusion and automated sensor tasking in ISR systems

    Science.gov (United States)

    Preden, Jurgo; Pahtma, Raido; Astapov, Sergei; Ehala, Johannes; Riid, Andri; Motus, Leo

    2014-06-01

    Modern Intelligence, Surveillance and Reconnaissance (ISR) systems are increasingly being assembled from autonomous systems, so the resulting ISR system is a System of Systems (SoS). In order to take full advantage of the capabilities of the ISR SoS, the architecture and the design of these SoS should be able to facilitate the benefits inherent in a SoS approach - high resilience, higher level of adaptability and higher diversity, enabling on-demand system composition. The tasks performed by ISR SoS can well go beyond basic data acquisition, conditioning and communication as data processing can be easily integrated in the SoS. Such an ISR SoS can perform data fusion, classification and tracking (and conditional sensor tasking for additional data acquisition), these are extremely challenging tasks in this context, especially if the fusion is performed in a distributed manner. Our premise for the ISR SoS design and deployment is that the system is not designed as a complete system, where the capabilities of individual data providers are considered and the interaction paths, including communication channel capabilities, are specified at design time. Instead, we assume a loosely coupled SoS, where the data needs for a specific fusion task are described at a high level at design time and data providers (i.e., sensor systems) required for a specific fusion task are discovered dynamically at run time, the selection criteria for the data providers being the type and properties of data that can be provided by the specific data provider. The paper describes some of the aspects of a distributed ISR SoS design and implementation, bringing examples on both architectural design as well as on algorithm implementations.

  8. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    Science.gov (United States)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  9. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    Science.gov (United States)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix

  10. On the Optimal Location of Sensors for Parametric Identification of Linear Systems

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Brincker, Rune

    1994-01-01

    An outline of the field of optimal location of sensors for parametric identification of linear structural systems is presented. There are few papers devoted to the case of optimal location of sensors in which the measurements are modeled by a random field with non-trivial covariance function...... with variations in the number and location of sensors. Further, the influence of noise on the optimal location of the sensors is investigated. It is found that the optimal locations of sensors seem to become less sensitive to e.g. the noise-to-signal ratio within increasing number of sensors....

  11. Development and in vivo testing of a high frequency endoscopic Raman spectroscopy system for potential applications in the detection of early colonic neoplasia.

    Science.gov (United States)

    Short, Michael A; Wang, Wenbo; Tai, Isabella T; Zeng, Haishan

    2016-01-01

    The objective of this study was to build and test an adjunct system to a colonoscope for in vivo measurement of Raman spectra from colon tissue for potentially improving the detection of early cancers. The novelty of this system was that low cost fibre optic probes were used, without the addition of expensive optical filters. Good quality in vivo Raman spectra were successfully obtained with a 1 s integration time in the high frequency (HF) range from normal tissue and polyps of patients during a colonoscopy. The polyps were subsequently removed, and their pathology determined. The acquired in vivo Raman spectra showed clear changes between tissue with normal and tubular adenoma pathology. Further clinical study with this low cost HF Raman probe is warranted to fully test its clinical utility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.

    Science.gov (United States)

    Ramser, Kerstin; Enger, Jonas; Goksör, Mattias; Hanstorp, Dag; Logg, Katarina; Käll, Mikael

    2005-04-01

    Using a lab-on-a-chip approach we demonstrate the possibility of selecting a single cell with certain properties and following its dynamics after an environmental stimulation in real time using Raman spectroscopy. This is accomplished by combining a micro Raman set-up with optical tweezers and a microfluidic system. The latter gives full control over the media surrounding the cell, and it consists of a pattern of channels and reservoirs defined by electron beam lithography that is moulded into rubber silicon (PDMS). Different buffers can be transported through the channels using electro-osmotic flow, while the resonance Raman response of an optically trapped red blood cell (RBC) is simultaneously registered. This makes it possible to monitor the oxygenation cycle of the cell in real time and to investigate effects like photo-induced chemistry caused by the illumination. The experimental set-up has high potential for in vivo monitoring of cellular drug response using a variety of spectroscopic probes.

  13. Improving the Detection Limit in a Capillary Raman System for In Situ Gas Analysis by Means of Fluorescence Reduction.

    Science.gov (United States)

    Rupp, Simone; Off, Andreas; Seitz-Moskaliuk, Hendrik; James, Timothy M; Telle, Helmut H

    2015-09-11

    Raman spectroscopy for low-pressure or trace gas analysis is rather challenging, in particular in process control applications requiring trace detection and real-time response; in general, enhancement techniques are required. One possible enhancement approach which enjoys increasing popularity makes use of an internally-reflective capillary as the gas cell. However, in the majority of cases, such capillary systems were often limited in their achievable sensitivity by a significant fluorescence background, which is generated as a consequence of interactions between the laser light and optical glass components in the setup. In order to understand and counteract these problems we have investigated a range of fluorescence-reducing measures, including the rearrangement of optical elements, and the replacement of glass components--including the capillary itself--by metal alternatives. These studies now have led to a capillary setup in which fluorescence is practically eliminated and substantial signal enhancement over standard Raman setups is achieved. With this improved (prototype) setup, detection limits of well below 1 mbar could be obtained in sub-second acquisition times, demonstrating the potential of capillary Raman spectroscopy for real-time, in situ gas sensing and process control applications, down to trace level concentrations.

