WorldWideScience

Sample records for rail diesel engine

  1. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  2. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  3. Development of a Calibration and Monitoring System for GD-1 High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    王俊席; 杨林; 冯静; 冒晓建; 卓斌

    2004-01-01

    Based on CAN calibration protocol, a new calibration and monitoring system was developed for the GD1 high pressure common rail diesel engine. CAN driver block, monitoring program and calibration program for this system were designed respectively. The inquiry mode was used in the monitoring program and the interrupt mode was used in calibration program. The calibration program was designed in structural programming model. This system provides a reliable, accurate and quick CAN bus between ECU and PC, with baud rate up to 500Kbit/s.The implementation of the compatible and universal CAN calibration protocol makes it easy to displace the system and its function modules. It also provides friendly, compatible and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system was successfully used in a GD-1 high pressure common rail diesel engine and the engine performance and exhaust emissions were significantly improved.

  4. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  5. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  6. Reduction of nitrogen oxide emission from maritime diesel engines in common rail operation; Reduzierung der Stickoxidemission von Schiffsdieselmotoren im Common-Rail-Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Christian [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Frobenius, Moritz [AVL Deutschland GmbH, Muenchen (Germany); Pittermann, Roland [WTZ Rosslau gGmbH, Dessau-Rosslau (Germany); Schlemmer-Kelling, Udo [Caterpillar GmbH und Co. KG, Kiel (Germany); Schneider, Hartmut [L' Orange GmbH, Stuttgart (Germany)

    2009-11-15

    In the framework of the joint EMI-MINI II project, research activities on how to meet the future IMO limits for maritime diesel engines have been performed over a period of 3 years. A reduction of NO{sub x} emission by approximately 40 % could be reached by a combination of the Miller cycle with the common rail injection technology, while keeping the efficiency factor constant and an acceptable smoke behaviour. (orig.)

  7. Bosch common rail system for small diesel engines in emerging markets

    Energy Technology Data Exchange (ETDEWEB)

    Duernholz, Manfred; Busch, Roger; Rakkiappan, Baskaran; Kulkarni, S.L.; Anthony, George [Bosch Ltd., Adugodi, Bangalore (India)

    2009-07-01

    Before the actual economic slowdown hit the globe, there were symptoms of stagnation in the developed markets, whereas the emerging markets were showing higher growth rates in the economy. Despite these retarders, India in particular is showing signs of becoming a potential global hub for small car. The per capita income in India is about 1000 whereas the per capita in Germany is about {proportional_to} 38,000. This translates into a very small population of Indian consumers who will be able to afford products currently marketed in Western Europe and the US. The challenge for the Auto OEMs and also to the suppliers is to offer unique products at dramatically lower costs to match the special needs and lower purchasing power of most emerging market buyers. One such outcomes of such an innovative model have been the ''Tata Nano'' unveiled at the Auto Expo India 2008. Developing and creating low-cost products is not equal to low-tech products. It is about having a holistic approach with local development adapted with local manufacturing having clear price-performance targets. These ultra low cost automobiles target the huge consumer base in the emerging markets that drives two-wheelers today (7 million new 2 wheelers every year in India alone). Come 2010, in major Indian cities, automobiles in India have to comply with BS4 emission norms (equivalent of Euro 4). Bosch has conceptualized under these boundary conditions a Common-Rail-System for small diesel engines that gives Auto OEMs a state-of-the-art technology necessary to meet the future emission legislations and also a ''value for money'' robust system designed to operate in the ultra competitive emerging market situation. In this paper, we shall discuss about the adoption of modern common rail technology to suit to this new segment of ultra low cost automobiles and the requirements for a FIE systems that full fills these severe boundary conditions. Furthermore the outlook

  8. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere

    2017-06-01

    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  9. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  10. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  11. 新型HFO共轨系统在中速柴油机中的应用%New HFO common rail system for medium speed diesel engines

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The Diesel engine is and will, also in the future, be one of the most economic possibilities for converting chemical fuel energy into mechanical energy. In order to make use of the Diesel engine's economy also in the future, it will be regarded to environmental aspects. MAN B&W attached great importance to this requirement, carried out corresponding development work and launched exhaust gas optimized engines.Following the philosophy of environment-friendly engine development, Common Rail (CR) will, as a next step, be introduced for MAN B&W engines.

  12. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  13. APPLICATION OF CIRCUIT SIMULATION IN HARDWARE DESIGN FOR ELECTRONIC CONTROL HIGH PRESSURE COMMON-RAIL FUEL SYSTEM OF DIESEL ENGINE

    Institute of Scientific and Technical Information of China (English)

    Tan Wenchun; Yu Shitao; Yang Lin; Zhuo Bin

    2005-01-01

    By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.

  14. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    ZHANG XuSheng; ZHAO Hui; HU ZongJie; WU ZhiJun; LI LiGuang

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes: nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 rim. Only CM was observed for all fuels under the condition of 50 N. M, 2000 r/min. When the engine torque was higher than 150 N. M, log-modal PSD of diesel shifted to bimodal. At higher loads, if the biodiesel blend ratio was below 60%, the PSD of bio-diesel blends still included the two modes. However, no NM particles were found for pure biodiesel. At lower loads, only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparUcle formation indi-cated that for the light-duty diesel engine with oxidation catalysts, fuel consumption and exhaust temperature increased with increasing the engine loads, and Sol was converted to SO3 by catalyst which, in its hydrated form, could act as the precursor for biodiesei NM formation. Therefore, sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  15. Effect of biodiesel on the particle size distribution in the exhaust of common-rail diesel engine and the mechanism of nanoparticle formation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Effect of biodiesel blends on the particle size distribution (PSD) of exhaust aerosol and the mechanism of nanoparticle formation were investigated with a modern common rail light-duty diesel engine. The results showed that PSD of diesel included two modes:nucleation mode (NM) and accumulation mode (CM). The criterion diameter of the two modes is 50 nm. Only CM was observed for all fuels under the condition of 50 N.m,2000 r/min. When the engine torque was higher than 150 N.m,log-modal PSD of diesel shifted to bimodal. At higher loads,if the biodiesel blend ratio was below 60%,the PSD of biodiesel blends still included the two modes. However,no NM particles were found for pure biodiesel. At lower loads,only CM was found in PSD of all fuels. Significant reduction of CM particles was found for biodiesel blends compared with diesel. Discussion on the mechanism of nanoparticle formation indicated that for the light-duty diesel engine with oxidation catalysts,fuel consumption and exhaust temperature increased with increasing the engine loads,and SO2 was converted to SO3 by catalyst which,in its hydrated form,could act as the precursor for biodiesel NM formation. Therefore,sulfur level of biodiesel blends dominates the nanoparticle formation in light-duty diesel engine with oxidation catalysts.

  16. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  17. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  18. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  19. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid

    2012-10-18

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  20. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  1. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  2. 高原地区高压共轨柴油机掺烧生物柴油的性能研究%A Research on the Performance of a Common Rail Diesel Engine Fueled with Bio-diesels under Plateau Environment

    Institute of Scientific and Technical Information of China (English)

    刘阳阳; 谭泽飞

    2012-01-01

    The performance of Common Rail Diesel engine fueled with diesel fuel (DO) and different blending ratio of Bio-diesels ((B10,R20,B30,B50) under Plateau Environment (81 kpa, tests comparatively the characteristics like engine power, economy and smoke is discused. The results show that the engine fueled with different blending ratio of Bio-diesels has higher brake specific fuel consumption in comparison with BO fueled engine, but it has lower power and lower smoke. But with the increase in bio-diesel blending ratio, engine power and smoker drops, fuel consumption increases.%研究了在高原地区(81 kPa)掺烧不同比例生物柴油(B10,B20,B30,B50)在高压共轨柴油机上的性能.对发动机的动力性、经济性、烟度进行对比试验.结果表明:燃用一定比例的生物柴油发动机实测油耗增加,并且随生物柴油掺烧比例增加而增加;动力性和碳烟排放降低,并且随着生物柴油掺烧比例的增加逐渐降低.

  3. 柴油机轨压控制中的应用%Application of Fuzzy Self-adjusting PID Control in Feedforward in High-pressure Common Rail Diesel Engine Rail Pressure Controlling

    Institute of Scientific and Technical Information of China (English)

    安煜清; 王景成; 张奕妍

    2012-01-01

    The paper analyzes and designs fuzzy PID controller already mass produced by Bosch, Nippondenso Co., Ltd., Delphy and so on. It adds fuzzy feedforward control and suggests optimized controlling strategies and method to realize. By on-line self-adjusting to PID parameters, the optimum control to common rail pressure stability and responsiveness is realized in different diesel conditions. The simulation result and bench test result show that the introduction of fuzzy feedforward control can greatly improve responsiveness and robustness of rail pressure in transient condition and not affect negatively stability of rail pressure in steady state condition.%分析设计了已经被博世、电装、德尔福等公司量产化的模糊PID控制器,增加了模糊化前馈控制环节,给出了优化的控制策略和实现方法。通过对PID参数的在线白适应整定,实现了在不同柴油机工况下对共轨压力稳定性响应性的最佳控制。仿真结果和台架实验结果表明:模糊化前馈控制环节的引入可以显著提高瞬态工况下轨压的响应性及鲁棒性,并且不对稳态工况时轨压的稳定性产生负面影响。

  4. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...... emission requirements as well as attempting to minimise fuel expenses, the engine speed has been lowered together with an increase in the engine mean pressure which in terms lead to larger bearing loads. With worsened operating conditions from two sides, the encountered problems are understandable...

  5. Experimental investigation of hydraulic effects of two-stage fuel injection on fuel-injection systems and diesel combustion in a high-speed optical common-rail diesel engine

    OpenAIRE

    Herfatmanesh, MR; Zhao, H.

    2014-01-01

    In order to meet the ever more stringent emission standards, significant efforts have been devoted to the research and development of internal combustion engines. The requirements for more efficient and responsive diesel engines have led to the introduction and implementation of multiple injection strategies. However, the effects of such injection modes on the hydraulic systems, such as the high-pressure pipes and fuel injectors, must be thoroughly examined and compensated for since the combu...

  6. Combustion and Emission Characteristics of Turbocharged Common-Rail Diesel Engine with DMCC Mode%柴油/甲醇组合燃烧增压共轨发动机的燃烧特性和排放特性

    Institute of Scientific and Technical Information of China (English)

    姚春德; 夏琦; 陈绪平; 阳向兰; 魏立江; 刘军恒

    2011-01-01

    在增压共轨发动机上采用柴油,甲醇组合燃烧(DMCC)方式进行燃烧特性分析和排放特性分析.对DMCC模式下放热率、缸内压力变化和p-V图的分析表明,DMCC模式具有吸热汽化、推迟着火时间、提高定容燃烧度、降低排气温度等优点,从而大幅度提高了燃料的燃烧效率.对M100(纯甲醇)和M90(含水10%的甲醇)的排放量进行检测,表明M90比M100更能降低甲醛、NOJ、HC和CO排放.%The combustion and emission characteristics of a turbocharged common-rail diesel engine have been experimentally investigated using diesel/methanol compound combustion mode (DMCC). The ahalysis of heat release rate, pressure change in cylinder and p-V diagram shows that DMCC mode has the advantages of endothermic vaporization, delaying ignition time, increasing constant volume combustion and decreasing exhaust temperature,thus greatly improving fuel combustion efficiency. The emission test shows that M90 (contain 10% water) is more effective than M100 (pure methanol) in reducing formaldehyde, NOx, HC and CO emissions.

  7. Adiabatic turbocompound diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-02-01

    The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.

  8. Diesel engine technology `98. Status and trends; Dieselmotorentechnik 98. Aktueller Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Essers, U. [ed.] [Stuttgart Univ. (Germany)

    1998-09-01

    This book reviews important aspects of modern diesel engines. Renowned university scientists and competent experts from the car and components industry present trends in diesel engineering. The current state of the art is outlined, and the potential and solutions for future requirements are outlined. Contents: Direct injection in diesel engines - radial piston injection pumps for modern diesel engines in passenger cars - common rail injection - electronic control of diesel engines - supercharging of diesel engines - direct-injection diesel engines with supercharger - aldehyde emissions of diesel engines - exhaust regulations for industrial vehicles - combustion diagnosis in diesel engines - soot formation - direct-injection diesel engines and spark ignition engines - trends in passenger car development. (orig.) [Deutsch] Der Band beleuchtet wichtige Aspekte der modernen Dieselmotoren. Namhafte Wissenschaftler von verschiedenen Hochschulen und kompetente Fachexperten aus der Fahrzeug- und Zubehoerindustrie berichten ueber Entwicklungstendenzen auf dem Gebiet der Dieselmotorentechnik. Der aktuelle Stand der Entwicklung wird aufgezeigt. Potential und Loesungsansaetze fuer kuenftige Anforderungen werden diskutiert. Inhalt: Direkteinspritzung bei Dieselmotoren - Radialkolben-Verteilereinspritzpumpen fuer moderne Pkw-DI-Dieselmotoren - Common Rail-Einspritzung - Elektronische Dieselregelung - Aufladung von Dieselmotoren - Pkw-DI-Dieselmotor mit VTG-Lader - Aldehydemission von Dieselmotoren - Abgasgesetzgebung fuer Nfz-Dieselmotoren - Verbrennungsdiagnostik im Dieselmotor - Russbildung - DI-Dieselmotor und DI-Ottomotor - Wohin geht die PkW-Motorentwicklung? (orig.)

  9. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  10. 电控高压共轨柴油机电磁阀驱动电路分析与实验%Analysis of and Experiments on the Solenoid Drive Circuit of the High-Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    张亚平

    2012-01-01

    With a certain type of the BOSCH injector as the object of our studies,a solenoid drive circuit of the high-pressure common rail diesel engine is designed and simulated in the paper,with all the relevant experiments carried out.The experimental results show that the designed solenoid drive circuit can meet the requirements in the quick response of the solenoid,with its good dynamic performance achieved.In the meanwhile,the power consumption of the solenoid drive is reduced.%以BOSCH某型喷油器为研究对象,对电控高压共轨柴油机电磁阀驱动电路进行了硬件电路设计和仿真分析,并完成了相关实验。实验结果证明设计的电磁阀驱动电路可以达到喷油器电磁阀的快速响应要求、动态特性良好,从而在提高电磁阀快速开启响应能力的同时达到了降低电磁阀驱动功耗的目的。

  11. Problems diagnosis in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Leugner, L.

    1986-10-01

    Diagnosis of engine problems in diesel engines used in Western Canadian coal mines is discussed. Areas to which attention must be paid include the air cleaners, turbocharger, engine compression and the fuel system. Exhaust smoke should be analysed to help diagnose combustion related problems.

  12. Military Fuel and Alternative Fuel Effects on a Modern Diesel Engine Employing a Fuel-Lubricated High Pressure Common Rail Fuel Injection System

    Science.gov (United States)

    2011-08-09

    Fuel-lubricated High Pressure Common Rail Fuel Injection System, Adam C. Brandt, et al. Page 3 of 7 UNCLASSIFIED contains a two lobe camshaft ... camshafts rotation. These follower assemblies are then used to actuate the fuel plunger within the barrel to generate high pressure fuel. Fuel entering...top & bottom Camshaft light polish, seal contact wear light polish, very light burnish, seal contact wear light polish, light burnish, seal

  13. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  14. Emission Characteristics of High-pressure Common Rail Diesel Engine Fuelled with Biodiesel%高压共轨柴油机燃用生物柴油的排放特性分析

    Institute of Scientific and Technical Information of China (English)

    毛功平; 王忠; 吴婧; 李志越

    2013-01-01

    开展了共轨柴油机燃用柴油、餐饮废油制生物柴油及其混合燃料的试验,采用ESC稳态排放测试,对比分析了添加比例为0%,5%,10%的调合生物柴油(B0,B5,B10)对柴油机性能和排放特性的影响规律。结果表明:与原机相比,燃用B5,B10后,柴油机功率平均降幅分别为3.1%,5.3%,扭矩平均降幅分别为1.5%,2.3%;燃油消耗率平均增幅分别为1.1%,1.6%,而能量消耗率平均降幅分别为3.5%,6.8%;CO,HC和PM 比排放量、加权比排放量和加权平均比排放量均逐渐减少,NOx 则逐渐增加,CO ,HC和PM的加权平均比排放量的最大降幅分别为9.1%,9.7%和7.4%,NOx 最大增幅为4.9%;CO ,PM ,NOx 排放分担率在高负荷工况较大,HC分担率在低负荷较大,燃用调合生物柴油时排放污染物的分担率分布较原机平均。%The experiments of common rail diesel engine fueled with diesel ,waste cooking oil biodiesel and their blended fuel were carried out ,the power and emission performance of diesel mixed with 0% ,5% and 10% biodiesel (referred to as B0 ,B5 and B10) was compared and analyzed with ESC driving cycle .The results show that the engine power and torque decreases re-spectively by 3 .1% ,1 .5% for B5 and by 5 .3% ,2 .3% for B10 .The brake specific fuel consumption of B5 and B10 increases by 1 .1% and 1 .6% and the energy consumption decreases by 3 .5% and 6 .8% respectively .The brake specific emissions (BSE) ,weighted BSE and weighted average BSE of CO ,HC and PM decrease ,but the trend is opposite to NOx .The largest reduction of weighted average BSE for CO ,HC and PM are 9 .1% ,9 .7% and 7 .4% and the largest increase for NO x is 4 .9% . The contribution rate of CO ,PM and NOx are great at high loads and that of HC is high at low loads .Compared with the origi-nal engine ,the contribution rates between pollutants for biodiesel engine

  15. The Adlard Coles book of diesel engines

    CERN Document Server

    Bartlett, Tim

    2013-01-01

    In clear, jargon-free English The Adlard Coles Book of Diesel Engines explains how a diesel engine works,and how to look after it, and takes into account developments inengine technology. Includes helpful tables and troubleshooting checklists.

  16. 共轨柴油机高海拔碳烟形成历程的数值模拟%Numerical Simulation of Soot Formation Histories for Common Rail Diesel Engine at High Altitude

    Institute of Scientific and Technical Information of China (English)

    董素荣; 刘瑞林; 周广猛; 王威; 张众杰; 何西常

    2013-01-01

    采用 AVL FIRE 数值分析软件对共轨柴油机高海拔(低气压)燃烧过程的燃油浓度场、温度场分布及碳烟形成历程进行了模拟计算,研究了不同海拔大气压力对共轨柴油机低速全负荷工况燃烧过程及碳烟排放的影响.结果表明,在不同海拔(0,m、3,000,m、4,000,m 和5,000,m)条件下,计算燃烧压力和放热率与试验值具有较好的一致性,验证了所建数值分析模型的有效性.随着海拔的升高,燃烧后期浓混合气分布区域、燃烧高温区域以及碳烟形成区域明显增大.在燃烧初期,碳烟质量分数逐渐增大,在15~17°,CA ATDC 出现峰值,且碳烟峰值随海拔的升高而增大,海拔5,000,m碳烟质量分数峰值是海拔0,m的1.87倍;燃烧后期,随海拔的升高,碳烟氧化速率降低,排放增加.%Numerical simulation of the fuel concentration field,temperature field distribution and soot formation histories in a common rail diesel engine at high altitude(low air pressure)was carried out by means of AVL FIRE nu-merical analysis. The influences of air pressure at different altitude on combustion process and soot emissions at low speed full-load in a common rail diesel engine were investigated. The in-cylinder pressure and heat release rate from simulation are consistent with the experimental data at different altitude(0,m,3,000,m,4,000,m,5,000,m). There-fore,the effectiveness of the numerical model is verified. The results indicated that rich fuel mixture area,high com-bustion temperature area and soot formation area were enlarged obviously during the late combustion period with the altitude increasing. The mass fraction of soot increased gradually during the early combustion period and the peak value appeared at 15~17,°CA ATDC. The soot mass fraction peak value increased with the altitude increasing,and the peak value at 5,000,m was 1.87,times that at 0,m altitude. During the late combustion period,the oxidation

  17. Direct injection of dimethyl ether into a diesel engine with low-pressure common-rail injection system; Direkteinspritzung von Dimethylether in einen Dieselmotor mit Niederdruck-Common-Rail-Einspritzsystem

    Energy Technology Data Exchange (ETDEWEB)

    Janicke, D. [Wissenschaftlich-Technisches-Zentrum fuer Motoren- und Maschinenforschung gGmbH, Rosslau (Germany)

    2005-07-01

    Alternative fuels from renewables are viewed as fuels for the future. The contribution investigates dimethyl ether, which is a liquid gas with low emissions. Its physical and chemical properties require a specially designed fuelling system, which was constructed and tested. The system has piezo-controlled common rail injectors. The function was problem-free, with the advantages of soot-free combustion, short combustion times and low emissions. Fuel-induced wear was not observed. Especially in sensitive areas, dimethyl ether is an interesting alternative to conventional fuels. (orig.)