  14. Highly sensitive passive radio frequency identification based sensor systems.

    Science.gov (United States)

    Wissenwasser, J; Vellekoop, M; Heer, R

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  15. Highly sensitive passive radio frequency identification based sensor systems

    Science.gov (United States)

    Wissenwasser, J.; Vellekoop, M.; Heer, R.

    2010-02-01

    A novel platform for sensor applications based on radio frequency (rf) identification technology, where passive tags are powered by the rf-field of a reader, is presented. The sophisticated energy harvesting system of the tag enables a blanking of the rf-field for a defined period, while supplying the tag electronics with a highly stable voltage and a power of 25 mW for 100 ms. During this time, span measurements can be performed without interferences of the rf-field. The presented tags work without batteries and are designed for impedance measurements on microbiological cell cultures under physiological relevant conditions as well as in harsh environments.

  16. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    Science.gov (United States)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  17. Micro Electro-Mechanical System (MEMS) Pressure Sensor for Footwear

    Science.gov (United States)

    Kholwadwala, Deepesh K.; Rohrer, Brandon R.; Spletzer, Barry L.; Galambos, Paul C.; Wheeler, Jason W.; Hobart, Clinton G.; Givler, Richard C.

    2008-09-23

    Footwear comprises a sole and a plurality of sealed cavities contained within the sole. The sealed cavities can be incorporated as deformable containers within an elastic medium, comprising the sole. A plurality of micro electro-mechanical system (MEMS) pressure sensors are respectively contained within the sealed cavity plurality, and can be adapted to measure static and dynamic pressure within each of the sealed cavities. The pressure measurements can provide information relating to the contact pressure distribution between the sole of the footwear and the wearer's environment.

  18. Urban air quality measurements using a sensor-based system

    Science.gov (United States)

    Ródenas, Mila; Hernández, Daniel; Gómez, Tatiana; López, Ramón; Muñoz, Amalia

    2017-04-01

    Air pollution levels in urban areas have increased the interest, not only of the scientific community but also of the general public, and both at the regional and at the European level. This interest has run in parallel to the development of miniaturized sensors, which only since very recently are suitable for air quality measurements. Certainly, their small size and price allows them to be used as a network of sensors capable of providing high temporal and spatial frequency measurements to characterize an area or city and with increasing potential, under certain considerations, as a complement of conventional methods. Within the frame of the LIFE PHOTOCITYTEX project (use of photocatalytic textiles to help reducing air pollution), CEAM has developed a system to measure gaseous compounds of importance for urban air quality characterization. This system, which allows an autonomous power supply, uses commercial NO, NO2, O3 and CO2 small sensors and incorporates measurements of temperature and humidity. A first version, using XBee boards (Radiofrequency) for communications has been installed in the urban locations defined by the project (tunnel and school), permitting the long-term air quality characterization of sites in the presence of the textiles. An improved second version of the system which also comprises a sensor for measuring particles and which uses GPRS for communications, has been developed and successfully installed in the city center of Valencia. Data are sent to a central server where they can be accessed by citizens in nearly real time and online and, in general, they can be utilized in the air quality characterization, for decision-making related to decontamination (traffic regulation, photocatalytic materials, etc.), in air quality models or in mobile applications of interest for the citizens. Within this work, temporal trends obtained with this system in different urban locations will be shown, discussing the impact of the characteristics of the

  19. OBSTACLE DETECTION SYSTEM INVOLVING FUSION OF MULTIPLE SENSOR TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    C. Giannì

    2017-08-01

    Full Text Available Obstacle detection is a fundamental task for Unmanned Aerial Vehicles (UAV as a part of a Sense and Avoid system. In this study, we present a method of multi-sensor obstacle detection that demonstrated good results on different kind of obstacles. This method can be implemented on low-cost platforms involving a DSP or small FPGA. In this paper, we also present a study on the typical targets that can be tough to detect because of their characteristics of reflectivity, form factor, heterogeneity and show how data fusion can often overcome the limitations of each technology.

  20. Novel Hybrid Intrusion Detection System For Clustered Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hichem Sedjelmaci

    2011-08-01

    Full Text Available Wireless sensor network (WSN is regularly deployed in unattended and hostile environments. The WSN isvulnerable to security threats and susceptible to physical capture. Thus, it is necessary to use effective mechanisms to protect the network. It is widely known, that the intrusion detection is one of the mostefficient security mechanisms to protect the network against malicious attacks or unauthorized access. In this paper, we propose a hybrid intrusion detection system for clustered WSN. Our intrusion framework uses a combination between the Anomaly Detection based on support vector machine (SVM and the Misuse Detection. Experiments results show that most of routing attacks can be detected with low falsealarm.