  18. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  19. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  20. 高压共轨柴油机高海拔(低气压)燃烧特性%Combustion Characteristics of Common Rail Diesel Engine Under High Altitude (Low Pressure) Conditions

    Institute of Scientific and Technical Information of China (English)

    周广猛; 刘瑞林; 董素荣; 李骏; 王威; 张众杰; 戈非

    2012-01-01

    利用内燃机高原环境模拟试验台,对经过高海拔标定后的高压共轨柴油机进行了外特性试验,重点研究了高原环境条件(0.5km)对低速和高速燃烧特性的影响.结果表明:该柴油机在低速下平均指示压力、最高燃烧压力、最大压力升高率和放热率峰值均随海拔的增加而减小;海拔每升高1km,上述燃烧参数分别平均降低6.83%、7.03%、4.00%和3.92%.低速下最高燃烧压力点、放热率峰值点和放热率重心随海拔基本保持不变,最大压力升高率点后移.高速下平均指示压力和放热率峰值随海拔的增加而减小,海拔每升高1km,分别降低2.59%和2.00%;最高燃烧压力随海拔基本保持不变,最高燃烧温度随海拔的增加而增高;最高燃烧压力点、最高燃烧温度点和放热率峰值点以及放热率重心前移.在高海拔高速工况下发生了燃烧压力振荡,造成噪声和机械负荷增大.%Full load characteristic of a common rail diesel engine after high altitude calibration was con- ducted via engine plateau environment simulating test bed. Effects of plateau ambient conditions (0-5 km) on low and high speed combustion characteristics were studied. Results show that the mean indicated ef- fective pressure, maximum combustion pressure, maximum rate of pressure rise and peak heat release rate decrease with increasing the altitude at low speed, decreasing by 6.83%, 7.03%, 4.00% and 3.92% averagely and respectively for every I km altitude increasing. With increasing the altitude at low speed, the crank angles corresponding to maximum combustion pressure, peak heat release rate and gravity center of heat release keep almost constantly and the crank angle of maximum rate of pressure rise is retarded. Mean in- dicated effective pressure and peak heat release rate decrease with increasing the altitude at high speed, and they decrease by 2.59% and 2

  1. Development and construction of a controlled rail brake for diesel and battery-powered trolleys; Entwicklung und Bau einer gesteuerten und / oder geregelten Schienenbremse fuer Diesel- und Batteriekatzen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. [Deutsche Montan Technologie GmbH, Bochum (Germany). Car Synergies Division

    2003-07-01

    A new rail brake system for diesel and battery-driven trolleys was developed which reduces the overall dynamics in case of emergency braking operations. Further, the new brake was to permit the use of DZ2000 trolleys on I 140 E rail systems with 12 brake clasps.

  2. 基于扭矩的高压共轨柴油机急加/减速控制策略的研究%Study on Control Strategy of Torque Based Abrupt Acceleration and Abrupt Deceleration Process for High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    廖亮宇; 徐劲松; 申立中; 毕玉华

    2014-01-01

    以高压共轨柴油机为对象,针对急加速和急减速过程的特殊性,结合基于扭矩的控制算法,提出了急加速和急减速过程的扭矩计算扭矩/油量转换和轨压控制策略。利用ETAS公司的INCA 5.4标定软件对该控制策略在发动机试验台架上进行了实时监测和标定。结果表明:该控制策略的应用保证了对柴油机急加速和急减速过程的平稳控制,改善了柴油机的响应性能。%In view of the particularity of abrupt acceleration and abrupt deceleration process,on the high pressure common rail diesel engine,combined torque based control algorithm,torque calculation,torque/fu-el conversion and rail pressure control strategy of abrupt acceleration and abrupt deceleration process was proposed. The control strategy was real-time monitored and calibrated by engine test bed using the INCA 5.4 calibration software of ETAS. The test results show that this control strategy can control abrupt accelera-tion and abrupt deceleration process smoothly,and improve the response performance of the diesel engine.

  3. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel

    National Research Council Canada - National Science Library

    Ruina Li; Zhong Wang; Guangju Xu

    2017-01-01

      Biodiesel is a kind of high-quality alternative fuel of diesel engine. In this study, biodiesel and biodiesel/diesel blend were used in a single cylinder diesel engine to study the carbonyl emissions...

  4. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-10-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

  5. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwanam [Automobile Research Center, Chonnam National University, Gwangju 500-757 (Korea); Choi, Byungchul [School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757 (Korea)

    2010-01-15

    Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel-diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NO{sub x}) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol-diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel-diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel. (author)

  6. Multimodel Control of Diesel Engines

    Science.gov (United States)

    Cirstoiu, Silviu; Popescu, Dumitru; Dimon, Catalin; Olteanu, Severus

    2017-01-01

    In this article it is proposed and designed a modern control configuration of the type multicontroler-multimodel (MM) that pilots the nonlinear combustion process of the Diesel engine, needed to adjust the pressure in the intake manifold and the airflow circulating through the compressor. The MM simulator developed by the authors allows the implementation of control systems represented by pairs (Mi, Ci) with the Mi candidate closest to the current operating point of the process and the paired controller Ri, for controlling the key parameters of the combustion process. The proposed configuration is built with robust controllers and thus it is able to ensure superior performance, tolerance to nonlinearities and parametric and structural perturbations in the system.

  7. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  8. Diesel engine emission deterioration - a preliminary study

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J

    2016-04-01

    Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...

  9. Durability of Electronically Controlled Common Rail Diesel Engine Fueled with Emulsified Fuel%电控共轨柴油机燃用乳化柴油的耐久性试验研究

    Institute of Scientific and Technical Information of China (English)

    楼狄明; 宋业栋; 胡志远; 谭丕强; 张涛; 杨扬; 周天锡

    2011-01-01

    在未对发动机进行任何调整的前提下,对柴油机进行了400h耐久性试验研究.试验用电控共轨柴油机满足国Ⅲ排放标准,试验用乳化柴油(以下简称E10)由90%柴油、6.4%水及3.6%乳化剂组成.耐久性试验期间,试验用柴油机功率、油耗、烟度和排气温度等参数稳定,柴油机无不良反应,未发生如起动困难、自动停车等故障;耐久性试验后,该柴油机动力性、经济性、排放性能等参数变化都很小.%Without any adjustment of the engine, the durability of diesel engine fueled with emulsified fuel has been tested for 400 hours. The test engine achieves national Ⅲ emission regulation, and the emulsified fuel used in the test(hereinafter referred to as E1O) consists of 90% diesel, 6.4% water and 3.6% emulsifier.The results show that the power, fuel consumption, smoke and the exhaust temperature of the engine kept stable , and during the engine durability test, there is no fault such as starting problems, automatic parking, etc.After the test, there is little change in the power, fuel consumption and the exhaust emission of the engine,comparing to the parameters before the test.

  10. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  11. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  12. Effect of GTL-diesel blends fuel on particle size distribution in common-rail diesel engine transient emission%GTL/柴油混合燃料发动机瞬态工况下微粒排放粒度分布特征

    Institute of Scientific and Technical Information of China (English)

    李国良; 孙万臣; 谭满志; 赖春杰; 陈士宝; 安普尊

    2011-01-01

    研究了高压共轨增压中冷柴油机燃用天然气转化制成的合成油(Gas to liquid,GTL)不同添加比例的混合燃料在恒转速增转矩瞬态工况下的微粒排放粒度分布特征,分析了工况瞬变率及GTL添加比例对于微粒排放粒度分布的影响。研究结果表明,随着恒转速增转矩工况瞬变率的减小,各种试验燃料的微粒排放总量及其随时间变化的增长率均有所降低。随着GTL添加比例的增加,微粒生成总量、核态微粒和超细微粒总数均有所下降,积聚态微粒的生成量在大粒径处稍有增加。在5s增转矩工况下,G20和G30的核态微粒数量明显减少,比国IV石化柴油分别降低了42%和20%。与石化柴油相比,不同瞬变率的增负荷工况下发动机排气中超细微粒和核态微粒的比例,G10燃料稍有增加,G20和G30均有显著降低。%An experimental investigation is conducted to evaluate the effects of using GTL fuel on the particle size distribution of a fully instrumented,turbocharged and intercooled,common-rail direct injection(CRDI) engine.The tests are conducted using diesel,GTL fuel and their blends,with the engine working over three transient cycles.The results show that the total particulate emission and their growth with the elapsed time reduce as the transient rate reduced during the three transient cycles.The total particles,nuclei mode particles and ultrafine particles have all reduced as the increase of GTL fuel to the blends,but it increases a small margin for the accumulation mode particles.The nuclei modes particles for G20 and G30 fuel decreased 42% and 20%,respectively,compared to the diesel fuel.The percentage of nuclei modes particles and ultrafine particles for G20 and G30 fuel have a conspicuous decrease,and it increase a small margin for the G10 fuel during all the transient cycles.

  13. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  14. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  15. A comparative study of diesel ignited methane and propane dual fuel low temperature combustion in a single cylinder research engine

    Science.gov (United States)

    Raihan, Mostafa Shameem

    The objective of this thesis is to investigate and compare the performance and emissions characteristics of diesel-ignited methane and diesel-ignited propane dual fuel LTC in a single cylinder research engine (SCRE) at a constant engine load of 5.1 bar net indicated mean effective pressure (IMEP) and at a constant engine speed of 1500 RPM. Percentage of energy substitution of propane or methane (0 - 90 percent), diesel injection timing (SOI: 355 CAD -- 280 CAD), rail pressure (200 bar -- 1300 bar) and boost pressure (1.1 bar -- 1.8 bar) were varied to quantify their impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. Advancing SOI to 310 CAD and beyond yielded simultaneous ISNOx and smoke emissions. A rail pressure of 500 bar was the optimal one for both fueling combinations while increasing boost pressure over 1.2 bar had a very little effect on ISNOx and smoke emissions.

  16. 甲醇—柴油混合燃料在共轨发动机上的燃烧和排放特性研究%Combustion and Emission Performance of Common Rail Engine Fuelled with Methanol-diesel Blended Fuel

    Institute of Scientific and Technical Information of China (English)

    刘亚哲; 吴健; 徐斌; 马志豪; 王站成; 池奕承

    2012-01-01

    On an electronic control high-pressure common rail turbocharging engine, the combustion and emission performance of tncthanol-diesel blended fuel were analyzed. The results show that the equivalent brake specific fuel consumption (EBSFC) decreases with the increase of load at the same speed. The maximum combustion pressure i the peak heat release rate and the maximum combustion temperature increase with the increase of methanol fraction. At low and medium loads, the CO and HC emission reduce with the increase of load, hut are higher than those of diesel and the phenomenon will be strengthened with the increase of methanol fraction. The NOx and soot emission increase with the increase of load and are lower than those of diesel.%在1台电控高压共轨增压发动机上,不改变原机结构,采用甲醇—柴油混合燃烧的方式,进行燃烧排放特性分析.结果表明:在相同转速下,发动机的当量燃油消耗率随负荷的增加而降低;随着甲醇含量增加,发动机的最高燃烧压力、最高燃烧放热率和最高燃烧温度都逐渐升高;中低负荷时,发动机的CO和HC排放随着负荷的升高而减小,燃用混合燃料时较燃用柴油略有升高,且甲醇含量越高升高越多;燃用混合燃料对发动机的NOx和炭烟排放较燃用柴油时有所降低,且随着负荷的升高而增大.

  17. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  18. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2008-01-01

    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  19. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-03-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  20. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  1. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  2. Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Earl; McCormick, Robert L.; Sigelko, Jenny; Johnson, Stuart; Zickmann, Stefan; Lopes, Shailesh; Gault, Roger; Slade, David

    2016-04-01

    Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the efficacy of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no

  3. Simulative Study on the Flow in the Nozzle Hole of High-pressure Common Rail Injector of Large-power Diesel Engine%高压共轨大功率柴油机喷油嘴内部两相流动仿真研究

    Institute of Scientific and Technical Information of China (English)

    陈小敏; 常汉宝; 秦建文

    2011-01-01

    The simulative calculation model of the oil flow in the nozzle hole of diesel engine with high- pressure common rail injector was built up by AVL-FIRE. The influence of main geometric parameters of high-pressure common rail injector (including diameter, number, length/diameter, spray angle etc. ) on flow rate of fuel oil in the injector hole is studied. The analysis shows that the differences of injector' s ge- ometric parameters may result in inconsistent of air sink occurring time in injector holes, distributing are- as and strength, and ultimately influence the flow characteristics of the injector holes, which could be transferred to the outlet of injector holes and affect the spray characteristics.%用AVL-FIRE软件建立了TBD234V6高压共轨大功率柴油机喷油器喷嘴内部流动的仿真计算模型;研究了共轨大功率柴油机喷油器主要结构参数,包括喷孔直径、喷孔个数、喷孔长径比、喷射夹角等,对燃油在喷嘴内部流动的影响。分析表明:喷嘴结构参数不同会使各喷孔内气穴产生的时刻、分布区域以及强度不一致,最终影响各喷孔的流量特性,并且传递到喷孔出口面,对喷雾特性产生影响。

  4. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  5. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  6. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  7. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  8. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  9. Real Otto and Diesel Engine Cycles.

    Science.gov (United States)

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  10. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  11. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    OpenAIRE

    Nattapong Namliwan; Tanakorn Wongwuttanasatian

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consum...

  12. Improvement of thermal effciency in diesel engine. Diesel engine no koritsu kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. (Isuzu Ceramics Research Inst. Co. Ltd., Kanagawa, (Japan))

    1993-04-05

    Diesel engines cause worsening air pollution due to much more discharge of nitrogen oxides than gasoline engines, however for reduction of carbon dioxide, Diesel engines consuming less fuel are better than gasoline engines for protection of the global environment. Theoretical thermal efficiency is larger as compression ratio and isochronic burnup are bigger, hence such an engine is needed that is made on the basis of a Diesel engine, whose compression ratio is twice or more larger than that of gasoline engine and which has good thermal efficiency, and reduces its nitrogen oxides by the development of the combustion technique by means of controlling combustion temperature as well as fuel equivalent ratio. With regard to the improvement of thermal efficiency of Diesel engines, it can be attained, utilizing the respective features of the antechamber-type and the direct injection-type Diesels, by burning the homogeneous mixture, whose fuel equivalent ratio is big, in the initial stage and by controlling the main combustion period in the main chamber short. inaddition, a radiation shield-type turbocompound engine has been test fabricated and rough explanations are given on its structure, its combustion and the recovery of its exhaust gas energy. 5 refs., 6 figs., 1 tab.

  13. Advanced automotive diesel engine system study

    Science.gov (United States)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  14. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel...

  15. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  16. Restoring diesel engine camshafts by laser treatement

    Science.gov (United States)

    Astashkevich, B. M.; Zinov'ev, G. S.; Voronin, I. N.

    1996-12-01

    The reliability of parts of the gas-distributing mechanism and drives of fuel pumps determines to a great degree the operating conditions of cylinder-piston parts and the economic characteristics of diesel engines. Intense wear of the camshaft pair disturbs the distribution phases and the lead angle of fuel supply to the diesel cylinders and increases the rigidity of the operation of the connecting rod-piston group. This causes incomplete combustion of fuel and fuming, a rise in the temperature of exhaust gases, sticking of the rings in the piston grooves and their premature failure, wear cracks, and chips and failure of the parts of the cylinder-piston unit, decreasing the efficiency of the diesel. Laser surface treatment is used to restore cams. It makes it possible to increase substantially the wear resistance of cams and restore their worn surfaces. This paper concerns the characteristics of the cams after such a treatment.

  17. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  18. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  19. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  20. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    necessitates a rethinking of public governance that involve multilevel governance and integrating technology push and pull strategies. The agenda requires a re-conceptualisation of the innovation concept with special emphasis on value chain dynamics. The paper includes an analysis of the Danish innovation......This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... policy based on Michael Porters cluster theory. The paper however suggest that the narrow focus on productivity and economic growth in Porters theory should be qualified and integrated with a broader scope of societal policy aims including social and environmental issues. This suggestion also...

  1. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  2. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  3. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    Science.gov (United States)

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  4. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  5. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  6. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Nattapong Namliwan

    2014-01-01

    Full Text Available The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO, carbon dioxide (CO2, sulfur dioxide (SO2, and oxygen (O2 than those of diesel B3. On the other hand, nitric oxide (NO and nitrogen oxides (NOX emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine.

  7. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  8. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  9. Clean and Efficient Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  10. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  11. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  12. Vehicle testing of Cummins turbocompound diesel engine

    Science.gov (United States)

    Brands, M. C.; Werner, J. R.; Hoehne, J. L.

    1980-01-01

    Two turbocompound diesel engines were installed in Class VIII heavy-duty vehicles to determine the fuel consumption potential and performance characteristics. One turbocompound powered vehicle was evaluated at the Cummins Pilot Center where driveability, fuel consumption, torsional vibration, and noise were evaluated. Fuel consumption testing showed a 14.8% benefit for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved driveability, improved gradeability, and marginally superior engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.

  13. Investigation of Diesel Engine Performance Based on Simulation

    OpenAIRE

    Semin; Rosli A. Bakar; Abdul R. Ismail

    2008-01-01

    The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performanc...

  14. Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process

    Directory of Open Access Journals (Sweden)

    Shatrov Mikhail G.

    2015-01-01

    Full Text Available In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.

  15. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    OpenAIRE

    Ekkachai Sutheerasak

    2014-01-01

    Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree o...

  16. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  17. Dimensionless Parameter Scaling of Diesel Engine Combustion

    Science.gov (United States)

    Dowling, David R.; Filipi, Zoran

    1996-11-01

    Combustion in a modern heavy-duty Diesel engine with direct radial fuel injection typically takes place in a short nearly-cylindrical volume at a rate determined by turbulent mixing. Simple dimensionless-parameter scaling laws for turbulent gas-phase mixing and heat transfer have been shown to be effective for a variety of (oxidizer) flow and (fuel) injection conditions within a cylindrical geometry (Edwards et al., AIChE J., Vol. 31, 516 [1985].) (Breidenthal et al., JFM, Vol. 219, 531 [1990].) (Dowling et al., AIAA J. Thermophys. & HT, Vol. 4, 504 [1990].). These studies were driven by chemical laser applications emphasizing long cylinders and sidewall injection. The current investigation seeks to determine the applicability of dimensionless parameter scaling to the instantaneous in-cylinder fuel burning rate in a multi-cylinder Diesel engine typical of Class VIII trucks. Comparisons are made between scaled and unscaled fuel burning rate, as inferred from time-resolved in-cylinder pressure measurements, across the test engine's normal operating range. This research is supported by the US Army Tank-Automotive Research, Development, and Engineering Center.

  18. Investigation of Diesel Engine Performance Based on Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performance process in the engine cylinder. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. In this model it can to know the diesel engine performance effect with simulation and modeling in any speeds (rpm parameters. The performance trend of the diesel engine model developed result of this model based on the theoretical and computational model shows in graphics in the paper.

  19. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  20. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  1. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  2. Speed control of automotive diesel engines

    Science.gov (United States)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  3. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  4. New two-stroke marine diesel engines from Waertsilae; Neue Zweitakt-Schiffsdieselmotoren von Waertsilae

    Energy Technology Data Exchange (ETDEWEB)

    Frigge, Patrick; Affolter, Samuel; Bachmann, Daniel; Jong, Ronald de [Waertsilae, Winterthur (Switzerland)

    2011-11-15

    Waertsilaehas developed a new generation of small marine diesel engines with the designations RT-flex35 and RT-flex40 with cylinder bores of 35 cm and 40 cm. The engines are equipped exclusively with an integrated electronic control system, and for the first time in a low-speed two-stroke engine, a common rail fuel injection system has been adopted from the medium-speed four-stroke engine. The bore designs are based on a joint concept with Mitsubishi Heavy Industries and were developed in close cooperation. The acceptance test of the first engine, in accordance with the order of a six-cylinder engine, is planned for November 2011. (orig.)

  5. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  6. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  7. Laser-based diagnostics on NO in a diesel engine

    NARCIS (Netherlands)

    Brugman, Theodorus Maria

    1999-01-01

    Of all internal combustion engines diesel engines tend to be the most efficient. However, this high efficiency is coupled with specific emissions of nitric oxides (NOx = NO and NO2) and soot. Such emissions are best fought against at their very source: the diesel combustion process itself. The objec

  8. Conversion of diesel engines for natural gas engines; Conversao de motores diesel para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mauro Junior, Leonardo; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: leonardomauro@terra.com.br, e-mail: silvio@gmail.com

    2006-07-01

    The present project approach the conversion of a Scania engine DSI 11, originally Diesel cycle, used for stationary generation, to operate at a Otto cycle natural gas. The conversion dedicated to Otto cycle allows a better performance at a lower cost generation to the consumer providing an energy economy when operating at a peak hours compared with the fees charged by the distributors. In the power range of this engine (231 kw), there is no other engine available at the brazilian market. An economic study of the conversion shows that the cost is significantly less than the importation of a similar engine. (author)

  9. Design and Research of the EQ6105DTAA Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  10. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  11. Common Rail System for GDI Engines Modelling, Identification, and Control

    CERN Document Server

    Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero

    2013-01-01

    Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme ...

  12. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, Andre L.

    2000-08-20

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by

  13. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  14. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  15. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    Directory of Open Access Journals (Sweden)

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  16. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  18. Modal extraction on a diesel engine in operation

    DEFF Research Database (Denmark)

    Møller, Nis; Herlufsen, Henrik; Brincker, Rune

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented. The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-Down. The response data were analyzed using two different...

  19. Modal Extraction on a Diesel Engine in Operation

    DEFF Research Database (Denmark)

    Møller, N.; Brincker, Rune; Andersen, P.

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-down. The response data were analysed using two different...

  20. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  1. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  2. Diesel engines in practice. 8. rev. ed. Dieselmotoren-Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Baentsch, E.

    1987-01-01

    The well-known manual has been completely revised and re-edited. A brief historical and economic review is followed by a discussion of the following subjects: Torque and power; fuel consumption; lube oil and cooling water; mass balance in multicylinder engines; oversquare and undersquare engines; suction engines and supercharged engines; two-stroke and four-stroke engines; engine selection; combustion processes; exhaust emissions; diesel engines in operation; cooling; piping; lubrication; starting; practical tests; variable-fuel engines. (HWJ).

  3. Effect ofHydrogen Use on Diesel Engine Performance

    Science.gov (United States)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  4. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  5. Supercritical fluid mixing in Diesel Engine Applications

    Science.gov (United States)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  6. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  7. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  8. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  9. Adiabatic diesel engine component development: Reference engine for on-highway applications

    Science.gov (United States)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  10. Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions

    Directory of Open Access Journals (Sweden)

    Dulari Hansdah

    2013-09-01

    Full Text Available This paper explores the possibility of utilizing bioethanol obtained from Madhuca Indica flower as an alternative fuel in a direct injection (DI diesel engine. Three different percentages of bioethanol (5%, 10%, and 15% on volume basis were emulsified with diesel proportionality with the help of a surfactant. The emulsions were designated as BMDE5, BMDE10, and BMDE15 where the numeric value refers to the percentage of bioethanol. The emulsions were tested as fuels in a single cylinder, four stroke, and air cooled DI diesel engine developing a power of 4.4 kW at 1500 rpm. Results indicated that the bioethanol–diesel emulsions exhibited a longer ignition delay by about 2.2 °CA than that of diesel operation at full load. Overall, the nitric oxide (NO and smoke emissions were found to be lesser by about 4% and 20%, respectively, with the bioethanol–diesel emulsions compared to that of diesel operation at full load. The BMDE5 emulsion gave a better performance and lower emissions compared to that of BMDE10 and BMDE15. It is suggested that the bioethanol produced from Madhuca Indica flower can be used as a potential alternative fuel replacing 5% of petroleum diesel.

  11. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  12. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    Directory of Open Access Journals (Sweden)

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  13. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  14. Monitoring diesel engine parameters based on FBG probe

    Science.gov (United States)

    Zhang, Hao; Jiang, Qi; Wang, Bao-yan; Wang, Jun-jie

    2016-09-01

    This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating (FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.

  15. DIESEL ENGINES' VIBROACOUSTIC SIGNATURE EXTRACTION BY WAVELET PACKET TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 邹军; 耿遵敏

    2002-01-01

    Multisource unstable impulsive excitations, time-varying transmission path, concentrated mode, dispersion and reverberation that are important characteristics of reciprocating machines such as diesel engines result in wide-band non-stationary vibroacoustic responses which influence the effective extraction of vibroacoustic signatures and become a key factor to limit diesel engines' vibration diagnosis. In this paper, a serial theoretical deduction on the unstable dynamic properties of diesel engines was made; the mechanism of non-stationary vibroacoustic responses was elucidated. Based upon that, the wavelet packet technique was introduced. The reason for the existence of frequency aliasing in the Paley series from wavelet packets' decomposition was analyzed, and the wavelet packet frequency-shifting algorithm was given. Experiments on 190 serial diesel engines verify the given method's significant validity in vibroacoustic signature extraction and reciprocating machines' vibration diagnosis.

  16. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    National Research Council Canada - National Science Library

    R. B. Sharma; Dr. Amit Pal

    2014-01-01

    In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried...

  17. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  18. Test and Analysis for Spraying Ammonia in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  19. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  20. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  1. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  2. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  3. Effect of Bio Ethanol and Diesel Blend on Small Diesel Engine Vibration

    Directory of Open Access Journals (Sweden)

    S.H Hashemi Fard

    2014-09-01

    Full Text Available The use of Bio-ethanol as an alternative diesel engine fuel is rapidly increasing. Bio-ethanol is mixed with diesel fuel at different ratios and used in CI and SI engines. Since vibrations have direct effects on users and engine components, for this reason analysis of vibration resulting from combustion in CI engines is very important. In this study, evaluation of vibration was performed for both diesel and ethanol blends. Commercial diesel fuel (D100, E2 (2% ethanol and 98% diesel fuel, E5, E10, E15 and E20 were used in a two-wheel MITSUBISHI tractor. The engine was tested in 1200, 1600, 2000 and 2400 rpm for all fuel blends, and also the effect of load was investigated for D100 and E10. Results showed that vibration is significantly affected by fuel blend. It was observed that E10 had the lowest vibration while E20 had the highest value. It was also observed that vibration increased as engine speed increased for all fuel blends. It was found that both axial and lateral vibrations affected significantly by load. The lateral vibrations decreased continuously with load rise , but the axial vibrations increased initially but started to follow a reverse trend.

  4. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Directory of Open Access Journals (Sweden)

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  5. Dimethyl Ether as a Fuel for Diesel Engines

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1999-01-01

    DME has recently been shown to be an attractive high cetane fuel for diesel engines, offering the advantages of soot free operation, with low engine noise, the potential for low NOx emissions, and low reactivity emissions of hydrocarbons and unburned fuel. DME has physical characteristics similar...... of engine fuels systems in regard to lubricity and suitable sealing materials....

  6. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, H.; Furutani, T.; Nagami, T. [Toyota Motor Corp., Aichi (Japan); Aono, N.; Goshima, H.; Kasahara, K. [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  7. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Directory of Open Access Journals (Sweden)

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  8. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  9. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel

    Directory of Open Access Journals (Sweden)

    C. Syed Aalam

    2015-09-01

    Full Text Available Experiments were conducted to determine engine performance, exhaust emissions and combustion characteristics of a single cylinder, common rail direct injection (CRDI system assisted diesel engine using diesel with 25 percentage of zizipus jujube methyl ester blended fuel (ZJME25. Along with this ZJME25 aluminium oxide nanoparticles were added as additive in mass fractions of 25 ppm (AONP 25 and 50 ppm (AONP 50 with the help of a mechanical Homogenizer and an ultrasonicator. It was observed that aluminium oxide nanoparticles blended fuel exhibits a significant reduction in specific fuel consumption and exhaust emissions at all operating loads. At the full load, the magnitude of HC and smoke emission for the ZJME25 before the addition of aluminium oxide nanoparticles was 13.459 g/kW h and 79 HSU, whereas it was 8.599 g/kW h and 49 HSU for the AONP 50 blended ZJME25 fuel respectively. The results also showed a considerable enhancement in brake thermal efficiency and heat release rate due to the influence of aluminium oxide nanoparticles addition in biodiesel–diesel blend.

  10. An Overview of Effect of Automotive Diesel Engines in Future

    Directory of Open Access Journals (Sweden)

    K. M. Venkatesh

    2012-08-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  11. AN OVERVIEW OF EFFECT OF AUTOMOTIVE DIESEL ENGINES IN FUTURE

    Directory of Open Access Journals (Sweden)

    K.M.Venkatesh

    2012-06-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  12. Documentation of the Benson Diesel Engine Simulation Program

    Science.gov (United States)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  13. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  14. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, T.K. [Mechanical Engineering Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India); Baruah, D.C. [Energy Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2010-03-15

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency. (author)

  15. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  16. The Design Development and Research on High-pressure Common Rail Diesel (CRDI)%柴油高压共轨(CRDI)发动机设计开发研究

    Institute of Scientific and Technical Information of China (English)

    马霞; 王东芳

    2012-01-01

    Today energy saving, environmental protection and emission reducing are three topics in the automobile industry. People's requirement to fuel consumption of engine is becoming stricter and stricter. The diesel with small displacement, whose advantage has low emission and low energy, is supported by state's policy. The article discusses characteristic of technique path (CRDI) with high-pressure common rail combining turbo charge and application of high-pressure common rail technology. And the technique characteristic of high- pressure common rail diesel of JAC is discussed in detail.%节能、环保、减排是当前汽车行业的三大主题,人们对于发动机油耗的要求越来越高,而小排量柴油机因其低排放、低能耗的优点,得到国家的政策鼓励及扶持。笔者结合柴油发动机技术发展趋势,探讨了高压共轨与涡轮增压相结合技术路线(CRDI)的技术特点以及高压共轨技术的应用情况,重点论述了江淮柴油高压共轨(CRDI)发动机的技术特点。

  17. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  18. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  1. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  2. ANALYSIS VALUES’ CHARACTERISTICS OF DIESELS TRIBOSYSTEMS OF DEPRECIATION FOR SPECIAL RAIL SELF-CONTAINED ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2010-12-01

    Full Text Available In the paper the results of experimental research of wear character and value of responsible tribosystem of cylinder-and-piston group and crank-and-conrod mechanism of diesels for the special self-propelled railway rolling stock are presented. It is shown that the character of wear of cylinder shells and crankpins affect negatively the technicaloperating parameters and limit the resource of diesels as a whole. The wear value is proportional to operating time of diesels, but there are the cases of considerable deviations of value and intensity of wear of parts of responsible tribosystems, which affect the set resource of diesels before a major overhaul.

  3. Experimental investigation and modeling of diesel engine fuel spray

    OpenAIRE

    Kolodnytska, R. V.; Karimi, K; Crua, C.; Heikal, M. R.; Sazhina, E. M.

    2008-01-01

    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until ...

  4. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  5. Product audit for heavy duty diesel engines in production environment

    Science.gov (United States)

    Suh, Sanghoon; Beresford, Jim

    2005-09-01

    A product audit at manufacturing plants has become more important due to the customer's requirements on product quality. Noise and vibration performance have been a primary concern for gas engines and small size diesel engines. Lately, more interest has been shown by truck manufacturers about engine noise for heavy duty diesel application. It has been regarded that acoustic measurements requires dedicated measurement environment for detailed study. This case study shows that acoustic measurements can be performed at performance cell without any dedicated acoustic treatment at the manufacturing plant to identify some of the noise characteristics with proper preparation. Order tracking and loudness were used to identify two different characteristics related to front gear train in heavy duty diesel engines. In addition, the coordination between technical organization and manufacturing plant for the data acquisition and analysis is discussed.

  6. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  7. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  8. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Science.gov (United States)

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  9. Multi-Dimensional Modeling of Combustion and Pollutants Formation of New Technology Light Duty Diesel Engines Modélisation multidimensionnelle de la combustion et de la formation des polluants dans les nouveaux moteurs diesel automobiles

    Directory of Open Access Journals (Sweden)

    Belardini P.

    2006-12-01

    Full Text Available In the present paper some results, obtained by the use of modern numerical CFD tools, are presented. In particular, starting from the experimental characterization of a common rail DI Diesel engine, the empirical constants of the different submodels were tuned to obtain satisfactory results in some key test conditions. The main constraints of numerical models, to obtain a right scaling of pollutants predictions in the different test cases are analyzed. The numerical analysis demonstrates that the numerical CFD tools, at their stage of development, can help the engine designers to define the more promising strategies to obtain tailpipe emission control of common rail Diesel DI engines. Dans cet article, nous présentons les résultats obtenus en utilisant des outils de simulation de la mécanique des fluides numérique (CFD. À partir de résultats expérimentaux issus de la caractérisation d'un moteur Diesel common rail, les constantes empiriques de divers modèles ont été ajustées afin d'obtenir des résultats satisfaisants pour des cas tests représentatifs. Les principales contraintes des modèles numériques pour obtenir une bonne précision dans les différents cas d'études sont ici analysées. Cette analyse numérique montre que la CFD permet déjà, au stade de développement atteint, d'aider les ingénieurs à définir les stratégies les plus prometteuses pour maîtriser les émissions à l'échappement des moteurs Diesel à injection common rail.

  10. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  11. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  12. Diesel engine torsional vibration control coupling with speed control system

    Science.gov (United States)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  13. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  14. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  15. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  16. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  17. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  18. Emission characteristics of a turbocharged diesel engine fueled with gas-to-liquids

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHANG Wugao; FANG Junhua; HUANG Zhen

    2007-01-01

    Emission characteristics of a turbocharged,intercooled,heavy-duty diesel engine operating on neat gas-toliquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel.The results show that nitrogen oxides (NOx),smoke,and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends.Engine emissions decrease with an increase of GTL fraction in the blends.Compared with diesel fuel,an engine operatingon GTL can reduce NOx,PM,carbon monoxide (CO),and hydrocarbon (HC) by 23.7%,27.6%,16.6% and 12.9% in ECE R49 13-mode procedure,respectively.Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine.The study indicates that GTL is a promisingalternative fuel for diesel engines to reduce emissions.

  19. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Directory of Open Access Journals (Sweden)

    P. Venkateswara Rao, B. V. Appa Rao

    2012-01-01

    Full Text Available The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME is used with additive Triacetin (T at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load. The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  20. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  1. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  2. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  3. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  4. Diesel and gasoline engines VI. Quality injection, fuel mixture, simulation, application, metrology; Diesel- und Benzindirekteinspritzung VI. Einspritzqualitaet, Gemischbildung, Simulation, Applikation, Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut (ed.) [Otto-von-Guericke-Univ., Magdeburg (DE). Inst. fuer Mobile Systeme (IMS)

    2011-07-01

    Within the meeting 'Diesel and gasoline direct injection' of the Haus der Technik e.V. (Essen, Federal Republic of Germany) at 1st to 2nd December, 2010 in Berlin (Federal Republic of Germany) the following lectures were held: (1) Efficient common rail injection systems and intelligent regulation strategies for the fulfilment of future on-/off-highway emission limits (Christian Schugger); (2) Challenges for injection systems and combustion processes of large diesel engines for keeping the emission limits IMO TIER3 in 2016 (Horst Harndorf); (3) HFO operation with CR injection (Christian Poensgen); (4) Efficiency, potential and limits of shortened spraying distances at the diesel engine: Results from thermodynamic, optical and numerical investigations (Oliver Heinold); (5) Advantages of the formation of the injection process for the fuel consumption and pollutant emission of diesel engines (Maximilian Brauer); (6) Control of combustion rates: A decisive step towards a further optimization of CO{sub 2}, emissions and NVH (Florian Kremer); (7) Ultra high pressure fuel injection for minimized engine-out emissions of HD diesel engines (Olad Erik Herrmann); (8) Analysis of injection sprays by means of large high-speed engines under cold and evaporating conditions (Christian Fink); (9) Development of optimal cam contours (Hendrik Grosse-Loescher); (10) Design criteria for the CO{sub 2} optimization of the new Continental 2-piston-diesel pump platform (Peter Voigt); (11) Innovative measurement for injection systems (Bjoern Janetzky); (12) Process for the measurement of the rate of injection on engine-related conditions (Wolfgang Fimml); (13) Experimental and numerical investigations of hydro erosive grinding for injection components (Uwe Iben); (14) Application programs for the calculation of spray propagation in a moving engine's combustion chamber (Kai Uwe Muench); (15) An integrated approach for the fulfilment of future emission legislations at stationary

  5. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... marine diesel engines. The contribution from thermal radiation to the piston surface heat flux was not investigated in the present work, but a coarse estimation of the magnitude was performed. The obtained estimations indicate a peak piston surface heat flux level in the interval from about 1 MW/m2...... and up to 9.5 MW/m2 with the actual value probably being in the lower part of this interval. This is about the same magnitude as that previously reported for automotive size diesel engines. The obtained interval is relatively large, but a more accurate prediction is difficult to achieve with the applied...

  6. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  7. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  8. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  10. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  11. A Simulation Study on A Diesel Engine Assembly Line

    Institute of Scientific and Technical Information of China (English)

    刘庆华; 吴桂花

    2002-01-01

    Nowadays in China, as the economic reform goes further and the central government increasingly demands for raising productivity, more and more state-owned factories begin to turn their heads back to problems arising from their production systems. With the co-operation of Tianjin Diesel Engine Factory, we conducted a simulation study on its diesel engine assembly line, using GPSS as our major simulation language tool. This paper describes the model we constructed, simulation experiments we made on the model, and some conclusions we drew from the simulation study.

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  13. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  14. Effect of Ferrofluid on the Performance and Emission Patterns of a Four-Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    M. B. Shafii

    2011-01-01

    Full Text Available Experimental tests were carried out to investigate the effects of adding water-based ferrofluid to diesel fuel in a diesel engine. These effects included the combustion performance and exhaust emission characteristics of the diesel engine. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 ferrofluid/diesel ratios by volume were used in a four-stroke diesel engine, operating at 2200 rpm. The results indicate that adding ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12% and decreasing the brake-specific fuel consumption relatively up to 11% as compared to diesel fuel. Furthermore, from the analysis of gaseous species of engine exhaust, it was found that NOx emissions were lower than that of diesel fuel while the CO emissions increased. In addition, it was found that nanoparticles can be collected at the exhaust flow using a magnetic bar.

  15. Performance characteristics of a diesel engine with deccan hemp oil

    Energy Technology Data Exchange (ETDEWEB)

    O.D. Hebbal; K. Vijayakumar Reddy; K. Rajagopal [Poojya Doddappa Appa College of Engineering, Gulbarga (India)

    2006-10-15

    In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification. 27 refs., 13 figs., 2 tabs.

  16. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  17. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  18. Performance of Untreated Waste Cooking Oil Blends in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Md Isa Ali

    2011-01-01

    Full Text Available Untreated waste cooking oil (UWCO is not a feasible diesel fuel. The major problems in engine operation are reported mainly due to UWCO’s high viscosity. To use  UWCO's in diesel engine without modification, it is necessary to make sure that the oils properties must be similar to diesel fuel. In this study, UWCO that has been used several times for frying purposes is investigated for the utilization as an alternative fuel for diesel engines. In order to reduce the viscosity, the UWCO were blend with diesel. Two various blends of UWCO and diesel were prepared and its important properties such as viscosity, density, calorific value and flash point were  evaluated and compared with that of diesel. The blends were then tested in a direct injection diesel engine  in 10% and 30% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions. It was found that blending UWCO with diesel reduces the viscosity.  Blending of UWCO with diesel has been shown to be an effective method to reduce engine problems associated with the high viscosity of UWCO. The experimental results also show that the basic engine performance such as power output and  fuelconsumptions are comparable to diesel and the emissions of CO and NOx from the UWCO/diesel blends were also found slightly higher than that of diesel fuel.

  19. Fault detection and diagnosis of diesel engine valve trains

    Science.gov (United States)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  20. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  1. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel

    Directory of Open Access Journals (Sweden)

    Ruina Li

    2017-01-01

    Full Text Available Biodiesel is a kind of high-quality alternative fuel of diesel engine. In this study, biodiesel and biodiesel/diesel blend were used in a single cylinder diesel engine to study the carbonyl emissions. The result shows that carbonyl pollutants of biodiesel and biodiesel/diesel blend are mainly aldehyde and ketone compounds with 1–3 carbon atoms, and formaldehyde concentration is higher than 80% of the total carbonyl pollutants for biodiesel. The formaldehyde concentration peak is reduced with the increase of intake temperature (T, intake pressure (P, and exhaust gas recirculation (EGR ratio and increased with the increase of compression ratio (ε. When excess air coefficient (λ is lower than 1.7, the formaldehyde concentration is increased with the increase of excess air ratio. When λ is higher than 1.7, the formaldehyde concentration is reduced with the increase of excess air ratio. The dilution of air can reduce formaldehyde concentration in the premixed flame of diesel effectively; however, it has less effect on biodiesel. Among the fuel pretreatment measures of adding hydrogen, CO, and methane, the addition of hydrogen shows the best effect on reducing formaldehyde of biodiesel.

  2. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  3. Swirling flow in a two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  4. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  5. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is consider

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  7. Dynamic programming for Integrated Emission Management in diesel engines

    NARCIS (Netherlands)

    Schijndel, J. van; Donkers, M.C.F.; Willems, F.P.T.; Heemels, W.P.M.H.

    2014-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that aims at minimizing the operational costs of diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In previous work on IEM, a suboptimal real-time implementable solution w

  8. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpti

  9. The Feasibility of Oil Analysis for Air Force Diesel Engines

    Science.gov (United States)

    1979-06-01

    analyses conducted by Mobil include automated Brookfield viscosity, membrane filtration in pentane for insolubles, and differential infrared analysis for...considered, such as microfiltration for particle size distribution and infrared (for oxida- tion and possibly nitration). Because of the limited...military (AOAP) sectors , it may be inferred that a large segment of those organizations concerned with diesel engine maintenance and utilization is

  10. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  11. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  12. Evaluation of properties for lubricant filter in diesel engines

    Institute of Scientific and Technical Information of China (English)

    赵新泽; 程天; 张彩香

    2004-01-01

    The properties of lubricant filters in diesel engines directly affect operation of the lubricant system,and lubricant filters are apt to be impacted by many factors. Therefore, scientific and sensible methods evaluating the properties for lubricant filter diesel engines are necessary to monitor filter properties on line and dynamically. This paper applies ferrographic techniques and adopts sampling methods that oil specimens are synchronously obtained in front of and behind filter elements to monitor the filters of ISUZU DA - 220 diesel engine in two FDS0 forklifts. Results show that the combination of ferrographic techniques and above sampling methods is effective in analyzing the whole operating process of filters used in diesel engines. The service life and ruined type of filter can be estimated through the relationship between ferrographic readings in front and behind of filter and operation time. Furthermore, through a great deal of tests, a series of experimental curves of readings and time and characteristic parameters for filters used in different machines can be gained, which has guiding significance to the selection and maintenance of the filters. But because of the limitation of the ferrographic technique, the debris on the substrate prevents determination of sizes. It is difficult to judge accurately the size of debris that a filter can filter.

  13. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2008-01-01

    The paper is investigated the application of compressed natural gas (CNG) as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine pe...

  14. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  15. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  16. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  17. Filtres à activité catalytique pour moteur Diesel Catalytic Activity Filters for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Goldenberg E.

    2006-11-01

    Full Text Available A partir de l'examen des normes actuelles et envisagées dans le futur pour limiter les émissions de particules Diesel, et en considérant les propriétés physico-chimiques de ces particules, cet article expose les problèmes posés par la filtration des suies Diesel et leur élimination par combustion sur les différents types de filtres actuellement retenus. La régénération des filtres par combustion catalytique du dépôt est plus particulièrement discutée. From an examination of present regulations and ones being considered for the future to limit particle emissions by diesel engines, and considering the physicochemical properties of such particles, this article describes the problems raised by filtering soot from diesel engines and eliminating it by various types of filters now used. Filter regeneration by catalytic combustion of the deposit is considered in particular.

  18. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  19. Toxicity of effluents emitted by the diesel engines vehicles; Toxicite des effluents emis par les vehicules a moteur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alcon, St.

    1998-04-29

    The exhaust gases of diesel engine vehicles are atmospheric pollutants. They are characterised by a gaseous phase and a particulate phase. The diesel particulates are composed of a nucleus formed with elementary carbon, forming aggregates that absorb the organic by-products at their surface. A first part treats the effluents of diesel engine vehicles: their characteristics, the factors influencing the diesel emissions, the noxiousness of the gaseous phase, the kinetics and the metabolism of the particulate phase and analysis methods. A second part tackles the experimental toxicity of diesel effluents on insisting on the nature of exposures, the mutagenicity, the carcinogenicity, the effects on the reproduction function and immuno-toxicity. A third part is devoted to the toxicity for man with epidemiology data and some studies under controlled exposures. Then, a fourth part, explains the toxicity mechanisms and the action modes of diesel effluents on the carcinogen effects and on respiratory diseases. (N.C.)

  20. Application of thermal barrier coating in a Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Buyukkaya, E. [Dept. of Mechanical Engineering, Sakarya Univ., Sakarya (Turkey); Demirkiran, A.S. [Dept. of Metallurgical and Materials Science Engineering, Sakarya Univ., Sakarya (Turkey); Cerit, M.

    2004-07-01

    In this study, an investigation of the effects of ceramic coatings on Diesel engine performance and exhaust emissions was presented. Tests were carried out a range of engine speeds at low, middle and high load conditions for a standard engine and a ceramic-coated engine. Cylinder head and valves of an engine were coated with a 0.35 mm thickness of CaZrO{sub 3} over a 0.15 mm thickness of NiCrAl bond coat. Pistons were also coated with MgZrO{sub 3}. The coatings were produced using atmospheric plasma spray technique. Specific fuel consumption values of insulated engine were lower than standard engine (about 1-6%). Due to the better combustion efficiency in the coated engine, particulate emissions were lower than the standard engine (about 48%). (orig.)

  1. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  2. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  3. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  4. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  5. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  6. Study of combustion and emission characteristics of turbocharged diesel engine fuelled with dimethylether

    Institute of Scientific and Technical Information of China (English)

    Junhua WU; Zhen HUANG; Xinqi QIAO; Jun LU; Junjun ZHANG; Liang ZHANG

    2008-01-01

    An experimental study of a turbocharged diesel engine operating on dimethyl ether (DME) was conducted. The combustion and emission characteristics of the DME engine were investigated. The results show that the maximum torque and power of DME are greater than those of diesel, particularly at low speeds; the brake specific fuel consum-ption of DME is lower than that of diesel at low and middle engine speeds, and the injection delay of DME is longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, NOx emission of the DME engine is reduced by 41.6% on ESC data. In addition, the DME engine is smoke free at any operating condition.

  7. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-08-19

    ... approved under Type Certificate No. 3A13, is an aluminum, four place, single engine airplane with a... considered universally applicable to all types of possible diesel engines and diesel engine installations. However, after reviewing the Cessna installation, the SMA engine type, the SMA engine requirements,...

  8. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  9. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper is investigated the application of compressed natural gas (CNG as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine performance effect on the difference fuel. Output of the model simulation shown the effect of diesel engine fueled by CNG performance effect were simulated in any engine speeds parameters.

  10. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India); Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering College, Avadi, Chennai (India)

    2010-06-15

    Biodiesel is a fatty acid alkyl ester, which is renewable, biodegradable and non-toxic fuel which can be derived from any vegetable oil by transesterification. One of the popularly used biodiesel in India is Mahua oil (Madhuca Indica). In the present investigation Mahua oil was transesterified using methanol in the presence of alkali catalyst and was used to study the performance and emission characteristics. The biodiesel was tested on a single cylinder, four stroke compression ignition engine. Engine performance tests showed that power loss was around 13% combined with 20% increase in fuel consumption with Mahua oil methyl ester at full load. Emissions such as carbon monoxide, hydrocarbon were lesser for Mahua ester compared to diesel by 26% and 20% respectively. Oxides of nitrogen were lesser by 4% for the ester compared to diesel. (author)

  11. Combustion Analysis and Knock Detection in Single Cylinder DI-Diesel Engine Using Vibration Signature Analysis

    OpenAIRE

    Y.V.V.SatyanarayanaMurthy

    2011-01-01

    The purpose of this paper is to detect the “knock” in Diesel engines which deteriorate the engine performance adversely. The methodology introduced in the present work suggests a newly developed approach towards analyzing the vibration analysis of diesel engines. The method is based on fundamental relationship between the engine vibration pattern and the relative characteristics of the combustion process in each or different cylinders. Knock in diesel engine is detected by measuring the vibra...

  12. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  13. Steam bottoming cycle for an adiabatic diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  14. Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME)

    OpenAIRE

    D.N. Basavarajappa; Banapurmath, N. R.; S.V. Khandal

    2015-01-01

    For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly ...

  15. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.

  16. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  17. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  18. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    Science.gov (United States)

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  19. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  20. Two-zone modeling of diesel / biodiesel blended fuel operated ceramic coated direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    B. Rajendra Prasath, P. Tamil Porai, Mohd. F. Shabir

    2010-11-01

    Full Text Available A comprehensive computer code using ”C” language was developed for compression ignition (C.I engine cycle and modified in to low heat rejection (LHR engine through wall heat transfer model. Combustion characteristics such as cylinder pressure, heat release, heat transfer and performance characteristics such as work done, specific fuel consumption (SFC and brake thermal efficiency (BTE were analysed. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. The effect of coating on engine heat transfer was analysed using a gas-wall heat transfer calculations and total heat transfer was based on ANNAND’s combined heat transfer model. The predicted results are validated through the experiments on the test engine under identical operating conditions on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha seed oil blended with diesel was used in both conventional and LHR engine. The simulated combustion and performance characteristics are found satisfactory with the experimental results.

  1. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  2. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  3. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    fixation of man country life, the excellent and varied climatic conditions and several types of terrain become the country, with extensive workable areas, stand out in the world scenery if considering its great potentiality on generation of alternative fuels. The environmental preservation, important subject nowadays, makes that the human being work in searches for the development of alternative energies, mainly those originating from renewable and biodegradable sources of sustantable character. Taking in consideration those searches, the purpose of this work was to evaluate the performance of a diesel engine working in different moments with mineral diesel and mixtures of mineral diesel and biodiesel in the equivalent proportions B2 (98% mineral diesel and 2%biodiesel, B5 (95% mineral diesel and 5%biodiesel, B20 (80% mineral diesel and 20%biodiesel, and, finally, B100 (100% biodiesel. The rehearsal was accomplished in the dependences of the Engineering Department at UFLA - Federal University of Lavras, in Lavras, Minas Gerais, in July, 2005. For the accomplishment of the rehearsals it, was used an engine cycle diesel of a tractor VALMET 85 id, of 58,2kW (78 cv, following it methodology established by the norm NBR 5484 of ABNT (1985, that refers to the rehearsal dynamometric of engines cycle Otto and Diesel being proceeded. One noticed ended that the potency of the motor when using biodiesel was lower than one when using mineral diesel. One observed that, in some rotations, the mixtures B5 and B20 presented the same potency or even higher, in some situations, than the one when if using mineral diesel. The best thermal efficiency of the motor was verified in the rotation of 540 rpm of equivalent TDP to 1720 rpm of the motor.

  4. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    Science.gov (United States)

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  5. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    Directory of Open Access Journals (Sweden)

    Y. Tarun

    2014-03-01

    Full Text Available A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the experiment which is to analyse the emission characteristics and fuel consumption of diesel engine due to usage of the both fuels. Detail studies about the experimental setup and components have been done before the experiment started. Data that are required for the analysis is observed from the experiments. Calculations and analysis have been done after all the required data needed for the thesis is obtained. The experiment used diesel engine with no load which means no load exerted on it. A four stroke Twin cylinder diesel engine was adopted to study the brake thermal efficiency, brake specific energy consumption, mechanical efficiency, brake power, volumetric efficiency, indicated thermal efficiency and emissions at full load with the fuel of fraction methanol in bio-diesel. In this study, the diesel engine was tested using methanol blended with bio-diesel at certain mixing ratios of (WPO: Diesel 20:80, 40:60 and 60:40 methanol to bio-diesel respectively. By the end of the report, the successful of the project have been started which is Kirloskar engine is able to run with waste plastic oil (WPO but the engine needs to run by using diesel fuel first, then followed by waste plastic oil and finished with diesel fuel as the last fuel usage before the engine turned off. The performance of the engine using blended fuel compared to the performance of engine with diesel fuel. Experimental results of blended fuel and diesel fuel are also compared.   Keywords

  6. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  7. An Experimental Investigation of Performance and Emissions of LPG as Dual Fuel in Diesel Engine Generator

    Directory of Open Access Journals (Sweden)

    K. Mohan Kumar

    2014-11-01

    Full Text Available The usage of diesel engine generating set (Gen set increasing day by day where the places without connection to power grid or emergency power supply when the grid fails. Worldwide dual fuel engines are becoming popular because of high performance and low emissions. LPG with diesel is a proven technology in case of vehicles, but in diesel engine power plants it is far so. The proposed work is concentrated on higher load of Diesel Engine Generator with LPG as dual fuel by keeping environmental concern. A test is conducted on performance of engine along with emissions at different proportions of Diesel and LPG including 100% diesel. An experimental set up is made with simple modifications on existing genset to supply LPG as secondary fuel into Diesel.

  8. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  9. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Science.gov (United States)

    2011-04-11

    ... under Type Certificate No. A47CE, is a fully composite, four place, single-engine airplane with a... applicable to all ] types of possible diesel engines and diesel engine installations. However, after reviewing the DAI installation, the Austro engine type, the Austro Control GmbH (ACG) requirements,...

  10. Comparative investigation of diesel and mixed liquefied petroleum gas/diesel injection engines

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J.; Bian, Y.; Qi, D.; Cheng, Q.; Wu, T. [Changan University, Xian (China). Automobile Faculty

    2004-05-01

    Experiments are conducted on engine performance and sprays and a characteristics analysis is made between diesel and mixed liquefied petroleum gas (LPG)/diesel injection engines. The performance test results show that with LPG the mixed ratio increases, engine power reduces slightly, fuel consumption and engine noise have almost no change, pollutant emissions of smoke, CO and NO{sub x} at full load are improved significantly, but the amount of unburned HC increases. The experimental results of the sprays indicate that because of flash boiling injection of mixed fuel, mean diameters in a spray decrease, the number distribution curve of fuel droplet size moves towards smaller diameters, small-size droplet numbers increase, spray quality is good and engine smoke reduces accordingly. Because large-size droplet diameters show almost no change and small-size droplet diameters decrease, the relative span factor and dispersion boundary factor of the droplet diameter increase. High-resolution digital camera photography is invaluable when carrying out a comparative investigation of spray. (author)

  11. EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    R. Parthasarathi

    2014-01-01

    Full Text Available The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10% ethanol and 10% surfactant (Identified as D80E10; 70% diesel, 20% ethanol and 10% surfactant (denoted as D70 E20; 60% diesel 30% ethanol and 10% surfactant (denoted as D60 E30; 50% diesel, 40% ethanol and 10% surfactant (denoted as D50 E40 by volume respectively. In this test, Benzal konium chloride is added as an emulsifier to the diesel-ethanol blend to prevent layer formation and to make it a homogeneous blend. At maximum brake power, the comparison of best emulsified fuel ratio with diesel fuel results showed improvement in brake thermal efficiency with decrease in specific fuel consumption and smoke. The NOX, HC, CO2, cylinder pressure and heat release rate for D50 E40 emulsions are higher when compared to diesel fuel.

  12. Effect of the use of natural gas–diesel fuel mixture on performance, emissions, and combustion characteristics of a compression ignition engine

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-04-01

    Full Text Available A compression ignition engine with a mechanical fuel system was converted into common rail fuel system by means of a self-developed electronic control unit. The engine was modified to be operated with mixtures of diesel and natural gas fuels in dual-fuel mode. Then, diesel fuel was injected into the cylinder while natural gas was injected into intake manifold with both injectors controlled with the electronic control unit. Energy content of the sprayed gas fuel was varied in the amounts of 0% (only diesel fuel, 15%, 40%, and 75% of total fuel’s energy content. All tests were carried out at constant engine speed of 1500 r/min at full load. In addition to the experiments, the engine was modeled with a one-dimensional commercial software. The experimental and numerical results were compared and found to be in reasonable agreement with each other. Both NOx and soot emissions were dropped with 15% and 40%, respectively, energy content rates in gas–fuel mixture compared to only diesel fuel. However, an increase was observed in carbon monoxide emissions with 15% natural gas fuel addition compared to only diesel fuel. Although smoke emission was reduced with natural gas fuel addition, there was a dramatic increase in NOx emissions with 75% natural gas fuel addition.

  13. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  14. Modeling of Nitric Oxide Formation in Single Cylinder Direct Injection Diesel Engine Using Diesel-Water Emulsion

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2009-01-01

    Full Text Available Problem statement: Water injection into the combustion chamber of diesel engine found to be one of best method for in-cylinder control of NOx formation. Approach: The combustion of water-diesel emulsion in diesel engine was simulated using a computer program to estimate the heat release rate, cylinder pressure, brake thermal efficiency, brake specific fuel consumption and NO formation. Results: The numerical simulation was performed at different equivalence ratios, engine speeds and water percentages. The numerical simulation was preferred to study the combustion behavior and emission of diesel engine because the experimental investigations were time consuming and costly affair. Conclusion/Recommendations: Experiments also conducted to validate the predicted results of computer simulation. Though the zero dimensional simulation models predicted NO formation during combustion process, the first appearance of NO could not be identified using this method which can be solved by CFD technique.

  15. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models....

  16. AC maintenance and repair manual for diesel engines

    CERN Document Server

    Pallas, Jean-Luc

    2013-01-01

    The aim of this book with its detailed step-by-step colour photographs and diagrams, is to enable every owner to fix their diesel engine with ease. Troubleshooting tables help diagnose potential problems, and there is advice on regular maintenance and winterising and repair. Jean-Luc Pallas's enthusiasm for passing on his knowledge, as well as his clear explanations, precise advice and step-by-step instructions make this a unique book.

  17. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    report, only a brief summary of major findings are summarized. Temporal evolution of a sooting flame Figure 1-1 portrays the temporal...diesel engine during this soot sampling experiment. The images on the top and mid rows suggest that sooting flame develops on the fuel jet...cylinder liner window (i.e. side-view images) indicate that the sooting flame breaks into two soot pockets upon the impingement on the bowl wall and

  18. Soot Formation in Diesel Engines By Using Cfd

    Directory of Open Access Journals (Sweden)

    R. Siva Kumar

    2016-06-01

    Full Text Available In order to meet the stringent emission standards significant efforts have been imparted to the research and development of cleaner IC engines. Diesel combustion and the formation of pollutants are directly influenced by spatial and temporal distribution of the fuel injected. The development and validation of computational fluid dynamics (CFD models for diesel engine combustion and emissions is described. The complexity of diesel combustion requires simulations with many complex interacting sub models in order to have a success in improving the performance and to reduce the emissions. In the present work an attempt has been made to develop a multidimensional axe-symmetric model for CI engine combustion and emissions. Later simulations have been carried out. Commercial validation tool FLUENT was used for simulation. The tool solves basic governing equations of fluid flow that is continuity, momentum, species transport and energy equation. Using finite volume method turbulence was modeled by using RNG K-ɛ model. Injection was modeled using La Grangian approach and reaction was modeled using non premixed combustion which considers the effects of turbulence and detailed chemical mechanism into account to model the reaction rates. The specific heats were approximated using piecewise polynomials. Subsequently the simulated results have been validated with the existing experimental values

  19. State of art and potentials of Diesel-/gas engines; Technischer Stand und Potentiale von Diesel-/Gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, H. [Motorenanlagenbau der Blohm und Voss Industrie GmbH, Hamburg (Germany)

    1997-03-01

    Sparked off by the demand on the gas engine sector, Diesel-/gas engines are increasingly developed and offered by many engine manufacturers. This engine type offers in contrast to the gas-Otto-engine many advantages with regard to the use of the most different burnable gases. (orig.) [Deutsch] Ausgeloest durch die Nachfrage auf dem Gasmotorensektor werden von vielen Motorenherstellern vermehrt Diesel-Gasmotoren entwickelt und angeboten. Dieser Motortyp bietet bei der Nutzung unterschiedlichster Brenngase gegenueber dem Gas-Otto-Motor viele Vorteile. (orig.)

  20. A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Watanabe; Wim van Dam; Gary Parsons; Peter Kleijwegt

    2011-01-01

    Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.

  1. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    Science.gov (United States)

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  2. MPC555在柴油转子发动机电控高压共轨燃油喷射系统中的应用%Research and Application of MPC555 to High Pressure Common Rail Fuel Injection System on Diesel Rotary Piston Engine

    Institute of Scientific and Technical Information of China (English)

    杨青; 王尚勇; 李雪松; 吴进军

    2005-01-01

    This paper dealt with the application of MPC555 to a fuel injection system for a diesel rotary piston engine. And the hardware design principle and method were introduced. This system took the MPC555 micro controller as its core and was also provided with some correlative circuits consisting of a few kinds of sensors, the A/D convertion, nozzle control, high pressure bump control, injection pressure control and the CAN bus interface circuit etc to realize the exact control of the engine. The electronic control injection system based on the MPC555 had the merits of high density of integration and high reliability, and could control the speed of engine up to 4400 r/min and the power of the engine up to 25 kW per cylinder respectively.%介绍了MPC555在柴油转子发动机燃油喷射系统中的应用.主要介绍了整个电控系统的核心ECU的设计原理和方法及外围电路和控制策略及各种传感器的A/D转换、喷油器控制、高压泵控制喷油压力控制和CAN总线接口电路.系统具有集成度高,可靠性好的特点,初步试验验证所控制的转子机单缸转速和功率分别达到4400r/min和25kW.

  3. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    CERN Document Server

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  4. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  5. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  6. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  7. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    Science.gov (United States)

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine ...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  8. Selection оf Parameters for System of Diesel Engine Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    G. M. Kukharionok

    2014-01-01

    Full Text Available The paper presents research results of various methods for recirculation of diesel engine exhaust gases. An influence of recirculation parameters on economic and ecological diesel engine characteristics has been evaluated in the paper. The paper considers an influence of turbocharger configuration on the intensity of gas recirculation. Specific features of the recirculation system operation in dynamic modes have been shown in the paper. The paper provides recommendations for selection of a diesel engine exhaust gas recirculation system.

  9. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  10. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  11. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  12. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  13. Spray and combustion visualization of bio-diesel in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Pan Jianfeng

    2013-01-01

    Full Text Available By using the self-developed dynamic visualization photographic setup, this article investigated some major factors affecting the spray and combustion process of diesel engine fueled by biodiesel. The experimental results show: With the increase of biodiesel percentage, fuel injection advances slightly, the ignition delay becomes shorter and the duration of combustion lengthens. Engine speed has little effect on the spray. However, the combustion rate is increased and the burning time becomes shorter with the increase of engine speed, although the duration of combustion in terms of crank angle increases. With the increase of needle opening pressure, both the spray cone angle and the spray penetration of biodiesel increases, the atomization of spray improves, the ignition delay and the duration of combustion becomes shorter, the peak pressure increases.

  14. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  15. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    Directory of Open Access Journals (Sweden)

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  16. Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-05-01

    Full Text Available To achieve energy saving and emission reduction for vehicle diesel engines, the organic Rankine cycle (ORC was employed to recover waste heat from vehicle diesel engines, R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC combined system was presented. The variation law of engine exhaust energy rate under various operating conditions was obtained, and the running performances of the screw expander were introduced. Based on thermodynamic models and theoretical calculations, the running performance of the vehicle diesel engine-ORC combined system was analyzed under various engine operating condition scenarios. Four evaluation indexes were defined: engine thermal efficiency increasing ratio (ETEIR, waste heat recovery efficiency (WHRE, brake specific fuel consumption (BSFC of the combined system, and improvement ratio of BSFC (IRBSFC. Results showed that when the diesel engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined system is obviously improved under various engine operating conditions.

  17. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  18. International Standards to Reduce Emissions from Marine Diesel Engines and Their Fuels

    Science.gov (United States)

    Overview of EPA coordination with International Maritime Organization including a list of all international regulations and materials related to emissions from marine compression-ignition (diesel) engines.

  19. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  20. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-07-13

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO2) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  1. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  2. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  3. Performance & Emissions Characteristics of a Four Stroke Diesel Engine Fuelled With Different Blends of Palmyra Oil with Diesel

    Directory of Open Access Journals (Sweden)

    T.Venkata Srinivasa Rao

    2015-04-01

    Full Text Available Diesel engines are used for automotive application because they have lower specific fuel consumption and superior efficiency compared to S.I engines. However in spite of these advantages NOx and smoke emissions from the diesel engines cause serious environmental problems. In the present work, biodiesel was produced from Palmyra oil. In this present work, investigations were carried out to study the performance, emission and combustion characteristics of Palmyra oil. The results were compared with diesel fuel, and the selected Palmyra oil fuel blends. For this experiment a single cylinder, four stroke, water cooled diesel engine was used. Tests were carried out over entire range of engine operation at varying conditions of load. To increase the engine performance parameters and to decrease the exhaust gas emissions with increase biodiesel concentration. The experimental results provide that the use of biodiesel in compression ignition engine is a viable alternative to diesel. Additive to add the Ethanol. The blending percentage in the steps of 10%, 20% & 30%.

  4. Increase of diesel car raises health risk in spite of recent development in engine technology.

    Science.gov (United States)

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  5. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  6. Complete Modeling for Systems of a Marine Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    Hassan Moussa Nahim; Rafic Younes; Chadi Nohra; Mustapha Ouladsine

    2015-01-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  7. [Application of PCA to diesel engine oil spectrometric analysis].

    Science.gov (United States)

    Liu, Tao; Tian, Hong-Xiang; Guo, Wen-Yong

    2010-03-01

    In order to study wear characteristics of a 6-cylinder diesel engine, six different working statuses were arranged by altering the clearance between cylinder and piston. Sixty-nine oil samples were taken from engine at different loads under 6 working statuses and analyzed by Spectroil M Instrument made in US. Principal component analysis (PCA) was applied to analyzing spectrometric data of sixty-nine oil samples and clustering those data according to elements and oil samples separately based on the weighted coefficient and principal component scores. All 21 elements were used in element clustering and only 6 wear-related elements, namely iron, chromium, aluminum, copper, plumbum and silicon, were used in sample clustering. It is shown that PCA effectively clustered oil spectrometric data into three different principal components according to elements. The projection of two different principal components exhibited five types of elements combinations, namely wear elements (Fe, Cr, Cu, Al and Pb), high concentration additives elements (Na, Zn, P, Ca and Mg), low concentration additives elements (Ba and B), base constituent of lubricating oils (C and H) and interferential elements (Ni, Ti, Mo, V, Ag and Sn). Furthermore, PCA clearly clustered oil samples according to different clearance between cylinder and piston in the diesel engine. The study suggests that analyzing oil spectrographic data by PCA could find the sources of different elements, monitor engine conditions and diagnose wear faults.

  8. DoE Method for Operating Parameter Optimization of a Dual-Fuel BioEthanol/Diesel Light Duty Engine

    Directory of Open Access Journals (Sweden)

    Gabriele Di Blasio

    2015-01-01

    Full Text Available In recent years, alcoholic fuels have been considered as an alternative transportation biofuel even in compression ignition engines either as blended in diesel or as premixed fuel in the case of dual-fuel configuration. Within this framework, the authors investigated the possibility to improve the combustion efficiency when ethanol is used in a dual-fuel light duty diesel engine. In particular, the study was focused on reducing the HC and CO emissions at low load conditions, acting on the most influential engine calibration parameters. Since this kind of investigation would require a significant number of runs, the statistical design of experiment methodology was adopted to reduce significantly its number. As required by the DoE approach, a set of factors (injection parameters, etc. were selected. For each of them, two levels “high” and “low” were defined in a range of reasonable values. Combining the levels of all the factors, it was possible to evaluate the effects and the weight of each factor and of their combination on the outputs. The results identified the rail pressure, the pilot, and post-injection as the most influential emission parameters. Significant reductions of unburnt were found acting on those parameters without substantial penalties on the global engine performances.

  9. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    Science.gov (United States)

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-02-23

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  10. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  11. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  12. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  13. PERFORMANCE AND EMISSIONS OF A HEAVY DUTY DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL AND PREMIUM DIESEL

    Directory of Open Access Journals (Sweden)

    HELMER ACEVEDO

    2011-01-01

    Full Text Available Biodiesel es promocionado como combustible alternativo para sustituir combustibles de origen fósil y reducir emisiones de carbono. Algunos estudios han sido llevados a cabo para estudiar las emisiones de vehículos diesel de baja potencia. Sin embargo, las emisiones sólidas y gaseosas emitidas por vehículos de trabajo operados con biodiesel de palma africana y diesel de bajo contenido de azufre (~ 15 ppm han sido poco estudiadas. El objetivo de este estudio fue determinar el desempeño y emisiones de un motor Diesel Cummins, 4 tiempos, 9.5 litros, 6 cilindros con sistema de inyección "common rail", y sistema de recirculación de gases. El motor desarrolló una menor potencia (10 % cuando fue operado con biodiesel de palma africana. El motor cumplió con la norma ambiental 2004 cuando fue operado con combustible diesel, sin embargo, con biodiesel de palma africana las emisiones de material particulado y los óxidos de nitrógeno estuvieron fuera de norma.

  14. Environmental Pollution Assessment of Different Diesel Injector Location Of Direct-Injection Diesel Engines: Theoretical Study

    Directory of Open Access Journals (Sweden)

    Eyad S.M. Abu-Nameh

    2008-01-01

    Full Text Available An Analytical investigation on the effect of injector location of a four-stroke DI diesel engine on its pollutants’ emissions was carried out under different injector locations ranging from central to peripheral at different engine speeds ranging from 1000 rpm to 3000 rpm. The simulation results clearly indicated the advantages and disadvantages of the central location over the peripheral one. It revealed that near central location gave less carbon dioxide, smoke level and particulate matter on one hand, and higher levels of NOx, cylinder temperature and pressure (hence increased the mechanical and thermal stresses on the other hand. Further, near central location resulted in more rapid rate of burning and less duration of combustion and rapid rate of NOx formation per crank angle.

  15. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    Science.gov (United States)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  16. Experimental investigations of a single cylinder genset engine with common rail fuel injection system

    Directory of Open Access Journals (Sweden)

    Gupta Paras

    2014-01-01

    Full Text Available Performance and emissions characteristics of compression ignition (CI engines are strongly dependent on quality of fuel injection. In an attempt to improve engine combustion, engine performance and reduce the exhaust emissions from a single cylinder constant speed genset engine, a common rail direct injection (CRDI fuel injection system was deployed and its injection timings were optimized. Results showed that 34°CA BTDC start of injection (SOI timings result in lowest brake specific fuel consumption (BSFC and smoke opacity. Advanced injection timings showed higher cylinder peak pressure, pressure rise rate, and heat release rate due to relatively longer ignition delay experienced.

  17. Butanol/diesel blends as a CI engine fuel. Physico-chemical and engine performance characteristics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, M.K.; Thakre, G.D.; Saxena, R.C.; Sharma, Y.K.; Jain, A.K.; Singal, S.K. [CSIR - Indian Institute of Petroleum, Dehradun, Uttrakhand (India)

    2013-06-01

    Recently, butanol produced by fermentation, known as bio-butanol has emerged as a new alternative fuel for CI engines. However, very little work has been carried out on its use in C.I. engine. In this context current paper deals with the characteristic properties and performance evaluation of butanol as a blending additive in diesel fuels. The butanol-diesel blends are prepared in varying concentrations of 5-l 0% and have been studied for their Corrosion, Tribology, distillation and Physico-chemical characteristics. These characteristics properties are then compared with those of diesel. The study reveals that the butanol-diesel blends offer better cetane number, improved corrosion behaviour and comparable distillation and tribological properties. The engine performance evaluation revealed comparable performance in terms of fuel economy as compared with diesel fuel. Hence, Butanol-diesel blends can be successfully used as an alternative fuel for CI engines. (orig.)

  18. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  19. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  20. Power turbines for an energy bonus from diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, M. (ABB Turbo Systems Ltd., Baden (Switzerland)); Nissen, M. (ABB Industrietechnik AG, Hamburg (Germany))

    1994-01-01

    ABB exhaust-gas turbochargers - more than 150,000 in all - are in service worldwide with diesel engines on board ships and locomotives as well as in stationary power plants. Thanks to the turbochargers, the original outputs of the engines are raised by about 300%. Modern high-power turbochargers are so efficient that some exhaust-gas energy can be drawn off for use in a power turbine. The extra power won in this way can be either transmitted via gearing to the engine crankshaft or converted into electrical energy by a generator. ABB has developed a compact, controlled power turbine-generator installation especially for marine applications. The first unit has been certified by Lloyds Register of Shipping and is providing electricity for the onboard electrical power supply of a large container ship operated by Maersk Line. (orig.)

  1. Performance Analysis of Producer Gas Based Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2013-02-01

    Full Text Available Producer gas is one out of the alternative fuels used in internal combustion engines. Conventionally, it is made by flowing air and steam through a thick coal or coke bed which ranges in temperature from red hot to low temperature. The oxygen in air burns the carbon to CO2. This CO2 gets reduced to CO by contacting with carbon above the combustion zone. The freed oxygen combines with carbon and steam gets dissociated which introduces hydrogen. Producer gas has a high percentage of nitrogen since air is used [1]. Thus, in the present work a gasifier is designed and developed which could gasify any form of biomass. In the present work waste wood chips, bagasse, rice husk, and eucalyptus, etc are used for gasification in a fabricated updraft gasifier to produce producer gas. The producer gas obtained from the developed gasifier is sent along with air into a diesel engine with diesel as the primary fuel and the performance characteristics ie brake thermal efficiency, exhaust gas temperature and brake specific energy consumption of the engine are studied along with economic analysis with and without aid of producer gas.

  2. Integrated modeling of nitrogen oxides formation in diesel engines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To account for the effects of both chemistry and flow turbulence,the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine.NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model.The new NO formation model incorporating the effects of hoth chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber,and one with a re-entrant combustion chamber;the premise of the model being the reaction rate is mainlv determined by a kinetic timescale and a turbulent timescale.The results indicate that the predicted NO formulation from the new model agrees well with the measured data.As the utilization of fossil fuels continues to increase,the control of NOx emissions is a worldwide concern;and it is imperative to understand fully the NOx reaction processes in combustion systems.This technology has the Dotential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.

  3. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel.

    Science.gov (United States)

    Popovicheva, Olga B; Kireeva, Elena D; Shonija, Natalia K; Vojtisek-Lom, Michal; Schwarz, Jaroslav

    2015-03-01

    Fourier transform infrared spectroscopy is applied as a powerful analytic technique for the evaluation of the chemical composition of combustion aerosols emitted by off-road engines fuelled by diesel and biofuels. Particles produced by burning diesel, heated rapeseed oil (RO), RO with ethylhexylnitrate, and heated palm oil were sampled from exhausts of representative in-use diesel engines. Multicomponent composition of diesel and biofuel particles reveal the chemistry related to a variety of functional groups containing carbon, hydrogen, oxygen, sulfur, and nitrogen. The most intensive functionalities of diesel particles are saturated C-C-H and unsaturated C=C-H aliphatic groups in alkanes and alkenes, aromatic C=C and C=C-H groups in polyaromatics, as well as sulfates and nitrated ions. The distinguished features of biofuel particles were carbonyl C=O groups in carboxylic acids, ketones, aldehydes, esters, and lactones. NO2, C-N and -NH groups in nitrocompounds and amines are found to dominate biofuel particles. Group identification is confirmed by complementary measurements of organic carbon (OC), elemental carbon, and water-soluble ion species. The relationship between infrared bands of polar oxygenated and non-polar aliphatic functionalities indicates the higher extent of the surface oxidation of biofuel particles. Findings provide functional markers of organic surface structure of off-road diesel emission, allowing for a better evaluation of relation between engine, fuel, operation condition, and particle composition, thus improving the quantification of environmental impacts of alternative energy source emissions.

  4. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    OpenAIRE

    Dara K. Khidir; Soorkeu A. Atrooshi

    2016-01-01

    The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D) of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were ...

  5. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  6. Prediction and Analysis of Engine Friction Power of a Diesel Engine Influenced by Engine Speed, Load, and Lubricant Viscosity

    OpenAIRE

    Devendra Singh; Fengshou Gu; Fieldhouse, John D.; Nishan Singh; Singal, S. K.

    2014-01-01

    Automotive industries made a paradigm shift in selection of viscometrics of engine lubricant, from higher to lower viscosity grade, for improving fuel economy of vehicles. Engine fuel consumption is influenced by friction between the various engine components. Engine friction power (FP) of a direct injection diesel engine is calculated from the measured value of in-cylinder pressure signals at various operating conditions. For predicting FP, as a function of speed, load, and lubricant viscosi...

  7. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    Science.gov (United States)

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  8. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  9. Lightweight diesel engine designs for commuter type aircraft

    Science.gov (United States)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  10. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    Science.gov (United States)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  11. Nitric oxide in a diesel engine : laser-based detection and interpretation

    NARCIS (Netherlands)

    Stoffels, G.G.M.

    1999-01-01

    Nitric oxide (NO) is one of the most polluting components in the exhaust gases of a diesel engines. Therefore, knowledge of the time and place where it is produced during the combustion process is of interest to find a way to reduce diesel engine emissions. Non-intrusive optical diagnostics, based

  12. The study on injection parameters of selected alternative fuels used in diesel engines

    Science.gov (United States)

    Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.

    2016-09-01

    The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).

  13. Combustion and emission analysis of heavy-duty vehicle diesel engine

    Science.gov (United States)

    Sun, Zhixin; Wang, Xue; Wang, Xiancheng; Zhou, Jingkai

    2017-03-01

    Aiming at the research on combustion and emission characteristics of heavy-duty vehicle diesel engine, a bench test was carried out for PM and NOx emission for a certain type diesel engine under different speed and loads. Results shows that for this type of heavy-duty vehicle diesel engine, ignition delay is longer and the proportion of diffusion combustion increases under high speed of external characteristics conditions. Under the speed of 1400 r/min, ignition delay decreases with load increases, combustion duration shortened at first, then increases, the proportion of diffusion combustion increases. The ignition delay is longer and cylinder temperature is higher under lower speed external characteristics of diesel engine, the emissions of soot and NOx are heavier; with large load of external characteristics of diesel engine, the emissions of soot and NOx are heavy as well.

  14. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  15. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  16. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey); Bayindir, Hasan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Dicle University, Diyarbakir, 21280 (Turkey)

    2010-03-15

    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NO{sub x}, SO{sub 2} and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines. (author)

  17. The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Paul C.

    2000-08-20

    Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

  18. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  19. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  20. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Science.gov (United States)

    2012-10-31

    ...-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (Heavy-Duty 610... EPA's 610 Review related to Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur... Review of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements...

  1. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  3. STUDY OF PERFORMANCE CHARACTERISTICS OF VARIABLE COMPRESSION RATIO DIESEL ENGINE USING ETHANOL BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    NILESH MOHITE

    2012-06-01

    Full Text Available As the population of the world increases consumption of the energy also increases tremendously. With the current consumption rate if it has been quoted that there will be great shortage of petroleum products in upcoming decades, it will not be wrong. For this reason people are looking for alternative fuels. As ethanol is the main bio-product in the many industries now-a-days, it is better to develop the engine which can work on pure ethanol or one can add ethanol in the petrol or diesel and use the blends of that. For this purpose, it is necessary to check the performance characteristics and emissions of the blends of ethanol and also necessary to compare with the pure form of fuels. Again it is necessary to check the effect of compression ratio on the blends of ethanol. So in this paper the same has been conducted at basic level.

  4. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  5. Diesel and gas engines: evolution following new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Deverat, Ph. [Bergerat Monnoyeur (France). Direction Industrie

    1997-12-31

    Engine emissions of CO, NMHC and ashes are easily lowered through a low-cost exhaust gas processing, while NOx processing in fumes is rather complex and environmentally hazardous; thus, engine manufacturers have emphasized their researches for NOx decrease on the engine design: lower combustion temperature in diesel engines through water cooling or air/air exchanger, lean mixture with excess air (open chamber or pre-chamber) in spark ignition gas engines. Examples of modifications in Caterpillar engines are given. Exhaust gas processing for CO, NMHC, NOx (3 way catalytic purifier, selective catalytic reduction) and ashes is also discussed

  6. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Directory of Open Access Journals (Sweden)

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  7. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  8. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol

    Directory of Open Access Journals (Sweden)

    Bahar Sayin Kul

    2016-10-01

    Full Text Available In this study, energy and exergy analysis were performed for a single cylinder, water-cooled diesel engine using biodiesel, diesel and bioethanol blends. Each experiment was performed at twelve different engine speeds between 1000 and 3000 rev/min at intervals of 200 rev/min for four different fuel blends. The fuel blends, prepared by mixing biodiesel and diesel in different proportions fuel with 5% bioethanol, are identified as D92B3E5 (92% diesel, 3% biodiesel and 5% bioethanol, D85B10E5 (85% diesel, 10% biodiesel and 5% bioethanol, D80B15E5(80% diesel, 15% biodiesel and 5% bioethanol and D75B20E5 (75% diesel, 20% biodiesel and 5% bioethanol. The effect of blends on energy and exergy analysis was investigated for the different engine speeds and all the results were compared with effect of D100 reference fuel. The maximum thermal efficiencies obtained were 31.42% at 1500 rev/min for D100 and 31.42%, 28.68%, 28.1%, 28% and 27.18% at 1400 rev/min, respectively, for D92B3E5, D85B10E5, D80B15E5, D75B20E5. Maximum exergetic efficiencies were also obtained as 29.38%, 26.8%, 26.33%, 26.15% and 25.38%, respectively, for the abovementioned fuels. As a result of our analyses, it was determined that D100 fuel has a slightly higher thermal and exergetic efficiency than other fuel blends and all the results are quite close to each other.

  9. Study of the combined plant for the generator diesel engine; Hatsudenki diesel engine no combined plant no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. [Kumamoto Institute of Technology, Kumamoto (Japan); Hanada, S.; Watase, M.; Nakajima, T.

    1997-10-01

    It is intended to recover more effectively thermal energy currently discharged from marine vessels into air. This paper describes a diesel engine combined power generation system in which medium-order waste heat energy from a diesel engine for power generation in a marine vessel is recovered and utilized to operate a Rankine cycle system (using the waste gas as the high temperature source and sea water as the low temperature source), thus the thermal energy is recovered as a motive force. Two kinds of fluorocarbons and steam were discussed as a working fluid. Due to fluorocarbons making the whole system ultra-high in pressure, and from a viewpoint of high-temperature thermal stability, the temperature was remained at levels from 100 to 200 degC, and a single-stage expansion cycle was used. With the use of steam, a two-stage reheating cycle was employed, by which the temperature is raised fully up to 300 degC and effective head of fluid was taken largely. Ceramic paint was used as a means to prevent sulfur oxide corrosion when the system is used down to the dew point, and its effectiveness was verified. Motive force recovered by combining the steam two-stage reheating cycle and the ceramic painted heat collector was calculated, whereas electric power output of about 45 kW was obtained from a main generator with 450 PS. The derived thermal efficiency was about 26%. 2 refs., 24 figs., 2 tabs.

  10. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  11. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  12. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  13. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  14. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  15. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  16. Wastes to Reduce Emissions from Automotive Diesel Engines

    Directory of Open Access Journals (Sweden)

    Manuel Jiménez Aguilar

    2014-01-01

    Full Text Available The objective of the study was actually the investigation of the effect of various treatments on the ability of urine in absorbing greenhouse gases. Urine alone or mixed with olive-oil-mill waste waters (O, poultry litter (P, or sewage sludge (S was used on the absorption of CO2 and NOx from diesel exhaust. The absorption coefficient (0.98–0.29 g CO2/grNH4 was similar to other solvents such as ammonia and amines. The ranges of CO2 absorption(1.7–5.6 g/l and NO reduction (0.9–3.7 g/l in six hours indicate that on average 20 litres of urine could be needed to capture CO2 and NOx vehicle emissions from each covered kilometre. The best results of CO2 absorption and NOx reduction were for urine mixed with O, P and urine alone. These wastes could be used to capture CO2 and NOx from automotive diesel engines to reduce gas emissions. The proposed strategy requires further research to increase CO2 absorption and reduce the risks associated with waste-water reuse.

  17. Occupational exposure to diesel engine exhaust: a literature review.

    Science.gov (United States)

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: ECunderground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.

  18. Diesel vehicles shortage mobilizes the automotive industry; La penurie de diesel mobilise la filiere

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P.Y.; Deheunynck, P.Y.; Demoulin, L.

    2000-12-01

    The infatuation for diesel vehicles in Europe has led to an unexpected growth of this market. The reason is linked with the improvements made in diesel engine technology and with the rise of automotive fuel prices. Car and vehicle equipment manufacturers and sub-contractors have to increase their production and manpower and to adopt new work schedules for a better exploitation of factories capacity. However, the development of the direct injection (common-rail) technology for diesel engines requires complex and precise machining procedures that are hardly compatible with an enhanced mass production. (J.S.)

  19. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A.; Wyszynski, M.L.; Theinnoi, K. [Mechanical and Manufacturing Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom)

    2007-11-15

    The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NO{sub x} emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NO{sub x} emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NO{sub x} emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NO{sub x} at a cost of small increases of smoke and fuel consumption. (author)

  20. EFFECT OF SOYBEAN OIL BIOFUEL BLENDING ON THE PERFORMANCE AND EMISSIONS OF DIESEL ENGINE USING DIESEL-RK SOFTWARE

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody,

    2011-06-01

    Full Text Available The scope of the technology is to provide utility and comfort with no damage to the user or to the surroundings. For many years now, petroleum products and other fossil fuels have given us utility andcomfort in a variety of areas, but causes environmental problems which threaten wild and human life. In this study, the performance and emissions of single cylinder, four stroke, direct injection diesel engine operating on diesel oil and different Soybean Methyl Ester (SME blends have been investigated theoretically using thesimulation software Diesel-RK. Based on the computed modeling results it’s found that 41.3 %, 53.2 % & 62.6 % reduction in the Bosch smoke number obtained with B20% SME, B40 % SME and B100% SME respectively, compared to pure diesel operation. In addition a reduction in PM emissions is observed 47.2%, 60 % & 68% for the B20 % SME, B40 % SME, and B 100% SME respectively. On the average basis there is a reduction in the thermal efficiency, power, and SFC, for all SME blends by 2%, 3%, and 12% respectively compared to pure diesel fuel. All blending of SME produce higher NOx emissions more than 28% compared with pure diesel fuel. A parametric study of retarding injection timing, varying engine speed and compression ratio effects has been performed. Its observed that retarding the injection timing can reduce the increase in the NOx emissions to great extent. Among all tested fuels its noticed that B20% SME was the best tested fuel which gave the same performance results with good reduction in emissions as compared to pure diesel operation. A very good agreement was obtained between the results and the available theoretical and experimental results of other researchers.

  1. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  2. Effect of diesel-biodiesel-ethanol blend on combustion, performance, and emissions characteristics on a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jamrozik Arkadiusz

    2017-01-01

    Full Text Available The paper presents results of co-combustion of diesel-biodiesel-ethanol fuel blend in direct injection Diesel engine. Test was performed at constant rotational speed at three commonly used loads of this engine: 100%, 85%, and 70% of load. During the test hydrated ethanol was used at a concentration of 89% of alcohol. In this study, the ethanol fuel was added to diesel-biodiesel fuel blend with concentrations up to 50% with the increment of 5%. The biodiesel was used as an additive to pre-vent the stratification of ethanol and diesel blends. Thermodynamic parameters of engine were analyzed, and combustion process and exhaust emission were characterized. It turned out that with the increase in engine load is possible to utilize larger ethanol fraction in blend. With the increase of ethanol fuel in blend the in-crease in ignition delay (38.5% for full load was observed, but burning duration decreased (49% for full load. The ethanol fuel share in blend generally causes the increase in NOx emission (42% for full load due to higher oxygen content and higher in-cylinder temperatures. It turned out that, at full load the unrepeatability of indicated mean effective pressure was near the same up to 50% of ethanol fuel in blend (about 2%. In case of partial load at higher ethanol fuel fraction the in-crease in indicated mean effective pressure un-repeatability was observed.

  3. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  4. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Nidal H. Abu-Hamdeh

    2015-01-01

    Full Text Available This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50 with diesel fuel (B0 were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO and oxides of nitrogen (NOx. Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured.

  5. Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions

    Science.gov (United States)

    2005-12-07

    Filipi, Z., Assanis, D., Kuo, T.-W., Najt, P., Rask, R. “New Heat Transfer Correlation for the HCCI Engine Derived from Measurements of...Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions Gerald Fernandes1, Jerry Fuschetto1, Zoran Filipi1 and Dennis...with the operation of a diesel engine with JP- 8 fuel due to its lower density and viscosity, but few experimental studies suggest that kerosene

  6. Development of generalized dynamic model of oscillations of cylinder case of diesel engine of locomotive

    Directory of Open Access Journals (Sweden)

    Irina YUTKINA

    2014-03-01

    Full Text Available An engineering method of design, worked out by the authors, is considered in the paper. It allows to carry out design of amplitude-frequency specter and vibration loading of cylinder cases of the diesel engine of locomotive with account of cavitation-erosion damage. Offered method of design of parameters of cavitation-erosion damage may be used in design of new structures of diesel engines of locomotives and systems of cooling.

  7. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    Diesel engine exhaust gases contain several harmful substances. The main pollutants are carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrous gases such as nitrogen oxide (NO) and nitrogen dioxide (NO2) (together NOx). Reducing the emission of these pollutants is of great...... Filter (DPF) which filters PM, a Selective Catalytic Reduction (SCR) catalyst which removes NO and NO2 through reaction with NH3, and an Ammonia Slip Catalyst (ASC) which removes excess ammonia (NH3) before the gases are released to the atmosphere. SCR is a widely used technology to reduce NOx to N2......-off for different urea dosing con-trollers was developed, and applied to P, PI, PD, and PID controllers, both with and without Ammonia-NOx-Ratio (ANR) based feedforward. Simulation results showed that the PI controller with feedforward had the best NOx-NH3 trade-off, and that feedforward coupled with feedback...

  8. Numerical Analysis of the Combustion and Emission Characteristics of Diesel Engines with Multiple Injection Strategies Using a Modified 2-D Flamelet Model

    Directory of Open Access Journals (Sweden)

    Gyujin Kim

    2017-08-01

    Full Text Available The multiple injection strategy has been widely used in diesel engines to reduce engine noise, NOx and soot formation. Fuel injection developments such as the common-rail and piezo-actuator system provide more precise control of the injection quantity and time under higher injection pressures. As various injection strategies become accessible, it is important to understand the interaction of each fuel stream and following combustion process under the multiple injection strategy. To investigate these complex processes quantitatively, numerical analysis using CFD is a good alternative to overcome the limitation of experiments. A modified 2-D flamelet model is further developed from previous work to model multi-fuel streams with higher accuracy. The model was validated under various engine operating conditions and captures the combustion and emissions characteristics as well as several parametric variations. The model is expected to be used to suggest advanced injection strategies in engine development processes.

  9. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  10. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Science.gov (United States)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  11. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen [Institute of Power and Energy Engineering, Harbin Engineering University, No. 145-1, Nantong Street, Nangang District, Harbin 150001 (China); Litak, Grzegorz [Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  12. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    Science.gov (United States)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  13. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    Directory of Open Access Journals (Sweden)

    B. Kayisoglu

    2006-01-01

    Full Text Available The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet temperature, exhaust gas outlet temperature, fuel consumption, volume efficiency, engine oil pressure, cylinder indicated pressure, the quantity of soot were determined. The results in the of sunflower oil and diesel fuel blends were found better than the soybean oil and diesel fuel blends. In addition, lubrication oil of the engine by using the soybean and diesel fuel blends were get dirty excessively and viscosity of the engine lubrication oil was reduced more than the others. The results by using 75% diesel fuel+25% sunflower oil blend showed nearly the same results by using diesel fuel.

  14. Gas-oil/water emulsion fuel for automotive diesel engines. energia

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In this paper the work performed within the contract EE-C-201-I is reported. The results achieved in the tests of high speed diesel engines with water in oil emulsion feeding system are summarized. First, carried out trials on test bench are described; then operation in light duty truck on the road and on roller test bench is reported and trials with constant speed diesel engine are related. Finally, the work about emulsion characterization is synthetized. The conclusion shows as the water in oil emulsion is a feeding system suitable for high speed diesel engine operation because BSFC, grade of smoke, exhaust temperature and emission are lowered without considerable troubles.

  15. Optimization of fuel supply map during starting process of electronic controlled diesel engine

    Institute of Scientific and Technical Information of China (English)

    Jinguang LIANG; Xiumin YU; Yue GAO; Yunkai WANG; Hongyang YU; Baoli GONG

    2008-01-01

    Tests were conducted to study influence of fuel supply map during the starting process of an electronic con-trolled diesel engine using an electronic controlled diesel engine which was made up of a CA498Z diesel engine, a VP37 elec-tronic controlled distributor injection pump management system and a VS100 calibration system. The calibration pro-cess of starting fuel supply map was educed under the principle of low HC emission and rapid starting velocity. The cal-ibration methods of starting fuel supply map were obtained.

  16. The program cyberdiesel for mathematical modeling of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion

    OpenAIRE

    Maschenko, V. Yu.

    2007-01-01

    The program CyberDiesel is developed on the basis of complex mathematical model of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion. The program is intended for solving practical problems of coordinating constructive and adjusting parameters of fuel equipment and combustion chamber of a diesel engine by mathematical modeling methods.

  17. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  18. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... deflections or voltage output of analyzers with non-linear calibration curves shall be converted to... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  19. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised m...

  20. Combustion process evaluation in Diesel engines using the Second law analysis; Avaliacao do processo de combustao em motores diesel usando analise de segunda lei

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, Jose Velasquez; Milanez, Luiz Fernando [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1990-12-31

    Exergy balance equations are applied to a thermodynamic model in order to evaluate the combustion process for diesel engines. Thermomechanical and chemical availabilities are determined as well as the irreversibility produced. Finally the model is used to analyze experimental data obtained for a single cylinder diesel engine, at full load condition. (author) 14 refs., 6 figs., 2 tabs.

  1. The possibilities for measurement and characterization of diesel engine fine particles: A review

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2011-01-01

    Full Text Available This review paper considers possible instrumentation for diesel engine fine particles exhaust emission evaluation. The modern diesel engines have extremely low particles emission almost at the level of measurement error of existing gravimetric measurement method. Since coarse particles are eliminated by new engine technologies, fine particles, with very negative effects on human health, dominate in the emission of current diesel engine. Therefore, it is necessary not only to measure mass of emitted particles but also to investigate other important particle characteristics as: particles number, particle size, particle number and mass distribution, particle active surface, particle composition etc. Therefore, existing measurement technologies used in aerosol science can be used also to study diesel engine particles properties. This most common instrumentation in aerosol technique is shortly reviewed in the paper with special attention on candidate instruments included in EU program on portable emissions measurement systems (PEMS.

  2. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  3. Research and Development of XCD4B54 Series Diesel Engine%XCD4B54系列柴油机的开发与研制

    Institute of Scientific and Technical Information of China (English)

    谭克诚; 许冠能

    2016-01-01

    In this paper,the YCD4B54 diesel engine are designed and developed,and the technical requirements,process and the exist key technology and difficulty in the development process are analyzed systematically.The results showed that the YCD4B54 series diesel engine is integrated many internal processing technologies,the use of exhaust gas turbo-charger and inter-cooled technology can strengthen the power of diesel engine,and the high pressure common rail electric control system can increase the fuel injection rate and fuel atomization level.Adopting the post processing technical scheme of exhaust gas recirculation+diesel oxidation catalyst+particulate oxidation catalyst (EGR+DOC+POC),it can ensure the diesel engine has good power performance and fuel economy..%设计和研制YCD4B54柴油机,并针对研制过程中的技术要求、工艺流程,以及存在的技术关键与难点进行系统分析。结果表明:YCD4B54系列柴油机针对性地集成了多种机内处理技术,采用废气涡轮增压与中冷技术,能强化柴油机的动力;采用电控高压共轨燃油喷射系统,能提高喷油速率和燃油雾化水平;采用排气再循环+柴油氧化催化器+颗粒氧化催化器(EGR+DOC+POC)后处理技术方案,能保证柴油机具有良好的动力性和燃料经济性。

  4. Proposal for future trend of engine mechatronics in marine diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, Ichiro; Higashi, Tadanori (Ashiya Univ., Hyogo (Japan))

    1989-02-01

    A future condition of engine mechatronics in the marine diesel engines was proposed. As a result of investigation, it was understood that the diesel engine, as mechatronicalized for the land plant use with an already high technology, is done for the marine use as an amplification of applying that for the land plant use. The marine diesel engine, if only maintaining the good performance in all the operating conditions, is low in mechatronicalized effect as compared with that for the land plant use. Particularly, there is no expectation of effect on the large ship. While as a reply to an inquiry to 100 enterprises, expectation, in the all automation electronic control, was of, in the order of expectation, reliability, automation, energy and labor saving, and anomaly diagnosis, which showed the most desired expectation to be of reliability. In other words, the reliability is presently one of the weakest points to apply the electronic control, which inversely requires the solution for the reliability. However there can be no expectation of decrease in fuel coat due to the mechatronicalization. 13 refs., 1 tab.

  5. 近后喷射对共轨柴油机高负荷NOx和碳烟影响的数值分析%Numerical Analysis of Effect of Closed Post Injections on NOx and Soot Under High Load of Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    解方喜; 洪伟; 李小平; 韩立伟; 赵靖华

    2011-01-01

    Numerical simulation of thermodynamic cycle and combustion ofa turbocharged vehicle diesel engine with closed post injections under high load operations was carried out by means of a CFD tri-dimensional numerical analysis software FIRE. In this paper, the effects of closed post injection fuel quantity and interval between post and main injection on combustion process were discussed. The computed results indicated that with the increasing interval and post injection fuel quantity, the generation of NOx was evidently reduced, while the fuel economy had worsened. At the same time, the post injection technology is a very effective means to reduce soot emissions. The appropriate post injection parameters could, on the one hand, reinforce the disturbance effect of in-cylinder flow field; on the other hand, post injection fuel could form fuel vapor mainly in the oxygen-enriched region, thus obviously reducing the generation of soot. Better compromise performance of the indicated mean pressure, NOx and soot could be achieved by using post injection than by the original machine. Even better performance could be achieved when post injection mass is 10%-21% and the main and post injection interval is 10°-18° CA.%应用三维 CFD 商用模拟软件 FIRE 对车用共轨柴油机在高负荷工况下采用近后喷射策略的缸内工作过程进行数值计算,分析后喷量和主、后间隔角对有害排放物生成的影响.结果表明,随后喷量和主、后间隔角的增加,NOx 的生成量显著减少,而经济性有所恶化;同时,近后喷射还是降低柴油机碳烟排放的一种非常有效的手段,适当的近后喷射一方面能对缸内流场造成较大的扰动,另一方面能使后喷燃油主要在富氧区域内形成燃油蒸气,从而明显减少碳烟的生成量.采用近后喷射能取得比原机更好的 NOx、碳烟和平均指示压力三者的折中性能,并且在后喷量为 10%~21%、主、后间隔为 10°~18° CA 区间选

  6. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  7. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  8. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Science.gov (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  9. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  10. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

    Directory of Open Access Journals (Sweden)

    G.DURGA DEVI

    2012-07-01

    Full Text Available Diesel engines are widely used as power sources in medium and heavy-duty applications because of their lower fuel consumption and lower emissions of carbon monoxide (CO and unburned hydrocarbons (HC compared with gasoline engines. Rudolf Diesel, the inventor ofthe diesel engine, ran an engine on groundnut oil at the Paris Exposition of 1900. Since then, vegetable oils have been used as fuels when petroleum supplies were expensive or difficult to obtain. With the increased availability of petroleum in the 1940s, research into vegetable oils decreased. Since the oil crisis of the 1970s research interest has expanded in the area of alternative fuels. The difficulties associated with using raw vegetable oils in diesel engines identified in the literature are injector coking, severe engine deposits, filter gumming problems, piston ring sticking, and injector coking and thickening of the lubricating oil. The highviscosity and low volatility of raw vegetable oils are generally considered to be the major drawbacks for their utilization as fuels in diesel engines. Castor methyl ester (CME blends showed performance characteristics close to diesel. Therefore castor methylester blends can be used in CI engines in rural area for meeting energy requirement in various agricultural operations such as irrigation, threshing, indistries etc.

  11. EFFECT OF INJECTION PRESSURE ON PERFORMANCE AND EMISSIONS OF CNG DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    B.NAGESWARA RAO

    2014-07-01

    Full Text Available A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was inducted into the combustion chamber via intake manifold. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load at constant speed at different injector opening pressures for the pilot fuel (diesel. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the engine performance, in terms of brake thermal efficiency and emission levels. An experimental investigation was carried out to find out the effect of injection pressure on performance and emissions of a diesel engine operated with CNG inducted into the engine. Behavior of the dual fuel engine at 10%, 20%, 30%, 40% and 50% substitution of CNG with respect to diesel was examined and compared them at different injection pressures

  12. Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine

    Directory of Open Access Journals (Sweden)

    N Shrivastava

    2012-11-01

    Full Text Available Fast depletion of fossil fuel resources forces the extensive research on the alternative fuels. Vegetable oils edible or non edible can be a better substitute for the petroleum diesel. Karanja, a non edible oil can be a potential source to replace the diesel fuel. To investigate the feasibility of Karanja oil as an alternative diesel fuel, its biodiesel was prepared through the transesterification process. The Biodiesel was then subjected to performance and emission tests in order to assess its actual performance, when used as a diesel engine fuel. The data generated for the 20, 50 and 100 percent blended biodiesel were compared with base line data generated for neat diesel fuel. Result showed that the Biodiesel and its blend showed lower thermal efficiency. Emission of Carbon monoxide, unburned Hydrocarbon and smoke was found to be reduced where as oxides of nitrogen was higher with biodiesel and its blends. Keywords: alternate Diesel fuel; Biodiesel; Karanja oil methyl ester; performance and emission

  13. Residual shale-oil/diesel-engine operating compatibility program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.; Derbidge, C.; Kuby, W.; Niven, H.; Richard, R.

    1983-10-01

    As part of a DOE study to determine the effective utilization of alternate fuels in medium-speed diesel engines, a residual shale oil (RSO) was fired in an APE-Allen, 1000-rpm, 9.5-in. bore diesel engine. Various fuel injection modes were considered. Based on a fuel characterization study and go/no-go tests, it was determined that the direct firing of 100 percent RSO gave performance comparable with that using No. 2 diesel fuel; consequently, performance/endurance tests were performed using 100 percent RSO. Conclusions of this test program are: Laboratory tests showed low levels of corrosion and deposit-causing elements. Therefore, corrosion and wear of engine components, when using RSO, should be no worse than for standard diesel fuel. The high wax content of RSO requires heating for supply, handling, and injection systems. Laboratory tests showed that the cetane number of RSO was equivalent to No. 2 diesel; hence, no engine modifications should be needed to burn RSO. The engine performance on RSO was essentially similar to standard diesel fuel. The thermal efficiency was slightly lower and Bosch smoke and particulates were slightly higher, especially at low load. Soft carbon deposits, formed on injectors when using RSO, did not affect performance. The 115-hour endurance test showed no significant performance deterioration. The deposit accumulation in combustion chambers and ports was not severe but was greater than standard diesel fuel would produce. Longer endurance tests are required to fully establish this conclusion. 41 figures, 21 tables.

  14. Modeling of engine parameters for condition-based maintenance of the MTU series 2000 diesel engine

    OpenAIRE

    Yue, Siew Peng

    2016-01-01

    Approved for public release; distribution is unlimited Condition-based maintenance (CBM) entails performing maintenance only when needed to save on resources and cost. Formulating a model that reflects the behavior of the marine diesel engine in its normal operating conditions would aid in making predictions of the behavior of a condition monitoring parameter. Modeling for CBM is a data-dependent process. Data acquisition, processing, and analysis are required for modeling the behavior of ...

  15. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  16. The Influence of Non-Esterification Biodiesel in AN Indirect Injection Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.

  17. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  18. Research on H2 speed governor for diesel engine of marine power station

    Institute of Scientific and Technical Information of China (English)

    HUANG Man-lei

    2007-01-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  19. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  20. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  1. INFLUENCE OF FUEL TEMPERATURE ON DIESEL ENGINE PERFORMANCE OPERATING WITH BIODIESEL BLEND

    Directory of Open Access Journals (Sweden)

    Rafidah Rahim

    2012-06-01

    Full Text Available This paper presents the study of the effect of temperature on diesel engine performance using a 5% biodiesel blend. A one-dimensional numerical analysis is used to simulate the four-cylinder diesel engine. The diesel engine simulation is used to study the characteristics of engine performance when the engine is operating with a fuel blend as an alternative fuel. The simulations are conducted at full load conditions where the temperature varies from 300 to 500 K. The results show that the maximum brake power and brake torque reduction was 1.39% and 1.13%, respectively for an engine operating with a fuel blend. It is shown that the insignificant different due to the small gap between energy content values. A decrease in the lower heating value caused an increase in the brake specific fuel consumption and thus, a reduction in the brake thermal efficiency of the engine performance at full load.

  2. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  3. Application of computers to the design and development on diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, W.

    1981-07-01

    Although diesel engine development still depends mainly on experience, empiricism, and experiments, a complete mathematical solution to the problems encountered is attempted. At a meeting held by UNICEG under the sponsorship of the British Science Research Council, universities and technical universities working in this field could present their findings to the industrial users, and experience could be exchanged. The paper reviews the recent developments in computer-aided design of diesel engines and describes the present state of the art.

  4. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  5. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  6. Computation of the Matching Performance of Diesel Engine with Variable Geometry Turbocharger

    Institute of Scientific and Technical Information of China (English)

    SHI Xin; MA Chao-chen

    2006-01-01

    To compute the matching performance of diesel engine with variable geometry turbocharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.

  7. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  8. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  9. Application of Brown’s Gas for a Diesel Engine Running on Rapeseed Oil

    OpenAIRE

    Alfredas Rimkus; Tomas Ulickas; Saugirdas Pukalskas; Paulius Stravinskas

    2012-01-01

    The article presents the analysis of possible applications of Brown’s gas to the diesel engine running on oil. The paper also contains a review of experimental works. The selected fuel combinations are as follows: diesel fuel, diesel fuel and Brown’s gas, oil (rapeseed oil) and oil and Brown’s gas. Test results have shown that an additional supply of Brown’s gas to the engine results in a decrease in the amounts of carbon monoxide (CO) and smoke level; however it increases the total emission ...

  10. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel

    Institute of Scientific and Technical Information of China (English)

    Hongbo ZOU; Lijun WANG; Shenghua LIU; Yu LI

    2008-01-01

    An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the igni-tion delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20℃ to 40℃ and then to 60℃, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remark-ably by advancing the delivery timing of pilot diesel, espe-cially at light engine loads.

  11. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  12. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  13. An experimental study on the effect of using gas-to-liquid (GTL fuel on diesel engine performance and emissions

    Directory of Open Access Journals (Sweden)

    M.A. Bassiony

    2016-09-01

    Full Text Available Gas to Liquid (GTL fuel is considered one of the most propitious clean alternative fuels for the diesel engines. The aim of this study was to experimentally compare the performance and emissions of a diesel engine fueled by GTL fuel, diesel, and a blend of GTL and diesel fuels with a mixing ratio of 1:1 by volume (G50 at various engine load and speed conditions. Although using the GTL and G50 fuels decreased slightly the engine maximum power compared to the diesel fuel, both the engine brake thermal efficiency and engine brake specific fuel consumption were improved. In addition, using the GTL and G50 fuels as alternatives to the diesel resulted in a significant decrease in engine CO, NOx, and SO2 emissions.

  14. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  15. Heat Transfer in Two-Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Christiansen, Caspar Ask

    useful for validation of engine simulations. In this work, a special designed thermocouple is used to measure surface temperatures. The design and fabrication of the special thermocouple is described, along with response tests and uncertainty estimates. A series of experiments at part load conditions (25......%, 30% and 50% load) was performed on a MAN Diesel & Turbo SE test engine, which shows very promising results for further investigations of dynamic temperature and heat flux in large bore engines. Instantaneous heat flux is derived using both an analytical and a numerical model and compared. More......Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (diesel engines) have been continuously increasing in recent years. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. A very...

  16. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  17. The new General Motors diesel engine management system; Die neue Dieselmotor-Steuerung von General Motors

    Energy Technology Data Exchange (ETDEWEB)

    Graglia, Riccardo; Catanese, Alessandro; Parisi, Filippo; Barbero, Simone [General Motors Powertrain Europe S.r.L., Turin (Italy)

    2011-02-15

    For more than ten years, General Motors has been developing ECUs for spark-ignition engines in-house. The company has now also developed an engine management system for diesel engines that offers such features as closed-loop injector control and integrated glow plug electronics. (orig.)

  18. Study of the noise characteristics of a six-cylinder diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tung, V.T.C.; Crocker, M.J.

    1982-01-01

    This paper presents some of the results of a study of the noise emitted by a Cummins NTC-350 turbo-charged diesel engine. The relationships between engine noise and speed, load, temperature and cylinder pressure and its derivatives were examined. The results were compared with previous engine noise findings and predictions.

  19. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  20. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  1. Fault Detection of Inline Reciprocating Diesel Engine: A Mass and Gas-Torque Approach

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available Early fault detection and diagnosis for medium-speed diesel engines are important to ensure reliable operation throughout the course of their service. This work presents an investigation of the diesel engine combustion-related fault detection capability of crankshaft torsional vibrations. Proposed methodology state the way of early fault detection in the operating six-cylinder diesel engine. The model of six cylinders DI Diesel engine is developed appropriately. As per the earlier work by the same author the torsional vibration amplitudes are used to superimpose the mass and gas torque. Further mass and gas torque analysis is used to detect fault in the operating engine. The DFT of the measured crankshaft’s speed, under steady-state operating conditions at constant load shows significant variation of the amplitude of the lowest major harmonic order. This is valid both for uniform operating and faulty conditions and the lowest harmonic orders may be used to correlate its amplitude to the gas pressure torque and mass torque for a given engine. The amplitudes of the lowest harmonic orders (0.5, 1, and 1.5 of the gas pressure torque and mass torque are used to map the fault. A method capable to detect faulty cylinder of operating Kirloskar diesel engine of SL90 Engine-SL8800TA type is developed, based on the phases of the lowest three harmonic orders.

  2. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  3. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  4. Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2016-05-01

    Full Text Available This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH. A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5 and 20% (B20 macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751 and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density (D, heating value and oxidation stability (OS. Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP and increases brake-specific fuel consumption (BSFC while emission results indicated that it reduces the average carbon monoxide (CO, hydrocarbons (HC and particulate matter (PM emissions except nitrogen oxides (NOx than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

  5. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  6. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  7. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  8. Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sharma

    2015-01-01

    Full Text Available Knowledge of piston and cylinder wall temperature is necessary to estimate the thermal stresses at different points; this gives an idea to the designer to take care of weaker cross section area. Along with that, this temperature also allows the calculation of heat losses through piston and cylinder wall. The proposed methodology has been successfully applied to a water-cooled four-stroke direct-injection diesel engine and it allows the estimation of the piston and cylinder wall temperature. The methodology described here combines numerical simulations based on FEM models and experimental procedures based on the use of thermocouples. Purposes of this investigation are to measure the distortion in the piston, temperature, and radial thermal stresses after thermal loading. To check the validity of the heat transfer model, measure the temperature through direct measurement using thermocouple wire at several points on the piston and cylinder wall. In order to prevent thermocouple wire entanglement, a suitable pathway was designed. Appropriate averaged thermal boundary conditions such as heat transfer coefficients were set on different surfaces for FE model. The study includes the effects of the thermal conductivity of the material of piston, piston rings, and combustion chamber wall. Results show variation of temperature, stresses, and deformation at various points on the piston.

  9. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed

    2017-03-28

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics provide valuable information, the high fidelity simulations with matched parametric conditions improve fundamental understanding of relevant physical and chemical processes by accessing additional observables such as the local mixture distribution, intermediate species concentrations, and detailed chemical reaction rates. Commercial software, CONVERGE™, was used as the main simulation tool, with the Reynolds averaged Navier-Stokes (RANS) turbulence model and the multi-zone (SAGE) combustion model to compute the chemical reaction terms. SOI is varied from late compression ignition (CI) to early partially premixed combustion (PPC) conditions. The simulation results revealed a stronger correlation between fuel injection timing and combustion phasing for late SOI conditions, whereas the combustion phasing starts to decouple from SOI for early SOI cases. The predictions are consistent with the experimental observations, in terms of the overall trends in combustion and emission characteristics, while the high fidelity simulations provided further insights into the effects of mixture stratifications resulting from different SOI conditions.

  10. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  11. Production of Bio-Diesel to Neem oil and its performance and emission Analysis in two stroke Diesel Engine.

    Directory of Open Access Journals (Sweden)

    G.Mahesh BABU

    2013-02-01

    Full Text Available In India Neem tree is a widely grown up termed as a divine tree due to its wide relevance in many areas of study. This paper deals with Biodiesel production from neem oil, which is monoester produced usingtransesterification process. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high lubricity, clean burning fuel and can be a fuel component for use in existing unmodified diesel engine. Neem (Azadirachita Indica is an evergreen tree, which is endemic to the Indian Sub-continent and has beenintroduced to many other areas intropics. The fuel properties of biodiesel including flash point-and fire point were examined. The engine properties and pollutant emissions characteristics under different biodiesel percentages were also studied. The results shows that the biodiesel produced using neem oil could reduce Carbon monoxide and smoke emissions significantly while the Nitrogen oxide emission changed slightly. Thus, the ester of this oil can be used as environment friendly alternative fuel for diesel engine.

  12. Combustion characteristics of diesel engine using producer gas and blends of Jatropha methyl ester with diesel in mixed fuel mode

    Directory of Open Access Journals (Sweden)

    Hifjur Raheman

    2014-12-01

    Full Text Available An experimental investigation was performed to study the combustion characteristics of diesel engine fuelled with producer gas-biodiesel in dual fuel mode. Three different fuel blends of Jatropha methyl ester with high speed diesel (HSD (B10, B20 and B100 were used with producer gas obtained from the gasification of briquettes made from de-oiled Jatropha seed cake. The increments in load on the engine increased the brake thermal efficiency, exhaust gas temperature and lowered the brake specific energy consumption. The ignition delays in dual-fuel mode of operation for both the fuels were longer than for single-fuel mode of operation. Combustion pressure and heat release rate (HRR patterns at different engine loads were found to be similar for biodiesel and HSD. In dual-fuel mode, the peak pressure and HRR for producer gas–biodiesel dual-fuel were slightly lower than those of producer gas–diesel combustion at full load condition. Significantly lower NOx emissions were obtained under the dual fuel mode of operation for both pilot fuels compared to the single-fuel mode especially HSD under all test conditions.

  13. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  14. The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

    Directory of Open Access Journals (Sweden)

    Hyungmin Lee

    2012-12-01

    Full Text Available This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from 25 °C to 300 °C, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

  15. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  16. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    Science.gov (United States)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  17. Development potential of the DEUTZ 2013 engine with Common Rail injection system; Weiterentwicklungspotential der DEUTZ Baureihe 2013 mit Common Rail Einspritzsystem

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, A.; Knuth, H.W.; Miebach, R.; Feuser, W. [DEUTZ AG, Koeln (Germany)

    2000-07-01

    On the last year's Wiener Motorensymposium a description of the new DEUTZ 2013 engine was given. The basic engine concept was designed to include enough potential for further development steps that will be necessary to cope with future emission demands. For this reason the 2013 engine was chosen as base engine in a research program funded by the German Ministry of Education and Science (BMBF) aiming at the fulfilment of the EURO 4 standards with internal combustion means only. This article covers the applied technical measures as well as the achieved results (emission level, noise reduction potential). Elementary technology is the Common Rail fuel injection system, which plays its optimum role in combination with variable geometry turbocharging and exhaust gas recirculation. (orig.) [German] Anlaesslich des letzten Wiener Motorensymposiums wurde die neue DEUTZ Nutzfahrzeug-Motorbaureihe 2013 vorgestellt. Das Grundkonzept des Motors bietet Potential fuer Weiterentwicklungen zur Darstellung zukuenftiger Emissionsanforderungen. Fuer ein vom Bundesministerium fuer Bildung, Wissenschaft und Forschung (BMBF) an die DEUTZ AG vergebenes Forschungsvorhaben mit dem Ziel der innermotorischen Darstellung der EURO 4 Abgasgesetzgebung wurde aus diesem Grund der Motor 2013 als Basis herangezogen. In diesem Beitrag werden die eingesetzten Techniken beschrieben und das damit erzielte Emissionsminderungs- und Akustikpotential dargestellt. Kerntechnologie ist das Nutzfahrzeug-Common-Rail-Einspritzsystem, das sein volles Potential zur Emissionsreduktion in Verbindung mit Turboladern mit variabler Turbinengeometrie und Abgasrueckfuehrung zeigt. (orig.)

  18. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  19. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  20. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXV, I--CATERPILLAR DIESEL ENGINE COOLING SYSTEM D-8 AND 824 MODELS, II--TIRES AND TIRE HARDWARE.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND TO PROVIDE A DESCRIPTION OF HEAVY TIRES AND WHEELS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THEORY OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) MAINTENANCE TIPS (COOLING SYSTEM), (4)…

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  5. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    NARCIS (Netherlands)

    Mutlu, E.; Nash, D.G.; King, C.; Krantz, T.Q.; Preston, W.T.; Kooter, I.M.; Higuchi, M.; DeMarini, D.; Linak, W.P.; Ian Gilmour, M.

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this en

  6. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    NARCIS (Netherlands)

    Mutlu, E.; Nash, D.G.; King, C.; Krantz, T.Q.; Preston, W.T.; Kooter, I.M.; Higuchi, M.; DeMarini, D.; Linak, W.P.; Ian Gilmour, M.

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this

  7. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  8. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...... was calculated under different conditions in the numerical setup in order to obtain information of the actual peak heat flux experienced at the piston in large marine diesel engines during combustion. The variation of physical parameters influencing the heat transfer during combustion included a variation...

  9. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  10. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  11. Semi-empirical model to evaluate the performance of natural gas powered diesel engines; Modelo semi-empirico para avaliacao do desempenho de motores diesel consumindo gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Hernandez [Universidade Federal de Uberlandia (UFU), MG (Brazil). Faculdade de Engenharia Mecanica], e-mail: ricardo.pereira@mecanica.ufu.br; Braga, Carlos Valois Maciel; Braga, Sergio Leal [Pontificia Universidade Catolica do Rio de Janeiro (DEM/PUC-Rio), RJ (Brazil). Dept. de Engenharia Mecanica], e-mails: valois@puc-rio.br, slbraga@puc-rio.br

    2010-04-15

    The performance of four different engines were measured, all powered by the dual fuels diesel/natural gas and mounted on a dynamometer bench. The tested engines were selected for their construction and operational characteristics, representing diesel engines for different applications (capacity, speed range, with/without turbo charging and combustion air cooling). Experimental points were obtained for wide parameter ranges with influence on engine performance. The replacement rate of diesel with natural gas was varied to identify the mix where the dual fuel operation was possible. Although the study focus was on performance, data on particulate pollutant emissions were also recorded, not only during the original diesel operation but also for the dual fuels. The results indicate that, for most operational fields of the engines tested, only part of the gas actually burns. (author)

  12. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    Science.gov (United States)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  14. INFLUENCE OF PALM METHYL ESTER (PME AS AN ALTERNATIVE FUEL IN MULTICYLINDER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Mohd Hafizil M. Yasin

    2012-12-01

    Full Text Available Palm oil is one of the vegetable oil, which is converted to biodiesel through a transesterification process using methanol as the catalyst. Palm oil biodiesel or palm methyl ester (PME can be used in diesel engines without any modification, and can be blended with conventional diesel to produce different proportions of PME-diesel blend fuels. The physical properties of PME were evaluated experimentally and theoretically. The effect of using neat PME as fuel on engine performance and emissions was evaluated using a commercial four-cylinder four-stroke IDI diesel engine. The experimental results on an engine operated with PME exhibited higher brake specific fuel consumption in comparison with the conventional fuel. With respect to the in-cylinder pressure and heat release rate, these increased features by over 8.11% and 9.3% with PME compared to conventional diesel. The overall results show that PME surpassed the diesel combustion quality due to its psychochemical properties and higher oxygen content.

  15. The first of a new generation of diesel engines from General Motors - the efficient and powerful 1.6 liter Euro6 midsize diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretto, Gianmarco; Golisano, Roberto; Scotti, Michele; Antonioli, Pierpaolo; Frank, Richard M.; Rovatti, Giovanni [General Motors Powertrain Europe s.r.l., Turin (Italy); Wesslau, Markus [Adam Opel AG, Ruesselsheim (Germany)

    2013-08-01

    The major challenge the automotive industry will face in the next decade is undoubtedly the reduction of CO{sub 2} emissions. Conventional powertrains with internal combustion engines will still play a predominant role: in particular, the diesel engine will be a major contributor to the solution thanks to its intrinsic high thermodynamic efficiency and low-end torque which is a key enabler for downsizing engine displacement and downspeeding. In this context, General Motors has developed an entirely new 1.6 liter four-cylinder Midsize Diesel Engine (MDE), the first of a new generation of efficient and powerful diesel engines. Its development has been focused on the achievement of high power and torque density, superior fuel efficiency and state-of-the-art noise and vibration, while meeting the Euro6 emission standard in a wide range of B-, C- and D-segment vehicles, utilizing different exhaust aftertreatment solutions. The key technical features of the base engine, combustion system and emission reduction technologies, together with the innovative engine control unit, are described in this paper. (orig.)

  16. Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines

    Directory of Open Access Journals (Sweden)

    Tomić Milan D.

    2013-01-01

    Full Text Available Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology and reliability of use. Introduction of biodiesel has been the focus of attention over the last ten years. The aim of this research is to investigate the influence of biodiesel on the performances and exhaust gas emissions of medium power agricultural tractor engines (37-66 kW. The reason for the selection of this category is that those types of tractors are most frequently used in agriculture. In this research biodiesel produced from sunflower oil was blended with fossil diesel. Biodiesel, fossil diesel and fossil diesel blends with 15, 25, 50 and 75%v/v biodiesel were tested for their influence on the engine performances and emissions. The testing was performed on a four-cylinder diesel engine with 48 kW rated power. The experimental research on the engine performances was conducted in compliance with OECD test CODE 2, and the exhaust gas emissions were tested according to the ISO 8178-4, C1. The use of biodiesel and fossil diesel blends reduced the engine power with the increase of biodiesel share in the blend. However, the exception was the blend with 15%v/v biodiesel which induced a slight increase in the engine power. Depending on the share of biodiesel in the blend all blends fuels showed increased specific fuel consumption compared to the fossil diesel. Thermal efficiency increased as a result of more complete combustion of biodiesel and fossil diesel blends. The exhaust gas emissions implied that the addition of biodiesel reduced the content of CO2 and CO, as well as the temperature of exhaust gases, but it increased the emission of NOx.

  17. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  18. DETERMINATION OF CO2 MASSES IN THE EXHAUST GASES OF THE MARINE DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Doru COSOFRET

    2016-05-01

    Full Text Available Currently, reducing CO2 emissions that contribute to the greenhouse effect is currently under attention of the relevant international bodies. In the field of maritime transport, in 2011 International Maritime Organization (IMO has taken steps to reduce emissions of CO2 from the exhaust gases of marine diesel engines on ships, by imposing their energy efficiency standards. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated by using to power it diesel and different blends of biodiesel with diesel fuel. The purpose of the study was to determine the formulas for calculating the mass flow rates of CO2 from exhaust gases’ concentrations experimentally determined. Determining the mass flow of CO2 is necessary to calculate the energy efficiency coefficient of the ship to assess the energy efficiency of the board of the limits imposed by the IMO.

  19. IR spectroscopic investigation of the structure of water-fuel microemulsion for diesel engines

    Science.gov (United States)

    Vettegren', V. I.; Mamalimov, R. I.; Lozhkin, V. N.; Morozov, V. A.; Lozhkina, O. V.; Pimenov, Yu. A.

    2016-09-01

    The structures of a microemulsion formed by a surfactant (ammonium oleate), water drops of a linear size of 1-3 µm, and a diesel fuel has been investigated using IR spectroscopy. It has been found that ammonium oleate molecules in the microemulsion are dissociated on the positive NH4 + ion and the negative ion of the remaining part of the molecule, which forms the hydrogen bond with water molecules. This increases the rate of water, evaporation and leads to the more complete combustion of the diesel fuel. As a result, the concentration of harmful nitrogen oxides and soot particles in the exhaust gas of the diesel engine decreases.

  20. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...... in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...

  1. Development of combustion management concept for natural-aspirated small diesel engine; Shizen kyuki kogata diesel engine no nensho seigyo concept no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T.; Kawano, T.; Shoji, M.; Kuniyosh, M.; Yamashita, O.; Nagao, A. [Mazda Motor Corp., Tokyo (Japan); Yoshikawa, S. [Zexel Corp., Tokyo (Japan)

    1997-10-01

    We have developed a combustion management concept for natural-aspirated small IDI diesel engines and achieved higher power, lower exhaust emissions and more comfort. The concept is related to improvements of intake volumetric efficiency, EGR effect, mixture formation caused by combustion chamber and spray characteristics, engine management system and after treatment device. This paper describes the concept and experimental results. 3 refs., 14 figs., 1 tab.

  2. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  3. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  4. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  5. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  6. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  7. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  8. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  9. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  10. ESEMISSION ANALYSIS OF SINGLE CYLINDER DIESEL ENGINE FUELED WITH PYROLYSIS OIL DIESEL AND IT’S BLEND WITH ETHANOL

    Directory of Open Access Journals (Sweden)

    Mr. Hirenkumar M. Patel

    2012-06-01

    Full Text Available Around the world, initiatives are being taken to replace gasoline and diesel fuel due to the impact of the fossil fuel crisis, increase in oil price, and the adoption of stringent emission norms. Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internalcombustion engines. Many alternate fuels like Alcohols, Biodiesel, methanol, ethanol, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. Tests have been carried out to evaluate the emission analysis of a single cylinder direct injection diesel engine fueled with 10%, 15%, and 20% of tyre pyrolysis oil (TPO blended with diesel fuel (DF. The TPO was derived from waste automobile tires through vacuum pyrolysis. HC and CO emissions werefound to be higher at all loads due to the high aromatic content. Ethanol was added in concentration of 5%, 10% and 15% to reduce emission characteristics. Results show that CO and HC both reduced due to the addition of ethanol because ethanol is an oxygenated additives.

  11. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    Science.gov (United States)

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  12. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  13. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  14. Investigation of single and split injection strategies in an optical diesel engine

    OpenAIRE

    Herfatmanesh, Mohammad Reza

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 22/12/2010. This study investigates the effects of a split injection strategy on combustion performance and exhaust emissions in a high speed direct injection optical diesel engine. The investigation is focused on the effects of injection timing, quantity, and the dwell angle between the injections using commercially available diesel fuel. Three different split injection strategies including ...

  15. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2010-11-15

    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  16. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    Science.gov (United States)

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants

    Energy Technology Data Exchange (ETDEWEB)

    M. Nadeem; C. Rangkuti; K. Anuar; M.R.U. Haq; I.B. Tan; S.S. Shah [Universiti Teknologi PETRONAS, Bandar Seri Iskandar (Malaysia)

    2006-10-15

    Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine's performance. Emulsion fuels with varying contents of water and diesel were prepared and stabilized by conventional and gemini surfactant, respectively. Surfactant's dosage, emulsification time, stirring intensity, emulsifying temperature and mixing time have been reported. Diesel engine performance and exhaust emission was also measured and analyzed with these indigenously prepared emulsified fuels. The obtained experimental results indicate that the emulsions stabilized by gemini surfactant have much finer and better-distributed water droplets as compared to those stabilized by conventional surfactant. A comparative study involving torque, engine brake mean effective pressure (BMEP), specific fuel consumption (SFC), particulate matter (PM), NOx and CO emissions is also reported for neat diesel and emulsified formulations. It was found that there was an insignificant reduction in engine's efficiency but on the other hand there are significant benefits associated with the incorporation of water contents in diesel regarding environmental hazards. The biggest reduction in PM, NOx, CO and SOx emission was achieved by the emulsion stabilized by gemini surfactant containing 15% water contents. 34 refs., 11 figs., 1 tab.

  18. Computational Visualization and Simulation of Diesel Engines Valve Lift Performance Using CFD

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper visualized and simulated the intake and exhaust valve lift in the single-cylinder four-stroke direct injection diesel engine. The visualization and simulation computational development were using the commercial Computational Fluid Dynamics of STAR-CD 3.15A software and GT-SUITE 6.2 software. The one dimensional of valve lift modeling was developed using GT-POWER software and the visualization the model using STAR-CD. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. The visualization and simulation shown the diesel engine intake and exhaust valve lifting and moving based on the crank angle degree parameters. The result of this visualization and simulation shows the intake and exhaust valve lift moving and air fluid flow of the diesel engine model.

  19. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Directory of Open Access Journals (Sweden)

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  20. Performance of HCCI Diesel Engine under the Influence of Various Working and Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2012-06-01

    Full Text Available Homogenous-charge-compression-ignition (HCCI engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. Homogenous Compression ignition (HCCI is a combustion concept, which is a hybrid between Otto engine and Diesel engine. The other emissions like HC and CO are high but can be after treated by a catalyst. This paper reviews the Characteristics of HCCI combustion in direct injection diesel engines under various governing factors in HCCI operations such as injection timing, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR and supercharging or turbo charging are discussed in this review. The effects of design and operating parameters on HCCI diesel combustion, emissions particularly NOx and soot are reviewed.

  1. Knock characteristics of dual-fuel combustion in diesel engines using natural gas as primary fuel

    Indian Academy of Sciences (India)

    O M I Nwafor

    2002-06-01

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we have the ignition stage followed by the combustion stage. There are three types of knock: diesel knock, spark knock and knock due to secondary ignition delay of the primary fuel (erratic knock). Several factors have been noted to feature in defining knock characteristics of dual-fuel engines that include ignition delay, pilot quantity, engine load and speed, turbulence and gas flow rate.

  2. The next generation of injection systems for high-speed diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ralph Michael; Senghaas, Clemens; Ziegler, Thomas; Willmann, Michael [L' Orange GmbH, Stuttgart (Germany)

    2011-11-15

    With the introduction of Tier 4 engines in the off-highway sector, L'Orange is presenting the next generation of its common rail fuel injection system. The system represents an evolution of the current series and has been improved and enhanced in detail, especially for increased injection pressures and heightened requirements regarding metering accuracy. (orig.)

  3. Parametric Study of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland; Mayer, Stefan

    2015-01-01

    Large commercial ships such as container vesselsand bulk carriers are propelled by low-speed, uniflowscavenged two-stroke diesel engines. The integral in-cylinderprocess in this type of engine is the scavenging process,where the burned gas from the combustion process isevacuated through the exhaust...... in axial velocity and the formation ofcentral recirculation zones, known as vortex breakdown. Thispaper will present a CFD analysis of the scavenging process ina MAN B&W two-stroke diesel engine. The study include aparameter sweep where the operating conditions such as airamount, port timing and scavenging...

  4. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel.

    Science.gov (United States)

    Canakci, Mustafa

    2007-04-01

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine.

  5. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    Directory of Open Access Journals (Sweden)

    Lance M Hallberg

    2017-06-01

    Full Text Available Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES, in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay, blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay, and hippocampus (lipid peroxidation assay, across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective.

  6. Optimising the noise of future passenger car diesel engines; Geraeuschoptimierung kuenftiger PKW-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Florian; Schaub, Joschka [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Steffens, Christoph; Kolbeck, Andreas [FEV GmbH, Aachen (Germany). Pkw-Dieselmotoren

    2013-02-01

    The Institute for Combustion Engines Aachen (VKA) at RWTH Aachen University and FEV have examined technical possibilities for improving the noise and comfort characteristics of future passenger car diesel engines. In the following article, the two research partners describe methods for acoustic optimisation by means of cylinder pressure-guided combustion control and design modifications to the engine. Subsequent engine tests confirmed a significant reduction in noise emissions. (orig.)

  7. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    Science.gov (United States)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  8. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, D.N.; Baker, D. (Illinois Univ., Urbana, IL (USA)); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. (Argonne National Lab., IL (USA))

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  9. The Effect of Bio-Fuel Blends and Engine Load on Diesel Engine Smoke Density for Sustainable Environment

    Directory of Open Access Journals (Sweden)

    Prof. R. K. Mandloi

    2010-10-01

    Full Text Available The diesel engine is a major contributor to air pollution especially within cities and along urban traffic routes. Therefore it has become very essential to develop the technology of IC engines, which will reduce the consumption of petroleum fuels and exhaust gas emissions. In fact, agricultural and transport sectors are almost diesel dependent. The various alternative fuel options researched for diesel are mainly biogas, producer gas, ethanol, methanol and vegetable oils. Out of all these, vegetable oils offer an advantage because of its comparable fuel properties with diesel and can be substituted between 20%-100%depending upon its processing. But as India stillimports huge quantity of edible oils, therefore, the use of non-edible oils of minor oilseeds like Karanji oil has been tested as a diesel fuel extender. The problems have been mitigated by developing vegetable oil derivatives that approximate the properties and performance and make them compatible with the hydrocarbon-based diesel fuels through the pyrolysis, micro emulsification, dilution and transesterification. The various fuel blends of karanji oil were tested on different engine loads to evaluate it smoke density.

  10. Compacted graphite iron-A material solution for modern diesel engine cylinder blocks and heads

    Institute of Scientific and Technical Information of China (English)

    Steve Dawson; SinterCast; Sweden

    2009-01-01

    The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine.Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.

  11. Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

    NARCIS (Netherlands)

    Mentink, P.; Nieuwenhof, R. van den; Kupper, F.; Willems, F.; Kooijman, D.

    2015-01-01

    Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low

  12. Concentric camshaft system for gasoline and diesel engines; Konzentrische Verstellnockenwellen fuer Otto- und Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Steve [BorgWarner Morse TEC, Auburn Hills, MI (United States); Joergl, Volker; Becker, Michael [BorgWarner, Ludwigsburg (Germany); Stapelmann, Andreas [ThyssenKrupp Presta Camshafts Gruppe, Chemnitz (Germany)

    2011-10-15

    BorgWarner and ThyssenKrupp Presta have jointly developed a system of phaser and adjustable concentric camshafts that are applicable to both diesel and gasoline engines. Comprehensive simulation work and experimental investigations on an engine dyno have proven considerable potential for reducing emissions and improving fuel consumption. (orig.)

  13. Characterising Combustion in Diesel Engines: using parameterised finite stage cylinder process models

    NARCIS (Netherlands)

    Ding, Y.

    2011-01-01

    Characterising combustion of diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. An effective way to achieve this goal is to parameterize the

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIX, REVIEWING THE CONSTRUCTION OF ENGINE COMPONENTS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A REVIEW OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE COMPONENTS. TOPICS ARE STATIONARY PARTS, ENGINE MOVING PARTS, PISTON RINGS, AND CONNECTING RODS AND PISTON PINS. THE MODULE CONSISTS OF AN INSTRUCTOR'S GUIDE, TRANSPARENCIES, A LIST OF SUGGESTED SUPPLEMENTARY MATERIALS, AND TRAINEE…

  15. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  16. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  18. Compacted graphite iron – A material solution for modern diesel engine cylinder blocks and heads

    Directory of Open Access Journals (Sweden)

    Dr. Steve Dawson

    2009-08-01

    Full Text Available The demands for improved fuel economy, performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines, where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength, 45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron, CGI satisfi es durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently, there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume, potentially accounting for 10%–15% of the North American passenger vehicle fleet within the next four years.

  19. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  20. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  1. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  2. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  3. Reduction of harmful nitrogen oxide emission from low heat rejection diesel engine using carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Thulasi Gopinathan

    2016-01-01

    Full Text Available In this study, lanthanum aluminate is used as thermal barrier coating material for the first time in the internal combustion engine to convert the standard engine into low heat rejection engine. Initially, the biodiesel is prepared from sunflower oil by using trans-esterification process. The piton crown, cylinder head and valves of the engine is coated with lanthanum aluminate for a thickness of around 200 microns. However, the analysis of performance and emission characteristics of a standard diesel is carried out with diesel/biodiesel to compare with the low heat rejection engine. The lanthanum aluminate coated engine fueled with sunflower methyl ester shows better performance and emission. But the emission of NOx founds to be higher in the coated engine. Further, a small quantity of carbon nanotubes is added onto the biodiesel to carry out the experiments. Based on the results, the carbon nanotubes are added with the biodiesel to reduce the emission of NOx.

  4. Dynamics of very small soot particles during soot burnout in diesel engines; Dynamik kleinster Russteilchen waehrend der Russausbrandphase im Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Chemische Technik; Peters, N. [RWTH Aachen (DE). Institut fuer Technische Mechanik (ITM); Pittermann, R. [WTZ fuer Motoren- und Maschinenforschung Rosslau gGmbH (Germany); Hentschel, J.; Weber, J.

    2003-07-01

    The investigations used advanced laser-optical methods for measuring soot particle size distributions, temporally and spectrally resolved measurements of engine combustion, measurements of composition and size distribution of particles in exhaust, and further development and validation of reaction-kinetic models. In all, it can be stated that mixing will affect not only soot particle formation but also soot particle emissions. Mixing can be influenced by using a fuel-water emulsion and by CR injection. Experiments and models both showed the advantageous effects of water added to the diesel fuels and of CR injection. The higher OH radical concentrations in the later combustion stages also serve to ensure faster oxidation of soot. (orig.) [German] Ziel des Projektes war es, Informationen ueber die Bildung und Oxidation von Russ sowie die Teilchendynamik der Russteilchen waehrend der Ausbrandphase zu erhalten. Dies wurde erreicht durch die Weiterentwicklung laseroptischer Methoden zur Bestimmung der Groessenverteilung von Russpartikeln, durch zeit- und spektral aufgeloeste Erfassung der motorischen Verbrennung, durch die Bestimmung von Zusammensetzung und Groessenverteilung von Partikeln im Abgas sowie durch die Weiterentwicklung und Validierung von reaktionskinetischen Modellen. Zusammenfassend laesst sich sagen, dass sich die Gemischbildung im Dieselmotor nicht nur auf die Bildung der Russpartikel sondern auch auf die Russpartikelemission auswirkt. Die Verwendung einer Kraftstoff-Wasser-Emulsion und die Common-Rail-Einspritzung stellen zwei Verfahren zur Beeinflussung der Gemischbildung dar. Sowohl die experimentellen Untersuchungen als auch die Modellierung zeigen den die Gemischbildung foerdernden Einfluss des Zusatzes von Wasser zum Dieselbrennstoff. Ein erhoehter Anteil an vorgemischter Verbrennung, wie er auch durch die Verwendung hoher Einspritzdruecke bei der Common-Rail-Einspritzung erreicht werden kann, verringert die waehrend der Verbrennung entstehende

  5. Experimental Analysis of Performance of Diesel Engine Using Kusum Methyl Ester With Diethyl Ether as Additive

    Directory of Open Access Journals (Sweden)

    Sandip S. Jawre,

    2014-05-01

    Full Text Available The fossile fuels are widely used in diesel engine and continually depleting with increasing consumption and prices day by day. The fatty acid methyl ester has become an effective alternative to diesel. Various types of vegetable oil such as Jatropha, karanja, cottonseed, neem, sunflower, palm, mahuva, coconut etc. can be used as fuel in diesel engine. Kusum oil is one of the fuel used in present work. The viscosity of kusum oil is very high, so it was reduced by Transesterification process. This study presents effect of diethyl ether as additive to biodiesel of kusum (schliechera oleosa methyl ester on the performance and emission of diesel engine at different load and constant speed and two different injection pressure (170 and 190 bar. From literature it was observed that very few studies had been conducted on use of neat biodiesel and diethyl ether blends and use of kusum methyl ester (KME in diesel engine found to be very less as compared to different biodiesel. Hence this topic was taken under study. The fuels and its blends used are 100% diesel, B100 (100% KME, BD-1 (95% KME, 5% DEE, BD-2 (90% KME, 10% DEE, BD-3 (85% KME, 15% DEE respectively. It was observed that the performance of engine increases at high injection pres-sure. The results indicate that lower BSFC was observed with BD-3 as compared to B100, BD-1 and BD-2. Brake thermal efficiency of BD-3 decreased at 170 bar injection pressure but it increase at 190 bar. Drastic re-duction in smoke is observed with all blends at higher engine loads. DEE addition to biodiesel reflects better engine performance compared to neat biodiesel.

  6. Performance and emission study on DICI and HCCI engine using raw pongamia oil and diesel

    Directory of Open Access Journals (Sweden)

    Mani Venkatraman

    2016-01-01

    Full Text Available The present work investigates the performance and emission characteristics of pongamia oil and diesel fuelled direct injection compression ignition (DICI and homogeneous charge compression ignition (HCCI engine. The primary objective of the work is to investigate the feasibility of application of unmodified pongamia oil in Diesel engine and to estimate the maximum fraction of diesel fuel replaced by the neat pongamia oil. This investigation also deals with the HCCI operation using unmodified pongamia oil. In DICI mode the neat pongamia oil is admitted into the engine in the form of pongamia oil and diesel blends. The blend that offers highest diesel replacement is considered as the test blend and it is tested further to find its maximum possible brake thermal efficiency by changing the engine operating parameters. The selected maximum blend is then tested in the new setting of the engine to determine the maximum possible performance and emission characteristics. The conventional emissions of DICI engine such as NO and smoke are disappeared in the homogeneous charge compression ignition mode of operation. The HCCI engine tested in the present work is fuelled by 40% neat pongamia oil and 60% diesel fuel through direct injection and vapour induction, respectively. The ignition or combustion phasing of the HCCI operation is carried out by the exhaust gas recirculation method. The amount of exhaust gas re-circulation governs the timing of combustion. The results of the experiments show that the neat pongamia oil performed well in HCCI mode and offered approximately ten times lower NO and smoke emission. Finally, the results of the DICI mode and HCCI mode are compared with each other to reveal the truths of neat pongamia oil in heterogeneous and homogeneous combustion.

  7. Control strategy research on the electronic control system of the marine low-speed diesel engine%船用低速柴油机电控系统控制策略试验研究

    Institute of Scientific and Technical Information of China (English)

    王勤鹏; 杨建国; 余永华

    2013-01-01

    为研究电控系统主要控制参数随柴油机负荷变化规律及各参数间的相互关联,利用船用低速柴油机高压共轨电控系统硬件在环仿真试验平台,同步采集试验平台重要控制参数,对电控系统燃油轨压调节、伺服油轨压调节、低负荷喷油器轮换工作、燃油喷射定时和排气阀启闭定时等控制策略进行了研究。研究表明:燃油轨压调节采用闭环和前馈修正的控制算法,喷射定时控制与柴油机转速、扫气压力和燃油轨压相关联,柴油机低负荷时3个喷油器按一定间隔时间轮换工作;随柴油机负荷增加,伺服油轨压和排气阀开启持续角度亦增加;排气阀开启与柴油机转速和排气关闭角度相关,而排气阀关闭则仅与柴油机转速相关。%In order to research the law of the main control parameters of the electronic control system changing with diesel engine loads, as well as correlation of parameters, the control strategy of the high-pressure common-rail elec-tronic control system for a marine low-speed diesel engine is presented in this paper. Based on a hardware-in-loop simulation test bench, the important control parameters of the test bench were collected synchronically to research the fuel rail pressure control of the electronic control system, servo oil rail pressure control, low load injector rotation law, the injection timing and the exhaust valve start and stop timing, etc. The research results show that the common-rail fuel pressure is regulated by using a closed-loop and a correction of a feed-forward control algorithm. The injection timing control is affected by the rotation speed of the marine low-speed diesel engine, the scavenging pressure and the fuel common-rail pressure. Three injectors in a cylinder work alternately with a certain interval time at low loads of the marine low-speed diesel engine. With the increase of the load of the marine diesel engine, the servo oil

  8. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    Science.gov (United States)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  9. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  10. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  11. Performance analysis of a biodiesel fuelled diesel engine with the effect of alumina coated piston

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Srinivasan

    2017-01-01

    Full Text Available Biodiesel is one of the best alternative fuels to Diesel engine among other sources due to having potential to reduce emissions. Biodiesel is a renewable, biodegradable and environment friendly fuel in nature. The advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of semi adiabatic (thermal barrier coated piston engine. The objective of this study is to investigate the performance and emission characteristics of a single cylinder direct injection Diesel engine using 25% biodiesel blend (rubber seed oil methyl ester as fuel with thermal barrier coated piston. Initially the piston crown was coated with alumina (Al2O3 of thickness of 300 micron (0.3 mm by plasma coating method. The results revealed that the brake thermal efficiency was increased by 4% and brake specific fuel consumption was decreased by 9% for B25 with coated piston compared to un-coated piston with diesel. The smoke, CO, and HC emissions were also decreased for B25 blend with coated piston compared with the uncoated piton engine. The combustion characteristics such as peak pressure, maximum rate of pressure rise, and heat release rate were increased and the ignition delay was decreased for B25 blend for the coated piston compared with diesel fuel.

  12. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  13. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  14. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  15. Effects of Diary Scum Oil Methyl Ester on a DI Diesel Engine Performance and Emission

    Directory of Open Access Journals (Sweden)

    Benson Varghese Babu

    2012-06-01

    Full Text Available Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emission from CI engine and minimum cost so there is need for producing biodiesel other than from seed oil. In this study the diary waste scum were used as the raw material to produce biodiesel. Scum oil methyl ester (SOME is produced in laboratory by tranestrification process. The properties of SOME thus obtained are comparable with ASTM biodiesel standards. Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke diesel engine fuelled with scum biodiesel and its blends with standard diesel. Tests has been conducted using the fuel blends of 10%, 20%, 30% and 100% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 17.5 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, brake specific fuel consumption, and exhaust gas temperature.

  16. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  17. Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller