WorldWideScience

Sample records for ragusa amblyseius graminis

  1. Life Table Parameters and Consumption Rate of Cydnodromus picanus Ragusa, Amblyseius graminis Chant, and Galendromus occidentalis (Nesbitt on Avocado Red Mite Oligonychus yothersi (McGregor (Acari: Phytoseiidae, Tetranychidae Parámetros de Tabla de Vida y Tasa de Consumo de Cydnodromus picanus Ragusa, Amblyseius graminis Chant y Galendromus occidentalis (Nesbitt, sobre la Arañita Roja del Palto Oligonychus yothersi (McGregor (Acari: Phytoseiidae, Tetranychidae

    Directory of Open Access Journals (Sweden)

    Tommy Rioja S

    2009-06-01

    Full Text Available The avocado red mite Oligonychus yothersi (McGregor is the major leaf pest in Chile’s avocado orchards. Itaffects leaf physiology and makes it necessary to seek new natural enemies to interact with low population densities of O. yothersi. The potentiality of three predator mites: Cydnodromus picanus Ragusa, Amblyseius graminis Chant, and Galendromus occidentalis (Nesbitt was evaluated under laboratory conditions (27 ± 1.93ºC, 87 ± 3.61% H.R. and 16:8 (L:D photoperiod on avocado leaf disks Persea americana Mill. var. Hass (Ø = 5 cm by separately feeding eggs, immature, and adult females of O. yothersi, and registering postembryonic development, consumption, as well as life table parameters. The postembryonic development of C. picanus was significantly lower (5.46 days compared to both A. graminis (7.33 days and G. occidentalis (8.69 days which were fed with immature O. yothersi. The life table parameters of C. picanus were net reproductive rate R0 = 25.41, finite rate of increase λ = 1.29, and Mean Generation Time T = 12.46. The Net Intrinsic Rate of Increase (r m was significantly higher for C. picanus (r m = 0.25 in contrast with G. occidentalis (r m = 0.19, while A. graminis showed r m = -0.06 indicating that its population didn’t have descendants. Under laboratory conditions, r m registered by C. picanus is an indicator of its predatory potential to control O. Yothersi. It can be assumed that the pest population reduction pattern could be maintained under field conditions.En Chile la arañita roja del palto Oligonychus yothersi (McGregor es la plaga más importante a nivel foliar en huertos comerciales afectando la fisiología de la hoja, siendo necesario la búsqueda de nuevos enemigos naturales que interactúen a bajas densidades poblacionales de O. yothersi. Se evaluó en condiciones de laboratorio (27±1,93ºC, 87±3,61 % H.R. y un fotoperíodo de 16:8 (L:O sobre discos de hojas de palto Persea americana Mill. var. Hass (Ø = 5

  2. Earthquake history of the Republic of Ragusa (today Dubrovnik, Croatia) (Invited)

    Science.gov (United States)

    Albini, P.; Rovida, A.; Locati, M.

    2009-12-01

    Among the towns constellating the Dalmatian coast, Ragusa (today Dubrovnik, Croatia), stands out, both because of its location in the middle of the Eastern Adriatic coast and its long-lasting, independent history of a Modern Age town and its small coastal territory. An important intelligence crossroads, squeezed as it was in between powerful and influential neighbours, such as the Ottoman Empire and the Republic of Venice, in its history (1358-1808) the Republic of Ragusa did experience heavily damaging earthquakes. We narrate the story of these earthquakes, which were recorded in the historical documentation of the Republic (today stored at the State Archives of Dubrovnik - Drzavni arhiv u Dubrovniku) as well as in documents from officers of other Mediterranean countries and letters of individuals. Of special note is the 6 April 1667 earthquake, which inflicted a permanent scar on the Republic. The earthquake's direct effects and their consequences caused a serious financial crisis, so critical that it took over 50 years for Ragusa to recover. This large earthquake is reappraised on the basis of newly investigated sources, and effects of the damage within the city walls are detailed. A seismic history of Ragusa is finally proposed, supported by full-text coeval records.

  3. Species of the genus Amblyseius Berlese, 1914, from Tamatave, East Madagascar (Acarina: Phytoseiidae)

    NARCIS (Netherlands)

    Blommers, Leo

    1974-01-01

    Seven new species of the genus Amblyseius are described: Amblyseius (Proprioseiopsis) parasundi, A. (A.) tamatavensis, A. (A.) passiflorae, A. (A.) reptans, A. (A.) ivoloinae, A. (A.) ovaloides, A. (A.) aequidens. All species were collected on fruit trees except A. passiflorae. A. parasundi is a

  4. [Organization of colon-rectal cancer screening in the Provincial Health Agency of Ragusa].

    Science.gov (United States)

    Blangiardi, F; Ferrera, G; Cilia, S; Aprile, E

    2012-01-01

    Cancer screening is a secondary prevention program that permits early diagnosis of neoplasias and precancerous lesions are in order to diminish mortality and morbidity for certain types of tumors (breast, colon-rectal, and cervical). In 2010, the Ragusa Provincial Health Agency began screening for colon-rectal cancer in an experimental phase that initially involved only the municipality of Ragusa but that was then extended to other municipalities of the province. Although the organizing model suffered from many managerial problems including lack of human resources and tools, there was good collaboration and involvement of the public health/hygiene offices and the general practitioners and volunteer associations. This type of networking was useful in that adhesion to screening was well above that expected. Another winning aspect of the project resulted in clear and pertinent communication to the population.

  5. Ethics in oncology: principles and responsibilities declared in the Italian Ragusa statement.

    Science.gov (United States)

    Gori, Stefania; Pinto, Carmine; Caminiti, Caterina; Aprile, Giuseppe; Marchetti, Paolo; Perrone, Francesco; Di Maio, Massimo; Omodeo Salè, Emanuela; Mancuso, Annamaria; De Cicco, Maurizio; Di Costanzo, Francesco; Crispino, Sergio; Passalacqua, Rodolfo; Merlano, Marco; Zagonel, Vittorina; Fioretto, Luisa; Micallo, Giovanni; Labianca, Roberto; Bordonaro, Roberto; Comandone, Alessandro; Spinsanti, Sandro; Iacono, Carmelo; Nicolis, Fabrizio

    2016-12-01

    Cancer care involves many ethical issues. The need for more patient-centered healthcare together with the improved empowerment of every person diagnosed with cancer have been transposed by the Italian Association of Medical Oncology (AIOM) and eventually translated in the Ragusa statement. This position paper describes the philosophy that lies beneath this document and its fundamental principles.

  6. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].

    Science.gov (United States)

    Hu, Rong; Huang, Jian-Bo; Yang, Zhou-Ping; Cheng, Zi-Zhang; Jing, De-Jun; Huang, Qian-Ming

    2011-12-01

    With a shaker, this paper studied the characteristics of the biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5 under different adsorption time, initial pH, and temperature, as well as the desorption and recycling use of the dyes. The biosorption of crystal violet and malachite green by R. graminis Y-5 had the peaks (93.8% and 87.7%, respectively) at pH 7.0, dye concentration 50 mg x L(-1), 150 r x min(-1), 30 degrees C, and lasting 10 hours. After desorption, the biosorption rate of crystal violet and malachite green by R. graminis was 85.5% and 78.5%, respectively, indicating that the biosorption of crystal violet and malachite green was reversible, and the recycling use of the dyes by R. graminis was quite good, i. e., the dyes were renewable and could be recycled. Biosorption could be the mechanism of the decolorization of the dyes. The dyes were mostly adsorbed on the R. graminis surface -OH. The adsorption process was fast, efficient, and reversible, suggesting that R. graminis had a high potential for waste water treatment.

  7. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans.

    Science.gov (United States)

    Heshof, Ruud; van Schayck, J Paul; Tamayo-Ramos, Juan Antonio; de Graaff, Leo H

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.

  8. Biolistic transformation of the obligate plant pathogenic fungus, Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Knudsen, S.; Giese, H.

    1995-01-01

    Particle gun acceleration appears to be a possible way to transform mycelium cells of obligate plant parasites growing on host surfaces, GUS expression was obtained in E. graminis f.sp. hordei cells after bombardment with the GUS gene under the control of the E. graminis f.sp. hordei beta...

  9. Crown sheath rot of rice: host-range and varietal resistance to Gaeumannomyces graminis var. graminis

    Directory of Open Access Journals (Sweden)

    Cecília do Nascimento Peixoto

    2014-09-01

    Full Text Available Several gramineous plants occurring in rice fields show symptoms of crown sheath rot of rice, caused by Gaeumannomyces graminis var. graminis (Ggg, under natural conditions of infection. The pathogenicity of the Ggg-a 01 isolate, collected from rice, was tested on seven grass species and eight cereals, under greenhouse conditions, in order to get information on host-range and resistance of rice genotypes to crown sheath rot. The inoculation tests showed that the rice isolate was pathogenic to weeds such as Echinochloa crusgalli, Pennisetum setosum, Brachiaria sp., Digitaria horizontalis, Brachiaria plantaginea, Eleusine indica and Cenchrus echinatus, and that these species are potential hosts to the pathogen. Winter cereals such as wheat, oat, rye, barley and triticale, as well as sorghum, maize and millet, presented different degrees of susceptibility to the Ggg-a isolate. Significant differences were observed in relation to lesion height and production of hyphopodia and perithecia on culms. Perithecia were not observed on millet, sorghum, southern sandbur and maize. The resistance of 58 upland rice genotypes was tested, and the SCIA16 and SCIA08 genotypes presented lesion height significantly smaller, being considered resistant, when compared to the highly susceptible CNAS10351 genotype.

  10. Vitamin A deficiency modifies response of predatory mite Amblyseius potentillae to volatile kairomone of two-spotted spider mite, Tetranychus urticae.

    NARCIS (Netherlands)

    Dicke, M.; Sabelis, M.W.; Groeneveld, A.

    1986-01-01

    volatile kairomone of the two-spotted spider mite,Tetranychus urticae, elicits a searching response of the phytoseiid predatorAmblyseius potentillae, only when the predator is reared on a carotenoid-free diet. However, after addition of crystalline betta-carotene or vitamin A acetate to the

  11. The Brachypodium-Puccinia graminis system: Solving a puzzle to uncover the underlying mechanisms of non-host resistance and plant immunity

    Science.gov (United States)

    Brachypodium distachyon is regarded as non-host to the causal agent of stem rust in wheat and barley, P. graminis f. sp. tritici (Pgt), and a near-host to the pathogens of forage grasses, P. graminis f. sp. lolii (Pgl) and P. graminis f. sp. phlei-pratensis (Pgp). Given the devastating effect of ste...

  12. Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers.

    Science.gov (United States)

    Li, Wei; Feng, Yanxia; Sun, Haiyan; Deng, Yuanyu; Yu, Hanshou; Chen, Huaigu

    2014-11-01

    Understanding the genetic structure of Gaeumannomyces graminis var. tritici is essential for the establishment of efficient disease control strategies. It is becoming clear that microsatellites, or simple sequence repeats (SSRs), play an important role in genome organization and phenotypic diversity, and are a large source of genetic markers for population genetics and meiotic maps. In this study, we examined the G. graminis var. tritici genome (1) to analyze its pattern of SSRs, (2) to compare it with other plant pathogenic filamentous fungi, such as Magnaporthe oryzae and M. poae, and (3) to identify new polymorphic SSR markers for genetic diversity. The G. graminis var. tritici genome was rich in SSRs; a total 13,650 SSRs have been identified with mononucleotides being the most common motifs. In coding regions, the densities of tri- and hexanucleotides were significantly higher than in noncoding regions. The di-, tri-, tetra, penta, and hexanucleotide repeats in the G. graminis var. tritici genome were more abundant than the same repeats in M. oryzae and M. poae. From 115 devised primers, 39 SSRs are polymorphic with G. graminis var. tritici isolates, and 8 primers were randomly selected to analyze 116 isolates from China. The number of alleles varied from 2 to 7 and the expected heterozygosity (He) from 0.499 to 0.837. In conclusion, SSRs developed in this study were highly polymorphic, and our analysis indicated that G. graminis var. tritici is a species with high genetic diversity. The results provide a pioneering report for several applications, such as the assessment of population structure and genetic diversity of G. graminis var. tritici.

  13. A Blumeria graminis f.sp. hordei BAC library - contig building and microsynteny studies

    DEFF Research Database (Denmark)

    Pedersen, C.; Wu, B.; Giese, H.

    2002-01-01

    A bacterial artificial chromosome (BAC) library of Blumeria graminis f.sp. hordei, containing 12,000 clones with an average insert size of 41 kb, was constructed. The library represents about three genome equivalents and BAC-end sequencing showed a high content of repetitive sequences, making...... contigs, at or close to avirulence loci, were constructed. Single nucleotide polymorphism (SNP) markers were developed from BAC-end sequences to link the contigs to the genetic maps. Two other BAC contigs were used to study microsynteny between B. graminis and two other ascomycetes, Neurospora crassa...

  14. Hygienic assessment of risk caused by application of graminis ke and rinkor vg herbicides

    Directory of Open Access Journals (Sweden)

    M.M. Vasileva

    2017-12-01

    Full Text Available Our research goal was to perform hygienic assessment of risks caused by Graminis KE and Rinkor VG herbicides for people working with them. We applied sanitary-hygienic and toxicological research techniques in our work in full conformity with valid technical regulatory documents and guidelines. We set the following research tasks: to analyze literature and information sources; to perform primary toxicological assessment of preparatory herbicides and study their acute toxicity together with sensitizing effects at intragastric introduction, cutaneous application, and inhalation exposure on laboratory animals; to examine herbicides cumulative effects and calculation their cumulation coefficient; to examine working conditions during a natural experiment when Graminis KE and Rinkor VG herbicides were applied and calculate risks for workers; to work out scientifically grounded recommendations on their safety application in agriculture. The examined herbicides, Graminis KE and Rinkor VG, are classified as substances with the 3rd hazard degree as per their toxicometric parameters (moderately hazardous substances. Calculated risks of complex (inhalant and dermal exposure to Gramins KE and Rinkor VG herbicides for workers (operators who refills them and those who spray plants with them when they are applied in agriculture don't exceed acceptable levels (are less than 1. Our work results allow to enrich a set of plant protectors which are applied in the country and to use such preparations in agriculture which are the least harmful for health and the environment. Application of Graminis KE and Rinkor VG herbicides will help to increase crops productivity.

  15. Introduction of Ophiobolus graminis into new polders and its decline

    NARCIS (Netherlands)

    Gerlagh, M.

    1968-01-01

    After a short introductory chapter on the occurrence of Ophiobolus graminis (take-all disease) in the polders, in chapter 2 the course of the disease and the biology of the fungus are described. The third chapter deals with materials and methods. The following chapters deal with

  16. Physiologic specialization of Puccinia graminis f. sp. tritici in Kenya in 2011

    Science.gov (United States)

    A total of 12 collections of Puccinia graminis f. sp. tritici were obtained from Kenya during 2011. Collections were made around Mount Kenya and in wheat growing areas southwest towards Nakuru in the Rift Valley. Four collections were made from the international stem rust screening nursery in Njoro....

  17. Two Dimensional Electrophoresis of Proteins from Cultures of Erysiphe graminis f.sp. hordei

    DEFF Research Database (Denmark)

    Torp, J.; Andersen, Brian

    1982-01-01

    Conidial proteins from barley powdery mildew, Erysiphe graminis f. sp. hordei, were separated by 2-dimensional electrophoresis in polyacrylamide slab gels. Isoelectric focusing was used in the first dimension and separation according to molecular weight in a gel containing sodium dodecyl sulphate...

  18. Basal resistance of barley to adapted and non-adapted forms of Blumeria graminis

    NARCIS (Netherlands)

    Aghnoum, R.

    2009-01-01

    In the barley-Blumeria interaction, resistance at penetration stage in association with papilla formation is a commonly occurring mechanism. This mechanism of defense reduces the infection severity by adapted powdery mildew pathogen (basal resistance to Blumeria graminis f.sp. hordei, Bgh) and fully

  19. Structure and migration in U.S. Blumeria graminis f. sp. tritici populations

    Science.gov (United States)

    While wheat powdery mildew occurs throughout the south-central and eastern U.S.A, epidemics are especially damaging in the Mid-Atlantic states. The structure of the U.S. Blumeria graminis f. sp. tritici population was assessed based on a sample of 238 single-spored isolates. The isolates were coll...

  20. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae).

    Science.gov (United States)

    Delisle, J F; Brodeur, J; Shipp, L

    2015-04-01

    Although phytoseiids are best known as predators of phytophagous mites and other small arthropods, several species can also feed and reproduce on pollen. In laboratory assays, we assessed the profitability of two types of dietary supplements (three pollen species-cattail, maize and apple-and eggs of the Mediterranean flour moth, Ephestia kuehniella) for the two species of predatory mites most commonly used as biocontrol agents in horticulture in Canada, Neoseiulus cucumeris and Amblyseius swirskii. We measured the effects of each diet on phytoseiid fitness parameters (survival, development, sex ratio, fecundity) and, as a means of comparison, when fed larvae of the common targeted pest species, western flower thrips Frankliniella occidentalis. A soluble protein assay was also performed on the alternative food sources as protein content is often linked to high nutritive value according to the literature. All food sources tested were suitable for N. cucumeris and A. swirskii, both species being able to develop from egg to adult. The dietary supplements had a beneficial impact on biological parameters, mostly resulting in shorter development times and higher survival rates when compared to thrips larvae. Amblyseius swirskii exhibited a wider dietary range than N. cucumeris. Overall, flour moth eggs, cattail pollen and apple pollen are food sources of equal quality for A. swirskii, whereas apple and cattail pollen are better when it comes to N. cucumeris. In contrast, maize pollen is a less suitable food source for N. cucumeris and A. swirskii. Soluble protein content results did not match the prediction under which the most beneficial food source would contain the highest concentration in protein.

  1. Stem rust (Puccinia graminis ssp. graminicola Urban its hosts and harmfulness in grasses grown for seed

    Directory of Open Access Journals (Sweden)

    Maria Prończuk

    2013-12-01

    Full Text Available Stem rust development on four species of grasses was studied in field experiments conducted at Radzików in 1997-2001. Population of Puccinia graminis ssp. graminicola from different hosts was characterised and their harmfulness for grass grown for seed was estimated. The materials for study were ecotypes and strains of Lolium perenne, Festuca rubra, Poa pratensis and Deschampsia caespitosa collected in breeding nursery and cultivars and strains of L.perenne, F.rubra, P.pratensis cultivated for seed. It was found that the changes in environmental conditions during last years influenced earlier occurrence of stem rust on grasses in Poland. All examined species were the host of P.graminis ssp. graminicola, however the period of infection of particular hosts were different. L.perenne and D.caespitosa were infected in early summer but F.rubra and P.pratensis in late summer or in the autumn. Morphological analysis of spores of P.graminis ssp. graminicola have shoved significant differences between populations obtained from L.perenne and D.caespitosa. Some differences were found between populations from F.rubra and P.pratensis also, but they need more study. Every year occurrence of stem rust on L.perenne and D.caespitosa and its relation with spring temperature in Radzików indicated that populations of patogen could overwinter in local turf. Incidental appearance of stem rust on F.rubra and P.pratensis in centre of Poland allowed to suppose that spores of these forms might be transfer by wind from other regions. The investigation revealed that stem rust can be dangerous for L.perenne grown for seed when infection occurs at flowering time. It has been established that infection of F.rubra and P.pratensis in autumn should not be disregarded. Damages of leaves by P.graminis ssp. graminicola substantially limited plant heading in the next year.

  2. Prey Preference of the Predatory Mite, Amblyseius swirskii between First Instar Western Flower Thrips Frankliniella occidentalis and Nymphs of the Twospotted Spider Mite Tetranychus urticae

    OpenAIRE

    Xu, Xuenong; Enkegaard, Annie

    2010-01-01

    The prey preference of polyphagous predators plays an important role in suppressing different species of pest insects. In this study the prey preference of the predatory mite, Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) was examined between nymphs of the twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and first instar larvae of the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), as well as between active and chrysa...

  3. Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis

    NARCIS (Netherlands)

    Trujillo, M.; Troeger, M.; Niks, R.E.; Kogel, K.H.; Huckelhoven, R.

    2004-01-01

    Non-host resistance of barley to Blumeria graminis f.sp. tritici (Bgt), an inappropriate forma specialis of the grass powdery mildew fungus, is associated with formation of cell wall appositions (papillae) at sites of attempted fungal penetration and a hypersensitive cell death reaction (HR) of

  4. Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up

    NARCIS (Netherlands)

    Villaverde, J.J.; Vlist, van der V.; Santos, S.A.O.; Haarmann, T.; Langfelder, K.; Pirttimaa, M.; Nyyssola, A.; Jylhä, S.; Tamminen, T.; Kruus, K.; Graaff, de L.H.; Pascoal Neto, C.; Simoes, M.M.Q.; Domingues, M.R.M.; Silvestre, A.J.D.; Eidner, J.; Buchert, J.

    2013-01-01

    Linoleic acid was converted into hydroperoxides by a Gaeumannomyces graminis tritici lipoxygenase produced recombinantly in Trichoderma reesei. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion

  5. Effect of Weather on the Occurrence of Puccinia Graminis Subsp. Graminicola and Puccinia Coronata F. Sp. Lolii at Lolium Perenne L. and Deschampsia Caespitosa (L. P. B.

    Directory of Open Access Journals (Sweden)

    Monika Novotná

    2017-01-01

    Full Text Available Monitoring of Puccinia graminis subsp. graminicola and Puccinia coronata f. sp. lolii was carried out in Plant breeding station called Větrov. The pathogens were estimated on turf grass (Lolium perenne L., Deschampsia caespitosa (L. P. B. from 2009 to 2014. Puccinia graminis subsp. graminicola was detected in the increased level in 2009 and 2012. The highest amount of mixed infections was determined in 2014 because of the warmest winter from all monitored years and low precipitations. Significant differences were found out in the resistance of similar plant materials grown in different fields. Significant effect of weather conditions and supposed effect of different infectious pressure on various fields were reflected in these facts. At evaluated grasses, the highest (P < 0.05 occurence of Puccinia graminis subsp. graminicola. Lolium perenne L. was observed and the infection of Puccinia graminis subsp. graminicola (P < 0.05 was determined higher than in Deschampsia caespitosa (L. P. B.

  6. The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari: Phytoseiidae), Amblyseius fallacis (Acari: Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera: Anthocoridae).

    Science.gov (United States)

    Bostanian, Noubar J; Akalach, Mohammed

    2006-04-01

    A laboratory study assessed the contact toxicity of indoxacarb, abamectin, endosulfan, insecticidal soap, S-kinoprene and dimethoate to Amblyseius fallacis (Garman), Phytoseiulus persimilis Athias-Henriot and nymphs of Orius insidiosus (Say). Amblyseius fallacis is a predacious phytoseiid mite and an integral part of integrated pest management (IPM) programmes in North American apple orchards. The other two beneficials are widely used in greenhouses to manage various arthropod pests infesting vegetable and ornamental crops. Indoxacarb is a slow-acting insecticide, so toxicity data were recorded 7 days post-treatment when the data had stabilised. It showed no toxicity to O. insidiosus nymphs or to A. fallacis or P. persimilis adults. The LC50 values for O. insidiosus nymphs and P. persimilis could not be estimated with their associated confidence limits, because the g values were greater than 0.5 and under such circumstances the lethal concentration would lie outside the limits. The LC50 for A. fallacis was 7.6x the label rate. The fecundity of P. persimilis was reduced by 26.7%. The eclosion of treated eggs from both species of beneficial mites was not affected adversely. Among the other pest control products, S-kinoprene and endosulfan affected adversely at least one species of the predators, whereas dimethoate, abamectin and insecticidal soap were very toxic to all three beneficials. Indoxacarb should be evaluated as a pest control product in IPM programmes. Copyright (c) 2006 Crown in the right of Canada.

  7. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.

    Science.gov (United States)

    Durham, D R

    1984-01-01

    Rhodotorula graminis utilized DL-mandelate, L(+)-mandelate, and D(-)-mandelate as sole sources of carbon and energy. Growth on these aromatic substrates resulted in the induction of an NAD-dependent D(-)-mandelate dehydrogenase and a dye-linked L(+)-mandelate dehydrogenase, each catalyzing the stereospecific conversion of its respective enantiomer of mandelate to benzoylformate. Benzoylformate was oxidized to benzaldehyde, which was dehydrogenated to benzoate by an NAD-dependent benzaldehyde dehydrogenase. Benzoate was further metabolized through p-hydroxybenzoate and the protocatechuate branch of the beta-ketoadipate pathway. PMID:6389497

  8. Antifungal (Gaeumannomyces graminis var. tritici) activity of various glycosides of medicagenic acid

    OpenAIRE

    Stefan Martyniuk; Marian Jurzysta

    2012-01-01

    Different concentrations of medicagenic acid and five glycosides of this acid isolated from alfalfa (Medicago sativa) were added to agar medium (corn meal agar, CMA) inoculated with cultures of Gaeumannomyces graminis var. tritici (Ggt). After 7 days of incubation at 25oC colony radius was measured and % of inhibition calculated in relation to the control medium (CMA enriched with the solvent of the tested compounds). Within the tested concentrations, only 3-O-β -D -glucopiranoside medicagena...

  9. Induction of cellular accessibility and inaccessibility and suppression and potentiation of cell death in oat attacked by ¤Blumeria graminis¤ f.sp. ¤avenae¤

    DEFF Research Database (Denmark)

    Carver, T.L.W.; Lyngkjær, M.F.; Neyron, L.

    1999-01-01

    graminis DC.). Successful penetration and haustorium formation by the inducer rendered living epidermal cells highly accessible to later challenge attack as judged by increased frequency of challenge penetration success compared to controls. Conversely, where failure of inducer attack on living epidermal......First-formed (seedling) and later-formed leaves of oat cvs Selma (susceptible) and Maldwyn (adult plant resistance under complex genetic control) were subjected to a double inoculation procedure ('inducer' followed by 'challenger') with conidia of Blumeria graminis (DC.) Speer (Syn. Erysiphe......, suggesting that induced changes in (in)accessibility may be a common consequence of B. graminis attack in cereals. As expected, in Maldwyn, cell death was a consistent but infrequent response to attack (5-20%, of attacks caused cell death in controls). Here, the successful formation of an inducer haustorium...

  10. In vitro Antagonistic Mechanisms of Trichoderma spp. and Talaromyces flavus to Control Gaeumannomyces graminis var. tritici the Causal Agent of Wheat Take-all Disease

    Directory of Open Access Journals (Sweden)

    Seddighe Mohammadi

    2015-07-01

    Full Text Available Wheat take-all disease caused by Gaeumannomyces graminis var. tritici has recently been detected in different regions of Iran. With respect to biocontrol effect of Trichoderma spp. on many pathogenic fungi, seven isolates of Trichoderma and four isolates of Talaromyces were in vitro evaluated in terms of their biological control against the disease causal agent. In dual culture test the five isolates showed efficient competition for colonization against pathogenic fungus and the highest percentages of inhibition belonging to Talaromyces flavus 60 and Talaromyces flavus 136 were 59.52 and 57.61%, respectively. Microscopic investigations showed that in regions where antagonistic isolates and Gaeumannomyces graminis var. tritici coincide, hyphal contact, penetration and fragmentation of Gaeumannomyces graminis var. tritici were observed. Investigating the effect of volatile and non-volatile compounds at 10 ml concentration showed that the highest inhibition percentage on mycelium growth of the pathogen caused by T. harzianum (44.76% and T. longibrachiatum (52.38% respectively.

  11. Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens

    NARCIS (Netherlands)

    Hiddink, G.A.; Bruggen, van A.H.C.; Termorshuizen, A.J.; Raaijmakers, J.M.; Semenov, A.V.

    2005-01-01

    Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed

  12. Expression profiling and functional analyses of BghPTR2, a peptide transporter from Blumeria graminis f. sp. hordei

    DEFF Research Database (Denmark)

    Droce, Aida; Holm, Kirsten B.; Olsson, Stefan

    2015-01-01

    The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host...

  13. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    NARCIS (Netherlands)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion Bravo, Victor; Mora, María de la Luz; Pozo, María J.

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne

  14. Virulence of Egyptian blumeria graminis f. sp. tritici population and powdery mildew response of Egyptian wheat cultivars

    Science.gov (United States)

    Powdery mildew caused by Blumeria graminis (DC.) Speer f. sp. tritici (Em. Marchal) is a serious disease of wheat that can cause a severe reduction in yield. In Egypt, high powdery mildew severity has been observed in the past few years on many commercial cultivars of both bread and durum wheat. Lit...

  15. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome

    Czech Academy of Sciences Publication Activity Database

    Parlange, Z.; Oberhaensli, S.; Breen, J.; Platzer, M.; Taudien, S.; Šimková, Hana; Wicker, T.; Doležel, Jaroslav; Keller, B.

    2011-01-01

    Roč. 11, č. 4 (2011), s. 671-677 ISSN 1438-793X R&D Projects: GA MŠk ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : Blumeria graminis * BAC library * BAC-end sequences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.842, year: 2011

  16. Genetic mapping of stem rust resistance to Puccinia graminis f. sp. tritici race TRTTF in the Canadian wheat cultivar 'Harvest'

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.(Pgt), is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of Pgt in Africa have been detected and characterized. These include race T...

  17. Antifungal (Gaeumannomyces graminis var. tritici activity of various glycosides of medicagenic acid

    Directory of Open Access Journals (Sweden)

    Stefan Martyniuk

    2012-12-01

    Full Text Available Different concentrations of medicagenic acid and five glycosides of this acid isolated from alfalfa (Medicago sativa were added to agar medium (corn meal agar, CMA inoculated with cultures of Gaeumannomyces graminis var. tritici (Ggt. After 7 days of incubation at 25oC colony radius was measured and % of inhibition calculated in relation to the control medium (CMA enriched with the solvent of the tested compounds. Within the tested concentrations, only 3-O-β -D -glucopiranoside medicagenate (monoglucoside significantly reduced the growth of Ggt on CMA medium. This compound at 0.05 mM concentration completely inhibited the development of the fungus and the effect was shown to be fungi-toxic.

  18. Whole-Genome Sequence of Pseudomonas graminis Strain UASWS1507, a Potential Biological Control Agent and Biofertilizer Isolated in Switzerland.

    Science.gov (United States)

    Crovadore, Julien; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Schulz, Torsten; Lefort, François

    2016-10-06

    We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis, isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture. Copyright © 2016 Crovadore et al.

  19. Genetic variation in Danish populations of Erysiphe graminis f.sp. hordei: estimation of gene diversity and effective population size using RFLP data

    DEFF Research Database (Denmark)

    Damgaard, C.; Giese, Nanna Henriette

    1996-01-01

    Genetic variation of the barley powdery mildew fungus (Erysiphe graminis f.sp. hordei) was estimated in three Danish local populations. Genetic variation was estimated from the variation amongst clones of Egh, and was therefore an estimate of the maximum genetic variation in the local populations...

  20. Mechanisms involved in control of ¤Blumeria graminis¤ f.sp. ¤hordei¤ in barley treated with mycelial extracts from cultured fungi

    DEFF Research Database (Denmark)

    Haugaard, H.; Collinge, D.B.; Lyngkjær, Michael Foged

    2002-01-01

    associated with papilla formation was detected. However, a post-penetration effect was observed, as B. graminis colonies on mycelial extract-treated leaves produced 50% fewer hyphae than on controls. Northern blot analyses showed earlier accumulation of defence-related gene transcripts following treatment...

  1. Inhibition of Blumeria graminis germination and germling development within colonies of oat mildew

    DEFF Research Database (Denmark)

    Carver, T.L.W.; Roberts, P.C.; Thomas, B.J.

    2001-01-01

    Germination by Blumeria graminis. DC Speer ff. spp. avenae, hordei and tritici, was greatly suppressed when conidia fell within colonies of ff. spp. avenae or hordei established on susceptible oat or barley, respectively. On healthy oat or barley, and when distant from powdery mildew, colonies. all...... ff. spp. formed normal appressoria. This was also true When conidia germinated within established barley mildew colonies. Within barley mildew colonies, appressoria of f. sp. hordei penetrated epidermal cells formed haustoria more frequently than appressoria distant from colonies. Similarly, ff. spp....... avenae and tritici, normally unable to infect barley. frequently penetrated epidermal cells subtending established barley mildew colonies. Thus, colony, establishment induced barley epidermal cell accessibility, even to non-pathogenic ff. spp, In contrast. when all three ff. spp. germinated within...

  2. Onderzoekingen over Ophiobolus graminis Sacc. en Ophiobolus herpotrichus (Fr.) Sacc. en over de door deze fungi veroorzaakte ziekten van Triticum vulgare Vill. en andere Gramineae

    NARCIS (Netherlands)

    Laar, van de J.H.J.

    1931-01-01

    Due to the increasing importance of the wheat disease 'tarwehalmdoder' in the Netherlands, research was started on its occurrence and cause. An extensive literature review proved the identity of 'tarwehalmdoder' with take-all or whiteheads, which were caused by 0. graminis. The symptoms of the

  3. Localisation of genes for resistance against ¤Blumeria graminis¤ f.sp. ¤hordei¤ and ¤Puccinia graminis¤ in a cross between a barley cultivar and a wild barley (¤Hordeum vulgare¤ ssp. ¤spontaneum¤) line

    DEFF Research Database (Denmark)

    Backes, G.; Madsen, L.H.; Jaiser, H.

    2003-01-01

    The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley (Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley...... (Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used...

  4. Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Sebastien; Cuomo, Christina A.; Lin, Yao-Cheng; Aerts, Andrea; Tisserant, Emilie; Veneault-Fourrey, Claire; Joly, David L.; Hacquard, Stephane; Amselem, Joelle; Cantarel, Brandi; Chiu, Readman; Couthinho, Pedro; Feau, Nicolas; Field, Matthew; Frey, Pascal; Gelhaye, Eric; Goldberg, Jonathan; Grabherr, Manfred; Kodira, Chinnappa; Kohler, Annegret; Kues, Ursula; Lindquist, Erika; Lucas, Susan; Mago, Rohit; Mauceli, Evan; Morin, Emmanuelle; Murat, Claude; Pangilinan, Jasmyn L.; Park, Robert; Pearson, Matthew; Quesneville, Hadi; Rouhier, Nicolas; Sakthikumar, Sharadha; Salamov, Asaf A.; Schmutz, Jeremy; Selles, Benjamin; Shapiro, Harris; Tangay, Philippe; Tuskan, Gerald A.; Peer, Yves Van de; Henrissat, Bernard; Rouze, Pierre; Ellis, Jeffrey G.; Dodds, Peter N.; Schein, Jacqueline E.; Zhong, Shaobin; Hamelin, Richard C.; Grigoriev, Igor V.; Szabo, Les J.; Martin1, Francis

    2011-04-27

    Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101 mega base pair genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89 mega base pair genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,841 predicted proteins of M. larici-populina to the 18,241 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic life-style include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins (SSPs), impaired nitrogen and sulfur assimilation pathways, and expanded families of amino-acid, oligopeptide and hexose membrane transporters. The dramatic upregulation of transcripts coding for SSPs, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells

  5. Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance

    DEFF Research Database (Denmark)

    Wichmann, Fabienne; Asp, Torben; Widmer, Franko

    2011-01-01

    Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted...... selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique...

  6. Prey Preference of Predatory mite Amblyseius swirskii (Athias-Henriot (Acari: Phytoseiidae on untreated and Beauveria bassiana-treated of Trialeurodes vaporariorum (Homoptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Marjan Seiedy

    2018-01-01

    Full Text Available Introduction The predator Amblyseius swirskii and entomopathogenic fungus Beauveria bassiana are important biocontrol agents of Trialeurodes vaporariorum. Determination of the host preference of predators in the fields when receiving signals related to either untreated and Beauveria bassiana-treated pest is important. Materials and Methods In this research, the prey preference of adult female (2 days old of A. swirskii was determined on untreated and Beauveria bassiana-treated of Trialeurodes vaporariorum (Homoptera: Aleyrodidae in various treatments base on Manly Index. These different treatments consisted of two time intervals; 24 and 48 h post-inoculation of greenhouse whiteflies with 1×105 conidia /ml of B. bassiana with 13 replicates. 24-h starved predators were added to the leaf discs singly then the number of consumed untreated and B. bassiana-treated T. vaporariorum in each Petri dish was assessed after 24 h. Results and Discussion The results revealed that mean number of consumed B. bassiana-treated T. vaporariorum in two time intervals; 24 and 48 h. after inoculation were 4/15±0/19 and 2.23±0/12, respectively. This investigation showed a significant preference of A. swirskii towards untreated T. vaporariorum in 24 (P< 0.0034 and 48 h. (P

  7. Transcriptome Analyses Shed New Insights into Primary Metabolism and Regulation of Blumeria graminis f. sp. tritici during Conidiation

    Directory of Open Access Journals (Sweden)

    Fan-Song Zeng

    2017-06-01

    Full Text Available Conidia of the obligate biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt play a vital role in its survival and rapid dispersal. However, little is known about the genetic basis for its asexual reproduction. To uncover the primary metabolic and regulatory events during conidiation, we sequenced the transcriptome of Bgt epiphytic structures at 3 (vegetative hyphae growth, 4 (foot cells initiation, and 5 (conidiophore erection days post-inoculation (dpi. RNA-seq analyses identified 556 and 404 (combined 685 differentially expressed genes (DEGs at 4 and 5 dpi compared with their expression levels at 3 dpi, respectively. We found that several genes involved in the conversion from a variety of sugars to glucose, glycolysis, the tricarboxylic acid cycle (TAC, the electron transport chain (ETC, and unsaturated fatty acid oxidation were activated during conidiation, suggesting that more energy supply is required during this process. Moreover, we found that glucose was converted into glycogen, which was accumulated in developing conidiophores, indicating that it could be the primary energy storage molecule in Bgt conidia. Clustering for the expression profiles of 91 regulatory genes showed that calcium (Ca2+, H2O2, and phosphoinositide (PIP signaling were involved in Bgt conidiation. Furthermore, a strong accumulation of H2O2 in developing conidiophores was detected. Application of EGTA, a Ca2+ chelator, and trifluoperazine dihydrochloride (TFP, a calmodulin (CaM antagonist, markedly suppressed the generation of H2O2, affected foot cell and conidiophore development and reduced conidia production significantly. These results suggest that Ca2+ and H2O2 signaling play important roles in conidiogenesis and a crosslink between them is present. In addition to some conidiation-related orthologs known in other fungi, such as the velvet complex components, we identified several other novel B. graminis-specific genes that have not been previously

  8. Efficacy of a long-lasting bifenthrin-treated net against horticultural pests and its compatibility with the predatory mite Amblyseius swirskii and the parasitic wasp Eretmocerus mundus.

    Science.gov (United States)

    Fernández, Maria Del Mar; Colomer, Ignacio; Medina, Pilar; Fereres, Alberto; Del Estal, Pedro; Viñuela, Elisa

    2017-08-01

    Insecticide-treated nets (ITNs) have been investigated recently for their use in agriculture. Depending on the insecticide, the hole size and the way they are produced, these nets can target different pests and therefore they could be interesting options for use in integrated pest management (IPM). As the information on their compatibility with beneficial fauna is practically negligible, in this work we have tested the compatibility of an experimental bifenthrin long-lasting insecticide-treated net (LLITN) with Amblyseius swirskii and Eretmocerus mundus, important natural enemies of whiteflies and thrips, under laboratory, semi-field and commercial greenhouse conditions. In the laboratory, the treated net was very deleterious to adults of both natural enemies, after 72 h exposure. However, in choice tests with Y-tubes, both natural enemies were neither attracted nor repelled by the treated net and no short-term mortality was detected in individuals that had crossed it. No deleterious effects on the E. mundus beneficial capacity were detected in semi-field trials. In field trials, the LLITN proved to be compatible with A. swirskii while decreasing pest densities. Bifenthrin LLITN studied could be a valuable method for reducing pest population infestations in IPM programmes while being compatible with biocontrol agents. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Crude extracts of Drimys winteri bark to inhibit growth of Gaeumannomyces graminis var. tritici Inhibición del crecimiento de Gaeumannomyces graminis var. tritici empleando extractos obtenidos de corteza de Drimys winteri

    Directory of Open Access Journals (Sweden)

    Nelson Zapata

    2011-03-01

    Full Text Available The aim of this study was to assess the effect of Drimys winteri J.R. Forst. & G. Forst. bark and its extracts, obtained sequentially with n-hexane, acetone, and methanol, against Gaeumannomyces graminis var. tritici (Ggt. Ground bark of D. winteri was mixed with potato dextrose agar growth media at concentrations of 250, 500, 1000, 2000, and 4000 mg L-1 in Petri plates. Each extract was mixed at concentrations of 100, 200, 400, and 800 mg L-1. Petri plates were inoculated in the center with a 5-mm mycelium disk and were incubated at 24 ± 1 ºC. Daily measurements of mycelium radial growth were taken to determine growth rate and growth inhibition (%. A ground bark concentration of 978 mg L-1 was needed to inhibit Ggt growth by 50%, while extracts obtained with n-hexane and acetone only required 198 and 234 mg L-1, respectively. The methanol extract only inhibited Ggt growth by 33% when tested at the highest concentration. In conclusion, ground bark and crude extracts, obtained sequentially with n-hexane, acetone, and methanol, from D. winteri bark inhibit Ggt growth when applied in vitro. The n-hexane extract showed the highest inhibitory growth activity.El objetivo de esta investigación fue evaluar la actividad de la corteza de Drimys winteri J.R Forst. & G. Forst. y sus extractos obtenidos secuencialmente con n-hexano, acetona y metanol sobre el crecimiento in vitro de Gaeumannomyces graminis var. tritici (Ggt. Con este propósito se mezclaron en placas Petri, corteza molida de D. winteri con medio de crecimiento agar papa dextrosa a concentraciones de 250, 500, 1000, 2000 y 4000 mg L-1. Cada extracto fue mezclado a concentraciones de 100, 200, 400 y 800 mg L-1. Las placas se inocularon en su centro con un disco de 5 mm de micelio de Ggt y se incubaron a 24 ± 1 ºC. Diariamente se midió el crecimiento radial del micelio, se determinó velocidad de crecimiento e índice de inhibición del crecimiento (%. Para inhibir el crecimiento de Ggt

  10. Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2011-01-01

    Full Text Available Two novel endophytic yeast strains, WP1 and PTD3, isolated from within the stems of poplar (Populus trees, were genetically characterized with respect to their xylose metabolism genes. These two strains, belonging to the species Rhodotorula graminis and R. mucilaginosa, respectively, utilize both hexose and pentose sugars, including the common plant pentose sugar, D-xylose. The xylose reductase (XYL1 and xylitol dehydrogenase (XYL2 genes were cloned and characterized. The derived amino acid sequences of xylose reductase (XR and xylose dehydrogenase (XDH were 32%~41% homologous to those of Pichia stipitis and Candida. spp., two species known to utilize xylose. The derived XR and XDH sequences of WP1 and PTD3 had higher homology (73% and 69% identity with each other. WP1 and PTD3 were grown in single sugar and mixed sugar media to analyze the XYL1 and XYL2 gene regulation mechanisms. Our results revealed that for both strains, the gene expression is induced by D-xylose, and that in PTD3 the expression was not repressed by glucose in the presence of xylose.

  11. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis.

    Science.gov (United States)

    Kong, Lingyao; Chang, Cheng

    2018-01-01

    Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.

  12. Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa

    DEFF Research Database (Denmark)

    Patpour, M.; Hovmøller, M. S.; Justesen, A. F.

    2016-01-01

    of wheat fields in Africa (Kenya, 9; Uganda, 28; Rwanda, 41; and Egypt, 6) were sent to the Global Rust Reference Center (GRRC, Denmark) for race analysis. Puccinia graminis f. sp. tritici (Pgt) samples were recovered on cv. Morocco, and resulting urediniospores of 53 single-pustule isolates were......Tmp) to confirm their virulence/avirulence combinations to Sr24, Sr31, Sr36, and SrTmp. Race TTKTK was also detected at two locations in Uganda (Rubaya and Muko in Kabale region) and at five locations in Rwanda (Kinigi, Rwerere, Rufungo, Gatebe, and Kamenyo). Three isolates derived from stem rust samples...

  13. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  14. Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f. sp. tritici).

    Science.gov (United States)

    Li, Jie; Yang, Xiwen; Liu, Xinhao; Yu, Haibo; Du, Congyang; Li, Mengda; He, Dexian

    2017-02-01

    Proteome characteristics of wheat leaves with the powdery mildew pathogen Blumeria graminis f. sp. tritici (Bgt) infection were investigated by two-dimensional electrophoresis and tandem MALDI-TOF/TOF-MS. We identified 46 unique proteins which were differentially expressed at 24, 48, and 72 h post-inoculation. The functional classification of these proteins showed that most of them were involved in photosynthesis, carbohydrate and nitrogen metabolism, defense responses, and signal transduction. Upregulated proteins included primary metabolism pathways and defense responses, while proteins related to photosynthesis and signal transduction were mostly downregulated. As expected, more antioxidative proteins were activated at the later infection stage than the earlier stage, suggesting that the antioxidative system of host plays a role in maintaining the compatible interaction between wheat and powdery mildew. A high accumulation of 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase in infected leaves indicated the regulation of the TCA cycle and pentose phosphate pathway in parallel to the activation of host defenses. The downregulation of MAPK5 could be facilitated for the compatible interaction of wheat plants and Bgt. qRT-PCR analysis supported the data of protein expression profiles. Our results reveal the relevance of primary plant metabolism and defense responses during compatible interaction, and provide new insights into the biology of susceptible wheat in response to Bgt infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. The Inventory of Phytoseiid Mite on Apple Orchards in Durrës, Albania

    OpenAIRE

    AURELA SUPARAKU; ARIS HUQI; NATASHA HAKA (DURAJ)

    2014-01-01

    A survey to determine the presence and abundance of phytoseiid mite on apple orchards has been conducted in Durres (Shena-Vlash), Albania. Leaf samples were taken from five apple varieties: Pink Lady, Golden, Starking, Fuji, Gala and the phytoseiid were then extracted. As the result of the survey, two species belonging to the Phytoseiidae family were identified: Amblyseius andersoni (Chant) and Typhlodromus pyri (Scheuten). Amblyseius andersoni was found in all apple varieties analyzed in thi...

  16. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis.

    Science.gov (United States)

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Teixidó, Neus; Figge, Marian J; Abadias, Maribel

    2013-06-01

    The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities.

    Science.gov (United States)

    Durán, Paola; Jorquera, Milko; Viscardi, Sharon; Carrion, Victor J; Mora, María de la Luz; Pozo, María J

    2017-01-01

    Wheat production around the world is severely compromised by the occurrence of "take-all" disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt). In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous "Mapuche" communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  18. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  19. Economic Sustainability of Italian Greenhouse Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Riccardo Testa

    2014-11-01

    Full Text Available Greenhouse tomato cultivation plays an important role in Sicily, being the primary production area in Italy, due to its favorable pedo-climatic conditions that permit extra-seasonal productions. In Sicily, more than half of greenhouse tomato production is derived from the Province of Ragusa on the southeastern coast, where especially cherry tomato typologies are cultivated. Over the last decade, the Ragusa Province has registered a decrease both in terms of greenhouse tomato area and harvested production due to several structural problems that would require restructuring of the tomato supply chain. Thus, since recognition of real costs and profitability of tomato growing is a vital issue, both from the perspective of the farm, as well as from that of the entrepreneur, the aim of this paper was to analyze the economic sustainability of Sicilian greenhouse cherry tomato cultivated in the Ragusa Province. In particular, an economic analysis on 30 representative farms was conducted in order to estimate production costs and profits of greenhouse cherry tomato. According to our results, the lack of commercial organization, which characterizes the small farms we surveyed, determines low contractual power for farmers and, consequently, low profitability.

  20. Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata: improved understanding of the biology of cereal rust fungi.

    Science.gov (United States)

    Berlin, Anna; Samils, Berit; Andersson, Björn

    2017-01-01

    Cereal rust fungi ( Puccinia spp.) are among the most economically important plant pathogens. These fungi have a complex life cycle, including five spore stages and two hosts. They infect one grass host on which they reproduce clonally and cause the cereal rust diseases, while the alternate host is required for sexual reproduction. Although previous studies clearly demonstrate the importance of the alternate host in creating genetic diversity in cereal rust fungi, little is known about the amount of novel genotypes created in each successful completion of a sexual reproduction event. In this study, single sequence repeat markers were used to study the genotypic diversity within aecial clusters by genotyping individual aecial cups. Two common cereal rusts, Puccinia graminis causing stem rust and Puccinia coronata the causal agent of crown rust were investigated. We showed that under natural conditions, a single aecial cluster usually include several genotypes, either because a single pycnial cluster is fertilized by several different pycniospores, or because aecia within the cluster are derived from more than one fertilized adjoining pycnial cluster, or a combination of both. Our results imply that although sexual events in cereal rust fungi in most regions of the world are relatively rare, the events that occur may still significantly contribute to the genetic variation within the pathogen populations.

  1. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici.

    Directory of Open Access Journals (Sweden)

    Lirong Yang

    Full Text Available Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt, is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs were identified with 2,107 (65% being 2-fold up-regulated and 1,151 (35% being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.

  2. Screening and Characterization of Potentially Suppressive Soils against Gaeumannomyces graminis under Extensive Wheat Cropping by Chilean Indigenous Communities

    Directory of Open Access Journals (Sweden)

    Paola Durán

    2017-08-01

    Full Text Available Wheat production around the world is severely compromised by the occurrence of “take-all” disease, which is caused by the soil-borne pathogen Gaeumannomyces graminis var. tritici (Ggt. In this context, suppressive soils are those environments in which plants comparatively suffer less soil-borne pathogen diseases than expected, owing to native soil microorganism activities. In southern Chile, where 85% of the national cereal production takes place, several studies have suggested the existence of suppressive soils under extensive wheat cropping. Thus, this study aimed to screen Ggt-suppressive soil occurrence in 16 locations managed by indigenous “Mapuche” communities, using extensive wheat cropping for more than 10 years. Ggt growth inhibition in vitro screenings allowed the identification of nine putative suppressive soils. Six of these soils, including Andisols and Ultisols, were confirmed to be suppressive, since they reduced take-all disease in wheat plants growing under greenhouse conditions. Suppressiveness was lost upon soil sterilization, and recovered by adding 1% of the natural soil, hence confirming that suppressiveness was closely associated to the soil microbiome community composition. Our results demonstrate that long-term extensive wheat cropping, established by small Mapuche communities, can generate suppressive soils that can be used as effective microorganism sources for take-all disease biocontrol. Accordingly, suppressive soil identification and characterization are key steps for the development of environmentally-friendly and efficient biotechnological applications for soil-borne disease control.

  3. Direct Effects of Physcion, Chrysophanol, Emodin, and Pachybasin on Germination and Appressorium Formation of the Barley ( Hordeum vulgare L.) Powdery Mildew Fungus Blumeria graminis f. sp. hordei (DC.) Speer.

    Science.gov (United States)

    Hildebrandt, Ulrich; Marsell, Alexander; Riederer, Markus

    2018-04-04

    Several anthraquinone derivatives are active components of fungicidal formulations particularly effective against powdery mildew fungi. The antimildew effect of compounds such as physcion and chrysophanol is largely attributed to host plant defense induction. However, so far a direct fungistatic/fungicidal effect of anthraquinone derivatives on powdery mildew fungi has not been unequivocally demonstrated. By applying a Formvar-based in vitro system we demonstrate a direct, dose-dependent effect of physcion, chrysophanol, emodin, and pachybasin on conidial germination and appressorium formation of Blumeria graminis f. sp. hordei (DC.) Speer, the causative agent of barley ( Hordeum vulgare L.) powdery mildew. Physcion was the most effective among the tested compounds. At higher doses, physcion mainly inhibited conidial germination. At lower rates, however, a distinct interference with appressorium formation became discernible. Physcion and others may act by modulating both the infection capacity of the powdery mildew pathogen and host plant defense. Our results suggest a specific arrangement of substituents at the anthraquinone backbone structure being crucial for the direct antimildew effect.

  4. Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat.

    Science.gov (United States)

    Rong, Wei; Qi, Lin; Wang, Jingfen; Du, Lipu; Xu, Huijun; Wang, Aiyun; Zhang, Zengyan

    2013-08-01

    Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T₀ to T₄ progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

  5. The Mongol Empire and the Tatars in the Ragusan Chronicle of Giacomo Luccari »

    Directory of Open Access Journals (Sweden)

    Aleksandar Uzelac

    2016-01-01

    Full Text Available Nobleman Giacomo di Pietro Luccari, or Jakov Lukarević (1551–1615, was one of the several notable historians of the Republic of Ragusa (Dubrovnik who lived and worked at the turn of the sixteenth and the seventeenth century. In 1605 in Venice, he published his book Copioso ristretto degli Annali di Ragusa. Luccari attempted to provide an overview of the history of his home city, as well as the states and peoples that influenced the history of Ragusa. One of the most interesting excurses in his work is related to the Mongol Еmpire, chiefly based on the works of Marco Polo and Hayton of Corycus, but also other less known source materials. Luccari also wrote short sketches about the Golden Horde and the Tatar presence in the Lower Danube region. In general, his book is unreliable source, full of factual mistakes, but it deserves attention of the researchers due to one particular reason. Namely, Luccari was the first South Slavic historian who dealt with the Tatars and their important place in the world history. Despite the considerable degree of popularity it enjoyed at the time of its appearance, Copioso ristretto is neither critically published, nor translated in any modern language so far. Therefore, in this paper, annotated Russian translation of the passages from the work of Luccari with respect to the Mongol Empire and the Tatars of the Golden Horde is presented to the wider circle of scholarly audience, accompanied by a short introductory study about the Ragusan historian and his work.

  6. Characterisation of Neofusicoccum species causing mango dieback in Italy

    NARCIS (Netherlands)

    Ismail, A.; Cirvilleri, G.; Lombard, L.; Crous, P.W.; Groenewald, J.Z.; Polizzi, G.

    2013-01-01

    Species of Botryosphaeriaceae are important fungal pathogens of mango worldwide. A survey of 11 mango orchards located in the provinces of Catania, Messina, Palermo and Ragusa (Sicily, southern Italy), resulted in the isolation of a large number (76) of Neofusicoccum isolates associated with decline

  7. Associations of breed and feeding management with milk production curves at herd level using a random regression test-day model

    NARCIS (Netherlands)

    Caccamo, M.; Veerkamp, R.F.; Ferguson, J.D.; Petriglieri, R.; Terra, La F.; Licitra, G.

    2010-01-01

    Earlier studies identified large between-herd variation in estimated lactation curve parameters from test-day milk yield and milk composition records collected in Ragusa province, Italy. The objective of this study was to identify sources of variation able to explain these between-herd differences

  8. Resistance of the predacious mite, euseius kenyae (acari ...

    African Journals Online (AJOL)

    This study was carried out to assess whether the predacious phytoseiid mite, Euseius kenyae (Swirski and Ragusa), commonly found in major coffee growing regions in Kenya has developed resistance to Chlorpyrifos. Mite populations were collected from coffee farms harbouring E. kenyae and where Chlorpyrifos or other ...

  9. Pařížská univerzita a husité v letech 1428-1429

    Czech Academy of Sciences Publication Activity Database

    Coufal, Dušan

    2015-01-01

    Roč. 18, č. 1 (2015), s. 205-235 ISSN 0862-979X R&D Projects: GA ČR(CZ) GBP405/12/G148 Institutional support: RVO:67985955 Keywords : The University of Paris * Hussites * propaganda * The Council of Basel * Nicholas of Clemanges * John of Ragusa Subject RIV: AB - History

  10. Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level

    NARCIS (Netherlands)

    Caccamo, M.; Veerkamp, R.F.; Licitra, G.; Petriglieri, R.; Terra, La F.; Pozzebon, A.; Ferguson, J.D.

    2012-01-01

    The objective of this study was to examine the effect of the chemical composition of a total mixed ration (TMR) tested quarterly from March 2006 through December 2008 for milk, fat, and protein yield curves for 27 herds in Ragusa, Sicily. Before this study, standard yield curves were generated on

  11. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  12. Present status of Zymoseptoria tritici (Mycospharella graminicola /Fuckel/ Schroter of the wheat cultures in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    I. Karov

    2017-09-01

    Full Text Available Abstract. In the Republic of Macedonia, wheat is a very important crop and it is grown on an area of around 250.000 ha. The most important regions for wheat growing are: Bitola, Kumanovo, Sveti Nikole, Skopje, Probistip, Kocani, Veles and Stip. The most important deseases on wheat are: Tapesia yallundae Wallwork and Spooner with its anamorphic stage Pseudocercosporella herpotrichoides (Fron Deighton causer of the desease „eyespot“ on barley and wheat; Puccinia graminis f. spp. tritici; Puccinia racondita f. spp. tritici; Gaeumannomyces graminis var. tritici; Bipolaris sorokiniana (Sacc. Shoemaker; Blumeria graminis var. tritici and Zymoseptoria tritici (Mycospharella graminicola (Fuckel Schroter. Many new diseases on wheat causing significant economic damage to producers are observed in Macedonia. The main aim of this article is to present the symptoms, morphology and protective measures of Zymoseptoria tritici (Mycospharella graminicola, the most widely spread fungal pathogens on wheat in the Republic of Macedonia. In the period between 2014 and 2016, the pathogen fungi on wheat with the highest intensity were: Zymoseptoria tritici, Tapesia yallundae, Puccinia graminis, Puccinia recondita, Gaeumannomyces graminis, Bipolaris sorokiniana, Blumeria graminis. The intensity of the diseases and the damages – yield losses of wheat, differed from year to year and between regions, depended on the sensitivity of the wheat varieties. The smallest yield loss was identified in wheat producers who treated the wheat with pesticides at least twice for vegetation season.

  13. Take-all or nothing

    NARCIS (Netherlands)

    Hernández-Restrepo, M.; Groenewald, J.Z.; Elliott, M.L.; Canning, G.; McMillan, V.E.; Crous, P.W.

    2016-01-01

    Take-all disease of Poaceae is caused by Gaeumannomyces graminis (Magnaporthaceae). Four varieties are recognised in G. graminis based on ascospore size, hyphopodial morphology and host preference. The aim of the present study was to clarify boundaries among species and varieties in

  14. Take-all or nothing

    NARCIS (Netherlands)

    Hernández-Restrepo, M.; Groenewald, J.Z.; Elliott, M.L.; Canning, G.; McMillan, V.E.; Crous, P.W.

    2016-01-01

    Take-all disease of Poaceae is caused by Gaeumannomyces graminis (Magnaporthaceae). Four varieties are recognised in G. graminis based on ascospore size, hyphopodial morphology and host preference. The aim of the present study was to clarify boundaries among species and varieties in Gaeumannomyces

  15. Structure and evolution of barley powdery mildew effector candidates

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Themaat, Emiel Ver Loren van; McGuffin, Liam J.

    2012-01-01

    Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute...

  16. A mutagenesis-derived broad-spectrum disease resistance locus in wheat

    Science.gov (United States)

    Wheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp. tritici, P. striiformis f. sp. tritici, and Blumeria graminis f. sp. tritici, respectively, are destructive diseases of wheat worldwide. The most effective and widely uti...

  17. Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f. sp. tritici

    Directory of Open Access Journals (Sweden)

    Melania eFigueroa

    2016-02-01

    Full Text Available The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt poses a threat to food security. These concerns have catalyzed an extensive global effort towards controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require simultaneous changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Towards this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens

  18. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici.

    Science.gov (United States)

    Figueroa, Melania; Upadhyaya, Narayana M; Sperschneider, Jana; Park, Robert F; Szabo, Les J; Steffenson, Brian; Ellis, Jeff G; Dodds, Peter N

    2016-01-01

    The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust

  19. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  20. Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation.

    Science.gov (United States)

    Moriura, Nobuyuki; Matsuda, Yoshinori; Oichi, Wataru; Nakashima, Shinya; Hirai, Tatsuo; Sameshima, Takeshi; Nonomura, Teruo; Kakutani, Koji; Kusakari, Shin-Ichi; Higashi, Katsuhide; Toyoda, Hideyoshi

    2006-01-01

    Conidial formation and secession by living conidiophores of Blumeria graminis f. sp. hordei on barley leaves were consecutively monitored using a high-fidelity digital microscopic technique combined with electrostatic micromanipulation to trap the released conidia. Conidial chains formed on conidiophores through a series of septum-mediated division and growth of generative cells. Apical conidial cells on the conidiophores were abstricted after the conidial chains developed ten conidial cells. The conidia were electrically conductive, and a positive charge was induced in the cells by a negatively polarized insulator probe (ebonite). The electrostatic force between the conidia and the insulator was used to attract the abstricted conidia from the conidiophores on leaves. This conidium movement from the targeted conidiophore to the rod was directly viewed under the digital microscope, and the length of the interval between conidial septation and secession, the total number of the conidia produced by a single conidiophore, and the modes of conidiogenesis were clarified. During the stage of conidial secession, the generative cells pushed new conidial cells upwards by repeated division and growth. The successive release of two apical conidia was synchronized with the successive septation and growth of a generative cell. The release ceased after 4-5 conidia were released without division and growth of the generative cell. Thus, the life of an individual conidiophore (from the erection of the conidiophore to the release of the final conidium) was shown to be 107 h and to produce an average of 33 conidia. To our knowledge, this is the first report on the direct estimation of life-long conidial production by a powdery mildew on host leaves.

  1. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew.

    Science.gov (United States)

    Eichmann, Ruth; Bischof, Melanie; Weis, Corina; Shaw, Jane; Lacomme, Christophe; Schweizer, Patrick; Duchkov, Dimitar; Hensel, Götz; Kumlehn, Jochen; Hückelhoven, Ralph

    2010-09-01

    BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death-provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.

  2. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

    Science.gov (United States)

    Rutter, William B; Salcedo, Andres; Akhunova, Alina; He, Fei; Wang, Shichen; Liang, Hanquan; Bowden, Robert L; Akhunov, Eduard

    2017-04-12

    Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen

  3. Effects of some benzoxazinoids on in vitro growth of Cephalosporium gramineum and other fungi pathogenic to cereals and on Cephalosporium stripe of winter wheat.

    Science.gov (United States)

    Martyniuk, Stefan; Stochmal, Anna; Macías, Francisco A; Marín, David; Oleszek, Wieslaw

    2006-02-22

    The benzoxazolinones benzoxazolin-2(3H)-one (BOA) and 6-methoxybenzoxazolin-2(3H)-one (MBOA) and selected degradation products of these compounds were examined for their in vitro antifungal activity against Cephalosporium gramineum, Gaeumannomyces graminis var. graminis, and Fusarium culmorum. BOA was also applied to the soil-incorporated inoculum of C. gramineum to test its capability of reducing Cephalosporium stripe disease in winter wheat. MBOA reduced the mycelial growth of G. graminis var. tritici, C. gramineum, and F. culmorum by 50% (EC50) at the concentrations of 77, 134, and 271 microg/mL of corn meal agar, respectively, and the corresponding BOA EC50 values for the fungi were 11, 189, and 456 microg/mL. BOA degradation products 2-amino-3H-phenoxazin-3-one (APO), 2-acetylamino-3H-phenoxazin-3-one (AAPO), and o-aminophenol (o-AP) were much more inhibitory to the growth of C. gramineum and G. graminis var. tritici than the parent compounds. APO, AAPO, and o-AP EC50 values were found to be as low as 0.58, 4.57, and 1.4 microg/mL, respectively, for C. gramineum and 0.78, 2.18, and 0.80 microg/mL for G. graminis var. tritici. These compounds applied at the corresponding concentrations did not significantly affect the mycelial growth of F. culmorum. The treatment of C. gramineum inoculum with a 1% water solution of BOA resulted in a significant reduction infection of winter wheat with C. gramineum as compared to the control with the untreated inoculum,but this treatment was not as effective as the application of a commercial fungicide.

  4. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    Science.gov (United States)

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  5. Controlling the geogrpahical spread of infectious disease: Plague in Italy, 1347- 1851

    OpenAIRE

    Cliff, Andrew D.; Smallman- Raynor, Matthew R.; Stevens, Peta M.

    2009-01-01

    After the establishment of the first quarantine station in the Republic of Ragusa (modern-day Dubrovnik) in 1377, the states and principalities of Italy developed a sophisticated system of defensive quarantine in an attempt to protect themselves from the ravages of plague. Using largely unknown and unseen historical maps, this paper reconstructs the extent and operation of the system used. It is shown that a cordon sanitaire existed around the coast of Italy for several centuries, consisting ...

  6. Biosimilars in the management of neutropenia: focus on filgrastim

    Directory of Open Access Journals (Sweden)

    Caselli D

    2016-02-01

    Full Text Available Désirée Caselli,1 Simone Cesaro,2 Maurizio Aricò1 1Medical Department, Pediatric Unit, Azienda Sanitaria Provinciale Ragusa, Ragusa, 2Department of Pediatrics, Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy Abstract: Advances in chemotherapy and surgery allows the majority of patients to survive cancer diseases. Yet, the price may be a proportion of patients dying of complications due to treatment-induced infectious complications, such as neutropenia. With the aim of decreasing morbidity and mortality related to infectious complications, recombinant human granulocyte colony-stimulating factor (G-CSF, filgrastim, and pegylated filgrastim have been used to reduce time and degree of neutropenia. A biosimilar is a copy of an approved original biologic medicine whose data protection has expired. The patent for filgrastim expired in Europe in 2006 and in the US in 2013. This review analyses the available evidence to be considered in order to design a strategy of use of G-CSF and its biosimilars. The clinical and safety outcomes of biosimilars are well within the range of historically reported data for originator filgrastim. This underscores the clinical effectiveness and safety of biosimilar filgrastim in daily clinical practice. Biosimilars can play an important role by offering the opportunity to reduce costs, thus contributing to the financial sustainability of treatment programs. Keywords: neutropenia, filgrastim, biosimilars, G-CSF, fever, prophylaxis

  7. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-03-01

    We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.

  8. Estudi de models matemàtics aplicats a la predicció d'epidèmies de la cendrosa de l'ordi

    OpenAIRE

    Almacellas Gort, Jaume

    2010-01-01

    La cendrosa de l'ordi, causada pel fong Blumeria graminis (D.C.) E. O. Speer f. sp. hordei Em. Marchal, sin. Erysiphe graminis D.C.: Fr. f. sp. hordei Em. Marchal, anamorf: Oidium monilioides (Nees) Link, és la malaltia aèria més important en aquest conreu a Catalunya. El 1987 es van iniciar les investigacions sobre l'etiologia de les principals malalties dels cereals. Es realitzà una prospecció per tota la l’àrea cerealícola de la geografia catalana, que va permetre estimar la distribuci...

  9. Indoor and soil radon measurements in the Hyblean Foreland (South-East Sicily

    Directory of Open Access Journals (Sweden)

    G. Alessandro

    2007-06-01

    Full Text Available Indoor radon behavior in two sites of SE Sicily was studied as a function of the soil radon concentration. The chosen locations were Ragusa and Modica towns, placed in the Hyblean Plateau (northern margin of the African Plate. Soil samples were analysed by gamma spectrometry to determine the amount of radionuclides. Indoor air and soil gas radon measurements were simultaneously performed in both sites using active detectors. Radon in soil was measured one meter deep. A positive correlation was obtained between indoor radon concentration and the soil gas concentration.

  10. Phytoseiid mites from tropical fruit trees in Bahia State, Brazil (Acari, Phytoseiidae).

    Science.gov (United States)

    de Souza, Izabel Vieira; Sá Argolo, Poliane; Júnior, Manoel Guedes Correa Gondim; de Moraes, Gilberto José; Bittencourt, Maria Aparecida Leão; Oliveira, Anibal Ramadan

    2015-01-01

    The cultivation of tropical fruit trees has grown considerably in the state of Bahia, northeastern Brazil. Some of these have been severely attacked by phytophagous mites, which are usually controlled by the use of chemical pesticides. However, there is today a growing interest for the adoption of less aggressive measures of pest control, as for example the use of predatory mites. Most of the plant-inhabiting predatory mites belong to the family Phytoseiidae. The objective of this paper is to report the phytoseiid species found in an intensive survey conducted on cultivated tropical fruit trees in fifteen localities of the southern coast of Bahia. Measurements of relevant morphological characters are provided for each species, to complement the understanding of the morphological variation of these species. Twenty-nine species of sixteen genera were identified. A key was elaborated to assist in the separation of these species. Fifteen species are reported for the first time in the state, raising to sixty-six the number of species of this family now known from Bahia. Seventy-two percent of the species collected belong to Amblyseiinae, followed by Typhlodrominae (21%) and Phytoseiinae (7%). The most diverse genus was Amblyseius. Amblyseius operculatus De Leon was the most frequent and abundant species. Studies should be conducted to evaluate the possible role of the most common predators as control agents of the phytophagous mites co-occurring with them.

  11. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum.

    Science.gov (United States)

    Sallam, Ahmad H; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J; Hulse, Alex; Steffenson, Brian J

    2017-10-05

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1 , losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum ) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici , Pgt ) and one isolate (92-MN-90) of the rye stem rust pathogen ( P. graminis f. sp. secalis , Pgs ). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. Copyright © 2017 Sallam et al.

  12. Complex Interplay of Future Climate Levels of CO2, Ozone and Temperature on Susceptibility to Fungal Diseases in Barley

    DEFF Research Database (Denmark)

    Mikkelsen, Bolette Lind

    Climate change will modify the environmental growth conditions for plants, and consequently also their physiology and susceptibility to diseases. However, there is a lack of experimental studies on the effect of climate change on plant diseases, which include several climatic factors in order...... to simulate realistic growth conditions. In this PhD thesis, the complex interplay of elevated CO2, temperature and ozone on the susceptibility of barley to the biotrophic powdery mildew fungus (Blumeria graminis f.sp. hordei) and the hemibiotrophic spot blotch fungus (Bipolaris sorokiniana) was revealed....... The underlying mechanisms hereof was examined by studying changes in photosynthesis, accumulation of secondary metabolites and global gene expression after B. graminis attack...

  13. Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes.

    Science.gov (United States)

    Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis

    2017-12-01

    Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.

  14. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils.

    Science.gov (United States)

    Castanheira, N; Dourado, A C; Kruz, S; Alves, P I L; Delgado-Rodríguez, A I; Pais, I; Semedo, J; Scotti-Campos, P; Sánchez, C; Borges, N; Carvalho, G; Barreto Crespo, M T; Fareleira, P

    2016-03-01

    To search for culturable Burkholderia species associated with annual ryegrass in soils from natural pastures in Portugal, with plant growth-promoting effects. Annual ryegrass seedlings were used to trap Burkholderia from two different soils in laboratory conditions. A combined approach using genomic fingerprinting and sequencing of 16S rRNA and recA genes resulted in the identification of Burkholderia strains belonging to the species Burkholderia graminis, Burkholderia fungorum and the Burkholderia cepacia complex. Most strains were able to solubilize mineral phosphate and to synthesize indole acetic acid; some of them could produce siderophores and antagonize the phytopathogenic oomycete, Phytophthora cinnamomi. A strain (G2Bd5) of B. graminis was selected for gnotobiotic plant inoculation experiments. The main effects were the stimulation of root growth and enhancement of leaf lipid synthesis and turnover. Fluorescence in situ hybridization and confocal laser microscopy evidenced that strain G2Bd5 is a rhizospheric and endophytic colonizer of annual ryegrass. This work revealed that annual ryegrass can naturally associate with members of the genus Burkholderia. A novel plant growth promoting strain of B. graminis was obtained. The novel strain belongs to the plant-associated Burkholderia cluster and is a promising candidate for exploitation as plant inoculant in field conditions. © 2015 The Society for Applied Microbiology.

  15. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae.

    Science.gov (United States)

    Koveos, Dimitrios S; Suzuki, Takeshi; Terzidou, Anastasia; Kokkari, Anastasia; Floros, George; Damos, Petros; Kouloussis, Nikos A

    2017-01-01

    Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.

  16. Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline.

    Science.gov (United States)

    Lei, Peng; Zhang, Xuebo; Xu, Yan; Xu, Gaofei; Liu, Xili; Yang, Xinling; Zhang, Xiaohe; Ling, Yun

    2016-01-01

    Take-all of wheat, caused by the soil-borne fungus Gaeumannomyces graminis var. tritici, is one of the most important and widespread root diseases. Given that take-all is still hard to control, it is necessary to develop new effective agrochemicals. Pyrazole derivatives have been often reported for their favorable bioactivities. In order to discover compounds with high fungicidal activity and simple structures, 1,2,3,4-tetrahydroquinoline, a biologically active group of natural products, was introduced to pyrazole structure. A series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were synthesized, and their fungicidal activities were evaluated. The bioassay results demonstrated that the title compounds displayed obvious fungicidal activities at a concentration of 50 μg/mL, especially against V. mali, S. sclerotiorum and G. graminis var. tritici. The inhibition rates of compounds 10d, 10e, 10h, 10i and 10j against G. graminis var. tritici were all above 90 %. Even at a lower concentration of 16.7 μg/mL, compounds 10d and 10e exhibited satisfied activities of 100 % and 94.0 %, respectively. It is comparable to that of the positive control pyraclostrobin with 100 % inhibition rate. A series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were synthesized and their structures were confirmed by (1)H NMR, (13)C NMR, IR spectrum and HRMS or elemental analysis. The crystal structure of compound 10g was confirmed by X-ray diffraction. Bioassay results indicated that all title compounds exhibited obvious fungicidal activities. In particular, compounds 10d and 10e showed comparable activities against G. graminis var. tritici with the commercial fungicide pyraclostrobin at the concentration of 16.7 μg/mL.Graphical abstractA series of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline were designed and synthesized. Bioassay results indicated that all these compounds exhibited obvious fungicidal activities.

  17. Synthesis of Novel (E) -α-(methoxyimino) Benzeneacetate Derivatives and their Fungicidal Activities

    International Nuclear Information System (INIS)

    Wang, X.; Chen, P.; Pang, Y.; Zhao, Z.; Wu, G.; Wang, H.

    2015-01-01

    In order to find novel strobilurin derivatives with good fungicidal activities, a series of (E)-α-(methoxyimino)benzeneacetate analogues containing 1,2,4-triazole Schiff base moiety were designed and synthesized. Their structures were confirmed by IR,1H-NMR, HRMS or elemental analyses. The antifungal activities indicated that compounds 6 showed moderate to good fungicidal activities against Rhizoctonia solani, Botrytis cinereapers, Fusarium graminearum and Blumeria graminis at the concentration 50 μ g/mL. For example, compounds 6e and 6h exhibited promising antifungal activity against Rhizoctonia solani, Botrytis cinereapers and Fusarium graminearum. Compounds 6g and 6j had higher fungicidal activities against Blumeria graminis at the concentration of 50 μ g/ml, inhibitory rate is 95.32 percentage and 89.67 percentage, respectively. (author)

  18. Vulnerability to Forced Labour and Trafficking: The case of Romanian women in the agricultural sector in Sicily

    Directory of Open Access Journals (Sweden)

    Letizia Palumbo

    2015-09-01

    Full Text Available This paper focuses on labour and sexual exploitation faced by Romanian female workers employed in the agricultural sector in Ragusa, Sicily, Italy. Drawing on fieldwork conducted in 2013 and 2014 with Romanian female farm workers in Ragusa, the paper identifies factors that contribute towards their vulnerability to exploitation. By paying specific attention to the experiences of women who are mothers with dependent children, we look at structural factors that increase their vulnerability and consider how this vulnerability ‘forces’ women into situations whereby they effectively accept and/or submit to abuse. We also highlight how European Union (EU citizenship does not automatically protect migrants from such abuse. This is important because, as we argue, the mistreatment experienced by participants in this study can be regarded as cases of forced labour and trafficking, based on International Labour Organization (ILO indicators[1] and the definition of trafficking provided by the Directive 2011/36/EU. For a long time, these cases have mostly been neglected by incompetent authorities or addressed using only repressive and assistentialist approaches. Thus, this paper also investigates the limits and potentialities of the Italian legal framework on trafficking, and the ways local institutions and organisations confront the rights violations occurring in the agricultural sector. We contend that in order to effectively counter these phenomena, labour rights measures and anti-trafficking interventions have to be combined based on a comprehensive approach aimed not only at assisting victims, but also at tackling the structural factors that create their vulnerability. [1] ILO, ‘ILO Indicators of Forced Labour’, International Labour Office, 2012, retrieved 11 August 2015, http://www.ilo.org/wcmsp5/groups/public/---ed_norm/---declaration/documents/publication/wcms_203832.pdf

  19. Triticale powdery mildew: population characterization and wheat gene efficiency.

    Science.gov (United States)

    Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe

    2014-01-01

    Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.

  20. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph

    Czech Academy of Sciences Publication Activity Database

    Wicker, T.; Oberhaensli, S.; Parlange, F.; Buchmann, J.; Shatalina, M.; Roffler, S.; Ben-David, R.; Doležel, Jaroslav; Šimková, Hana; Schulze-Lefert, P.; Keller, B.

    2013-01-01

    Roč. 45, č. 9 (2013), s. 1092-1098 ISSN 1061-4036 Institutional research plan: CEZ:AV0Z50380511 Keywords : EFFECTOR CANDIDATES * PATHOGEN * BLUMERIA-GRAMINIS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.648, year: 2013

  1. Barley : CGN downloadable dataset

    NARCIS (Netherlands)

    Centrum voor genetische bronnen (CGN) in Nederland- -,

    2014-01-01

    By 2014-14-07 data on experiments was available for the following traits. / Annuality 2120 observations on 1905 accessions / Awnedness - hoodedness 2570 observations on 2099 accessions / Early growth tendency 1717 observations on 1425 accessions / Erysiphe graminis 3832 observations on 1794

  2. A Fundamental Step in IPM on Grapevine: Evaluating the Side Effects of Pesticides on Predatory Mites

    Directory of Open Access Journals (Sweden)

    Alberto Pozzebon

    2015-10-01

    Full Text Available Knowledge on side effects of pesticides on non-target beneficial arthropods is a key point in Integrated Pest Management (IPM. Here we present the results of four experiments conducted in vineyards where the effects of chlorpyrifos, thiamethoxam, indoxacarb, flufenoxuron, and tebufenozide were evaluated on the generalist predatory mites Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant, key biocontrol agents of herbivorous mites on grapevines. Results show that indoxacarb and tebufenozide had a low impact on the predatory mites considered here, while a significant impact was observed for chlorpyrifos, flufenoxuron, and thiamethoxam. The information obtained here should be considered in the design of IPM strategies on grapevine.

  3. Structure and evolution of barley powdery mildew effector candidates

    Directory of Open Access Journals (Sweden)

    Pedersen Carsten

    2012-12-01

    Full Text Available Abstract Background Protein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease. Results Here we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids, with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids, with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons. Conclusions We employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f

  4. Comparison of mobile and stationary spore-sampling techniques for estimating virulence frequencies in aerial barley powdery mildew populations

    DEFF Research Database (Denmark)

    Hovmøller, M.S.; Munk, L.; Østergård, Hanne

    1995-01-01

    Gene frequencies in samples of aerial populations of barley powdery mildew (Erysiphe graminis f.sp. hordei), which were collected in adjacent barley areas and in successive periods of time, were compared using mobile and stationary sampling techniques. Stationary samples were collected from trap ...

  5. Molecular Characterization of wheat stem rust races in Kenya

    Science.gov (United States)

    Stem or black rust caused by Puccinia graminis f. sp. tritici (Pgt) Erikss. & Henning causes severe losses to wheat (Triticum aestivum L.), historically threatening global wheat production. Characterizing prevalent isolates of Pgt would enhance the knowledge of population dynamics and evolution of t...

  6. (Blumeria graminis f. sp. tritici) in wheat

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2017-01-04

    Jan 4, 2017 ... 2007; Zhang et al., 2008; Li et al., 2011; Alam et al.,. 2013; Quijano et al., 2015; ..... structure of the eastern US w heat pow dery mildew population. Plant. Dis. ... Collinearity-based marker mining for the fine mapping of Pm6, a ...

  7. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL.

    Science.gov (United States)

    Romero, Cynara C T; Vermeulen, Jasper P; Vels, Anton; Himmelbach, Axel; Mascher, Martin; Niks, Rients E

    2018-05-01

    Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.

  8. Powdery Mildew Resistance in 268 Entries of Hordeum vulgare

    DEFF Research Database (Denmark)

    Jiang, W.M.; Jørgensen, Jørgen Helms; Torp, J

    1984-01-01

    A collection of 24 'Spontaneum' barley [H. vulgare ssp. spontaneum] entries and one comprising 244 Ethiopian barleys [H. vulgare ssp. vulgare] were tested for resistance to 4 powdery mildew [used by Erysiphe graminis f. sp. hordei] cultures that carried genes for virulence corresponding to most...

  9. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    Fusarium graminearum is a necrotrophic plant pathogen that leads to severe infections of cereals contaminating them with mycotoxins harmful to human and animal. Blumeria graminis f. sp. hordei is an obligate biotroph that causes powdery mildew infections of barley. In this thesis, lifecycles and ...

  10. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes

    NARCIS (Netherlands)

    Aghnoum, R.; Marcel, T.C.; Johrde, A.; Pecchioni, N.; Schweizer, P.; Niks, R.E.

    2010-01-01

    The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of

  11. Spatial aggregation of pathotypes of barley powdery mildew

    DEFF Research Database (Denmark)

    O'Hara, R.B.; Brown, J.K.M.

    1997-01-01

    Aggregation in the distribution of pathotypes of Erysiphe graminis f.sp. hordei, the barley powdery mildew pathogen, was investigated in field plots of 'Golden Promise', 'Proctor' and 'Tyra'. 'Golden Promise' and 'Proctor' have no effective mildew resistance alleles, whereas 'Tyra' has Mla1, which...

  12. Rust scoring guide

    NARCIS (Netherlands)

    Anonymous,

    1986-01-01

    This brief guide for identifying rust diseases of smaill grain cereals contains color photos depicting the growth stages of small grain cereal crops and provides instructions for recording rust severity and field response for stripe rust (Puccinia striiformis), stem rust (P. graminis), and leaf rust

  13. Wheat rusts in the United States in 2016

    Science.gov (United States)

    In 2016, wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United State...

  14. Sequencing Ug99 and Other Stem Rust Races: Progress and Results

    Science.gov (United States)

    Over the last decade a number of different molecular methods have been used to characterize genetic diversity in Puccinia graminis. Multilocus DNA fingerprinting methods (AFLPs, RAPDs, SAMs and S-SAPs) have proven to be useful, but limited to phenotypic analysis due to the dikaryotic nature of rust ...

  15. Biocontrol evaluation of wheat take-all disease by Trichoderma ...

    African Journals Online (AJOL)

    Wheat take-all disease, caused by Gaeumannomyces graminis var tritici (Ggt), has been observed in different areas of Iran in recent years. Current biocontrol studies have confirmed the effectiveness of the. Trichoderma species against many fungal phytopathogens. In this study, biocontrol effects of Trichoderma isolates ...

  16. Biocontrol Agents for Take-all.

    NARCIS (Netherlands)

    Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S.; Cook, R.J.

    1997-01-01

    Fluorescent Pseudomonas spp. are described which are effective for the control of diseases caused by the soil-borne fungus, Gaeumannomyces graminis (Gg), such as take-all, in small grain crops or turf grass. The subject biocontrol strains have a unique genotype as shown by a characteristic banding

  17. Molecular and genetic study of wheat rusts | Le Maitre | African ...

    African Journals Online (AJOL)

    Microsatellite markers were used to differentiate P. triticina and P. striiformis pathotypes. Amplified fragment length polymorphisms (AFLP) were used to differentiate stem rust P. graminis pathotypes. Phylogenetic trees were created for leaf and stem rust pathotypes. Field isolates of leaf, stem and yellow rust were collected ...

  18. Characterization and partial purification of beta-1,3-D-glucan (callose) synthase from barley (Hordeum vulgare) leaves

    DEFF Research Database (Denmark)

    Pedersen, L.H.; Jacobsen, S.; Hejgaard, J.

    1993-01-01

    The plasma membrane bound beta-1,3-D-glucan (callose) synthase. assumed to be involved in the resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei), was partially purified from a microsomal fraction of green barley leaves (Hordeum vulgare L.). Plasma membranes were enriched...

  19. Wheat powdery mildew in Central China : pathogen population structure and host resistance

    NARCIS (Netherlands)

    Yu, D.

    2000-01-01

    Wheat powdery mildew, causal agent Erysiphe graminis f. sp. tritici , has been a serious disease in central China since the late 1970s.

    The wheat growing area in central China can be divided into three zones defined by altitude.

  20. Inter-chromosomal transfer of immune regulation during infection of barley with the powdery mildew pathogen

    Science.gov (United States)

    Powdery mildews infect over 9,500 plant species, causing critical yield loss. Powdery mildew disease of barley is caused by the Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh) and has become a model for the interactions among obligate biotrophs and their cereal hosts. Successful infection r...

  1. Genome-wide Association Analysis of Powdery Mildew Resistance in U.S. Winter Wheat

    Science.gov (United States)

    Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is a major fungal disease of wheat worldwide. It can cause considerable yield losses when epidemics occur. Use of genetic resistance is the most effective approach to control the disease. To determine the genomic regions responsi...

  2. Wheat stem rust in South Africa: Current status and future research ...

    African Journals Online (AJOL)

    . In South Africa, stem rust caused by Puccinia graminis Pers. f. sp. tritici. Eriks. & E. Henn. (Pgt) is an important disease of wheat. Records of stem rust occurrence in South Africa date back to the late 1720's, when it was first discovered in the ...

  3. A genome-wide association study of field and seedling response to stem rust pathogen races reveals combinations of race-specific resistance genes in North American spring wheat

    Science.gov (United States)

    Stem rust of wheat caused by the fungal pathogen Puccinia graminis f. sp. tritici historically caused major yield losses of wheat worldwide. To understand the genetic basis of stem rust resistance in conventional North American spring wheat, genome-wide association analysis (GWAS) was conducted on a...

  4. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    Science.gov (United States)

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  5. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    Science.gov (United States)

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  6. Rust scoring guide

    OpenAIRE

    Anonymous

    1986-01-01

    This brief guide for identifying rust diseases of smaill grain cereals contains color photos depicting the growth stages of small grain cereal crops and provides instructions for recording rust severity and field response for stripe rust (Puccinia striiformis), stem rust (P. graminis), and leaf rust (P. recondita).

  7. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi

    Science.gov (United States)

    Rust fungi are obligate biotrophic pathogens causing considerable damage on crop plants. P. graminis f. sp. tritici, the causal agent of wheat stem rust, and M. larici-populina, the poplar rust pathogen, have strong deleterious impact on wheat and poplar wood production, respectively. The recently r...

  8. An assessment of Japanese barberry in northern U.S. forests

    Science.gov (United States)

    Cassandra M. Kurtz; Mark H. Hansen

    2018-01-01

    Japanese barberry (Berberis thunbergii), a member of the barberry family (Berberidaceae), is a low-growing perennial shrub. This ornamental shrub was sent to Boston from Russia in 1875 as a substitute for common barberry, a nuisance plant that harbors black stem rust (Puccinia graminis), which affects several cereal crops (...

  9. Somatic recombination in wheat stem rust leads to virulence for Ug99-effective SR50 resistance

    Science.gov (United States)

    Race-specific resistance genes protect much of the global wheat crop from stem rust disease caused by Puccinia graminis f. sp. tritici (Pgt), but often break down due to evolution of new virulent pathogen races. To understand the molecular mechanisms of virulence evolution in Pgt we identified the p...

  10. Genome-wide association study for Identification and validation of novel SNP markers for Sr6 stem rust resistance gene in bread wheat

    Science.gov (United States)

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of...

  11. Bryophyte extracts with activity against plant pathogenic fungi ...

    African Journals Online (AJOL)

    Three dose levels of five candidate extracts sprayed at three pre-infectional time intervals were compared under low and high inoculum pressures of the late blight, Phytophthora infestans, of tomatoes and powdery mildew, Blumeria graminis, of wheat. In general, extracts from B. trilobata and D. albicans showed better ...

  12. Population Genetic Analysis of an Eastern U.S. Wheat Powdery Mildew Population Reveals Geographic and Recent Common Ancestry with U.K. and Israeli Populations

    Science.gov (United States)

    The structure of the U.S. wheat powdery mildew population (Blumeria graminis f. sp. tritici) has not been investigated, and the global evolutionary history of B. g. tritici is largely unknown. After gathering 141 single-ascoporic B. g. tritici isolates from 10 eastern U.S. locations, 34 isolates fr...

  13. Identification of QTLs for powdery mildew and scald resistance in barley

    NARCIS (Netherlands)

    Shtaya, M.J.Y.; Marcel, T.C.; Sillero, J.C.; Niks, R.E.; Rubiales, D.

    2006-01-01

    A population of 103 recombinant inbred lines (RILs, F9-derived lines) developed from the two-row spring barley cross L94 × `Vada¿ was evaluated under field conditions for resistance against powdery mildew (Blumeria graminis f.sp. hordei) and scald (Rhynchosporium secalis). Apart from the major

  14. Re-engineering of the Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination

    Science.gov (United States)

    Blumeria graminis f. sp. tritici, the cause of powdery mildew, can generate serious grain yield losses in wheat. To expand the range of resistance genes freely available to wheat breeders, a Haynaldia villosa derived resistance gene Pm21 was transferred to chromosome 6AS of wheat by homoeologous rec...

  15. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    Science.gov (United States)

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  16. Genomic dissection of nonhost resistance to wheat stem rust in Brachypodium distachyon

    Science.gov (United States)

    Wheat stem rust caused by the fungus Puccinia graminis f.sp. tritici (Pgt) is a devastating disease that has largely been controlled for decades by the deployment of resistance genes. However, new races of this pathogen have emerged that overcome many important wheat stem rust resistance genes used ...

  17. Growth of wheat and triticale cultivars with the use of the artificial genetic mutations

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This document reports the use of gamma radiation to induce resistance to the fungus Puccina graminis tritici in wheat (Triticum). A resistant wheat mutant was produced, and its genetic properties are reported. The mutant was evaluated for use as a crop and for application in further crop improvement programms

  18. Genomic analysis of a novel gene conferring resistance to Ug99 stem rust in Triticum turgidum ssp. dicoccum

    Science.gov (United States)

    Wheat production is threatened by the disease stem rust, which is caused by the biotrophic fungal pathogen Puccinia graminis Pers.:Pers. f. sp. tritici (Pgt). Among all known Pgt races, TTKSK (Ug99) and TRTTF are significant threats to North American wheat production due to their virulence against f...

  19. Inheritance and bulked segregant analysis of leaf rust and stem rust resistance genes in eight durum wheat genotypes

    Science.gov (United States)

    Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...

  20. Sources of stem rust resistance in wheat-alien introgression lines

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most devastating diseases of wheat and the novel highly virulent race of TTKSK and its lineage are threatening wheat production worldwide. The objective of the study was to identify new sources of resistance in wheat-alien introgre...

  1. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum

    Science.gov (United States)

    The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the TTKSK (Ug99) race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat ...

  2. Molecular and cytogenetic characterization of wheat introgression lines carrying the stem rust resistance gene Sr39.

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn., poses a serious threat to global wheat production because of the emergence of Pgt-TTKSK (Ug99). The TTKSK resistant gene Sr39 was derived from Aegilops speltoides through chromosome translocation. In this study, we ch...

  3. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  4. Molecular and genetic study of wheat rusts | Le Maitre | African ...

    African Journals Online (AJOL)

    Puccinia triticina, Puccinia graminis and Puccinia striiformis cause leaf, stem and yellow rust, respectively. Wheat rusts can cause losses as high as 70%. The rusts ability to evolve fungicide resistance has resulted in the use of resistant cultivars as the primary method of control. Breeding resistant cultivars is a long process ...

  5. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    Science.gov (United States)

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  6. Genome size variation in the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme as determined by flow cytometry

    Science.gov (United States)

    Claire L Anderson; Thomas L Kubisiak; C Dana Nelson; Jason A Smith; John M Davis

    2010-01-01

    The genome size of the pine fusiform rust pathogen Cronartium quercuum f.sp. fusiforme (Cqf) was determined by flow cytometric analysis of propidium iodide-stained, intact haploid pycniospores with haploid spores of two genetically well characterized fungal species, Sclerotinia sclerotiorum and Puccinia graminis f.sp. tritici, as size standards. The Cqf haploid genome...

  7. development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    ACSS

    Wheat (Triticum aestivum) rust outbreak is the primary production constraint in Eastern Africa. Ethiopia, Kenya and Uganda are hot spots for the epidemic of rusts, due to higher rates of evolution of new pathogen races, especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to ...

  8. Development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum) rust outbreak is the primary production constraint in Eastern Africa. Ethiopia, Kenya and Uganda are hot spots for the epidemic of rusts, due to higher rates of evolution of new pathogen races, especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to ...

  9. Chromosome landing at the ¤Mla¤ locus in barley (¤Hordeum vulgare¤ L.) by means of high-resolution mapping with AFLP markers

    DEFF Research Database (Denmark)

    Schwarz, G.; Michalek, W.; Mohler, V.

    1999-01-01

    The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hol dei. With a view towards gene isolation, a population consisting of 950 F-2 individuals derived from a cross between the near-isogenic lines 'P01' (Mla1) and 'P10' (Mla12) was used to...

  10. stem rust seedling resistance genes in ethiopian wheat cultivars

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Stem rust caused by Puccinia graminis f. sp. tritici is one of the major biotic limiting factors for wheat production in Ethiopia. Host plant resistance is the best option to manage stem rust from its economic and environmental points of view. Wheat cultivars are released for production without carrying race specific tests against ...

  11. Sources of stem rust resistance in Ethiopian tetraploid wheat ...

    African Journals Online (AJOL)

    Stem or black rust of wheat caused by the fungus Puccinia graminis f. sp. tritici Ericks and Henn (Pgt) is an important disease on wheat worldwide. Pgt is an obligate biotroph, heteroceous in its life cycle and heterothallic in mating type. Seedlings of 41 emmer (Triticum dicoccum), 56 durum (T. durum) wheat accessions were ...

  12. Reaction to diseases of six gamma-irradiated genotypes of wheat (Triticum spp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1977-01-01

    Seed from six genotypes of spring wheat: Huelquen, Collafen, Yafen, PLA771 and Bluebird No.3 (Triticum aestivum L.), and also Quilafen (Triticum durum Desf.) was exposed to gamma radiation in doses of 10 and 25 krad. The aim of the research is to produce cultivars resistant to the main diseases, with a high protein content and grain yield, for the north-central region of Chile (29-35 0 latitude south). The selection process up to the generation M 5 has made it possible to identify mutants with a higher level of resistance to Puccinia graminis, Puccinia recondita and Puccinia striiformis than the original genotypes. Progress made in improving resistance to a fungal complex attacking the spikelets of the mutant cultivars Huelquen and Yafen, to Erysiphe graminis, and to the yellow dwarf virus in barley (BYDV), has been slighter. The yield of grain and protein per unit surface of the mutants studied during repeated experiments has been greater than for the controls. If this trend continues, there should be a number of mutants that could be used for commercial cultivation. (author)

  13. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat

    Directory of Open Access Journals (Sweden)

    Jeyaraman Rajaraman

    2016-12-01

    Full Text Available Pattern recognition receptors (PRRs belonging to the multigene family of receptor-like kinases (RLKs are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for required for nonhost resistance 8 encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates nonhost resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus Blumeria graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating nonhost resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  14. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    Science.gov (United States)

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  15. [Antifungal activity of aqueous extracts from the leaf of cowparsnip and comfrey].

    Science.gov (United States)

    Karavaev, V A; Solntsev, M K; Iurina, T P; Iurina, E V; Poliakova, I B; Kuznetsov, A M

    2001-01-01

    We found that extracts from the leaves of medicinal comfrey and cowparsnip strongly inhibit the germination of Erysiphe graminis conidia and uredospores of Puccinia graminis. Spraying wheat seedlings with these extracts, in contrast to the irrigation of soil, markedly diminished infection in plants with powdery mildew. Antifungal activity in vitro and protective activity (when plants were sprayed) correlated with the level of phenolic compounds in these extracts. Experiments with healthy plants have demonstrated that the photosynthetic apparatus of wheat plants is stimulated by extracts. Spraying seedlings with the extracts resulted in an increased rate of O2 evolution calculated per unit of chlorophyll, an increase in the ratio (FM-FT)/FT in the experiments that recorded slow fluorescence induction, an increase in the relative light intensity of band A, and a decrease of relative intensity of band C in experiments with thermoluminescence of wheat leaves. These results provide evidence that the protective activity of comfrey and cowparsnip extracts is associated with their action on the pathogenic fungus and with the activation of natural defense reactions of the host plant.

  16. The genera Conocybe and Pholiotina (Agaricomycotina, Bolbitiaceae) in temperate Asia

    DEFF Research Database (Denmark)

    Hausknecht, Anton; Kalamees, Kuulo; Knudsen, Henning Jørgen

    2009-01-01

    . En række arter repræsenterer nye fund for Asien, for Sibirien eller for Georgien, Tadjikistan, Turkmenistan eller Kazakstan. Et mycogeografisk element repræsenteres af C. enderlei, C. herbarum, C. graminis, C. leporina og C. subxerophytica, som er knyttet til tørre, steppeagtige områder med høj pH...

  17. A Japanese powdery mildew isolate with exceptionally large infection efficience on Mlo-resistant barley

    DEFF Research Database (Denmark)

    Lyngkjær, M.F.; Jensen, H.P.; Østergård, Hanne

    1995-01-01

    A Japanese field isolate (Race I) of Erysiphe graminis f,sp. hordei was tested on 17 barley lines carrying the mlo powdery mildew resistance gene. Race I produced many successful infections with infection type larger than or equal to 2 on six lines (M66, MC20, SR1, SR7, Atem and Totem). On the re...

  18. INFLUENCE OF SPATIAL AND TEMPORAL VARIATIONS IN THE HYPERSENSITIVE RESPONSE ON THE ACCUMULATION OF DEFENSE-RELATED TRANSCRIPTS IN POWDERY MILDEW-INFECTED BARLEY

    Czech Academy of Sciences Publication Activity Database

    Rayapuram, C.; Hemzalová, Vendula; Lyngkjaer, M. E.

    2011-01-01

    Roč. 93, č. 3 (2011), s. 613-625 ISSN 1125-4653 R&D Projects: GA MZe QH72117 Institutional research plan: CEZ:AV0Z50380511 Keywords : Blumeria graminis f. sp hordei * Hordeum vulgare * hypersensitive response Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.912, year: 2011 http://sipav.org/main/jpp/index.php/jpp/article/view/1229

  19. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

    DEFF Research Database (Denmark)

    Chen, Yan-Jun; Perera, Venura; Wagner, Michael

    2013-01-01

    Barley HvNAC6 is a member of the plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factor family and we have shown previously that it acts as a positive regulator of basal resistance in barley against the biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we use a trans...

  20. Triassic aragonite in carbonate source-rock from Ragusa Basin (Sicily): geochemistry, comparison with recent sediments and origin

    International Nuclear Information System (INIS)

    Loreau, J.P.; Sabbadini, S.; Brosse, E.; Frixa, A.

    1995-01-01

    Aragonitic muds from the upper Triassic occur in laminites between two laminae rich in clays and/or organic matter. Two types of aragonite are identified. The first shows rod or needle morphology, with Sr content (9,300 ppm), δ 18 O(-1.1 to -1.7) and δ 13 C(+2.1 to +2.8) mostly similar to aragonite of Recent sediments. It is not biodetrital in origin but results from direct precipitation at 22-30 deg C in sea water with a m Sr 2+ / m Ca 2+ ratio very near to Recent values. The second aragonite showing greater prismatic crystals with inclusions of relics of rods and needles, a high content in strontium (15,800 ppm) and a negative δ 13 C(-13.0 to -14.4), is diagenetic. (authors). 23 refs., 6 figs

  1. Barberry rust survey – developing tools for diagnosis, analysis and data management

    DEFF Research Database (Denmark)

    Justesen, Annemarie Fejer; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring

    Barberry (Berberis spp.) may serve as alternate host of several Puccinia species including Puccinia graminis and P. striiformis causing stem and yellow rust on cereals and grasses, respectively. In order to study the importance of barberry in the epidemiology of Puccinia species in the CWANA regi...... a rust survey was initiated. The aim was to 1) develop a surveillance protocol 2) develop molecular diagnostic tools for identifying Puccinia spp. from aecial samples, and 3) develop a data management and display system of results as part of the Wheat Rust ToolBox (http....... Due to variable quality of aecial samples DNA extraction was not successful for 40% of the samples. Sequences of EF1α, β-tubulin or ITS were analysed and compared to reference sequences of rust fungi infecting cereals and grasses. The analysis supported the presence of P. graminis s.l., P....... arrhenatheri and P. striiformoides on barberry species. Survey and DNA sample maps with species designation were displayed in the Wheat Rust ToolBox. The future aim is to integrate barberry rust survey data based on molecular diagnostics and infection assays from research groups world-wide in order to gain...

  2. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus.

    Science.gov (United States)

    Hong, Yuan-Yuan; Ma, Yu-Chao; Zhou, Yu-Guang; Gao, Fei; Liu, Hong-Can; Chen, San-Feng

    2009-11-01

    A nitrogen-fixing bacterium, designated strain X19-5(T), was isolated from rhizosphere soil of Sonchus oleraceus. Phylogenetic analysis based on a fragment of the nifH gene and the full-length 16S rRNA gene sequence revealed that strain X19-5(T) was a member of the genus Paenibacillus. Strain X19-5(T) showed the highest 16S rRNA gene sequence similarity (98.8 %) with Paenibacillus graminis RSA19(T) and below 97 % similarity with other recognized members of the genus. The level of DNA-DNA relatedness between strain X19-5(T) and P. graminis RSA19(T) was 45.7 %. The DNA G+C content of strain X19-5(T) was 46.8 mol%. The major fatty acids were anteiso-C(15 : 0), C(16 : 0) and iso-C(16 : 0). On the basis of its phenotypic characteristics and the level of DNA-DNA hybridization, strain X19-5(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sonchi sp. nov. is proposed. The type strain is X19-5(T) (=CCBAU 83901(T)=LMG 24727(T)).

  3. Relation entre l’environnement politique et économique et la production architecturale dans la ville de Dubrovnik aux XVIIème et XVIIIème siècles / The relationship between the political and economic context and the architecture in Dubrovnik during the 17th and 18th Centuries

    Directory of Open Access Journals (Sweden)

    Anita Ruso

    2014-06-01

    Full Text Available Durant les debuts dé la période moderne, Dubrovnik (Ragusa en latine, une ville entre l'Orient et l'Occident, fonda sa richesse sur le commerce. Malgré sa position géographique favorable, la ville se situe dans une zone sismique complexe. Le grand séisme qui ravagea Raguse en 1667 tua environ 2000 de ses habitants et détruisit un grand nombre de bâtiments. Cet article porte sur les relations entre la production artistique et l’environnement économique dans la ville de Dubrovnik après le grand séisme qui fournit l’occasion de procéder à une rénovation architecturale de grand envergure. Jusqu'à présent, la vaste bibliographie pourtant sur ce sujet n’a pas encore mis l'accent sur ce rapport. La question se pose de savoir combien et comment furent payés les architectes qu’y vénèrent à l’instigation d'ambassadeurs et d'agents commerciaux ragusain. En outre l’article cherche à éclairer la situation économique de Dubrovnik à partir du milieu du 17ème jusqu'au début du 18ème siècle.   During the Early Modern period, Dubrovnik (Latin Ragusa managed to benefit from its geographical position between the East and the West, making trade the base of its wealth.  Unfortunately, the city was also in the zone subject to seismic activity, and the strong earthquake that struck the city in 1667 killed around 2000 people and physically damaged most of its architecture. Therefore, this article discusses the relationship between artistic production and the economic environment in the city of Dubrovnik after 1667. The consequences of the so called “Great Earthquake” have been partially investigated in terms of importation of architectural projects and architects, but there is no scholarly work on the economy of rebuilding of the city on the periphery of catholic Europe. The article includes a list of repaired and rebuilt architecture as well as information about the payments for it and the general economic situation in

  4. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans

    NARCIS (Netherlands)

    Heshof, R.; Schayck, van J.P.; Tamayo Ramos, J.A.; Graaff, de L.H.

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain

  5. Amplified Fragment Length Polymorphism of Puccinia graminis f. sp ...

    African Journals Online (AJOL)

    Keywords: AFLP, wheat, stem rust, genetic diversity, population differentiation ... the method described by Vos et al (1995), with little modification, i.e., 1 µl genomic ..... Agriculture, Veterinary Science, Nutrition and Natural Resources, 1, 1- 13.

  6. Amplified fragment length polymorphism of Puccinia graminis f. sp ...

    African Journals Online (AJOL)

    The developed AFLP fingerprints for the Ethiopian Pgt isolates reported herein could support the breeding program to develop strategies for the deployment of resistance genes in its continued effort to minimize the impact of stem rust on wheat in Ethiopia. Keywords: AFLP, wheat, stem rust, genetic diversity, population ...

  7. Controlling the geographical spread of infectious disease: plague in Italy, 1347-1851.

    Science.gov (United States)

    Cliff, Andrew D; Smallman-Raynor, Matthew R; Stevens, Peta M

    2009-01-01

    After the establishment of the first quarantine station in the Republic of Ragusa (modern-day Dubrovnik) in 1377, the states and principalities of Italy developed a sophisticated system of defensive quarantine in an attempt to protect themselves from the ravages of plague. Using largely unknown and unseen historical maps, this paper reconstructs the extent and operation of the system used. It is shown that a cordon sanitaire existed around the coast of Italy for several centuries, consisting of three elements: (i) an outer defensive ring of armed sailing boats in the Mediterranean and the Adriatic, (ii) a middle coastal ring of forts and observation towers, and (iii) an inner defensive ring of land-based cavalry. The principles established, although not especially successful at the time against a disease of (then) unknown aetiology, are still used today in attempts to control the spread of infections of animal and human populations.

  8. Early H2O2 Accumulation in Mesophyll Cells Leads to Induction of Glutathione during the Hyper-Sensitive Response in the Barley-Powdery Mildew Interaction1

    Science.gov (United States)

    Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.

    2000-01-01

    H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348

  9. Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast

    NARCIS (Netherlands)

    Castroagudín, V.L.; Moreira, S.I.; Pereira, D.A.S.; Moreira, S.S.; Brunner, P.C.; Maciel, J.L.N.; Crous, P.W.; McDonald, B.A.; Alves, E.; Ceresini, P.C.

    2016-01-01

    Pyricularia oryzae is a species complex that causes blast disease on more than 50 species of poaceous plants. Pyricularia oryzae has a worldwide distribution as a rice pathogen and in the last 30 years emerged as an important wheat pathogen in southern Brazil. We conducted phylogenetic analyses

  10. High-throughput phenotyping allows for QTL analysis of defense, symbiosis and development-related traits

    DEFF Research Database (Denmark)

    Hansen, Nina Eberhardtsen

    -throughput phenotyping of whole plants. Additionally, a system for automated confocal microscopy aiming at automated detection of infection thread formation as well as detection of lateral root and nodule primordia is being developed. The objective was to use both systems in genome wide association studies and mutant...... the analysis. Additional phenotyping of defense mutants revealed that MLO, which confers susceptibility towards Blumeria graminis in barley, is also a prime candidate for a S. trifoliorum susceptibility gene in Lotus....

  11. Effect of foliar application of pymetrozine on Bemisia tabaci (MED whitefly) and Amblyseius swirskii, 2016

    Science.gov (United States)

    Bemisia tabaci is a polyphagous pest known to feed upon over 900 plant taxa, and is an effective vector of more than 100 plant damaging viruses. Among different biotypes of this cryptic species complex, MEAM1 and MED whitefly are the two most destructive members posing threats of several crops of ec...

  12. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    Science.gov (United States)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  13. Pathogen-Induced Changes in the Antioxidant Status of the Apoplast in Barley Leaves

    Science.gov (United States)

    Vanacker, Hélène; Carver, Tim L.W.; Foyer, Christine H.

    1998-01-01

    Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity. PMID:9662553

  14. Modification of barley powdery mildew resistance controlled by the gene M1-a212

    International Nuclear Information System (INIS)

    Torp, J.; Joergensen, J.H.

    1989-01-01

    Full text: The barley line Sultan 5 carries resistance gene M1-a12. Seeds were treated with EMS or NaN 3 . Among 10381 M 1 -spike progenies inoculated with M1-a12 a-virulent isolates of Erysiphe graminis, 25 segregated for less resistant infection type. Among 10 mutants analyzed, 9 had mutant allels of M1-a12 and one had a recessive mutant gene in a different locus acting as a ''suppressor'' of M1-a12. (author)

  15. Genetic characterisation of novel resistance alleles to stem rust and stripe rust in wheat-alien introgression lines

    OpenAIRE

    Rahmatov, Mahbubjon

    2016-01-01

    Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops world-wide, but is attacked by many diseases and pests that cause significant yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr resistance genes are already defeated...

  16. Sources of resistance to yellow rust and stem rust in wheat-alien introgressions

    OpenAIRE

    Rahmatov, Mahbubjon

    2013-01-01

    Wheat is the staple food and the main source of caloric intake in most developing countries, and thereby an important source in order to maintain food security for the growing populations in those countries. Stem rust Puccinia graminis f. sp. tritici, and yellow rust P. striiformis f. sp. tritici of wheat continues to cause severe damage locally and globally, thereby contributing to food insecurity. In this paper biology and taxonomy of stem rust and yellow rust, breeding for resistance, util...

  17. Constitutive and Operational Variation of Learning in Foraging Predatory Mites.

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2016-01-01

    Learning is widely documented across animal taxa but studies stringently scrutinizing the causes of constitutive or operational variation of learning among populations and individuals are scarce. The ability to learn is genetically determined and subject to constitutive variation while the performance in learning depends on the immediate circumstances and is subject to operational variation. We assessed variation in learning ability and performance of plant-inhabiting predatory mites, Amblyseius swirskii, caused by population origin, rearing diet, and type of experience. Using an early learning foraging paradigm, we determined that homogeneous single prey environments did not select for reduced learning ability, as compared to natural prey-diverse environments, whereas a multi-generational pollen diet resulted in loss of learning, as compared to a diet of live prey. Associative learning produced stronger effects than non-associative learning but both types of experience produced persistent memory. Our study represents a key example of environmentally caused variation in learning ability and performance.

  18. Constitutive and Operational Variation of Learning in Foraging Predatory Mites.

    Directory of Open Access Journals (Sweden)

    Michael Seiter

    Full Text Available Learning is widely documented across animal taxa but studies stringently scrutinizing the causes of constitutive or operational variation of learning among populations and individuals are scarce. The ability to learn is genetically determined and subject to constitutive variation while the performance in learning depends on the immediate circumstances and is subject to operational variation. We assessed variation in learning ability and performance of plant-inhabiting predatory mites, Amblyseius swirskii, caused by population origin, rearing diet, and type of experience. Using an early learning foraging paradigm, we determined that homogeneous single prey environments did not select for reduced learning ability, as compared to natural prey-diverse environments, whereas a multi-generational pollen diet resulted in loss of learning, as compared to a diet of live prey. Associative learning produced stronger effects than non-associative learning but both types of experience produced persistent memory. Our study represents a key example of environmentally caused variation in learning ability and performance.

  19. University Research in Support of TREAT Modeling and Simulation, FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Idaho National Laboratory is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under the Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. In support of this research, INL is working with four universities to explore advanced solution methods that will complement or augment capabilities in MAMMOTH. This report consists of a collection of year end summaries of research from the universities performed in support of TREAT modeling and simulation. This research was led by Prof. Sedat Goluoglu at the University of Florida, Profs. Jim Morel and Jean Ragusa at Texas A&M University, Profs. Benoit Forget and Kord Smith at Massachusetts Institute of Technology, Prof. Leslie Kerby of Idaho State University and Prof. Barry Ganapol of University of Arizona. A significant number of students were supported at various levels though the projects and, for some, also as interns at INL.

  20. PROGRAMMAZIONE STRATEGICA E VALUTAZIONE GENERATIVA NELLA RIQUALIFICAZIONE DEI TESSUTI URBANI STORICI

    Directory of Open Access Journals (Sweden)

    Vittoria Ventura

    2016-06-01

    Full Text Available The old town of Ragusa is undertaking a process of progressive urban enhancement in some different directions. Its differently valued parts should be covered by a general valorization strategy connecting the decision making process with functional and symbolic values that need to be adequately analyzed and represented. In such a multi-layered urban sub-system, the Architectural Unit can play the role of main information/value unit from which the valuation/decision making pattern starts. The proposed pattern includes, connects and systematizes the analysis, valuation and planning stages by coordinating quantitative appraisals and qualitative multi- criteria assessments based on a MAVT pattern. In particular, the planning stage is aimed at associating the fair Intervention Category to each Architectural Unit by generating a great number of overall intervention strategies in order to maximize different and conflicting objectives. Thus, the strategies are compared basing on their axiological profile, to lay down a trade-off scheme between them. The pattern endorses a semiotic interpretation of the urban fabric, sorting the single Architectural Units by signs, symbols and icons.

  1. Microscopical observations of Sphaerellopsis filum, a parasite of Puccinia recondita

    Directory of Open Access Journals (Sweden)

    Agnieszka Płachecka

    2012-12-01

    Full Text Available Sphaerellopsis filum is a well-known parasite associated with many species of rust fungi. It is of frequent occurrence as parasite of cereal rusts: Puccinia recondita, P. coronata, P. graminis, P. hordei and P. striiformis. Uredial sori of Puccinia recondita f.sp. tritici infected with Sphaerellopsis filum were examined by light and scanning microscope to determine morphology of hyperparasite as well as the parasite-hyperparasite contact. The microscopical examination of infected uredinia clearly showed the intimate connection of S. filum with its rust host.

  2. Controle biológico do ácaro rajado com ácaros predadores fitoseídeos (Acari: Tetranychidae, Phytoseiidae em culturas de pepino e morango Biological control of the two-spotted spider mite (Acari: Tetranychidae, Phytoseiidae in cucumber and strawberry crops

    Directory of Open Access Journals (Sweden)

    M.A. Watanabe

    1994-04-01

    Full Text Available O ácaro rajado, Tetranychus urticae Koch, é considerado uma das principais pragas de hortaliças e várias outras culturas no Brasil, em áreas onde um considerável volume de acaricidas é anualmente empregado no seu controle. O objetivo deste trabalho foi testar a viabilidade técnica do emprego dos fitoseídeos Amblyseius idaeus (Denmark & Muma e Phytoseudus macropilis (Banks, comum ente encontrados no Brasil, no controle de T. urticae em pepino e morangueiro em Jaguaríúna,SP. Utilizou-se o delineamento experimental em blocos casualizados, com 4 repetições e 4 tratamentos (T1-T4 para o pepino e 5 tratamentos para o morangueiro (T1-T5: T1, testemunha; T2, pulverizações semanais de Malation para a exclusão de predadores nativos; T3, liberações periódicas de A.idaeus; T4, liberações periódicas de P.macropilis; T5, pulverizações semanais de avermectina para a exclusão de ácaros fitófagos e predadores nativos. Apenas A.idaeus se estabeleceu na cultura de pepino, reduzindo significativamente a população de T. urticae. Ambas espécies de predadores se estabeleceram na cultura do morango e reduziram significativamente a população de T.urticae.The two-spotted spider mite, Tetranychus urticae Koch, is considered one of the main pests of horticultural and other crops in Brazil, in areas where a considerable volume of acaricides is annually used for its control. The objective of this work was to test the technical viability of using phytoseiids Amblyseius idaeus (Denmark & Muma and Phytoseudus macropilis (Banks, commonly found in Brazil, to control T .urticae in cucumber and strawberry crops in Jaguaríúna,SP. A randomized complete block design was used, with 4 replicates and 4 treatments for cucumber (T1-T4 and 5 treatments for strawberry crops (T1-T5: T1, control; T2, weekly sprays of malathion for exclusion of native predators; T3, periodical releases of A.idaeus; T4, periodical releases of P. macropilis; T5, weekly sprays of

  3. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.

    Science.gov (United States)

    Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou

    2005-07-01

    A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.

  4. Prevalence of sensitization to the predatory mite Amblyseius cucumeris as a new occupational allergen in horticulture.

    Science.gov (United States)

    Groenewoud, G C M; de Graaf in 't Veld, C; vVan Oorschot-van Nes, A J; de Jong, N W; Vermeulen, A M; van Toorenenbergen, A W; Burdorf, A; de Groot, H; Gerth van Wijk, R

    2002-07-01

    Protection against thrips, a common pest in bell pepper horticulture is effectively possible without pesticides by using the commercially available predatory mite Amblyzeius cucumeris (Ac). The prevalence of sensitization to Ac among exposed greenhouse employees and its clinical relevance was studied. Four hundred and seventytwo employees were asked to fill in a questionnaire and were tested on location. Next to RAST, skin prick tests (SPTs) were performed with common inhalant allergens, the storage mite Tyrophagus putrescentiae (Tp) which serves as a temporary food source during the cultivation process and Ac. Furthermore, nasal challenge tests with Ac were carried out in 23 sensitized employees. SPTs positive to Ac were found in 109 employees (23%). Work-related symptoms were reported by 76.1%. Sensitization to Tp was found in 62 employees of whom 48 were also sensitized to Ac. Immunoglobulin (Ig)E-mediated allergy to inhalant allergens appeared to be an important risk factor for sensitization to Ac. Employees with rhinitis symptoms showed a significantly higher response to all Ac doses during the nasal challenge test compared with employees without rhinitis symptoms. The predatory mite Ac is a new occupational allergen in horticulture which can cause an IgE-mediated allergy in exposed employees. It is biologically active on the mucous membranes of the nose and therefore clinically relevant for the development of work-related symptoms.

  5. The evaluation of winter wheat roots and leaf sheath diseases diagnostic methods

    Directory of Open Access Journals (Sweden)

    Ewa Solarska

    2012-12-01

    Full Text Available The maltose and mineral media for isolation of Gaeumannomyces graminis from roots were assessed. The differences in numbers of obtained isolates were found depending on the medium used and sampling date. Easier identification of pathogen was possible employing maltose medium. The fungi from genus Fusarium occurring on winter wheat leaf sheaths were identified by mycological analysis and PCR, while the fungus Pseudocercosporella herpotrichoides was detected by PCR and ELISA methods. PCR and ELISA methods enabled to detect pathogens also in periods before the disease symptoms on plants occurred.

  6. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity

    DEFF Research Database (Denmark)

    Nielsen, Mads Eggert; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly...... (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material...

  7. CONFIRMATION OF PRESENCE OF A PREDATORY GALL MIDGE, Feltiella acarisuga, (Vallot, 1827 AND STAPHYLINID PREDATOR Oligota oviformis Casey, 1893 OF A TWO SPOTTED SPIDER MITE (Tetranychus urticae, Koch, 1836 IN SLOVENIA

    Directory of Open Access Journals (Sweden)

    Katarina KOS

    2018-04-01

    Full Text Available The two spotted spider mite, Tetranychus urticae C. L. Koch, 1836 is one of the most important pests of greenhouse crops worldwide. Due to its polyphagic range of hosts and rapid development it forms great populations and as such represents a suitable host/prey for lots of natural enemies usable in biological control. Most commonly used predators of Tetranychid mites are predatory mites (Phytoseiulus persimilis Athias-Henriot, 1957, Amblyseius swirskii Athias-Henriot, 1962 ,…, but among most voracious predators is the larva of a predatory gall midge, Feltiella acarisuga (Vallot, 1827 that was found also in greenhouses of the Biotechnical Faculty in Ljubljana on eggplant leaves in 2017. Besides the predatory gall midge also another predator, staphylinid Oligota oviformis Casey, 1893 beetles and larvae were found in great numbers. After positive identification of F. acarisuga found naturally in Slovenia, it can be added to the list of indigenous species of natural enemies and thus can be used in biological control programs in greenhouse crop protection against spider mites.

  8. Take-all of Wheat and Natural Disease Suppression: A Review

    Directory of Open Access Journals (Sweden)

    Youn-Sig Kwak

    2013-06-01

    Full Text Available In agro-ecosystems worldwide, some of the most important and devastating diseases are caused by soil-borne necrotrophic fungal pathogens, against which crop plants generally lack genetic resistance. However, plants have evolved approaches to protect themselves against pathogens by stimulating and supporting specific groups of beneficial microorganisms that have the ability to protect either by direct inhibition of the pathogen or by inducing resistance mechanisms in the plant. One of the best examples of protection of plant roots by antagonistic microbes occurs in soils that are suppressive to take-all disease of wheat. Take-all, caused by Gaeumannomyces graminis var. tritici, is the most economically important root disease of wheat worldwide. Take-all decline (TAD is the spontaneous decline in incidence and severity of disease after a severe outbreak of take-all during continuous wheat or barley monoculture. TAD occurs worldwide, and in the United States and The Netherlands it results from a build-up of populations of 2,4-diacetylphloroglucinol (2,4-DAPG-producing fluorescent Pseudomonas spp. during wheat monoculture. The antibiotic 2,4-DAPG has a broad spectrum of activity and is especially active against the take-all pathogen. Based on genotype analysis by repetitive sequence-based-PCR analysis and restriction fragment length polymorphism of phlD, a key 2,4-DAPG biosynthesis gene, at least 22 genotypes of 2,4-DAPG producing fluorescent Pseudomonas spp. have been described worldwide. In this review, we provide an overview of G. graminis var. tritici, the take-all disease, Pseudomonas biocontrol agents, and mechanism of disease suppression.

  9. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat.

    Science.gov (United States)

    Rahmatov, Mahbubjon; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Danilova, Tatiana; Friebe, Bernd; Steffenson, Brian J; Johansson, Eva

    2016-07-01

    A new stem rust resistance gene Sr59 from Secale cereale was introgressed into wheat as a 2DS·2RL Robertsonian translocation. Emerging new races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici), from Africa threaten global wheat (Triticum aestivum L.) production. To broaden the resistance spectrum of wheat to these widely virulent African races, additional resistance genes must be identified from all possible gene pools. From the screening of a collection of wheat-rye (Secale cereale L.) chromosome substitution lines developed at the Swedish University of Agricultural Sciences, we described the line 'SLU238' 2R (2D) as possessing resistance to many races of P. graminis f. sp. tritici, including the widely virulent race TTKSK (isolate synonym Ug99) from Africa. The breakage-fusion mechanism of univalent chromosomes was used to produce a new Robertsonian translocation: T2DS·2RL. Molecular marker analysis and stem rust seedling assays at multiple generations confirmed that the stem rust resistance from 'SLU238' is present on the rye chromosome arm 2RL. Line TA5094 (#101) was derived from 'SLU238' and was found to be homozygous for the T2DS·2RL translocation. The stem rust resistance gene on chromosome 2RL arm was designated as Sr59. Although introgressions of rye chromosome arms into wheat have most often been facilitated by irradiation, this study highlights the utility of the breakage-fusion mechanism for rye chromatin introgression. Sr59 provides an additional asset for wheat improvement to mitigate yield losses caused by stem rust.

  10. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials.

    Science.gov (United States)

    Ripari, Valery; Gänzle, Michael G; Berardi, Enrico

    2016-09-02

    The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus graminis, or Lactobacillus rossiae, and Saccharomyces cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material. Copyright © 2016. Published by Elsevier B.V.

  11. Cytological and molecular analysis of nonhost resistance in rice to wheat powdery mildew and leaf rust pathogens.

    Science.gov (United States)

    Cheng, Yulin; Yao, Juanni; Zhang, Hongchang; Huang, Lili; Kang, Zhensheng

    2015-07-01

    Cereal powdery mildews caused by Blumeria graminis and cereal rusts caused by Puccinia spp. are constant disease threats that limit the production of almost all important cereal crops. Rice is an intensively grown agricultural cereal that is atypical because of its immunity to all powdery mildew and rust fungi. We analyzed the nonhost interactions between rice and the wheat powdery mildew fungus B. graminis f. sp. tritici (Bgt) and the wheat leaf rust fungus Puccinia triticina (Ptr) to identify the basis of nonhost resistance (NHR) in rice against cereal powdery mildew and rust fungi at cytological and molecular levels. No visible symptoms were observed on rice leaves inoculated with Bgt or Ptr. Microscopic observations showed that both pathogens exhibited aberrant differentiation and significantly reduced penetration frequencies on rice compared to wheat. The development of Bgt and Ptr was also completely arrested at early infection stages in cases of successful penetration into rice leaves. Attempted infection of rice by Bgt and Ptr induced similar defense responses, including callose deposition, accumulation of reactive oxygen species, and hypersensitive response in rice epidermal and mesophyll cells, respectively. Furthermore, a set of defense-related genes were upregulated in rice against Bgt and Ptr infection. Rice is an excellent monocot model for genetic and molecular studies. Therefore, our results demonstrate that rice is a useful model to study the mechanisms of NHR to cereal powdery mildew and rust fungi, which provides useful information for the development of novel and durable strategies to control these important pathogens.

  12. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.

    Science.gov (United States)

    Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth

    2013-09-01

    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.

  13. Silicone tube micro extraction

    DEFF Research Database (Denmark)

    Reiss, Antje; Fomsgaard, Inge S.; Mathiassen, Solvejg Kopp

    Benzoxazinoids are secondary plant metabolites highly abundant in the Poaceae, including the grain crops wheat, triticale and rye. Benzoxazinoids have been shown to be phytotoxic to a range of weed species and suppress the growth of soil fungi, such as Gaeumannomyces graminis, the cause of the take......-all disease in cereals. Hence, an improved knowledge on the prevalence and temporal distribution of benzoxazinoids in the root zone is of major interest. In this trial, four cultivars of winter rye, winter triticale and winter wheat were sown at the end of September and mid of October 2015 in the presence...

  14. Induced mutations for rust resistance in bread wheat

    International Nuclear Information System (INIS)

    Sawhney, R.N.

    1989-01-01

    Full text: Seeds of variety ''Lalbahadur'' were treated with 0.04% NMH. M 2 plants were inoculated with a mixture of pathotypes of each of the 3 Puccinia species (P. graminis, P. recondita, P. striiformis). Plants with simultaneous resistance to all 3 rusts were selected. Repeated testing in subsequent generations confirmed the resistance. The mutant lines are morphologically similar to the parent cultivar and therefore could be used as components of a multiline variety. Comparison of variety pattern against the Indian pathotypes of rusts suggests that the mutant genes are different from the ones known already in bread wheat. (author)

  15. Effect of solid waste landfill organic pollutants on groundwater in three areas of Sicily (Italy) characterized by different vulnerability.

    Science.gov (United States)

    Indelicato, Serena; Orecchio, Santino; Avellone, Giuseppe; Bellomo, Sergio; Ceraulo, Leopoldo; Di Leonardo, Rossella; Di Stefano, Vita; Favara, Rocco; Candela, Esterina Gagliano; La Pica, Leonardo; Morici, Sabina; Pecoraino, Giovannella; Pisciotta, Antonino; Scaletta, Claudio; Vita, Fabio; Vizzini, Salvatrice; Bongiorno, David

    2017-07-01

    The aim of this study was to obtain information on the presence and levels of hazardous organic pollutants in groundwater located close to solid waste landfills. Eighty-two environmental contaminants, including 16 polycyclic aromatic hydrocarbons (PAHs), 20 volatile organic compounds (VOCs), 29 polychlorinated biphenyls (PCBs), 7 dioxins (polychlorinated dibenzo-p-dioxins, PCDDs) and 10 furans (polychlorinated dibenzofurans, PCDFs) were monitored in areas characterised by different geological environments surrounding three municipal solid waste landfills (Palermo, Siculiana and Ragusa) in Sicily (Italy) in three sampling campaigns. The total concentrations of the 16 PAHs were always below the legal threshold. Overall, the Fl/Fl + Py diagnostic ratio revealed that PAHs had a petrogenic origin. VOC levels, except for two notable exceptions near Palermo landfill, were always below the legal limit. As concerns PCB levels, several samples were found positive with levels exceeding the legal limits. It is worth noting that the % PCB distribution differs from that of commercial compositions. In parallel, some samples of groundwater containing PCDDs and PCDFs exceeding the legal threshold were also found. Among the 17 congeners monitored, the most abundant were the highest molecular weight ones.

  16. Screening for spontaneous virulent mutants of barley powdery mildew (Erysiphe graminis DC)

    International Nuclear Information System (INIS)

    Torp, J.; Jensen, H.P.

    1989-01-01

    Full text: Seedlings of 4 barley lines possessing resistance genes M1-a6, M1-a12 or M1-g were inoculated with powdery mildew culture CR3, which is a-virulent to the 4 host lines. In total, 50 million conidia were screened for the occurrence of virulent mutants, 43 putative virulent mutants were found. They could be grouped into 5 genotypes according to the virulence spectrum. They might have originated by one of the following events: 1. admixture, 2. physiological events that allow a few conidia to establish colonies in spite of the presence of a functional gene for resistance, 3. mutation in a gene for specificity, 4. deletion or mutation in some kind of suppressing element in which case more than one virulence may be affected. Based upon the virulence spectra, mating type, biochemical tests and analysis of test crosses, 3 of the genotypes were clearly classified as not being of mutational origin. Of the two remaining genotypes one differed in 4 virulences, the other by two virulences and one avirulence. Based upon expectations from the gene-for-gene concept, it is concluded that both were not of mutational origin. If in fact there are derived from a mutation, the concept of gene-for-gene interactions would have to be revised. Assuming that no mutations for virulence were found in this experiment, the spontaneous mutation frequency from avirulence to virulence would be below 2x10 -8 . (author)

  17. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi.

    Science.gov (United States)

    Yoshida, S; Koitabashi, M; Nakamura, J; Fukuoka, T; Sakai, H; Abe, M; Kitamoto, D; Kitamoto, H

    2015-07-01

    To investigate the effects of mannosylerythritol lipids (MELs) on the hydrophobicity of solid surfaces, their suppressive activity against the early infection behaviours of several phytopathogenic fungal conidia, and their suppressive activity against disease occurrences on fungal host plant leaves. The changes in the hydrophobicity of plastic film surfaces resulting from treatments with MEL solutions (MEL-A, MEL-B, MEL-C and isoMEL-B) and synthetic surfactant solutions were evaluated based on the changes in contact angles of water droplets placed on the surfaces. The droplet angles on surfaces treated with MELs were verified to decrease within 100 s after placement, with contact angles similar to those observed on Tween 20-treated surfaces, indicating decreases in surface hydrophobicity after MEL treatments. Next, conidial germination, germ tube elongation and the formation of appressorium of Blumeria graminis f. sp. tritici, Colletotrichum dematium, Glomerella cingulata and Magnaporthe grisea were evaluated on plastic surfaces that were pretreated with surfactant solutions. On the surfaces of MEL-treated plastic film, inhibition of conidial germination, germ tube elongation, and suppression of appressoria formation tended to be observed, although the level of effect was dependent on the combination of fungal species and type of MEL. Inoculation tests revealed that the powdery mildew symptom caused by B. graminis f. sp. tritici was significantly suppressed on wheat leaf segments treated with MELs. MELs exhibited superior abilities in reducing the hydrophobicity of solid surfaces, and have the potential to suppress powdery mildew in wheat plants, presumably due to the inhibition of conidial germination. This study provides significant evidence of the potential for MELs to be used as novel agricultural chemical pesticides. © 2015 The Society for Applied Microbiology.

  18. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  19. The germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley

    DEFF Research Database (Denmark)

    Christensen, Anders Bentsen; Thordal-Christensen, Hans; Zimmermann, Grit

    2004-01-01

    Germinlike proteins (GLP) are encoded in plants by a gene family with proposed functions in plant development and defense. Genes of GLP subfamily 4 of barley (HvGLP4, formerly referred to as HvOxOLP) and the wheat orthologue TaGLP4 (formerly referred to as TaGLP2a) were previously found...... overexpression of TaGLP4 and HvGLP4 enhanced resistance against B. graminis in wheat and barley, whereas transient silencing by RNA interference reduced basal resistance in both cereals. The effect of GLP4 overexpression or silencing was strongly influenced by the genotype of the plant. The data suggest...

  20. Development of resistance to Puccinia graminis avenae in Avena sativa by mutagen treatment

    International Nuclear Information System (INIS)

    Martens, J.W.; Brown, P.D.; McKenzie, R.I.H.; Harder, D.E.

    1983-01-01

    The evaluation of over seven million M 2 oat plants derived from irradiated and chemical mutagen treated seeds (about 50,000) or low-level chronically irradiated growing plants produced no new sources of useful resistance. However, preliminary results indicate that the gene Pg-16 has been transferred from the tetraploid Avena barbata L. to the hexaploid A. sativa L. by irradiation of disomic alien addition lines and monosomic alien substitution lines. This gene is highly effective and confers resistance to all but two of the known races of stem rust occurring in North America. (author)

  1. Management of resistance to the fungicide fenpropimorph in Erysiphe graminis f.sp tritici

    NARCIS (Netherlands)

    Engels, A.J.G.

    1998-01-01

    In the last three decades, plant disease control has become heavily dependent on fungicides. This practice increased yield significantly but had also negative side-effects on the environment. In many countries, integrated control programs have been initiated in order to reduce pesticide use

  2. ÁCAROS ASOCIADOS AL CULTIVO DEL AGUACATE (Persea americana Mill EN LA COSTA CENTRAL DE PERÚ

    Directory of Open Access Journals (Sweden)

    Jorge Luis Muñoz Marticorena

    2014-01-01

    Full Text Available En la costa central de Perú (Lima e Ica, se cultiva el aguacate con fines de exportación, especialmente la variedad Hass. Con el objetivo de conocer la diversidad de ácaros depredadores en huertos comerciales de aguacate, se realizaron recolectas en 6 lugares de la costa central, duran - te el 2010 al 2012. Se registraron 12 especies de la familia Phytoseiidae, de los cuales algunos tendrían potencial como depredadores eficien - tes de Oligonychus sp . (Guanilo et ál. 2012; estos son: Amblyseius aerialis (Muma, Ambly - seius chungas (Demmark y Muma, Amblyseiella setosa (Muma, Euseius emanus (El–Banhawy, Euseius concordis (Chant, Euseius stipulatus (Athias–Henriot, Phytoseiulus persimilis (Athias Henriot, Phytoseiulus macropilis (Banks, Neo - seiulus californicus (McGregor, Typhlodromina subtropica (Chant, Typhlodromus ( Antoseius evectus (Schusters y Aristadromips n.sp. Se con - firmó que la vegetación espontánea cumple un rol importante en la conservación de las especies halladas en este cultivo y que además la intro - ducción de un ácaro depredador exótico, como Euseius stipulatus, contribuyó significativamente con el control de la plaga durante la temporada de invierno.

  3. Cultural relations between Hungary and Albania during the period of Humanism and Renaissance

    Directory of Open Access Journals (Sweden)

    Muhamet Mala

    2016-07-01

    Full Text Available Cultural Hungarian-Albanian relations during the Middle Ages are characterized by a relatively poor intensity. Actually, relations between these two countries are more intense in the political field and especially through the partnership between Gjergj Kastrioti Skanderbeg and John Hunyadi. Regarding the origin, the Hungarian culture identity is rather distinct from the Albanian one. Lack of cultural contacts, among others, was conditioned also by the fact that these relations were held under war circumstances and their primary aim was the common defense from Ottoman attacks. Actually, the Albanian medieval culture remained a Mediterranean culture with elements of Byzantine influence in the continental and southern areas. Meanwhile, Hungary belonged to Central Europe, which, even though far away from Mediterranean cultural mainstream, sought to be influenced by this culture, namely by the Renaissance that emanated exactly in the Mediterranean region. It was Matthias Corvinus effort, regarding the cultural influence of the Mediterranean and Renaissance in Hungary but also the fact that Hungary possessed some of the most important towns of the Adriatic coast and particularly Ragusa. This city was the center where cultural relations between Albanian and Hungary started and became intensified in the religious, intellectual and human field.

  4. A model of female freedom: Maria Occhipinti’s «Una donna libera»

    Directory of Open Access Journals (Sweden)

    Milagro Martín Clavijo

    2014-01-01

    Full Text Available Maria Occhipinti (1921-1996 has been recorded in Sicilian history as emblem of Sicilian women’s protest in the mid-forties, events she narrates in Una donna di Ragusa. In her posthumous work Una donna libera Maria sums up her life from those years just to the time before her death: it is the autobiography of a self-taught woman that was, despite everything and everyone, a free woman slave to nothing – nor political ideas, nor a comfortable and bourgeois life – or anyone – family or love –, always coherent with her ideals and ready to fight for the fundamental human rights. Una donna libera tells us the story of a pilgrim in the world, a rebel, a rather difficult woman, uncomfortable for institutions and people, including intellectuals. Maria Occhipinti will become only in the XXI century a model to be followed by other women. Received: 27/05/2013 / Accepted: 20/06/2013 How to reference this article Martín Clavijo, M. (2014. Un modelo de libertad femenino: «Una donna libera» de Maria Occhipinti. Espacio, Tiempo y Educación, 1(1, pp. 115-132. doi: http://dx.doi.org/10.14516/ete.2014.001.001.005

  5. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  6. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.

    Science.gov (United States)

    Liu, Xin; Yang, Lihua; Zhou, Xianyao; Zhou, Miaoping; Lu, Yan; Ma, Lingjian; Ma, Hongxiang; Zhang, Zengyan

    2013-05-01

    The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcription factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. The expression of TiMYB2R-1 was significantly induced following G. graminis infection. An in vitro DNA binding assay proved that TiMYB2R-1 protein could bind to the MYB-binding site cis-element ACI. Subcellular localization assays revealed that TiMYB2R-1 was localized in the nucleus. TiMYB2R-1 transgenic wheat plants were generated, characterized molecularly, and evaluated for take-all resistance. PCR and Southern blot analyses confirmed that TiMYB2R-1 was integrated into the genomes of three independent transgenic wheat lines by distinct patterns and the transgene was heritable. Reverse transcription-PCR and western blot analyses revealed that TiMYB2R-1 was highly expressed in the transgenic wheat lines. Based on disease response assessments for three successive generations, the significantly enhanced resistance to take-all was observed in the three TiMYB2R-1-overexpressing transgenic wheat lines. Furthermore, the transcript levels of at least six wheat defence-related genes were significantly elevated in the TiMYB2R-1 transgenic wheat lines. These results suggest that engineering and overexpression of TiMYB2R-1 may be used for improving take-all resistance of wheat and other cereal crops.

  7. Discovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates

    Directory of Open Access Journals (Sweden)

    Jayaveeramuthu Nirmala

    2017-10-01

    Full Text Available Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf. Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resistance against the P. graminis f. sp. tritici race TTKST, the variant race of the Ug99 race group with additional virulence to wheat stem rust resistance gene Sr24. However, 8155-B1 does not confer resistance to the first-described race in the Ug99 race group: TTKSK. We mapped a single gene conferring resistance in 8155-B1 against race TTKST, Sr8155B1, to chromosome arm 6AS by utilizing Rusty/8155-B1 and Rusty*2/8155-B1 populations and the 90K Infinium iSelect Custom bead chip supplemented by KASP assays. One marker, KASP_6AS_IWB10558, cosegregated with Sr8155B1 in both populations and correctly predicted Sr8155B1 presence or absence in 11 durum cultivars tested. We confirmed the presence of Sr8155B1 in cultivar Mountrail by mapping in the population Choteau/Mountrail. The marker developed in this study could be used to predict the presence of resistance to race TTKST in uncharacterized durum breeding lines, and also to combine Sr8155B1 with resistance genes effective to Ug99 such as Sr13. The map location of Sr8155B1 cannot rule out the possibility that this gene is an allele at the Sr8 locus. However, race specificity indicates that Sr8155B1 is different from the known alleles Sr8a and Sr8b.

  8. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    Science.gov (United States)

    Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang

    2015-01-01

    "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS) and the temperate-mesic "European" slope (ES), separated on average by 250 m. We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  9. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Lorenzo Lotto e gli strumenti del mestiere: la periferia come consapevole scelta strategica / Lorenzo Lotto and the tools of the trade: the periphery as a conscious strategic choice

    Directory of Open Access Journals (Sweden)

    David Frapiccini

    2014-06-01

    Full Text Available Con il testamento del 25 marzo 1531 Lorenzo Lotto stabiliva la ripartizione dei modelli in gesso e in cera e dei propri disegni tra tre suoi antichi allievi: il bergamasco Francesco Bonetti, il veneziano Pietro di Giovanni – in quel momento attivo a Ragusa, l’odierna Dubrovnik – e il marchigiano maestro Giulio da Amandola, identificabile con Giulio Vergari. Dalle provenienze dei tre artefici si manifesta una chiara mappa geografica, come se Lotto avesse consapevolmente deciso di lasciare i ferri del mestiere nei luoghi della sua esperienza pittorica: a Bergamo, a Venezia e nelle Marche. Contemporaneamente Lotto frequenta i pittori Alessandro Oliverio, Bonifacio de’ Pitati da Verona e Girolamo da Santa Croce: il secondo, stando alle disposizioni testamentarie, avrebbe dovuto completare le opere rimaste incompiute alla morte di Lotto, mentre al terzo sarebbero andati alcuni strumenti della professione a beneficio dei propri figli. Si viene così a delineare un gruppo di artisti marginale rispetto al contesto lagunare, ma orientato verso committenze di entroterra o di area adriatica. La consapevolezza acquisita da Lotto nell’incidenza territoriale della sua attività spiega la ragione delle reminiscenze iconografiche e formali bergamasche in parte della produzione risalente agli estremi anni marchigiani (1549-1556, ovvero a quella fase inaugurata con l’Assunzione anconetana di San Francesco alle Scale, pala realizzata nel 1549-1550 con la collaborazione di Giuseppe Belli da Ponteranica. With the will of March 25, 1531 Lorenzo Lotto established the distribution of models in plaster and wax and their designs to three of his former pupils: Francesco Bonetti from Bergamo, the Venetian Pietro di Giovanni – at that time active in Ragusa, today's Dubrovnik – and maestro Giulio from Amandola identified with Giulio Vergari. The origins of the three painters manifest a clear geographical map, as if Lotto had consciously decided to leave the

  11. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  12. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  13. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues.

    Science.gov (United States)

    Gyuris, Enikő; Szép, Erna; Kontschán, Jenő; Hettyey, Attila; Tóth, Zoltán

    2017-11-01

    Applying predatory mites as biological control agents is a well established method against spider mites which are major pests worldwide. Although antipredator responses can influence the outcome of predator-prey interactions, we have limited information about what cues spider mites use to adjust their behavioural antipredator responses. We experimentally exposed two-spotted spider mites (Tetranychus urticae) to different predator-borne cues (using a specialist predator, Phytoseiulus persimilis, or a generalist predator, Amblyseius swirskii), conspecific prey-borne cues, or both, and measured locomotion and egg-laying activity. The reactions to predator species compared to each other manifested in reversed tendencies: spider mites increased their locomotion activity in the presence of P. persimilis, whereas they decreased it when exposed to A. swirskii. The strongest response was triggered by the presence of a killed conspecific: focal spider mites decreased their locomotion activity compared to the control group. Oviposition activity was not affected by either treatment. Our results point out that spider mites may change their behaviour in response to predators, and also to the presence of killed conspecifics, but these effects were not enhanced when both types of cues were present. The effect of social contacts among prey conspecifics on predator-induced behavioural defences is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Búsqueda de enemigos naturales nativos de Frankliniella occidentalis (Pergande(thysanoptera: thripidae, sobre Dendranthema grandijlorum en el municipio de Piendamo, cauca.

    Directory of Open Access Journals (Sweden)

    Castro V. Ulises

    1999-06-01

    Full Text Available En la empresa "Flores del Cauca" en el municipio de Piendamó a 1S00 m.s.n.m. con temperatura promedia de 18° C y HR de SO ± 5%, se hizo una búsqueda de enemigos naturales nativos de F. occidentalis (Thysanóptera: Thripidae sobre eras experimentales de Dendranthema grandiflorum libres de control químico. La búsqueda se extendió a los hospedantes alternos del tisanóptero en áreas aledañas al cultivo. Semanalmente se cosechaban plantas de crisantemo, se llevaban al laboratorio para la recolección de thrips y sus enemigos naturales nativos. En el laboratorio se realizaron bioensayos para probar la acción depredadora de algunos de los enemigos de F. occídentalis que fueron encontrados en crisantemo. Se encontraron los siguientes enemigos naturales nativos: El hemíptero Orius sp. (Anthocoridae. los ácaros Amblyseius herbjcolus. Euseius naindaimei y Thyplodromalus peregrinus (Phytoseiidae, larvas de Chrysopidae; los thrips leptothirs sp. y Haplotrips gowdeyi (Phlaeothripidae, un ácaro de la familia Ascidae; difereflles especies de arañas; larvas de la familia Coccinellidae y adultos de F. occidentalis infectados por hongos no identificados.

  15. A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell

    Science.gov (United States)

    Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon

    2017-03-01

    The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.

  16. Immatures of Palaearctic species of the weevil genus Sibinia (Coleoptera, Curculionidae): new descriptions and new bionomic data with suggestions on their potential value in a phylogenetic reconstruction of the genus.

    Science.gov (United States)

    Skuhrovec, Jiří; Gosik, Rafał; Caldara, Roberto; Košťál, Michael

    2015-05-04

    The larvae and pupae of six species of the Palaearctic genus Sibinia Germar, 1817 are described in detail for the first time. Five of them develop in seeds of Caryophyllaceae and belong to Sibinia (s. str.): S. attalica Gyllenhal, 1835; S. femoralis Germar, 1824; S. tibialis Gyllenhal, 1835; and S. viscariae (Linnaeus, 1760), which are included in the S. femoralis group, and S. sicana Ragusa, 1908, which is included in the S. unicolor Fåhraeus, 1843 group. The sixth species is S. sodalis Germar, 1824, which develops in seeds of Plumbaginaceae and belongs to the subgenus Dichotychius Bedel, 1885. The larvae and pupae of these species are compared with those previously described for some species of the third subgenus, Microtychius Casey, 1910 from the Americas. Some larval characters, but no pupal ones, are useful to support the three subgenera and the two previously mentioned groups of Sibinia s. str., which were previously postulated based on a few adult morphological characters. The immatures of Sibinia are also compared with those of the closely related genus Tychius Germar, 1817, providing some distinctive characters between both genera. New bionomic data on larval and pupal development and adult emergence are reported for all the described species. These data suggest that species in this genus are highly homogeneous in life history traits.

  17. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  18. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Huayan Yin

    Full Text Available "Evolution Canyon" (ECI at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS and the temperate-mesic "European" slope (ES, separated on average by 250 m.We examined 278 single sequence repeats (SSRs and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races.In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23% amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES were highly resistant to Blumeria graminis at both seedling and adult stages.Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  19. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat.

    Science.gov (United States)

    Herrera-Foessel, Sybil A; Singh, Ravi P; Lillemo, Morten; Huerta-Espino, Julio; Bhavani, Sridhar; Singh, Sukhwinder; Lan, Caixia; Calvo-Salazar, Violeta; Lagudah, Evans S

    2014-04-01

    We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3 , respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.

  20. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions

    DEFF Research Database (Denmark)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-01-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0–C18:1–C16......, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability...... and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future....

  1. Permanent genetic resources added to Molecular Ecology Resources Database 1 December 2010-31 January 2011.

    Science.gov (United States)

    Agata, Kiyokazu; Alasaad, Samer; Almeida-Val, Vera Maria Fonseca; Alvarez-Dios, J A; Barbisan, F; Beadell, Jon S; Beltrán, J F; Benítez, M; Bino, G; Bleay, Colin; Bloor, P; Bohlmann, Jörg; Booth, Warren; Boscari, E; Caccone, Adalgisa; Campos, Tatiana; Carvalho, B M; Climaco, Gisele Torres; Clobert, Jean; Congiu, L; Cowger, Christina; Dias, G; Doadrio, I; Farias, Izeni Pires; Ferrand, N; Freitas, Patrícia D; Fusco, G; Galetti, Pedro M; Gallardo-Escárate, Cristian; Gaunt, Michael W; Ocampo, Zaneli Gomez; Gonçalves, H; Gonzalez, E G; Haye, Pilar; Honnay, O; Hyseni, Chaz; Jacquemyn, H; Jowers, Michael J; Kakezawa, Akihiro; Kawaguchi, Eri; Keeling, Christopher I; Kwan, Ye-Seul; La Spina, Michelangelo; Lee, Wan-Ok; Leśniewska, M; Li, Yang; Liu, Haixia; Liu, Xiaolin; Lopes, S; Martínez, P; Meeus, S; Murray, Brent W; Nunes, Aline G; Okedi, Loyce M; Ouma, Johnson O; Pardo, B G; Parks, Ryan; Paula-Silva, Maria Nazaré; Pedraza-Lara, C; Perera, Omaththage P; Pino-Querido, A; Richard, Murielle; Rossini, Bruno C; Samarasekera, N Gayathri; Sánchez, Antonio; Sanchez, Juan A; Santos, Carlos Henrique Dos Anjos; Shinohara, Wataru; Soriguer, Ramón C; Sousa, Adna Cristina Barbosa; Sousa, Carolina Fernandes Da Silva; Stevens, Virginie M; Tejedo, M; Valenzuela-Bustamante, Myriam; Van de Vliet, M S; Vandepitte, K; Vera, M; Wandeler, Peter; Wang, Weimin; Won, Yong-Jin; Yamashiro, A; Yamashiro, T; Zhu, Changcheng

    2011-05-01

    This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii. © 2011 Blackwell Publishing Ltd.

  2. Disparate sequence characteristics of the Erysiphe graminis f.sp. hordei glyceraldehyde-3-phosphate dehydrogenase gene

    DEFF Research Database (Denmark)

    Christiansen, S.K.; Justesen, A.F.; Giese, H.

    1997-01-01

    to be similar for all four genes. The results of the codon-usage analysis suggest that Egh is more flexible than other fungi in the choice of nucleotides at the wobble position. Codon-usage preferences in Egh and barley genes indicate a level of difference which may be exploited to discriminate between fungal...

  3. Control of Blumeria graminis f.sp. hordei by treatment with mycelial extracts from cultured fungi

    DEFF Research Database (Denmark)

    Haugaard, H.; Jørgensen, H.J.L.; Lyngkjær, M.F.

    2001-01-01

    , Trichoderma harzianum, Pythium ultimum and Rhizopus stolonifer). Three mycelial extracts from the taxonomically different fungi B. oryzae, A ultimum and R. stolonifer were selected for detailed study. In general the number of colonies formed was reduced by 70-98% compared with controls. Furthermore, the few...

  4. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation.

    Directory of Open Access Journals (Sweden)

    Markus Andreas Strodl

    Full Text Available Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni.We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae.In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment.

  5. Social Familiarity Reduces Reaction Times and Enhances Survival of Group-Living Predatory Mites under the Risk of Predation

    Science.gov (United States)

    Strodl, Markus Andreas; Schausberger, Peter

    2012-01-01

    Background Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni. Methodology/Principal Findings We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae. Significance In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment. PMID:22927997

  6. Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae).

    Science.gov (United States)

    Howell, Anna D; Daugovish, Oleg

    2013-02-01

    The spider mite, Eotetranychus lewisi (McGregor) (Acari: Tetranychidae), is a new emerging pest in California commercial strawberries. The predatory mite Phytoseiulus persimilis (Athias-Henriot) (Acari: Phytoseiidae), typically used for biocontrol of Tetranychus urticae (Koch) (Acari: Tetranychidae), provided growers little to no control of E. lewisi. Four commonly used phytoseiid predatory mites: P. persimilis, Neoseiulus californicus (McGregor), N. fallacis (Garman), and Amblyseius andersoni (Chant), were used in lab studies to investigate which is best at managing E. lewisi populations. We als o investigated t he interactions between T. urticae and E. lewisi and in relation to phytoseiid efficiency given the potential for indirect effects of biocontrol. When E. lewisi and T. urticae are present on the same leaf, T. urticae populations increase and begin displacing E. lewisi. P. persimilis did not feed on E. lewisi, but the other three predatory mites consumed the spider mites and lowered their populations. When both E. lewisi and T. urticae are present on the same leaf, N. fallacis and A. andersoni fed on both types of mites equally and were capable of decreasing both populations. N. californicus fed on E. lewisi first and decreased its population, but allowed T. urticae populations to increase. P. persimilis may be insufficient at controlling E. lewisi and its use may instead enhance E. lewisi populations.

  7. Lime sulfur toxicity to broad mite, to its host plants and to natural enemies.

    Science.gov (United States)

    Venzon, Madelaine; Oliveira, Rafael M; Perez, André L; Rodríguez-Cruz, Fredy A; Martins Filho, Sebastião

    2013-06-01

    An acaricidal effect of lime sulfur has not been demonstrated for Polyphagotarsonemus latus. However, lime sulfur can cause toxicity to natural enemies and to host plants. In this study, the toxicity of different concentrations of lime sulfur to P. latus, to the predatory mite Amblyseius herbicolus and to the predatory insect Chrysoperla externa was evaluated. Additionally, the phytotoxicity of lime sulfur to two P. latus hosts, chili pepper and physic nut plants, was determined. Lime sulfur at a concentration of 9.5 mL L(-1) restrained P. latus population growth. However, this concentration was deleterious to natural enemies. The predatory mite A. herbicolus showed a negative value of instantaneous growth rate, and only 50% of the tested larvae of C. externa reached adulthood when exposed to 10 mL L(-1) . Physic nut had severe injury symptoms when sprayed with all tested lime sulfur concentrations. For chili pepper plants, no phytoxicity was observed at any tested concentration. Lime sulfur might be used for P. latus control on chili pepper but not on physic nut owing to phytotoxicity. Care should be taken when using lime sulfur in view of negative effects on natural enemies. Selective lime sulfur concentration integrated with other management tactics may provide an effective and sustainable P. latus control on chili pepper. © 2012 Society of Chemical Industry.

  8. [Dietary habits and cancer: the experience of EPIC-Italy].

    Science.gov (United States)

    Sieri, Sabina; Agnoli, Claudia; Pala, Valeria; Mattiello, Amalia; Panico, Salvatore; Masala, Giovanna; Assedi, Melania; Tumino, Rosario; Frasca, Graziella; Sacerdote, Carlotta; Vineis, Paolo; Krogh, Vittorio

    2015-01-01

    to investigate hypothesised relationships between diet and cancer by assessing diet as a whole, in the Italian cohort EPIC. multicentric prospective study. 47,749 volunteers were recruited between 1993 and 1998 in the centres of Varese and Turin (Northern Italy), Florence (Central Italy), Naples and Ragusa (Southern Italy). Information on diet and lifestyle were collected through validated questionnaires. Anthropometric measurements were taken and biological samples collected using standardised protocols. follow-up was carried out by accessing regional cancer and mortality registries, hospital discharge records, and by telephone inquiries (only for Naples). After a median follow-up of 11 years, 879 incident cases of breast cancer, 421 cases of colorectal cancer, and 152 deaths were identified. Multivariate Cox regression models were used to estimate risks in relation to dietary characteristics. the "Olive oil & Salad" dietary pattern, characterised by high consumption of raw vegetables and olive oil, was associated with a lower risk of overall mortality in the elderly. Adherence to a Mediterranean diet rich in vegetables and fruit was associated with reduced risk of colon cancer. Consumption of high-glycemic carbohydrates was associated with higher incidence of breast cancer and colorectal cancer. Reduced risk of colon cancer was also found in regular consumers of yoghurt. the accuracy and comprehensiveness of EPIC-Italy data made it possible to investigate both individual dietary components and dietary habits as a whole, to thereby provide Italians with dietary and lifestyle advice that will help them to remain healthy.

  9. DAL PIANO PARTICOLAREGGIATO AL PROGETTO DI IDENTIFICAZIONE DEI CENTRI STORICI. UN APPROCCIO ANALITICO AI COSTI PARAMETRICI NELLA PROSPETTIVA DI UN MODELLO DI PROGRAMMAZIONE STRATEGICA

    Directory of Open Access Journals (Sweden)

    Vittoria Ventura

    2017-06-01

    Full Text Available In the perspective of the participatory programming, nowadays main-stream in all spheres of urban planning, the analysis of the parametric costs has been affirmed as an important design tool; it’s requested, at all levels, to increase the transparency and flexibility of the plan, and play an important role in the knowledge process for decision makers as well as for users and stakeholders. The experimental context of this study is the old town of Ragusa Superiore, a large urban fabric consisting of 8600 architectural units, quite homogeneous from the constructive point of view, but not from the typological and morphological ones. The analysis supports a strategic planning process based on the design of several option of intervention strategies (more conservative or transformative, envisaging a certain degree of flexibility in sorting the involved Architectural Units between the different Intervention Categories; in this role, the proposed pattern allows us to associate in real time the parametric cost to each of the different Intervention Categories supposed in each simulation. The parametric cost analysis is based on the typing of the analysed fabric, consisting of 1788 architectural units and provides a wide range of unit costs to indicate feasibility and convenience of the real estate investments in order to define a possible incentive program aimed at internalizing the urban externalities resulting from the more general process of enhancement of the entire old town.

  10. CONTROL OF SOME PATHOGENS BY USING SPECIAL FOLIAR FERTILIZERS

    Directory of Open Access Journals (Sweden)

    I OROIAN

    2004-04-01

    Full Text Available The present work points out to the interdisciplinary experimental results, obtained in the experimental fields of the Plant Protection and Soil Science Department, as well as at data which stress upon the interdependency between the satisfaction of the trophically needs of the wheat plants and the aggressiveness of the pathogens which cause the disease. The experimental results underline the fact that the attack level expressed through intensity and attack degree is different, both with the “out of root” fertilized variants and with the soil fertilization variants. The conclusions which come off the study of the obtained data point out at the fact that the fertilizer application, no matter the method, determines the growth or the regress of the attack degree. They also have an influence upon the Puccinia striformis f.sp. tritici, Blumeria graminis and, Septoria spp. fungus manifestation.

  11. Design, synthesis, and fungicidal activities of imino diacid analogs of valine amide fungicides.

    Science.gov (United States)

    Sun, Man; Yang, Hui-Hui; Tian, Lei; Li, Jian-Qiang; Zhao, Wei-Guang

    2015-12-15

    The novel imino diacid analogs of valine amides were synthesized via several steps, including the protection, amidation, deprotection, and amino alkylation of valine, with the resulting structures confirmed by (1)H and (13)C NMR and HRMS. Bioassays showed that some of these compounds exhibited good fungicidal activity. Notably, isopropyl 2-((1-((1-(3-fluorophenyl)ethyl)amino)-3-methyl-1-oxobutan-2-yl)amino)propanoate 5i displayed significant levels of control, at 50%, against Erysiphe graminis at 3.9μM as well as a level of potency very similar to the reference azoxystrobin, which gave 60% activity at this concentration. The present work demonstrates that imino diacid analogs of valine amides could be potentially useful key compounds for the development of novel fungicides against wheat powdery mildew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    Science.gov (United States)

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  13. The Hv NAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Rung, Jesper Henrik; Gregersen, Per Langkjaer

    2007-01-01

    Pathogens induce the expression of many genes encoding plant transcription factors, though specific knowledge of the biological function of individual transcription factors remains scarce. NAC transcription factors are encoded in plants by a gene family with proposed functions in both abiotic...... and biotic stress adaptation, as well as in developmental processes. In this paper, we provide convincing evidence that a barley NAC transcription factor has a direct role in regulating basal defence. The gene transcript was isolated by differential display from barley leaves infected with the biotrophic...... powdery mildew fungus, Blumeria graminis f.sp. hordei (Bgh). The full-length cDNA clone was obtained using 5'-RACE and termed HvNAC6, due to its high similarity to the rice homologue, OsNAC6. Gene silencing of HvNAC6 during Bgh inoculation compromises penetration resistance in barley epidermal cells...

  14. Wheat Induced Resistance to Powdery Mildew (Blumeria graminis f. sp. tritici) by Means of Biological Preparations

    Czech Academy of Sciences Publication Activity Database

    Věchet, L.; Vrchotová, Naděžda; Hanazalová, J.

    2012-01-01

    Roč. 15, SI (2012), s. 61-62 ISSN 1335-258X Institutional support: RVO:67179843 Keywords : wheat * powdery mildew * inducers of plant origin * inducers of chemical origin Subject RIV: EH - Ecology, Behaviour

  15. MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia graminis f.sp. tritici infection.

    Science.gov (United States)

    Gupta, Om Prakash; Permar, Vipin; Koundal, Vikas; Singh, Uday Dhari; Praveen, Shelly

    2012-02-01

    Plants have evolved diverse mechanism to recognize pathogen attack and triggers defense responses. These defense responses alter host cellular function regulated by endogenous, small, non-coding miRNAs. To understand the mechanism of miRNAs regulated cellular functions during stem rust infection in wheat, we investigated eight different miRNAs viz. miR159, miR164, miR167, miR171, miR444, miR408, miR1129 and miR1138, involved in three different independent cellular defense response to infection. The investigation reveals that at the initiation of disease, accumulation of miRNAs might be playing a key role in hypersensitive response (HR) from host, which diminishes at the maturation stage. This suggests a possible host-fungal synergistic relation leading to susceptibility. Differential expression of these miRNAs in presence and absence of R gene provides a probable explanation of miRNA regulated R gene mediated independent pathways.

  16. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

    Science.gov (United States)

    Trindade, Rita C; Resende, Maria Aparecida; Silva, Claudia M; Rosa, Carlos A

    2002-08-01

    The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of

  17. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew.

    Science.gov (United States)

    Fu, Ying; Zhang, Hong; Mandal, Siddikun Nabi; Wang, Changyou; Chen, Chunhuan; Ji, Wanquan

    2016-01-01

    Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important crop diseases, causing severe economic losses to wheat production worldwide. However, there are few reports about the proteomic response to Bgt infection in resistant wheat. Hence, quantitative proteomic analysis of N9134, a resistant wheat line, was performed to explore the molecular mechanism of wheat in defense against Bgt. Comparing the leaf proteins of Bgt-inoculated N9134 with that of mock-inoculated controls, a total of 2182 protein-species were quantified by iTRAQ at 24, 48 and 72h postinoculation (hpi) with Bgt, of which 394 showed differential accumulation. These differentially accumulated protein-species (DAPs) mainly included pathogenesis-related (PR) polypeptides, oxidative stress responsive proteins and components involved in primary metabolic pathways. KEGG enrichment analysis showed that phenylpropanoid biosynthesis, phenylalanine metabolism and photosynthesis-antenna proteins were the key pathways in response to Bgt infection. InterProScan 5 and the Gibbs Motif Sampler cluster 394 DAPs into eight conserved motifs, which shared leucine repeats and histidine sites in the sequence motifs. Moreover, eight separate protein-protein interaction (PPI) networks were predicted from STRING database. This study provides a powerful platform for further exploration of the molecular mechanism underlying resistant wheat responding to Bgt. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive pathogenic disease in wheat-producing regions worldwide, resulting in severe yield reductions. Although many resistant wheat varieties have been cultivated, there are few reports about the proteomic response to Bgt infection in resistant wheat. Therefore, an iTRAQ-based quantitative proteomic analysis of a resistant wheat line (N9134) in response to Bgt infection has been performed. This paper provides new insights into the underlying molecular

  18. Triticale biotic stresses--an overview.

    Science.gov (United States)

    Arseniuk, Edward

    2014-01-01

    Triticale has been considered as resistant to diseases over a long time. Although, many authors perpetuate this opinion, it is no longer true. However, in comparison to wheat and rye triticale still may look as a healthy crop, but its healthiness has been steadily declining. It could be explained by steady expansion of the growing area and longer exposure to pathogens. On the other hand, triticale is a crop on which meet pathogens of wheat and rye, but there is evidence that on triticale embedded more so called "wheat pathogens", than rye ones. For such an notable example may serve races of Puccinia recondita. In the latter respect triticale also appears to be a bridge facilitating a direct contact between the pathogens, e.g. between physiological forms of the most important cereal rusts. Such contacts stimulate somatic hybridization on bridging triticale plant and may finally result in new hybrid pathotypes carrying virulence genes (factors) to all three hosts, i.e. triticale, wheat and rye. In addition to all triticale commercial and agronomical values, triticale still is and it will continue to be bridging transfers of resistance genes to various pathogens and pests mainly from rye to wheat. The paper will describe main diseases affecting triticale worldwide. The first disease which occurred on this cereal in epidemic proportions was stem rust (Pucinia graminis f. sp. tritici) in Australia. Leaf and stripe rusts (P. recondita f. sp. tritici and P. striiformis) are also have gained in importance everywhere triticale is grown. In recent years, at least in Poland, powdery mildew caused by Blumeria graminis occurred in epidemic proportions in quite a number of winter triticale cultivars. Similar phenomenon has been observed with quite a number of other diseases caused by facultative pathogens, such as the most damaging to triticale the Stagonospora spp. leaf and glume blotch disease complex and other pathogens like Cochliobolus sativus, Fusarium culmorum, and F

  19. On the influence of abiotic stress conditions on growth of barley and bean and their predisposition for pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Oerke, E.C.; Schoenbeck, F.

    1986-01-01

    Shorttime changes of environmental conditions stressed barley and bean and affected plant growth and their predisposition for various pathogens. Moderate stress intensities as low or high temperatures, water or light deficits, increased the susceptibility to Erysiphe graminis var. hordei or Uromyces phaseoli and reduced disease level of spot blotch caused by Cochliobolus sativus, respectively. There was only little effect on plant growth in that case. Intensive stress as a result of combinations of unfavorable environmental conditions or longtime continuance of moderate stress reduced the plant growth and turned the predisposing effect to the opposite: after the treatment, plants were more resistent to diseases caused by biotrophic fungi, whereas there was increased susceptibility to the perthotrophic fungus. High intensities of fertilization acted as an additional stress and intensified the plant reaction to environmental alterations. The variation of the predisposition is discussed in relation to stress intensity.

  20. Influence of the webbing produced by Oligonychus ilicis (McGregor) (Acari: Tetranychidae) on associated predatory phytoseiids

    International Nuclear Information System (INIS)

    Franco, Renato A.; Reis, Paulo R.; Oliveira, Daniel C.

    2010-01-01

    Oligonychus ilicis (McGregor) is among those mite species that can cause damage to coffee plants (Coffea spp.). Species of Phytoseiidae acari are considered the most important and studied predatory mites. The objective of this study was to evaluate the effects of the webbing produced by O. ilicis on its predation by females of the phytoseiids Iphiseiodes zuluagai Denmark and Muma, Euseius citrifolius Denmark and Muma and Amblyseius herbicolus (Chant). Four bioassays were conducted, with three treatments and ten replicates. Each replicate consisted of 25 O. ilicis per experimental unit (a leaf disc of Coffea arabica) according to the tested developmental stage, in independent experiments. To spin the web, 15 adult females were put on each experimental unit for 24h; females were then removed, leaving only the web, and predators and prey to be tested were introduced. Predation was assessed after 24h. In the presence of webbing, the consumption of eggs, larvae and nymphs by I. zuluagai and eggs and larvae by E. citrifolius was lower. For A. herbicolus, egg predation was lower, but larval predation did not vary significantly and predation of nymphs and adults was higher in the presence of webbing. Predators as a whole were more efficient consuming larvae regardless of the presence of webbing. Considering the stages of O. ilicis altogether, webbing reduced the predation potential of I. zuluagai and E. citrifolius, but not of A. herbicolus. (author)

  1. Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis.

    Science.gov (United States)

    Calvet, Érica C; Lima, Debora B; Melo, José W S; Gondim, Manoel G C

    2018-03-01

    Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A. guerreronis to cues from the predators Neoseiulus baraki and Amblyseius largoensis in coconut fruits, cues from conspecifics (A. guerreronis injured) and cues from the phytophage S. concavuscutum. The test was carried out through the release of about 300 A. guerreronis on coconut fruits previously treated with cues from predators, conspecific or heterospecific phytophagous. We also observed the walking behaviour of A. guerreronis exposed to the same chemical cues using a video tracking system. The infestation of fruits by A. guerreronis was greater in the presence of predator cues and reduced in the presence of S. concavuscutum cues, but cues from injured conspecifics did not interfere in the infestation process. In addition, the cues also altered the walking parameters of A. guerreronis: it walked more in response to cues from predators and the heterospecific phytophage. Aceria guerreronis spent more time in activity in the treatments with clues than in the control treatment. These results suggest that A. guerreronis recognizes cues from predators and competitors and modifies its behaviour to increase its fitness.

  2. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  3. Geographic distribution and host plants of Raoiella indica and associated mite species in northern Venezuela.

    Science.gov (United States)

    Vásquez, Carlos; de Moraes, Gilberto J

    2013-05-01

    The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive pest in the New World, where it is currently considered a serious threat to coconut and banana crops. It was first reported from northern Venezuela in 2007. To determine its current distribution in this country, surveys were carried out from October 2008 to April 2010 on coconut (Cocos nucifera L.), banana (Musa spp.), ornamental plants and weeds in northern Venezuela. Higher population levels of RPM were registered on commercial coconut farms in Falcón and Sucre states but also on other plant species naturally growing along the coastal line in Anzoategui, Aragua, Carabobo, Monagas and Nueva Esparta states. Out of 34 botanical species evaluated, all RPM stages were observed only on eight arecaceous, one musaceous and one streliziaceous species, indicating that the pest developed and reproduced only on these plants. Mite specimens found on weeds were considered spurious events, as immature stages of the pest were never found on these. Amblyseius largoensis (Muma) (Acari: Phytoseiidae) was the most frequent predatory mite associated with RPM in all sampling sites. The results indicate that RPM has spread to extensive areas of northern Venezuela since its initial detection in Güiria, Sucre state. Considering the report of this pest mite in northern Brazil in the late 2009, additional samplings in southern Venezuela should be carried out, to evaluate the possible presence of RPM also in that region.

  4. Influence of the webbing produced by Oligonychus ilicis (McGregor) (Acari: Tetranychidae) on associated predatory phytoseiids; Influencia da teia de Oligonychus ilicis (McGregor) (Acari: Tetranychidae) sobre os fitoseideos predadores associados

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Renato A. [Bioagri Laboratorios Ltda., Piracicaba, SP (Brazil)], e-mail: r.franco@bioagri.com.br; Reis, Paulo R. [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Belo Horizonte, MG (Brazil). Ecocentro], e-mail: paulo.rebelles@epamig.ufla.br; Zacarias, Mauricio S. [EMBRAPA Cafe, Lavras, MG (Brazil)], e-mail: zacarias@epamig.ufla.br; Oliveira, Daniel C. [Universidade Federal de Lavras (UFLA), MG (Brazil)

    2010-01-15

    Oligonychus ilicis (McGregor) is among those mite species that can cause damage to coffee plants (Coffea spp.). Species of Phytoseiidae acari are considered the most important and studied predatory mites. The objective of this study was to evaluate the effects of the webbing produced by O. ilicis on its predation by females of the phytoseiids Iphiseiodes zuluagai Denmark and Muma, Euseius citrifolius Denmark and Muma and Amblyseius herbicolus (Chant). Four bioassays were conducted, with three treatments and ten replicates. Each replicate consisted of 25 O. ilicis per experimental unit (a leaf disc of Coffea arabica) according to the tested developmental stage, in independent experiments. To spin the web, 15 adult females were put on each experimental unit for 24h; females were then removed, leaving only the web, and predators and prey to be tested were introduced. Predation was assessed after 24h. In the presence of webbing, the consumption of eggs, larvae and nymphs by I. zuluagai and eggs and larvae by E. citrifolius was lower. For A. herbicolus, egg predation was lower, but larval predation did not vary significantly and predation of nymphs and adults was higher in the presence of webbing. Predators as a whole were more efficient consuming larvae regardless of the presence of webbing. Considering the stages of O. ilicis altogether, webbing reduced the predation potential of I. zuluagai and E. citrifolius, but not of A. herbicolus. (author)

  5. An Entomopathogenic Strain of Beauveria bassiana against Frankliniella occidentalis with no Detrimental Effect on the Predatory Mite Neoseiulus barkeri: Evidence from Laboratory Bioassay and Scanning Electron Microscopic Observation

    Science.gov (United States)

    Wu, Shengyong; Gao, Yulin; Zhang, Yaping; Wang, Endong; Xu, Xuenong; Lei, Zhongren

    2014-01-01

    Among 28 isolates of Beauveria bassiana tested for virulence against F. occidentalis in laboratory bioassays, we found strain SZ-26 as the most potent, causing 96% mortality in adults at 1×107 mL−1conidia after 4 days. The effect of the strain SZ-26 on survival, longevity and fecundity of the predatory mite Neoseiulus (Amblyseius) barkeri Hughes were studied under laboratory conditions. The bioassay results showed that the corrected mortalities were less than 4 and 8% at 10 days following inoculation of the adult and the larvae of the predator, respectively, with 1×107 conidia mL−1 of SZ-26. Furthermore, no fungal hyphae were found in dead predators. The oviposition and postoviposition durations, longevity, and fecundity displayed no significant differences after inoculation with SZ-26 using first-instar larvae of F. occidentalis as prey in comparison with untreated predator. In contrast, the preoviposition durations were significantly longer. Observations with a scanning electron microscope, revealed that many conidia were attached to the cuticles of F. occidentalis at 2 h after treatment with germ tubes oriented toward cuticle at 24 h, penetration of the insect cuticle at 36 h, and finally, fungal colonization of the whole insect body at 60 h. In contrast, we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to predatory mite. PMID:24454744

  6. New Metacentric Populations and Phylogenetic Hypotheses Involving Whole-Arm Reciprocal Translocation in Mus musculus domesticus from Sicily, Southern Italy.

    Science.gov (United States)

    Castiglia, Riccardo; Capanna, Ernesto; Bezerra, Alexandra M R; Bizzoco, Domenico; Zambigli, Emanuela; Solano, Emanuela

    2015-01-01

    The house mouse Mus musculus domesticus is characterized by more than 100 metacentric populations, due to the occurrence of Robertsonian (Rb) fusions, together with the standard all-telocentric karyotype (2n = 40). We examined G-banded karyotypes of 18 mice from 10 localities in Sicily and describe 3 new metacentric populations: 'Ragusa Ibla' (IRAG), 2n = 33-36, Rb(2.4), Rb(5.6), Rb(9.16), Rb(13.17); 'Piana degli Albanesi' (IPIA), 2n = 23, Rb(1.18), Rb(2.15), Rb(3.5), Rb(4.12), Rb(6.11), Rb(7.8), Rb(9.16), Rb(10.14), Rb(13.17); 'Trapani' (ITRA), 2n = 22, Rb(1.18), Rb(2.15), Rb(3.7), Rb(4.12), Rb(5.9), Rb(6.11), Rb(8.16), Rb(10.14), Rb(13.17). Three mice belonged to the previously reported 'Castelbuono' race (ICAS), 2n = 24, which is very similar to the nearby 'Palermo' (IPAL) race, 2n = 26. Three Rb fusions not yet observed in wild mouse populations were identified: Rb(3.5), Rb(3.7) and Rb(5.9). Rb fusions shared among 4 races (IPIA, IRAG, ICAS, and IPAL) allowed us to describe their potential phylogenetic relationships. We obtained 2 alternative phylogenetic trees. The differences between them are mainly due to various modes of formation of IPIA and ITRA. In the first hypothesis, the specific Rb fusions occurred independently. In the second, those of IRAG originated from those of IPIA via whole-arm reciprocal translocations. © 2015 S. Karger AG, Basel.

  7. Compounds of natural origin inducing resistance in winter wheat to powdery mildew (Blumeria graminis f.sp. tritici)

    Czech Academy of Sciences Publication Activity Database

    Věchet, L.; Martínková, J.; Šindelářová, Milada; Burketová, Lenka

    2005-01-01

    Roč. 51, č. 10 (2005), s. 469-475 ISSN 1214-1178 R&D Projects: GA ČR GA522/03/0353 Institutional research plan: CEZ:AV0Z50380511 Keywords : winter wheat * inducer of resistence * powdery mildew Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.170, year: 2004

  8. Genetic Diversity of Blumeria graminis f. sp hordei in Central Europe and Its Comparison with Australian Population

    Czech Academy of Sciences Publication Activity Database

    Komínková, Eva; Dreiseitl, A.; Malečková, Eva; Doležel, Jaroslav; Valárik, Miroslav

    2016-01-01

    Roč. 11, č. 11 (2016), č. článku e0167099. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LD14105 Institutional support: RVO:61389030 Keywords : barley powdery mildew * f.sp hordei * isozyme variation * ssr markers * virulence * pathogen * complexity * france * frequencies * resistance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  9. Evalution of the healthiness of winter wheat cultivated in conventional tillage, direct sowing and direct sowing with underplant crop of white clover

    Directory of Open Access Journals (Sweden)

    Ewa Moszczyńska

    2012-12-01

    Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.

  10. Genomic analyses and expression evaluation of thaumatin-like gene family in the cacao fungal pathogen Moniliophthora perniciosa.

    Science.gov (United States)

    Franco, Sulamita de Freitas; Baroni, Renata Moro; Carazzolle, Marcelo Falsarella; Teixeira, Paulo José Pereira Lima; Reis, Osvaldo; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2015-10-30

    Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Observed and predicted changes over eight years in frequency of barley powdery mildew avirulent to spring barley in France and Denmark

    DEFF Research Database (Denmark)

    Bousset, L.; Hovmøller, M.S.; Caffier, V.

    2002-01-01

    Aerial populations of Blumeria graminis f.sp. hordei were studied in two French and two Danish regions from 1991 to 1999, at a time of year when only winter barley was present. A high frequency of genotypes not able to grow on the spring-sown crop of the previous growing season (denoted 'spring......-avirulent') was observed in most years and regions. This frequency increased with increasing proportion of winter barley; it was highest in France and decreased in general over the 8-year period. Most of the spring-avirulent genotypes possessed the V-a22 virulence gene, matching a resistance that has never been present...... of the pathogen population in this system, demonstrated that selection solely due to host resistance genes, i.e. without assuming any cost of virulence, might lead to such results as those observed. The changes in frequency of spring-avirulent genotypes and the frequency of unnecessary virulence genes may...

  12. Cytogenetic and taxonomic studies of some legless mealybugs (Homoptera, Coccinea, Pseudococcidae

    Directory of Open Access Journals (Sweden)

    Ilya A. Gavrilov-Zimin

    2016-11-01

    Full Text Available A new monotypic genus and species, Komodesia circuliplurima gen. et sp. n., from Flores Is. (Indonesia and the new species, Antonina diversiglandulosa sp. n., from Southern Thailand are described and illustrated. Chromosomes of these species and also the ones of Antonina purpurea Signoret, 1872 and A. thaiensis Takahashi, 1942 are studied for the first time: 2n = 30, 20, 12 and 22+Bs correspondingly; the male embryos of all four species demonstrate Lecanoid paternal heterochromatinization of one haploid set of chromosomes. The karyotypes of three widely distributed species, Antonina pretiosa Ferris, 1953, A. graminis (Maskell, 1897 and Chaetococcus bambusae (Maskell, 1893, are studied based on material from other regions in comparison with previously published data. Photographs of the karyotypes are provided for the first time for all seven species. The terminological problems connected with the identification and naming of the three scale insect genetic systems, Lecanoid, Comstockioid and Diaspidoid, are discussed.

  13. Functional Analysis of Barley Powdery Mildew Effector Candidates and Identification of their Barley Targets

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim

    The genome of barley powdery mildew fungus (Blumeria graminis f. sp. hordei, Bgh) encodes around 500 Candidate Secreted Effector Proteins (CSEPs), which are believed to be delivered to the barley cells either to interfere with plant defence and/or promote nutrient uptake. So far, little is known...... about the function of many CSEPs in virulence and the identities of their host targets. In this PhD study, we investigated the function of nine CSEPs and found that CSEP0081, CSEP0105, CSEP0162 and CSEP0254 act as effectors by promoting the Bgh infection success. Independent silencing of these CSEPs...... proteins (sHsps), Hsp16.9 and Hsp17.5, were identified as interactors for both CSEP0105 and CSEP0162. These interactions were confirmed in planta by BiFC and co-localization studies. Small heat shock proteins are highly conserved ATP-independent chaperones that protect the cell from stress-induced protein...

  14. Induced multiple disease resistance in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.; Worland, A.J.

    1990-01-01

    Full text: The existence of genes suppressing resistance to leaf rust, stem rust and yellow rust in hexaploid wheat has been suggested. If such genes are deleted or inactivated, a more resistant variety may be obtained. In mutant lines of the wheat variety San Pastore, selected after treatment with 20,000 rad of gamma-rays, resistance to leaf rust, yellow rust, stem rust, and to some extent to Erysiphe graminis was determined. The mutants responded to infection by producing necrotic flecks in the presence of high level of disease inoculum. Similar flecks develop under stress condition. It is likely that the mother variety San Pastore carries genes for resistance which are masked by suppressor genes. Irradiation inactivates suppressors so that resistance genes which were previously masked are expressed. The first results of monosomic analysis indicate that chromosomes of groups 4 and 5 or possibly 7 may be critical for expression of resistance in the mutant lines. (author)

  15. Fitoseídeos (Acari: Phytoseiidae associados a cafezais e fragmentos florestais vizinhos Phytoseiids (Acari: Phytoseiidae associated to coffee plantations and adjacent forest fragments

    Directory of Open Access Journals (Sweden)

    Ester Azevedo Silva

    2010-10-01

    Full Text Available Existem poucas informações sobre a fauna de ácaros predadores (Phytoseiidae em ambientes naturais brasileiros adjacentes a agroecossistemas cafeeiros (Coffea spp. ou sobre a influência que essa vegetação exerce como reservatório de ácaros predadores. Neste estudo, objetivou-se avaliar a diversidade destes organismos em cafeeiros e fragmentos florestais adjacentes. Coletaram-se amostras das espécies Calyptranthes clusiifolia (Miq. O. Berg (Myrtaceae, Esenbeckia febrifuga (A. St.-Hil. A. Juss. ex Mart. (Rutaceae, Metrodorea stipularis Mart. (Rutaceae e Allophylus semidentatus (Miq. Radlk. (Sapindaceae, em oito fragmentos florestais, de 5 a 51 ha, e cafezais adjacentes, nos meses de junho (final período chuvoso e outubro (final período seco nos anos 2004 e 2005, na região Sul do Estado de Minas Gerais. Ácaros foram extraídos das folhas, utilizando o método de lavagem e, em seguida, montados em lâminas de microscopia em meio de Hoyer, para identificação específica. No total foram identificados 2.348 fitoseídeos, sendo 2.090 nos fragmentos florestais e 258 espécimes nos cafezais adjacentes, pertencentes a 38 espécies. Servindo-se de análise faunística, a espécie Iphiseiodes zuluagai Denmark & Muma, 1972 apresentou os melhores índices no agroecossistema cafeeiro, sendo muito frequente e constante nas épocas estudadas. Nos fragmentos florestais Amblyseius herbicolus Chant, 1959, Iphiseiodes affs. neonobilis Denmark & Muma, 1978, Leonseius regularis DeLeon, 1965 e Euseius alatus DeLeon, 1966 foram dominantes, muito abundantes, muito frequentes e constantes nas épocas estudadas. Podemos concluir que a vegetação nativa abriga ácaros predadores, inimigos naturais de ácaros-praga, que ocorrem na cultura cafeeira, possibilitando o desenvolvimento de programas de manejo ecológico com áreas de vegetação natural e agroecossistemas cafeeiros adjacentes.There is little information about the fauna of predatory mites

  16. Consumption of added fats and oils in the European Prospective Investigation into Cancer and Nutrition (EPIC) centres across 10 European countries as assessed by 24-hour dietary recalls.

    Science.gov (United States)

    Linseisen, J; Bergström, E; Gafá, L; González, C A; Thiébaut, A; Trichopoulou, A; Tumino, R; Navarro Sánchez, C; Martínez Garcia, C; Mattisson, I; Nilsson, S; Welch, A; Spencer, E A; Overvad, K; Tjønneland, A; Clavel-Chapelon, F; Kesse, E; Miller, A B; Schulz, M; Botsi, K; Naska, A; Sieri, S; Sacerdote, C; Ocké, M C; Peeters, P H M; Skeie, G; Engeset, D; Charrondière, U R; Slimani, N

    2002-12-01

    To evaluate the consumption of added fats and oils across the European centres and countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC). 24-Hour dietary recalls were collected by means of standardised computer-guided interviews in 27 redefined EPIC centres across 10 European countries. From an initial number of 36 900 subjects, single dietary recalls from 22 924 women and 13 031 men in the age range of 35-74 years were included. Mean daily intake of added fats and oils varied between 16.2 g (Varese, Italy) and 41.1 g (Malmö, Sweden) in women and between 24.7 g (Ragusa, Italy) and 66.0 g (Potsdam, Germany) in men. Total mean lipid intake by consumption of added fats and oils, including those used for sauce preparation, ranged between 18.3 (Norway) and 37.2 g day-1 (Greece) in women and 28.4 (Heidelberg, Germany) and 51.2 g day-1 (Greece) in men. The Mediterranean EPIC centres with high olive oil consumption combined with low animal fat intake contrasted with the central and northern European centres where fewer vegetable oils, more animal fats and a high proportion of margarine were consumed. The consumption of added fats and oils of animal origin was highest in the German EPIC centres, followed by the French. The contribution of added fats and oils to total energy intake ranged from 8% in Norway to 22% in Greece. The results demonstrate a high variation in dietary intake of added fats and oils in EPIC, providing a good opportunity to elucidate the role of dietary fats in cancer aetiology.

  17. D Modeling of Industrial Heritage Building Using COTSs System: Test, Limits and Performances

    Science.gov (United States)

    Piras, M.; Di Pietra, V.; Visintini, D.

    2017-08-01

    The role of UAV systems in applied geomatics is continuously increasing in several applications as inspection, surveying and geospatial data. This evolution is mainly due to two factors: new technologies and new algorithms for data processing. About technologies, from some years ago there is a very wide use of commercial UAV even COTSs (Commercial On-The-Shelf) systems. Moreover, these UAVs allow to easily acquire oblique images, giving the possibility to overcome the limitations of the nadir approach related to the field of view and occlusions. In order to test potential and issue of COTSs systems, the Italian Society of Photogrammetry and Topography (SIFET) has organised the SBM2017, which is a benchmark where all people can participate in a shared experience. This benchmark, called "Photogrammetry with oblique images from UAV: potentialities and challenges", permits to collect considerations from the users, highlight the potential of these systems, define the critical aspects and the technological challenges and compare distinct approaches and software. The case study is the "Fornace Penna" in Scicli (Ragusa, Italy), an inaccessible monument of industrial architecture from the early 1900s. The datasets (images and video) have been acquired from three different UAVs system: Parrot Bebop 2, DJI Phantom 4 and Flytop Flynovex. The aim of this benchmark is to generate the 3D model of the "Fornace Penna", making an analysis considering different software, imaging geometry and processing strategies. This paper describes the surveying strategies, the methodologies and five different photogrammetric obtained results (sensor calibration, external orientation, dense point cloud and two orthophotos), using separately - the single images and the frames extracted from the video - acquired with the DJI system.

  18. Sicilian potential biogas production

    Directory of Open Access Journals (Sweden)

    Antonio Comparetti

    2013-09-01

    Full Text Available This study is aimed at predicting the Sicilian potential biogas production, using the Organic Fraction of Municipal Solid Waste (OFMSW, animal manure and food industry by-products, in a region where only one biogas plant using MSW and one co-digestion plant are nowadays available. The statistical data about OFMSW, the number of animals bred in medium and large farms and the amounts of by-products of food processing industries were evaluated, in order to compute the Sicilian potential biogas and energy production. The OFMSW produced in Sicily, that is 0.8 million tons ca. per year (37% of MSW, could be used in a bio-reactor, together with other raw materials, for Anaerobic Digestion (AD process, producing biogas and “digestate”. Moreover, 3.03 million tons ca. of manure, collected in medium and large animal husbandry farms (where cows, pigs and poultry are bred, and 350 thousand tons ca. of by-products, collected in food processing industries (pomace from olive oil mills and grape marc from wineries, might be used for AD process. The Sicilian potential biogas production from the AD of the above raw materials is 170.2 millions of m3, that is equal to 1023.4 GWh of energy per year, of which 484 GWh from animal manure, 303 GWh from OFMSW and 236.4 GWh from food industry by-products. The highest biogas production is in the province of Palermo (35.6 millions of m3, Ragusa (30.8 millions of m3 and Catania (22.8 millions of m3, having a potential energy production of 213.8, 185 and 137 GWh, respectively.

  19. Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae).

    Science.gov (United States)

    Park, Jung-Joon; Kim, Minsik; Lee, Joon-Ho; Shin, Key-Il; Lee, Sung Eun; Kim, Jeong-Gyu; Cho, Kijong

    2011-07-01

    Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.

  20. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  1. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues

    Science.gov (United States)

    Fernández Ferrari, M. Celeste; Schausberger, Peter

    2013-06-01

    Prey perceiving predation risk commonly change their behavior to avoid predation. However, antipredator strategies are costly. Therefore, according to the threat-sensitive predator avoidance hypothesis, prey should match the intensity of their antipredator behaviors to the degree of threat, which may depend on the predator species and the spatial context. We assessed threat sensitivity of the two-spotted spider mite, Tetranychus urticae, to the cues of three predatory mites, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni, posing different degrees of risk in two spatial contexts. We first conducted a no-choice test measuring oviposition and activity of T. urticae exposed to chemical traces of predators or traces plus predator eggs. Then, we tested the site preference of T. urticae in choice tests, using artificial cages and leaves. In the no-choice test, T. urticae deposited their first egg later in the presence of cues of P. persimilis than of the other two predators and cue absence, indicating interspecific threat-sensitivity. T. urticae laid also fewer eggs in the presence of cues of P. persimilis and A. andersoni than of N. californicus and cue absence. In the artificial cage test, the spider mites preferred the site with predator traces, whereas in the leaf test, they preferentially resided on leaves without traces. We argue that in a nonplant environment, chemical predator traces do not indicate a risk for T. urticae, and instead, these traces function as indirect habitat cues. The spider mites were attracted to these cues because they associated them with the existence of a nearby host plant.

  2. Múltiple natural enemies do not improve two spotted spider mite and flower western thrips control in strawberry tunnels

    Directory of Open Access Journals (Sweden)

    Gemma Albendín

    2015-03-01

    Full Text Available Biological control techniques are commonly used in many horticultural crops in Spain, however the application of these techniques to Spanish strawberries are relatively recent. In this study the effectiveness of augmentative biological control techniques to control the two main strawberry (Fragaria xananassa Duchesne pest: the two-spotted spider mite (TSSM, Tetranychus urticae Koch (Acari: Tetranychidae, and the western flower thrips (WFT, Frankliniella occidentalis (Pergande (Thysanoptera: Thripidae, through releases of the predatory mites Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus (McGregor, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae, and Orius laevigatus (Fieber (Heteroptera: Anthocoridae were tested. Two-year results on the performance of treatments using combinations of these biocontrol agents are presented. In both years, all treatments resulted in the reduction of TSSM numbers; but no treatment was better than the release of P. persimilis alone (P < 0.05. TSSM suppression varied among crop phases being greater early in the season. None of the treatments reduced significantly WFT numbers (P < 0.05, and the established economic injury level (EIL was surpassed from March to late April in both years. However, EIL was surpassed less times when treatment included O. laevigatus (2009: 20.7%; 2010: 22.7% of samples. No effect of A. swirskii was observed when this mite was released. Results corroborate that biological control techniques for TSSM and WFT are feasible for high-plastic tunnel strawberries. Under the conditions in our study no additive effects were observed, and there was not advantage in the release of multiple natural enemies.

  3. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  4. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  5. An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation.

    Directory of Open Access Journals (Sweden)

    Shengyong Wu

    Full Text Available Among 28 isolates of Beauveria bassiana tested for virulence against F. occidentalis in laboratory bioassays, we found strain SZ-26 as the most potent, causing 96% mortality in adults at 1×10(7 mL(-1conidia after 4 days. The effect of the strain SZ-26 on survival, longevity and fecundity of the predatory mite Neoseiulus (Amblyseius barkeri Hughes were studied under laboratory conditions. The bioassay results showed that the corrected mortalities were less than 4 and 8% at 10 days following inoculation of the adult and the larvae of the predator, respectively, with 1×10(7 conidia mL(-1 of SZ-26. Furthermore, no fungal hyphae were found in dead predators. The oviposition and postoviposition durations, longevity, and fecundity displayed no significant differences after inoculation with SZ-26 using first-instar larvae of F. occidentalis as prey in comparison with untreated predator. In contrast, the preoviposition durations were significantly longer. Observations with a scanning electron microscope, revealed that many conidia were attached to the cuticles of F. occidentalis at 2 h after treatment with germ tubes oriented toward cuticle at 24 h, penetration of the insect cuticle at 36 h, and finally, fungal colonization of the whole insect body at 60 h. In contrast, we never observed penetration of the predator's cuticle and conidia were shed gradually from the body, further demonstrating that B. bassiana strain SZ-26 show high toxicity against F. occidentalis but no pathogenicity to predatory mite.

  6. Toxicity of the herbicide glufosinate-ammonium to predatory insects and mites of Tetranychus urticae (Acari: Tetranychidae) under laboratory conditions.

    Science.gov (United States)

    Ahn, Y J; Kim, Y J; Yoo, J K

    2001-02-01

    The toxicities of the herbicide glufosinate-ammonium to three predatory insect and two predatory mite species of Tetranychus urticae Koch were determined in the laboratory by the direct contact application. At a concentration of 540 ppm (a field application rate for weed control in apple orchards), glufosinate-ammonium was almost nontoxic to eggs of Amblyseius womersleyi Schicha, Phytoseiulus persimilis Athias-Henriot, and T. urticae but highly toxic to nymphs and adults of these three mite species, indicating that a common mode of action between predatory and phytophagous mites might be involved. In tests with predatory insects using 540 ppm, glufosinate-ammonium revealed little or no harm to larvae and pupae of Chrysopa pallens Rambur but was slightly harmful to eggs (71.2% mortality), nymphs (65.0% mortality), and adults (57.7% mortality) of Orius strigicollis Poppius. The herbicide showed no direct effect on eggs and adults of Harmonia axyridis (Pallas) but was harmful, slightly harmful, and harmless to first instars (100% mortality), fourth instars (51.1% mortality), and pupae (24.5% mortality), respectively. The larvae and nymphs of predators died within 12 h after treatment, suggesting that the larvicidal and nymphicidal action may be attributable to a direct effect rather than an inhibitory action of chitin synthesis. On the basis of our data, glufosinate-ammonium caused smaller effects on test predators than on T. urticae with the exception of P. persimilis, although the mechanism or cause of selectivity remains unknown. Glufosinate-ammonium merits further study as a key component of integrated pest management.

  7. Identification of powdery mildew resistance genes in Polish common oat (Avena sativa L. cultivars using host-pathogen tests

    Directory of Open Access Journals (Sweden)

    Sylwia Okoń

    2012-10-01

    Full Text Available The aim of the present study was to characterize and identify powdery mildew resistance genes in Polish common oat cultivars using host-pathogen tests. A differential set of six Blumeria graminis f.sp. avenae isolates virulent or avirulent to four cultivars and one line that has known resistance to powdery mildew were used. Among the investigated cultivars, only four of them (13.3% had resistance patterns similar to genotypes belonging to the differential set. The resistance of OMR group 1 was found in the cultivar ‘Dragon’, while that of OMR2 in the cultivar ‘Skrzat’. The cultivars ‘Deresz’ and ‘Hetman’ showed a resistance pattern that corresponded with OMR group 3. The resistance corresponding to OMR4 was not found, which suggests that until now this gene has not been used in Polish oat breeding programmes. The cultivar ‘Canyon’ had a different pat- tern of resistance than the genotypes that have already known OMR genes, which indicates that the resistance of this cultivar is determined by a new gene or a combination of known genes.

  8. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  9. A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.

    Science.gov (United States)

    Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta

    2017-01-01

    Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.

  10. Infestation of tall fescue (Festuca arundinacea Schreb. with Neotyphodium coenophialum and its influence on growth of chosen microorganisms in vitro

    Directory of Open Access Journals (Sweden)

    Dariusz Pańka

    2012-12-01

    Full Text Available Occurrence of Neotyphodium coenophialum in tall fescue cultivars cultivated in Poland and determination an endophyte inhibition effect on mycelium growth of chosen microorganisms in vitro were investigated. Seventeen seed lots of 11 cultivars of tall fescue were examined. The endophyte mycelium was dyed with bengal rose and microscopically examined to detect N. coenophialum. Occurrence of endophyte was checked with PCR method. Influence of endophyte on growth of 15 microorganisms was established in the laboratory conditions on Petri dishes with PDA medium at 10, 20 and 30°C. Neotyphodium coenophialum occurred only in two seed lots, 'Barrocco' - 42% and Terros - 2%. Living mycelium of endophyte was isolated only from 'Barrocco'. The highest mycelium growth inhibition of Bipolaris sorokiniana, Fusarium avenaceum, F. equiseti, Microdochium nivale and Gaeumannomyces graminis by endophyte at 30°C was recorded. The highest width of growth inhibition zone (4mm was detected for the last pathogen. Mycelium growth of B. sorokiniana and M. nivale was not inhibited at 10°C, and for F. avenaceum at 10 and 20°C.

  11. Dehydro-alpha-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi.

    Science.gov (United States)

    Cho, Jun Young; Kim, Hae Young; Choi, Gyung Ja; Jang, Kyoung Soo; Lim, He Kyoung; Lim, Chi Hwan; Cho, Kwang Yun; Kim, Jin-Cheol

    2006-05-01

    The methanol extract of stems of Catalpa ovata G Don exhibits potent in vivo antifungal activity against Magnaporthe grisea (Hebert) Barr (rice blast) on rice plants, Botrytis cinerea Pers ex Fr (tomato grey mould) and Phytophthora infestans (Mont) de Bary (tomato late blight) on tomato plants, Puccinia recondita Rob ex Desm (wheat leaf rust) on wheat plants and Blumeria graminis (DC) Speer f. sp. hordei Marchal (barley powdery mildew) on barley plants. An antifungal substance was isolated and identified as dehydro-alpha-lapachone from mass and nuclear magnetic resonance spectral data. It completely inhibited the mycelial growth of B. cinerea, Colletotrichum acutatum Simmonds, Colletotrichum gloeosporioides Simmonds, M. grisea and Pythium ultimum Trow over a range of 0.4-33.3 mg litre(-1). It also controlled the development of rice blast, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose (Colletotrichum coccodes (Wallr) S Hughes). The chemical was particularly effective in suppressing red pepper anthracnose by 95% at a concentration of 125 mg litre(-1). Copyright 2006 Society of Chemical Industry.

  12. Allelism of Genes in the Ml-a locus

    DEFF Research Database (Denmark)

    Giese, Nanna Henriette; Jensen, Hans Peter; Jørgensen, Jørgen Helms

    1980-01-01

    Seven barley lines or varieties, each with a different gene at the Ml-a locus for resistance to Erysiphe graminis were intercrossed. Progeny testing of the F2s using two different fungal isolates per cross provided evidence that there are two or more loci in the Ml-a region. Apparent recombinants...... were also screened for recombination between the Hor1 and Hor2 loci which are situated either side of the Ml-a locus. The cross between Ricardo and Iso42R (Rupee) yielded one possible recombinant, with Ml-a3 and Ml-a(Rul) in the coupling phase; other recombinants had wild-type genes in the coupling...... phase. Iso20R, derived from Hordeum spontaneum 'H204', carrying Ml-a6, had an additional gene, in close coupling with Ml-a6, tentatively named Ml-aSp2 or Reglv, causing an intermediate infection type with isolate EmA30. It is suggested that Ml-a(Ar) in Emir and Ml-a(Rul), shown to differ from other Ml...

  13. Mutants in the host-pathogen system barley-powdery mildew

    International Nuclear Information System (INIS)

    Joergensen, J.H.

    1989-10-01

    Mutation induction was used to analyse the host/pathogen interaction of barley and Erysiphe graminis. By irradiation or chemical mutagens, a number of similar mutations were induced in the ml-o gene (locus) of barley. The mutants had non-specific and durable resistance, which is rather uncommon. Studies revealed, that in spite of their similarity (the same mutated locus, monogenic recessive inheritance), the mutants were not identical and represent unique sources of disease resistant germ plasm. To study more fundamentally the interference of induced mutations in host/pathogen interactions, barley carrying the dominant resistance gene M1-a 12 was irradiated to mutate this gene. Instead of the expected ''monogenic recessive susceptibility'', several different mutational events inside and outside the locus were found to modify the resistance towards a more or less susceptible reaction. A third interesting approach was to induce mutations in the pathogen and thus create new virulence genes. The result, that no true mutation towards virulence was obtained in extremely large populations, deserves attention and further study to be sure about its implication. 13 refs

  14. Airborne hyperspectral imaging for the detection of powdery mildew in wheat

    Science.gov (United States)

    Franke, Jonas; Mewes, Thorsten; Menz, Gunter

    2008-08-01

    Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).

  15. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  16. Primary Infection by Erysiphe graminis f.sp. hordei of Barley Mutants with Resistance Genes in the ml-o Locus

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Mortensen, K.

    1977-01-01

    by the hosts. An average of about 60% of the germinated conidia formed haustoria, 50% formed hyphae, and 40% formed mildew colonies on the susceptible hosts. In contrast, only about 0.7% formed haustoria, 0.4% formed hyphae, and 0.2% formed colonies on the resistant hosts, on which the great majority...

  17. Use of an identification system based on biometric data for patients requiring transfusions guarantees transfusion safety and traceability.

    Science.gov (United States)

    Bennardello, Francesco; Fidone, Carmelo; Cabibbo, Sergio; Calabrese, Salvatore; Garozzo, Giovanni; Cassarino, Grazia; Antolino, Agostino; Tavolino, Giuseppe; Zisa, Nuccio; Falla, Cadigia; Drago, Giuseppe; Di Stefano, Giovanna; Bonomo, Pietro

    2009-07-01

    One of the most serious risks of blood transfusions is an error in ABO blood group compatibility, which can cause a haemolytic transfusion reaction and, in the most severe cases, the death of the patient. The frequency and type of errors observed suggest that these are inevitable, in that mistakes are inherent to human nature, unless significant changes, including the use of computerised instruments, are made to procedures. In order to identify patients who are candidates for the transfusion of blood components and to guarantee the traceability of the transfusion, the Securblood system (BBS srl) was introduced. This system records the various stages of the transfusion process, the health care workers involved and any immediate transfusion reactions. The patients and staff are identified by fingerprinting or a bar code. The system was implemented within Ragusa hospital in 16 operative units (ordinary wards, day hospital, operating theatres). In the period from August 2007 to July 2008, 7282 blood components were transfused within the hospital, of which 5606 (77%) using the Securblood system. Overall, 1777 patients were transfused. In this year of experience, no transfusion errors were recorded and each blood component was transfused to the right patient. We recorded 33 blocks of the terminals (involving 0.6% of the transfused blood components) which required the intervention of staff from the Service of Immunohaematology and Transfusion Medicine (SIMT). Most of the blocks were due to procedural errors. The Securblood system guarantees complete traceability of the transfusion process outside the SIMT and eliminates the possibility of mistaken identification of patients or blood components. The use of fingerprinting to identify health care staff (nurses and doctors) and patients obliges the staff to carry out the identification procedures directly in the presence of the patient and guarantees the presence of the doctor at the start of the transfusion.

  18. 3D MODELING OF INDUSTRIAL HERITAGE BUILDING USING COTSs SYSTEM: TEST, LIMITS AND PERFORMANCES

    Directory of Open Access Journals (Sweden)

    M. Piras

    2017-08-01

    Full Text Available The role of UAV systems in applied geomatics is continuously increasing in several applications as inspection, surveying and geospatial data. This evolution is mainly due to two factors: new technologies and new algorithms for data processing. About technologies, from some years ago there is a very wide use of commercial UAV even COTSs (Commercial On-The-Shelf systems. Moreover, these UAVs allow to easily acquire oblique images, giving the possibility to overcome the limitations of the nadir approach related to the field of view and occlusions. In order to test potential and issue of COTSs systems, the Italian Society of Photogrammetry and Topography (SIFET has organised the SBM2017, which is a benchmark where all people can participate in a shared experience. This benchmark, called “Photogrammetry with oblique images from UAV: potentialities and challenges”, permits to collect considerations from the users, highlight the potential of these systems, define the critical aspects and the technological challenges and compare distinct approaches and software. The case study is the “Fornace Penna” in Scicli (Ragusa, Italy, an inaccessible monument of industrial architecture from the early 1900s. The datasets (images and video have been acquired from three different UAVs system: Parrot Bebop 2, DJI Phantom 4 and Flytop Flynovex. The aim of this benchmark is to generate the 3D model of the “Fornace Penna”, making an analysis considering different software, imaging geometry and processing strategies. This paper describes the surveying strategies, the methodologies and five different photogrammetric obtained results (sensor calibration, external orientation, dense point cloud and two orthophotos, using separately – the single images and the frames extracted from the video – acquired with the DJI system.

  19. Food stress causes sex-specific maternal effects in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2015-08-01

    Life history theory predicts that females should produce few large eggs under food stress and many small eggs when food is abundant. We tested this prediction in three female-biased size-dimorphic predatory mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, a specialized spider mite predator; Neoseiulus californicus, a generalist preferring spider mites; Amblyseius andersoni, a broad diet generalist. Irrespective of predator species and offspring sex, most females laid only one small egg under severe food stress. Irrespective of predator species, the number of female but not male eggs decreased with increasing maternal food stress. This sex-specific effect was probably due to the higher production costs of large female than small male eggs. The complexity of the response to the varying availability of spider mite prey correlated with the predators' degree of adaptation to this prey. Most A. andersoni females did not oviposit under severe food stress, whereas N. californicus and P. persimilis did oviposit. Under moderate food stress, only P. persimilis increased its investment per offspring, at the expense of egg number, and produced few large female eggs. When prey was abundant, P. persimilis decreased the female egg sizes at the expense of increased egg numbers, resulting in a sex-specific egg size/number trade-off. Maternal effects manifested only in N. californicus and P. persimilis. Small egg size correlated with the body size of daughters but not sons. Overall, our study provides a key example of sex-specific maternal effects, i.e. food stress during egg production more strongly affects the sex of the large than the small offspring. © 2015. Published by The Company of Biologists Ltd.

  20. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence.

    Science.gov (United States)

    Schausberger, Peter; Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C

    2018-04-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii , on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity.

  1. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence

    Science.gov (United States)

    Davaasambuu, Undarmaa; Saussure, Stéphanie; Christiansen, Inga C.

    2018-01-01

    Behavioural plasticity can be categorized into activational (also termed contextual) and developmental plasticity. Activational plasticity allows immediate contextual behavioural changes, whereas developmental plasticity is characterized by time-lagged changes based on memory of previous experiences (learning). Behavioural plasticity tends to decline with age but whether this holds true for both plasticity categories and the effects of first-in-life experiences is poorly understood. We tackled this issue by assessing the foraging plasticity of plant-inhabiting predatory mites, Amblyseius swirskii, on thrips and spider mites following age-dependent prey experience, i.e. after hatching or after reaching maturity. Juvenile and young adult predator females were alternately presented thrips and spider mites, for establishing 1st and 2nd prey-in-life experiences, and tested, as gravid females, for their foraging plasticity when offered both prey species. Prey experience by juvenile predators resulted in clear learning effects, which were evident in likelier and earlier attacks on familiar prey, and higher proportional inclusion of familiar prey in total diet. First prey-in-life experience by juvenile but not adult predators resulted in primacy effects regarding attack latency. Prey experience by adult predators resulted mainly in prey-unspecific physiological changes, with easy-to-grasp spider mites providing higher net energy gains than difficult-to-grasp thrips. Prey experience by juvenile, but not adult, predators was adaptive, which was evident in a negative correlation between attack latencies and egg production. Overall, our study provides key evidence that similar experiences by juvenile and adult predators, including first-in-life experiences, may be associated with different types of behavioural plasticity, i.e. developmental and activational plasticity. PMID:29765663

  2. Influence of forecrop and chemical seed treatment on the occurrence of take-all (Gaeumannomyces graminis var. tritici on winter wheat

    Directory of Open Access Journals (Sweden)

    Zbigniew Weber

    2013-12-01

    Full Text Available The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.

  3. The effect of treating wheat with Ethrel in conjunction with some fungicides on the susceptibility to fungal diseases and on the root zone mycoflora of this plant

    Directory of Open Access Journals (Sweden)

    Marian Michniewicz

    2013-12-01

    Full Text Available Wheat cv. Grana grown under field conditions, in the early phase of the first node formation, was sprayed with Ethrel (0.35 ml/m2 and with the fungicides: Sportak 45 EC (0.1 ml/m2 and Bayleton Triple (0.2 g/m2 - separately and in conjunction with Ethrel. It was found that Ethrel reduced the plant's susceptibility to infection by Cercosporella herpotrichoides and by species of the genus Fusarium. The fungicides were more active and also reduced the susceptibility to infection by Erysiphe graminis and Puccinia triticina. The fungistatic effect of Ethrel and Sportak was synergistic only in the case of Cercosporella herpotrichoides. Other interactions between Ethrel and fungicides were not found. Ethrel and fungicides only slightly affected the mycoflora of the root but they completely eliminated the fungi of the genus Mucor from the rhizosphere and reduced the participation of isolates of the genus Alternaria and Cladosporium in the rhizosphere and rhizoplane of wheat. The fungicides were more active than Ethrel. An interaction between Ethrel and fungicides in the reduction of fungi of the genus Fusarium in the rhizosphere was shown.

  4. The Top 10 fungal pathogens in molecular plant pathology.

    Science.gov (United States)

    Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

    2012-05-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. A proteomics study of barley powdery mildew haustoria.

    Science.gov (United States)

    Godfrey, Dale; Zhang, Ziguo; Saalbach, Gerhard; Thordal-Christensen, Hans

    2009-06-01

    A number of fungal and oomycete plant pathogens of major economic importance feed on their hosts by means of haustoria, which they place inside living plant cells. The underlying mechanisms are poorly understood, partly due to difficulty in preparing haustoria. We have therefore developed a procedure for isolating haustoria from the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, Bgh). We subsequently aimed to understand the molecular mechanisms of haustoria through a study of their proteome. Extracted proteins were digested using trypsin, separated by LC, and analysed by MS/MS. Searches of a custom Bgh EST sequence database and the NCBI-NR fungal protein database, using the MS/MS data, identified 204 haustoria proteins. The majority of the proteins appear to have roles in protein metabolic pathways and biological energy production. Surprisingly, pyruvate decarboxylase (PDC), involved in alcoholic fermentation and commonly abundant in fungi and plants, was absent in our Bgh proteome data set. A sequence encoding this enzyme was also absent in our EST sequence database. Significantly, BLAST searches of the recently available Bgh genome sequence data also failed to identify a sequence encoding this enzyme, strongly indicating that Bgh does not have a gene for PDC.

  6. Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum Resistance against Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Valentina Bracuto

    2017-09-01

    Full Text Available Specific syntaxins, such as Arabidopsis AtPEN1 and its barley ortholog ROR2, play a major role in plant defense against powdery mildews. Indeed, the impairment of these genes results in increased fungal penetration in both host and non-host interactions. In this study, a genome-wide survey allowed the identification of 21 tomato syntaxins. Two of them, named SlPEN1a and SlPEN1b, are closely related to AtPEN1. RNAi-based silencing of SlPEN1a in a tomato line carrying a loss-of-function mutation of the susceptibility gene SlMLO1 led to compromised resistance toward the tomato powdery mildew fungus Oidium neolycopersici. Moreover, it resulted in a significant increase in the penetration rate of the non-adapted powdery mildew fungus Blumeria graminis f. sp. hordei. Codon-based evolutionary analysis and multiple alignments allowed the detection of amino acid residues that are under purifying selection and are specifically conserved in syntaxins involved in plant-powdery mildew interactions. Our findings provide both insights on the evolution of syntaxins and information about their function which is of interest for future studies on plant–pathogen interactions and tomato breeding.

  7. Functional Characterization of a Syntaxin Involved in Tomato (Solanum lycopersicum) Resistance against Powdery Mildew.

    Science.gov (United States)

    Bracuto, Valentina; Appiano, Michela; Zheng, Zheng; Wolters, Anne-Marie A; Yan, Zhe; Ricciardi, Luigi; Visser, Richard G F; Pavan, Stefano; Bai, Yuling

    2017-01-01

    Specific syntaxins, such as Arabidopsis AtPEN1 and its barley ortholog ROR2, play a major role in plant defense against powdery mildews. Indeed, the impairment of these genes results in increased fungal penetration in both host and non-host interactions. In this study, a genome-wide survey allowed the identification of 21 tomato syntaxins. Two of them, named SlPEN1a and SlPEN1b , are closely related to AtPEN1 . RNAi-based silencing of SlPEN1a in a tomato line carrying a loss-of-function mutation of the susceptibility gene SlMLO1 led to compromised resistance toward the tomato powdery mildew fungus Oidium neolycopersici . Moreover, it resulted in a significant increase in the penetration rate of the non-adapted powdery mildew fungus Blumeria graminis f. sp. hordei . Codon-based evolutionary analysis and multiple alignments allowed the detection of amino acid residues that are under purifying selection and are specifically conserved in syntaxins involved in plant-powdery mildew interactions. Our findings provide both insights on the evolution of syntaxins and information about their function which is of interest for future studies on plant-pathogen interactions and tomato breeding.

  8. Variation in the agronomic and morphological traits in spring barley

    Directory of Open Access Journals (Sweden)

    N. Dyulgerov

    2017-12-01

    Full Text Available Abstract. The study was conducted to examine the variation in the agronomic and morphological traits in spring barley. For this purpose, 22 lines from the ICARDA High Input Barley Program for favorable environment and 3 check varieties (Rihane-03, VMorales and Veslets were tested in an alpha-lattice design with two replications at the Institute of Agriculture – Karnobat, Bulgaria in 2014 and 2015 growing season. The traits days to heading, plant height, number of tillers per plant, flag leaf length, flag leaf width, spike length, awn length, peduncle length, spikelet number per spike, grain number per spike, grain weight per spike, 1000 grains weight, grain yield, powdery mildew (Erysiphe graminis f. sp. hordei, net blotch (Pyrenophora teres f. teres and stripe rust (Puccinia striiformis f. sp. hordei infection were studied. Significant differences between lines for all studied traits were found. The number of fertile tillers per plant was significantly positively correlated with grain yield. Lines expressed higher grain yields, shorter stem, better tolerance to net blotch and stripe rust than Bulgarian check variety Veslets were identified. These genotypes can, therefore, be used as parents for the improvement of spring barley.

  9. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.

    Directory of Open Access Journals (Sweden)

    Soledad Sacristán

    2009-10-01

    Full Text Available Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1 the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2 the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.

  10. Genetic and technological characterisation of vineyard- and winery-associated lactic acid bacteria.

    Science.gov (United States)

    Nisiotou, Aspasia A; Dourou, Dimitra; Filippousi, Maria-Evangelia; Diamantea, Ellie; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine.

  11. Fungal transmission of plant viruses.

    Science.gov (United States)

    Campbell, R N

    1996-01-01

    Thirty soilborne viruses or virus-like agents are transmitted by five species of fungal vectors. Ten polyhedral viruses, of which nine are in the family Tombusviridae, are acquired in the in vitro manner and do not occur within the resting spores of their vectors, Olpidium brassicae and O. bornovanus. Fungal vectors for other viruses in the family should be sought even though tombusviruses are reputed to be soil transmitted without a vector. Eighteen rod-shaped viruses belonging to the furo- and bymovirus groups and to an unclassified group are acquired in the in vivo manner and survive within the resting spores of their vector, O. brassicae, Polymyxa graminis, P. betae, and Spongospora subterranea. The viral coat protein has an essential role in in vitro transmission. With in vivo transmission a site in the coat protein-read through protein (CP-RT) of beet necrotic yellow vein furovirus determines vector transmissibility as does a site in a similar 98-kDa polyprotein of barley mild mosaic bymovirus. The mechanisms by which virions move (or are moved) into and out of the protoplasm of zoospores or of thalli needs study.

  12. Characteristics of spring wheat genotypes exhibiting high resistance to FHB in terms of their resistance to other fungal diseases

    Directory of Open Access Journals (Sweden)

    Danuta Kurasiak-Popowska

    2016-09-01

    Full Text Available The field experiment was carried out in 2010–2012 at the Dłoń Agricultural Research Station, the Poznań University of Life Sciences, Poland. The study was designed to evaluate the degree of infection by powdery mildew, brown rust, and septoria leaf blotch in 61 spring wheat genotypes differing in their resistance to Fusarium ssp. The vast majority of spring wheat genotypes in the collection of gene resources in the USA defined as resistant to Fusarium ssp. confirmed their resistance under Polish climatic conditions. The B .graminis infection rate of genotypes that are considered to be resistant to Fusarium head blight was high. The resistance ranged from 7 for Sumai 3 (PL2 up to 8.8 for Ning 8331 (in a 9-point scale. Most of the genotypes (56.5% were infected by Puccinia recondita at a level of 1–3 (in a 9-point scale. The genotypes of Sumai 3 exhibited high resistance to septoria leaf blotch, amounting to 1–2 in a 9-point scale; the resistance of Frontana ranged from 1 to 3.5, while the genotypes of Ning were infected by Mycosphaerella graminicola at 5–6.

  13. Selection and characterization of carotenoid-producing yeasts from Campinas region, Brazil Seleção e caracterização de leveduras produtoras decarotenóides na região de Campinas, Brasil

    Directory of Open Access Journals (Sweden)

    Iriani R. Maldonade

    2007-03-01

    Full Text Available The objective of the present study was to select and identify yeasts from Brazil capable of producing carotenoids. Pigmented yeasts were isolated from soil, leaves, fruits, flowers and a processed product. The samples were incubated at 30ºC in Erlenmeyer flasks, containing YM broth. After 48 hours, they were inoculated in Petri dishes with YM agar, and incubated at 30ºC during 120 hours. The yeast colonies, which presented yellow to red coloration, were transferred to culture tubes containing YM agar, and incubated at 30ºC for 72 hours. Out of 242 samples, only five had yellow to red color at high intensity. These highly pigmented yeasts were re-isolated in Petri dishes with YM agar and then transferred to tubes with GPYM agar. Identification through morphological and reproduction characteristics, along with physiological and biochemical tests, classified four strains as R. mucilaginosa and one strain as R. graminis. The main carotenoids extracted from them were identified through HPLC analysis as beta-carotene and torulene. The strains showed potential as promising microorganisms for the commercial production of carotenoids.Este trabalho teve como objetivo selecionar e identificar leveduras encontradas no Brasil capazes de produzir carotenóides. As leveduras pigmentadas foram isoladas de amostras de solos, folhas, frutos, flores e um alimento processado. As amostras foram colocadas em frascos de erlenmeyer, contendo meio de Extrato de Malte e Levedura (YM, e incubadas a 30ºC. Após 48 horas, as amostras foram inoculadas em placas de petri contendo meio YM ágar e incubadas a 30ºC por 120 horas. As colônias, que apresentaram coloração entre amarelo e vermelho, foram transferidas para os tubos de culturas, contendo meio YM ágar e incubadas a 30ºC por 72 horas. Das 242 amostras, somente cinco delas apresentaram coloração intensa entre amarelo e vermelho. Estas colônias de leveduras foram reisoladas, em placas de petri contendo YM

  14. In vivo assessment of plant extracts for control of plant diseases: A sesquiterpene ketolactone isolated from Curcuma zedoaria suppresses wheat leaf rust.

    Science.gov (United States)

    Han, Jae Woo; Shim, Sang Hee; Jang, Kyoung Soo; Choi, Yong Ho; Dang, Quang Le; Kim, Hun; Choi, Gyung Ja

    2018-02-01

    As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.

  15. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Aspasia A. Nisiotou

    2015-01-01

    Full Text Available Vineyard- and winery-associated lactic acid bacteria (LAB from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF. Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs. Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine.

  16. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Weather Effects on Crop Diseases in Eastern Germany

    Science.gov (United States)

    Conradt, Tobias

    2017-04-01

    Since the 1970s there are several long-term monitoring programmes for plant diseases and pests in Germany. Within the framework of a national research project, some otherwise confidential databases comprising 77 111 samples from numerous sites accross Eastern Germany could be accessed and analysed. The pest data covered leaf rust (Puccinia triticina) and powdery mildew (Blumeria graminis) in winter wheat, aphids (Aphididae, four genera) on wheat and other cereal crops, late blight (Phytophthora infestans) in potatoes, and pollen beetles (Brassicogethes aeneus) on rape. These data were complemented by daily weather observations from the German Weather Service (DWD). In a first step, Pearson correlations between weather variables and pest frequencies were calculated for seasonal time periods of different start months and durations and ordered into so-called correlograms. This revealed principal weather effects on disease spread - e. g. that wind is favourable for mildew throughout the year or that rape pollen beetles like it warm, but not during wintertime. Secondly, the pest frequency samples were found to resemble gamma distributions, and a generalised linear model was fitted to describe their parameter shift depending on end-of-winter temperatures for aphids on cereals. The method clearly shows potential for systematic pest risk assessments regarding climate change.

  18. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Simone von Burg

    Full Text Available In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew became more favourable for another pest (aphids.

  19. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat.

    Science.gov (United States)

    Zhang, Yunwei; Bai, Yang; Wu, Guangheng; Zou, Shenghao; Chen, Yongfang; Gao, Caixia; Tang, Dingzhong

    2017-08-01

    Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Indirect effect of a transgenic wheat on aphids through enhanced powdery mildew resistance.

    Science.gov (United States)

    von Burg, Simone; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2012-01-01

    In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi. We hypothesized that aphid number and size will be smaller on powdery mildew-infected plants than on non-infected plants. In a first experiment we used six commercially available wheat varieties whereas in the second experiment we used a genetically modified (GM) mildew-resistant wheat line and its non-transgenic sister line. Because the two lines differed only in the presence of the transgene and in powdery mildew resistance, experiment 2 avoided the confounding effect of variety. In both experiments, the number of M. dirhodum but not of R. padi was reduced by powdery mildew infection. Transgenic mildew-resistant lines therefore harboured bigger aphid populations than the non-transgenic lines. For both aphid species individual size was mostly influenced by aphid number. Our results indicate that plants that are protected from a particular pest (powdery mildew) became more favourable for another pest (aphids).

  1. Wheat and triticale breeding using gamma-ray-induced variability

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1984-01-01

    Use of gamma-ray-induced variability in wheat has proved to be a valuable breeding methodology. Results with triticale are still inconclusive. After several years of research a number of wheat mutants have been developed which possess an improved protein content, high yield, good agronomic type and wide adaptability. A change in the stem rust (Puccinia graminis f. sp. tritici) population, however, rendered most of the mutants susceptible to this disease. One mutant, recently named Carolina, which was able to withstand the effects of stem rust without serious yield deterioration, was registered and released to farmers. Efforts are being made to add stem rust resistance to the susceptible mutants by conventional backcrossing. Also, new material and the most outstanding susceptible mutants were gamma irradiated in an effort to induce resistance. Other mutants, not necessarily with an improved protein content, were grouped according to disease reaction and phenotypic similarity to form multilineal composites, some of which have had a superior performance and may be released to farmers in late 1984. A study conducted under four nitrogen levels with six wheat protein mutants showed a weak and inconsistent negative correlation between yield and protein content. The mutants could be differentiated by their increased protein content under most nitrogen rates. (author)

  2. Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks.

    Science.gov (United States)

    Moral, Juan; Montilla-Bascón, Gracia; Canales, Francisco J; Rubiales, Diego; Prats, Elena

    2017-06-01

    In this work, we investigated the involvement of the long-term dynamics of cytoskeletal reorganization on the induced inaccessibility phenomenon by which cells that successfully defend against a previous fungal attack become highly resistant to subsequent attacks. This was performed on pea through double inoculation experiments using inappropriate (Blumeria graminis f. sp. avenae, Bga) and appropriate (Erysiphe pisi, Ep) powdery mildew fungi. Pea leaves previously inoculated with Bga showed a significant reduction of later Ep infection relative to leaves inoculated only with Ep, indicating that cells had developed induced inaccessibility. This reduction in Ep infection was higher when the time interval between Bga and Ep inoculation ranged between 18 and 24 h, although increased penetration resistance in co-infected cells was observed even with time intervals of 24 days between inoculations. Interestingly, this increase in resistance to Ep following successful defence to the inappropriate Bga was associated with an increase in actin microfilament density that reached a maximum at 18-24 h after Bga inoculation and very slowly decreased afterwards. The putative role of cytoskeleton reorganization/disorganization leading to inaccessibility is supported by the suppression of the induced resistance mediated by specific actin (cytochalasin D, latrunculin B) or general protein (cycloheximide) inhibitors. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  3. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae

    Directory of Open Access Journals (Sweden)

    Payton Mark

    2007-04-01

    Full Text Available Abstract Background Plasmodiophorids and chytrids are zoosporic parasites of algae and land plant and are distributed worldwide. There are 35 species belonging to the order Plasmodiophorales and three species, Polymyxa betae, P. graminis, and Spongospora subterranea, are plant viral vectors. Plasmodiophorid transmitted viruses are positive strand RNA viruses belonging to five genera. Beet necrotic yellow vein virus (BNYVV and its vector, P. betae, are the causal agents for rhizomania. Results Evidence of BNYVV replication and movement proteins associating with P. betae resting spores was initially obtained using immunofluorescence labeling and well characterized antisera to each of the BNYVV proteins. Root cross sections were further examined using immunogold labeling and electron microscopy. BNYVV proteins translated from each of the four genomic and subgenomic RNAs accumulate inside P. betae resting spores and zoospores. Statistical analysis was used to determine if immunolabelling detected viral proteins in specific subcellular domains and at a level greater than in control samples. Conclusion Virus-like particles were detected in zoosporangia. Association of BNYVV replication and movement proteins with sporangial and sporogenic stages of P. betae suggest that BNYVV resides inside its vector during more than one life cycle stage. These data suggest that P. betae might be a host as well as a vector for BNYVV

  4. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae.

    Science.gov (United States)

    Lubicz, Jeanmarie Verchot; Rush, Charles M; Payton, Mark; Colberg, Terry

    2007-04-05

    Plasmodiophorids and chytrids are zoosporic parasites of algae and land plant and are distributed worldwide. There are 35 species belonging to the order Plasmodiophorales and three species, Polymyxa betae, P. graminis, and Spongospora subterranea, are plant viral vectors. Plasmodiophorid transmitted viruses are positive strand RNA viruses belonging to five genera. Beet necrotic yellow vein virus (BNYVV) and its vector, P. betae, are the causal agents for rhizomania. Evidence of BNYVV replication and movement proteins associating with P. betae resting spores was initially obtained using immunofluorescence labeling and well characterized antisera to each of the BNYVV proteins. Root cross sections were further examined using immunogold labeling and electron microscopy. BNYVV proteins translated from each of the four genomic and subgenomic RNAs accumulate inside P. betae resting spores and zoospores. Statistical analysis was used to determine if immunolabelling detected viral proteins in specific subcellular domains and at a level greater than in control samples. Virus-like particles were detected in zoosporangia. Association of BNYVV replication and movement proteins with sporangial and sporogenic stages of P. betae suggest that BNYVV resides inside its vector during more than one life cycle stage. These data suggest that P. betae might be a host as well as a vector for BNYVV.

  5. Compromised Photosynthetic Electron Flow And H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions During Resistance Against Powdery Mildew In Oats.

    Directory of Open Access Journals (Sweden)

    Javier Sánchez-Martín

    2016-11-01

    Full Text Available Stomatal dysfunction known as locking has been linked to the elicitation of a hypersensitive response (HR following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa and the possible involvement of hydrogen peroxide (H2O2 in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e. penetration resistance, early and late HR to powdery mildew (Blumeria graminis f. sp. avenae, Bga were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm of photosystem II were compromised in most Bga–oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defence induced photosynthetic disruption.

  6. TaWRKY68 responses to biotic stresses are revealed by the orthologous genes from major cereals

    Directory of Open Access Journals (Sweden)

    Bo Ding

    2014-01-01

    Full Text Available WRKY transcription factors have been extensively characterized in the past 20 years, but in wheat, studies onWRKY genes and their function are lagging behind many other species. To explore the function of wheat WRKY genes, we identified a TaWRKY68 gene from a common wheat cultivar. It encodes a protein comprising 313 amino acids which harbors 19 conserved motifs or active sites. Gene expression patterns were determined by analyzing microarray data of TaWRKY68 in wheat and of orthologous genes from maize, rice and barley using Genevestigator. TaWRKY68 orthologs were identified and clustered using DELTA-BLAST and COBALT programs available at NCBI. The results showed that these genes, which are expressed in all tissues tested, had relatively higher levels in the roots and were up-regulated in response to biotic stresses. Bioinformatics results were confirmed by RT-PCR experiments using wheat plants infected by Agrobacterium tumefaciens and Blumeria graminis, or treated with Deoxynivalenol, a Fusarium graminearum-induced mycotoxin in wheat or barley. In summary,TaWRKY68 functions differ during plant developmental stages and might be representing a hub gene function in wheat responses to various biotic stresses. It was also found that including data from major cereal genes in the bioinformatics analysis gave more accurate and comprehensive predictions of wheat gene functions.

  7. Transcriptome Sequencing in a Tibetan Barley Landrace with High Resistance to Powdery Mildew

    Directory of Open Access Journals (Sweden)

    Xing-Quan Zeng

    2014-01-01

    Full Text Available Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either “cell,” “cell part,” and “extracellular region” in the cellular component category or “binding” and “catalytic” in the category of molecular function as well as “metabolic process” and “cellular process” in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of <10−5. Among them, three pathways, namely, “photosynthesis,” “plant-pathogen interaction,” and “photosynthesis-antenna proteins” had significant matches in the database. Significant expressions of the three pathways were detected at 24 h, 48 h, and 96 h after infection, respectively. These results indicated a complex process of barley response to powdery mildew infection.

  8. Disease Suppressive Soils: New Insights from the Soil Microbiome.

    Science.gov (United States)

    Schlatter, Daniel; Kinkel, Linda; Thomashow, Linda; Weller, David; Paulitz, Timothy

    2017-11-01

    Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8), and Streptomyces. To compare and contrast the two models of general versus specific suppression, we propose a number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils. We outline the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses. Finally, we consider how this greater understanding of the phytobiome can facilitate sustainable disease management in agriculture by harnessing the potential of indigenous soil microbes.

  9. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.

    Science.gov (United States)

    Wang, Aiyun; Wei, Xuening; Rong, Wei; Dang, Liang; Du, Li-Pu; Qi, Lin; Xu, Hui-Jun; Shao, Yanjun; Zhang, Zengyan

    2015-05-01

    Take-all (caused by the fungal pathogen Gaeumannomyces graminis var. tritici, Ggt) and common root rot (caused by Bipolaris sorokiniana) are devastating root diseases of wheat (Triticum aestivum L.). Development of resistant wheat cultivars has been a challenge since no resistant wheat accession is available. GmPGIP3, one member of polygalacturonase-inhibiting protein (PGIP) family in soybean (Glycine max), exhibited inhibition activity against fungal endopolygalacturonases (PGs) in vitro. In this study, the GmPGIP3 transgenic wheat plants were generated and used to assess the effectiveness of GmPGIP3 in protecting wheat from the infection of Ggt and B. sorokiniana. Four independent transgenic lines were identified by genomic PCR, Southern blot, and reverse transcription PCR (RT-PCR). The introduced GmPGIP3 was integrated into the genomes of these transgenic lines and could be expressed. The expressing GmPGIP3 protein in these transgenic wheat lines could inhibit the PGs produced by Ggt and B. sorokiniana. The disease response assessments postinoculation showed that the GmPGIP3-expressing transgenic wheat lines displayed significantly enhanced resistance to both take-all and common root rot diseases caused by the infection of Ggt and B. sorokiniana. These data suggested that GmPGIP3 is an attractive gene resource in improving resistance to both take-all and common root rot diseases in wheat.

  10. Aggressiveness of powdery mildew on 'ml-o'- resistant barley

    International Nuclear Information System (INIS)

    Andersen, Lars

    1990-01-01

    The ml-o genes in barley are important sources in breeding for resistance against the barley powdery mildew fungus (Erysiphe graminis). The resistance mechanism is a rapid formation of a large callose containing cell wall apposition at the site of the pathogen's infection attempt. This reduces the chances of infection to almost nil in all epidermal cells, except in the small subsidiary cells, in which appositions are rarely formed. Small mildew colonies from infections in subsidiary cells may be seen on the otherwise resistant leaf. This is described by the infection type 0/(4). Mildew isolate HL 3 selected by SCHWARZBACH has increased aggressiveness. No ml-o-virulent isolates are known. However, ml-o-resistant varieties when grown extensively in Europe, will introduce field selection for mildew pathotypes with aggressiveness or virulence to ml-o resistance. Studies on increased aggressiveness require new methods. The material comprises two powdery mildew isolates: GE 3 without ml-o aggressiveness and the aggressive HL 3/5; and two near-isogenic barley lines in Carlsberg II: Riso 5678(R) with the recessive mutant resistance gene ml-o5 and Riso 5678(S) with the wild-type gene for susceptibility. Latent period and disease efficiency show no significant differences between the two isolates on the susceptible barley line (S) but the isolates differ from each other on the resistant barley line

  11. Utilization of Mutagenic Treatments for Improving Barley Disease Resistance to Powdery Mildew

    International Nuclear Information System (INIS)

    Amer, M.; Fahim, M.M.; Moustafa, N.A.

    2008-01-01

    This program aims to improve barley (Hordeum vulgar L.) resistance to powdery mildew (Erysiphe graminis f. sp. hordi) using mutation induction technique via physical and chemical mutagens. Grains of two local cultivars were treated with gamma rays (150, 250 GY) at a dose rate of 9.02 Rad/ Sec alone or with the concentrations of chemical mutagens, i.e.,EMS (4 and 8 mM), MH (10 and 20 mM) for two hours. After mass selection for the resistance in M2, the two cultivars were varied in their responses to the fifteen treatments. In M3 generation, the frequencies of plant resistance were increased at 20 mM of MH, 8 mM of EMS or 250 GY with either of them for the cultivar G124. However, the same trend was also found at 10 mM of MH, 250GY alone and with 4 or 8 mM EMS for cultivar G125. Moreover, eight mutants were selected from the progenies of M4 plants and evaluated in M5 generation. These mutants are characterized by highly disease resistance and high yield components, one of them has been characterized by non crytics and awnless .The desirable mutants should go to further evaluation for grain yield and grain quality in subsequent generations. (author)

  12. Chemical suppressors of mlo-mediated powdery mildew resistance

    Science.gov (United States)

    Wu, Hongpo; Kwaaitaal, Mark; Strugala, Roxana; Schaffrath, Ulrich; Bednarek, Paweł

    2017-01-01

    Loss-of-function of barley mildew locus o (Mlo) confers durable broad-spectrum penetration resistance to the barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). Given the importance of mlo mutants in agriculture, surprisingly few molecular components have been identified to be required for this type of resistance in barley. With the aim to identify novel cellular factors contributing to mlo-based resistance, we devised a pharmacological inhibitor screen. Of the 41 rationally chosen compounds tested, five caused a partial suppression of mlo resistance in barley, indicated by increased levels of Bgh host cell entry. These chemicals comprise brefeldin A (BFA), 2′,3′-dideoxyadenosine (DDA), 2-deoxy-d-glucose, spermidine, and 1-aminobenzotriazole. Further inhibitor analysis corroborated a key role for both anterograde and retrograde endomembrane trafficking in mlo resistance. In addition, all four ribonucleosides, some ribonucleoside derivatives, two of the five nucleobases (guanine and uracil), some guanine derivatives as well as various polyamines partially suppress mlo resistance in barley via yet unknown mechanisms. Most of the chemicals identified to be effective in partially relieving mlo resistance in barley also to some extent compromised powdery mildew resistance in an Arabidopsis mlo2 mlo6 double mutant. In summary, our study identified novel suppressors of mlo resistance that may serve as valuable probes to unravel further the molecular processes underlying this unusual type of disease resistance. PMID:29127104

  13. A Novel QTL for Powdery Mildew Resistance in Nordic Spring Barley (Hordeum vulgare L. ssp. vulgare) Revealed by Genome-Wide Association Study.

    Science.gov (United States)

    Bengtsson, Therése; Åhman, Inger; Manninen, Outi; Reitan, Lars; Christerson, Therese; Due Jensen, Jens; Krusell, Lene; Jahoor, Ahmed; Orabi, Jihad

    2017-01-01

    The powdery mildew fungus, Blumeria graminis f. sp. hordei is a worldwide threat to barley ( Hordeum vulgare L. ssp. vulgare ) production. One way to control the disease is by the development and deployment of resistant cultivars. A genome-wide association study was performed in a Nordic spring barley panel consisting of 169 genotypes, to identify marker-trait associations significant for powdery mildew. Powdery mildew was scored during three years (2012-2014) in four different locations within the Nordic region. There were strong correlations between data from all locations and years. In total four QTLs were identified, one located on chromosome 4H in the same region as the previously identified mlo locus and three on chromosome 6H. Out of these three QTLs identified on chromosome 6H, two are in the same region as previously reported QTLs for powdery mildew resistance, whereas one QTL appears to be novel. The top NCBI BLASTn hit of the SNP markers within the novel QTL predicted the responsible gene to be the 26S proteasome regulatory subunit, RPN1, which is required for innate immunity and powdery mildew-induced cell death in Arabidopsis . The results from this study have revealed SNP marker candidates that can be exploited for use in marker-assisted selection and stacking of genes for powdery mildew resistance in barley.

  14. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    Science.gov (United States)

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  15. Accidental contamination during hydrocarbon exploitation and the rapid transfer of heavy-mineral fines through an overlying highly karstified aquifer (Paradiso Spring, SE Sicily)

    Science.gov (United States)

    Ruggieri, Rosario; Forti, Paolo; Antoci, Maria Lucia; De Waele, Jo

    2017-03-01

    The area around Ragusa in Sicily is well known for the exploration of petroleum deposits hosted in Mesozoic carbonate rocks. These reservoirs are overlain by less permeable rocks, whereas the surface geology is characterized by outcrops of Oligo-Miocene carbonate units hosting important aquifers. Some of the karst springs of the area are used as drinking water supplies, and therefore these vulnerable aquifers should be monitored and protected adequately. In the early afternoon (14:00) of 27 May until the late evening (19:30) of 28 May 2011, during the construction of an exploitation borehole (Tresauro 2), more than 1000 m3 of drilling fluids were lost in an unknown karst void. Two days later, from 06:30 on 30 May, water flowing from Paradiso Spring, lying some 13.7 km SW of the borehole and 378 m lower, normally used as a domestic water supply, was so intensely coloured that it was unfit for drinking. Bulk chemical analyses carried out on the water have shown a composition that is very similar to that of the drilling fluids lost at the Tresauro borehole, confirming a hydrological connection. Estimations indicate that the first signs of the drilling fluids took about 59 h to flow from their injection point to the spring, corresponding to a mean velocity of ∼230 m/h. That Paradiso Spring is recharged by a well-developed underground drainage system is also confirmed by the marked flow rate changes measured at the spring, ranging from a base flow of around 10-15 l/s to flood peaks of 2-3 m3/s. Reflecting the source and nature of the initial contamination, the pollution lasted for just a few days, and the water returned to acceptable drinking-water standards relatively quickly. However, pollution related to heavy-mineral fines continues to be registered during flooding of the spring, when the aqueducts are normally shut down because of the high turbidity values. This pollution event offers an instructive example of how hydrocarbon exploitation in intensely karstified

  16. The Development of “Eldo Ngano 1”: The World’s World’s First Ug99 Resistant Mutant Wheat Variety

    International Nuclear Information System (INIS)

    Forster, Brian P.

    2014-01-01

    The wheat black stem rust disease is a virulent race of fungus, Puccinia graminis, which affects wheat plants and is caused by a strain of fungus known as Ug99. Named for its place and year of origin, Ug99 was first discovered on wheat in Uganda in 1999. The spores of this plant disease are airborne and can be easily spread by wind. If not prevented, the disease can destroy 70 to 100 per cent of the yield of wheat crops. Annually on average 8.3 million tonnes of wheat grain is lost to this disease, costing US $1.23 billion per year. Ethiopia, Kenya and Uganda are hot spots for this disease. In 2009, growing international concern regarding the horrific impact of Ug99 on wheat led to the establishment of IAEA project INT/5/150, Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99). This project has involved over 18 countries and 5 national and international institutions, and examined possible mutation induction treatments to deal with the challenges posed by Ug99. Meetings and workshops to facilitate the project efforts have been held in Kenya and Turkey. Ug99 continues to spread globally and has now reached the Islamic Republic of Iran. There are also reports of suspected disease occurrences in Europe. It is essential that work continues on developing mutant lines for further crop protection that can be utilized worldwide to safeguard the wheat crop from this devastating disease

  17. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-12-01

    Full Text Available Barley (Hordeum vulgare L. Mla alleles encode coiled-coil (CC, nucleotide binding, leucine-rich repeat (NB-LRR receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh. How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley.

  18. Novel Phl-producing genotypes of finger millet rhizosphere associated pseudomonads and assessment of their functional and genetic diversity.

    Science.gov (United States)

    Sekar, Jegan; Prabavathy, Vaiyapuri Ramalingam

    2014-07-01

    Genetic diversity of phlD gene, an essential gene in the biosynthesis of 2,4-diacetylphloroglucinol, was studied by restriction fragment length polymorphism (RFLP) in 20 Phl-producing pseudomonads isolated from finger millet rhizosphere. RFLP analysis of phlD gene displayed three patterns with HaeIII and TaqI enzymes. phlD gene sequence closely correlated with RFLP results and revealed the existence of three new genotypes G, H and I. Further, the phylogenetic and concatenated sequence analysis of the 16S rRNA, rpoB, gyrB, rpoD genes supported the hypothesis that these genotypes G, H and I were different from reported genotypes A-F. In all phylogenetic studies, the genotype G formed a distant clade from the groups of Pseudomonas putida and P. aeruginosa (sensu strictu), but the groups H and I were closely related to P. aeruginosa/P. stutzeri group. The Phl-producing pseudomonads exhibited antagonistic activity against Pyricularia grisea (TN508), Gaeumannomyces graminis (DSM1463), Fusarium oxysporum (DSM62297), Xanthomonas campestris (DSM3586) and Erwinia persicina (HMGU155). In addition, these strains exhibited various plant growth-promoting traits. In conclusion, this study displays the existence of novel Phl-producing pseudomonads genotypes G, H and I from finger millet rhizosphere, which formed taxonomically outward phylogenetic lineage from the groups of P. putida and P. aeruginosa (sensu strictu). © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew.

    Science.gov (United States)

    An, Diaoguo; Zheng, Qi; Zhou, Yilin; Ma, Pengtao; Lv, Zhenling; Li, Lihui; Li, Bin; Luo, Qiaoling; Xu, Hongxing; Xu, Yunfeng

    2013-07-01

    Rye is an important and valuable gene resource for wheat improvement. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. Identification and deployment of new resistance gene sources in rye are, therefore, of especial importance and urgency. A new wheat-rye line, designated as WR41-1, was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. It was proved to be a new wheat-rye T4BL·4RL and T7AS·4RS translocation line using sequential genomic in situ hybridization (GISH), multicolor fluorescence in situ hybridization (mc-FISH), and expressed sequence tag-simple sequence repeat (EST-SSR) marker analysis. WR41-1 showed high levels of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 13 of 23 Bgt isolates tested at the seedling stage. According to its resistant pattern to 23 different Bgt isolates, WR41-1 may possess new gene(s) for resistance to powdery mildew, which differed from previously identified and known powdery mildew genes from rye (Pm7, Pm8, Pm17, and Pm20). In addition, WR41-1 was cytologically stable, had a desirable fertility, and is expected to be useful in wheat improvement.

  20. Silencing of copine genes confers common wheat enhanced resistance to powdery mildew.

    Science.gov (United States)

    Zou, Baohong; Ding, Yuan; Liu, He; Hua, Jian

    2018-06-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to the production of wheat (Triticum aestivum). It is of great importance to identify new resistance genes for the generation of Bgt-resistant or Bgt-tolerant wheat varieties. Here, we show that the wheat copine genes TaBON1 and TaBON3 negatively regulate wheat disease resistance to Bgt. Two copies of TaBON1 and three copies of TaBON3, located on chromosomes 6AS, 6BL, 1AL, 1BL and 1DL, respectively, were identified from the current common wheat genome sequences. The expression of TaBON1 and TaBON3 is responsive to both pathogen infection and temperature changes. Knocking down of TaBON1 or TaBON3 by virus-induced gene silencing (VIGS) induces the up-regulation of defence responses in wheat. These TaBON1- or TaBON3-silenced plants exhibit enhanced wheat disease resistance to Bgt, accompanied by greater accumulation of hydrogen peroxide and heightened cell death. In addition, high temperature has little effect on the up-regulation of defence response genes conferred by the silencing of TaBON1 or TaBON3. Our study shows a conserved function of plant copine genes in plant immunity and provides new genetic resources for the improvement of resistance to powdery mildew in wheat. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    Science.gov (United States)

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  2. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat.

    Science.gov (United States)

    Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie

    2018-01-01

    Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.

  3. Breeding wheat for disease resistance in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.; Maling'a, J.

    2001-01-01

    Yellow rust caused by Puccinia striformis and stem rust caused by Puccinia graminis tritici are most destructive diseases in Kenya. In wheat improvement, development of varieties of wheat with resistance to these diseases has been among the foremost contributions in wheat breeding. In breeding programs each disease is considered as a separate problem. Attention has been given to varieties resistant to stem rust, yellow rust and leaf rust among other diseases. In the year 2001 program stem rust and yellow rust were recorded in all the sites where NPT was performed. Breeding for resistance for the two diseases is approached through the Introductions and Hybridisation. The Doubled Haploid Technique is used to quicken the time of homozygous lines production. The introduction and the homozygous lines are then evaluated for yield and disease resistance in the field under preliminary yield trials and the National Performance Trials (NPT) in 2001, 18 lines and 2 check varieties were included in the NPT. The results show that there were some differences in reaction to the three diseases where lines R946, K7972-1 and R899 had the lowest score of the diseases in all sites. In the commercial variety trial the results show that all the varietieshave become susceptible to stem rust and so the need to develop new cultivars which will be resistance to the rusts. Yombi a newly developed variety showed a substantially high level resistance. (author)

  4. Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions.

    Science.gov (United States)

    Wei, Yongjun; Siewers, Verena; Nielsen, Jens

    2017-05-01

    Cocoa butter (CB) extracted from cocoa beans is the main raw material for chocolate production. However, growing chocolate demands and limited CB production has resulted in a shortage of CB supply. CB is mainly composed of three different kinds of triacylglycerols (TAGs), POP (C16:0-C18:1-C16:0), POS (C16:0-C18:1-C18:0), and SOS (C18:0-C18:1-C18:0). The storage lipids of yeasts, mainly TAGs, also contain relative high-level of C16 and C18 fatty acids and might be used as CB-like lipids (CBL). In this study, we cultivated six different yeasts, including one non-oleaginous yeast strain, Saccharomyces cerevisiae CEN.PK113-7D, and five oleaginous yeast strains, Trichosporon oleaginosus DSM11815, Rhodotorula graminis DSM 27356, Lipomyces starkeyi DSM 70296, Rhodosporidium toruloides DSM 70398, and Yarrowia lipolytica CBS 6124, in nitrogen-limited medium and compared their CBL production ability. Under the same growth conditions, we found that TAGs were the main lipids in all six yeasts and that T. oleaginosus can produce more TAGs than the other five yeasts. Less than 3% of the total TAGs were identified as potential SOS in the six yeasts. However, T. oleaginosus produced 27.8% potential POP and POS at levels of 378 mg TAGs/g dry cell weight, hinting that this yeast may have potential as a CBL production host after further metabolic engineering in future.

  5. Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum

    DEFF Research Database (Denmark)

    Wichmann, F; Hug, B Müller; Widmer, F

    2011-01-01

    ) and in virulence (intensity of disease symptoms) among Xtg isolates (P 0Æ05) could be observed using linear regression modelling. However, additive main effects and multiplicative interaction effects...... (AMMI) analysis revealed five genotypes which did not cluster close to the origin of the biplot, indicating specific interactions between these genotypes and some bacterial isolates. Simple sequence repeat (SSR) markers were used to identify marker-resistance associations using the same plant genotypes...

  6. A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp tritici) in wheat under field conditions

    Czech Academy of Sciences Publication Activity Database

    Věchet, L.; Burketová, Lenka; Šindelářová, Milada

    2009-01-01

    Roč. 28, č. 2 (2009), s. 151-154 ISSN 0261-2194 R&D Projects: GA MZe QH72117 Institutional research plan: CEZ:AV0Z50380511 Keywords : Winter wheat * Powdery mildew * Induced resistance Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.331, year: 2009

  7. First Report of the Ug99 race group of Wheat Stem Rust, Puccinia graminis f. sp. tritici, in Egypt in 2014

    DEFF Research Database (Denmark)

    Patpour, Mehran; Hovmøller, Mogens; Shahin, Atef

    2016-01-01

    , Kenya, Ethiopia, Sudan, Tanzania, Eritrea, Rwanda, South Africa, Zimbabwe, Mozambique, Yemen, and Iran (Patpour et al. 2015). In the 2014 crop season, the presence of virulence to Sr31 in Egypt was suspected based on preliminary field observations of high infection on sources of Sr31 planted...

  8. Evaluación de estrategias de control biológico de Polyphagotarsonemus latus (Banks y Phyllocoptruta oleivora (Ashmead en naranja Valencia

    Directory of Open Access Journals (Sweden)

    Karol Imbachi L

    2012-12-01

    Full Text Available El daño ocasionado por los ácaros Polyphagotarsonemus latus (Banks y Phyllocoptruta oleivora (Ashmead en el cultivo de naranja Valencia (Citrus sinensis L. es reconocido tanto por el impacto económico como por el daño externo de los frutos. En este trabajo se evaluó el efecto de agentes biológicos para el control de estas plagas en un cultivo comercial de naranja Valencia en el municipio de Caicedonia, Valle del Cauca, Colombia. Se usó un diseño de bloques completos al azar para evaluar los tratamientos siguientes: (1 liberación de especies de Phytoseiidae nativos (Neoseiulus anonymus, Neoseiulus californicus, Iphiseiodes zuluagai y Amblyseius herbicolus en poblaciones de 500 individuos/árbol; (2 liberación de larvas de Chrysoperla carnea (100 larvas/árbol; (3 aplicación localizada de cipermetrina 2 cm³/lt como tratamiento de exclusión de agentes benéficos; y (4 testigo consistente en el tratamiento utilizado por los agricultores (aplicación localizada de abamectina, 1.5 cm³/lt. Las liberaciones de las especies benéficas y las aplicaciones de los tratamientos se realizaron sobre racimos florales y frutos marcados en el tercio medio de cada árbol. Las evaluaciones de daños se realizaron cada semana hasta la cosecha. Los tratamientos de liberación de Phytoseiidae, liberación de larvas de C. carnea y aplicación de abamectina presentaron el menor daño de P. latus; el tratamiento de exclusión de benéficos demostró la importancia de los agentes controladores naturales sobre la plaga. En el manejo de P. oleivora, los tratamientos de liberación de larvas de C. carnea y aplicación de abamectina presentaron los mejores resultados con el menor daño en frutos. La población de P. oleivora ocasionó daños significativos en el tratamiento de liberación de ácaros Phytoseiidae y exclusión de benéficos.

  9. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.

    Science.gov (United States)

    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control s...

  10. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    Science.gov (United States)

    MCGRANN, GRAHAM R D; STEED, ANDREW; BURT, CHRISTOPHER; GODDARD, RACHEL; LACHAUX, CLEA; BANSAL, ANURADHA; CORBITT, MARGARET; GORNIAK, KALINA; NICHOLSON, PAUL; BROWN, JAMES K M

    2015-01-01

    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS. PMID:25040333

  11. Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes : analyse bibliographique. Partie II

    Directory of Open Access Journals (Sweden)

    Reau Raymond

    2005-07-01

    Full Text Available Brassicas contain glucosinolates (GSL which decomposition is able to reduce the growth of populations of soil-borne fungi, bacterias or nematodes. These biocid effects on soil-borne microorganisms make a form of allelopathy phenomenon. The allelopathic properties depends on the GLS composition of the Brassicas: Indian mustard and in a lower extend Oilseed rape culd have the most powerfull action, White mustard would have a weaker action. These properties also depends on crop residues: green manure with quick decomposition would result with a higher action than crop residues after grain harvest.The main mechanisms are known. In vitro, isothiocyanates obtained from the GSL decomposition inhibit all the phases of the cycle of Aphanomyces eutiches, the fungus responsible for root rot of peas. The mycelian growth of Gaeumannomyces graminis tritici, the fungus responsible for the wheat take all is inhibited by some isothyocyanates at low concentration. Furthermore, several studies give the evidence that the incorporation of Brassicas residues into the soil does inhibit the growth of both soil-borne pathogens. At last, the presence of roots of Brassicas inhibits the germination of the mycorhizes known to improve the mineral nutrition of its host plant. This phenomenon could explain the depressive effect of oilseed rape on the nutrition of a subsequent maize.This knowledge of Brassicas effects into cropping systems offers issues for a better management of precedent effects of Brassicas; these effects being positive (integrated cop protection or negative (management of subsequent crop nutrition after Brassicas.

  12. Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes : analyse bibliographique. Partie 1

    Directory of Open Access Journals (Sweden)

    Reau Raymond

    2005-05-01

    Full Text Available Brassicas contain glucosinolates (GSL which decomposition is able to reduce the growth of populations of soil-borne fungi, bacterias or nematodes. These biocid effects on soil-borne microorganisms make a form of allelopathy phenomenon. The allelopathic properties depends on the GLS composition of the Brassicas: Indian mustard and in a lower extend Oilseed rape could have the most powerfull action, White mustard would have a weaker action. These properties also depends on crop residues: green manure with quick decomposition would result with a higher action than crop residues after grain harvest. The main mechanisms are known. In vitro, isothiocyanates obtained from the GSL decomposition inhibit all the phases of the cycle of Aphanomyces eutiches, the fungus responsible for root rot of peas. The mycelian growth of Gaeumannomyces graminis tritici, the fungus responsible for the wheat take all is inhibited by some isothyocyanates at low concentration. Furthermore, several studies give the evidence that the incorporation of Brassicas residues into the soil does inhibit the growth of both soil-borne pathogens. At last, the presence of roots of Brassicas inhibits the germination of the mycorhizes known to improve the mineral nutrition of its host plant. This phenomenon could explain the depressive effect of oilseed rape on the nutrition of a subsequent maize. This knowledge of Brassicas effects into cropping systems offers issues for a better management of precedent effects of Brassicas; these effects being positive (integrated cop protection or negative (management of subsequent crop nutrition after Brassicas.

  13. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    Science.gov (United States)

    Xu, Weihui; Meng, Yan; Surana, Priyanka; Fuerst, Greg; Nettleton, Dan; Wise, Roger P.

    2015-01-01

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host. PMID:26089830

  14. Evaluation of Local Wheat Cultivars Susceptibility to infection with Black Stem Rust

    International Nuclear Information System (INIS)

    Batta, Y.A.

    2007-01-01

    The present study was conducted to assess the susceptibility of seven local wheat cultivars from Palestine to infection with black stem rust caused by Puccinia graminis f. sp. tritici. Two techniques of disease inoculation were applied during bioassays: global inoculation of entire wheat plants with urediospores and localized inoculation with urediospores and localized inoculation with urediospores on wheat leaf-pieces incubated under humid conditions. Susceptibility of tested cultivars was evaluated according to disease scale based on number and size of typical unredial pustules that appeared after inoculation on entire plants or leaf pieces. Results obtained on bioassay of susceptibility and disease rating on entire plants indicated that Anbar, Kamata and Hetiya safra cultivars were the least susceptible to P. g. tritici infection, whereas Debiya beda cultivar was the most susceptible. The other tested cultivars such as Nab-El-Jama, sawda and Senf 870 were moderately susceptible. On leaf-pieces, Anbar and Kamatat were the least susceptible cultivars, whereas Debiya beda and Nab-El-Jamal were the most susceptible cultivars. The other tested cultivars such as Debiya swada, Senf 870 and Hetiya safra were moderately susceptible. Significant reductions were obtained for the size of unredial postules formed on leaf-pieces when inoculated in an unwounded state compared to the wounded indicating the importance of wounds during inoculation. The global results indicated the possibility of using above method of disease inoculating, scaling and rating for evaluation of wheat cultivars susceptibility for the eventual use in breeding program for resistant varieties in Palestine. (author)

  15. ON THE TAXONOMY AND NOMENCLATURE OF SOME MECININI (COLEOPTERA, CURCULIONIDAE

    Directory of Open Access Journals (Sweden)

    Roberto Caldara

    2008-04-01

    Full Text Available In accordance with the Code, ten actions are taken to preserve nomenclatural stability of names of taxa currently belonging to Mecinini. Following the provisions of ICZN Article 23.9.1, Cleopomiarus graminis (Gyllenhal, 1813 (formerly Rhynchaenus is made a nomen protectum and Curculio ellipticus Herbst, 1795 is made a nomen oblitum; Rhinusa antirrhini (Paykull, 1800 (formerly Curculio is made a nomen protectum and Curculio noctis herbst, 1795 is made a nomen oblitum; having met the conditions of ICZN article 75.3 the neotypes of the following taxa are designated: Curculio antirrhini Paykull, 1800, Curculio cinctus Rossi, 1790, Curculio curvirostris Rossi, 1790, Curculio linariae Panzer, 1792, Cionus thapsicola Germar, 1821, Mecinus collaris Germar, 1821. Lectotypes of Curculio ellipticus Herbst, 1795, Gymnetron eversmanni Rosenschöld, 1838, Mecinus barbarus Gyllenhal, 1838, and Mecinus longiusculus Boheman, 1845 are also designated. Rhinusa linariae (Panzer, 1792 (formerly Curculio remains the valid name of the taxon since Curculio curvirostris Rossi, 1790 (non Fabricius, 1781 nec Herbst, 1784 is unavailable; Mecinus collaris Germar, 1821 remains the valid name of the taxon since Curculio cinctus Rossi, 1790 (non Drury, 1782 nec Geoffroy, 1785 is unavailable. The following new synonymies are proposed: Mecinus barbarus Gyllenhal, 1838 = Mecinus longiusculus Boheman, 1845 n. syn., = Mecinus teretiusculus Boheman, 1845 n. syn., = Mecinus filiformis Aubé, 1850 n. syn.; Rhinusa florum (Rübsaamen, 1895 = Gymnetron smreczynskii Fremuth, 1972 n. syn.; Rhinusa tetra (Fabricius, 1792 = Cionus thapsicola Germar, 1821 n. syn. Rhinusa eversmanni (Rosenschöld, 1838 is the name proposed for Rhinusa thapsicola sensu auctorum (non Germar, 1821.

  16. Elevated Early Callose Deposition Results in Complete Penetration Resistance to Powdery Mildew in Arabidopsis1[C][W][OA

    Science.gov (United States)

    Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C.; Voigt, Christian A.

    2013-01-01

    A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew. PMID:23335625

  17. Molecular Cytogenetic Identification of a New Wheat-Rye 6R Chromosome Disomic Addition Line with Powdery Mildew Resistance.

    Directory of Open Access Journals (Sweden)

    Diaoguo An

    Full Text Available Rye (Secale cereale L. possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.. However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization, mc-FISH (multicolor fluorescence in situ hybridization, mc-GISH (multicolor GISH and EST (expressed sequence tag-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering.

  18. Allocation of the S-genome chromosomes of Aegilops variabilis Eig. carrying powdery mildew resistance in triticale (× Triticosecale Wittmack).

    Science.gov (United States)

    Kwiatek, M; Belter, J; Majka, M; Wiśniewska, H

    2016-03-01

    It has been hypothesized that the powdery mildew adult plant resistance (APR) controlled by the Pm13 gene in Aegilops longissima Schweinf. & Muschl. (S(l)S(l)) has been evolutionary transferred to Aegilops variabilis Eig. (UUSS). The molecular marker analysis and the visual evaluation of powdery mildew symptoms in Ae. variabilis and the Ae. variabilis × Secale cereale amphiploid forms (2n = 6x = 42, UUSSRR) showed the presence of product that corresponded to Pm13 marker and the lower infection level compared to susceptible model, respectively. This study also describes the transfer of Ae. variabilis Eig. (2n = 4x = 28, U(v)U(v)S(v)S(v)) chromosomes, carrying powdery mildew resistance, into triticale (× Triticosecale Wittm., 2n = 6x = 42, AABBRR) using Ae. variabilis × S. cereale amphiploid forms. The individual chromosomes of Ae. variabilis, triticale 'Lamberto' and hybrids were characterized by genomic and fluorescence in situ hybridization (GISH/FISH). The chromosome configurations of obtained hybrid forms were studied at first metaphase of meiosis of pollen mother cells (PMCs) using GISH. The statistical analysis showed that the way of S-genome chromosome pairing and transmission to subsequent hybrid generations was diploid-like and had no influence on chromosome pairing of triticale chromosomes. The cytogenetic study of hybrid forms were supported by the marker-assisted selection using Pm13 marker and visual evaluation of natural infection by Blumeria graminis, that allowed to select the addition or substitution lines of hybrids carrying chromosome 3S(v) which were tolerant to the powdery mildew infection.

  19. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line.

    Science.gov (United States)

    Hou, Liyuan; Zhang, Xiaojun; Li, Xin; Jia, Juqing; Yang, Huizhen; Zhan, Haixian; Qiao, Linyi; Guo, Huijuan; Chang, Zhijian

    2015-07-28

    Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68-0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  20. Brachypodium distachyon. A New Model System for Functional Genomics in Grasses1

    Science.gov (United States)

    Draper, John; Mur, Luis A.J.; Jenkins, Glyn; Ghosh-Biswas, Gadab C.; Bablak, Pauline; Hasterok, Robert; Routledge, Andrew P.M.

    2001-01-01

    A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of “core pooid” genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals. PMID:11743099

  1. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  2. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Tian Ya Li

    Full Text Available Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7% tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32. No Sr25 or Sr26 (effective against Ug99 was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust.

  3. Kiljan 'Stone stuck into the ground': A dalmato-romance relic in Montenegro?

    Directory of Open Access Journals (Sweden)

    Loma Aleksandar

    2009-01-01

    Full Text Available The word kiljan / kiljan, -a (Variants: kiljen, kiljaš is found in the most parts of Montenegro; its area ranges over the border between Zeta - and East-Herzegovina dialects of Serbian. Of its five meanings, three are to be considered peripheral (building block (of limestone in SW, target in a game in NW, or occasional (hill. The core meaning of the word seem to be 'a stone stuck into the ground', to mark something, either a boundary between the fields or a place of somebody's violent death (shifting to 'gravestone'. Of these two usages, the former may claim the priority, ancient boundary stones being often reinterpreted, in local legends, as memorial ones. Indeed marking the land parcels with stones was unfamiliar to the ancient Slavs (Common Slavic *medja land boundary is usually a hedge, a grove, a path or a furrow, but characteristic of Mediterranean countries with their scarcity of arable land; for the ancient Greeks, it is attested since the Homeric epoch, and was practiced by the Romans too, which suggests a possible Romance source of the word in question. Significantly enough, this practice is attested by the Old Serbian charters only for Zeta, a SW Montenegrian region where kiljan is the proper term for this kind of landmarks (in a charter from 1316, it is not explicitly mentioned, but described by kamy ukopan stone dug into the ground. The word kiljan has no convincing etymology so far Illyrian one proposed by Petar Skok in his etymological dictionary is made up out of thin air, and a possible interpretation based on (BaltoSlavic facts (Lith. kuũlis 'stone', Common Slavic **kyl- as a variant of *kъl- eyetooth tusk; crag' highly improbable as well. However, the Old Dalmatian, a Romance language extinct since the end of 19th century, provides a plausible source with its continuation of the Latin word columna 'column, pillar', which is kilauna; and the SCr forms kelomna / kelovna in Ragusa (Dubrovnik, kilovna in the Bay of Cattaro

  4. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum.

    Science.gov (United States)

    Zhang, Hong; Hu, Weiguo; Hao, Jilei; Lv, Shikai; Wang, Changyou; Tong, Wei; Wang, Yajuan; Wang, Yanzhen; Liu, Xinlun; Ji, Wanquan

    2016-03-15

    Stripe rust (Puccinia striiformis f. sp. tritici; Pst) and powdery mildew (Blumeria graminis f. sp. tritici; Bgt) are important diseases of wheat (Triticum aestivum) worldwide. Increasingly evidences suggest that long intergenic ncRNAs (lincRNAs) are developmentally regulated and play important roles in development and stress responses of plants. However, identification of lincRNAs in wheat is still limited comparing with functional gene expression. The transcriptome of the hexaploid wheat line N9134 inoculated with the Chinese Pst race CYR31 and Bgt race E09 at 1, 2, and 3 days post-inoculation was recapitulated to detect the lincRNAs. Here, 283 differential expressed lincRNAs were identified from 58218 putative lincRNAs, which account for 31.2% of transcriptome. Of which, 254 DE-LincRNAs responded to the Bgt stress, and 52 lincRNAs in Pst. Among them, 1328 SnRNP motifs (sm sites) were detected and showed RRU4-11RR sm site element and consensus RRU1-9VU1-7RR SnRNP motifs, where the total number of uridine was more than 3 but less than 11. Additionally, 101 DE-lincRNAs were predicted as targets of miRNA by psRNATarget, while 5 target mimics were identified using target mimicry search in TAPIR. Taken together, our findings indicate that the lincRNA of wheat responded to Bgt and Pst stress and played important roles in splicesome and inter-regulating with miRNA. The sm site of wheat showed a more complex construction than that in mammal and model plant. The mass sequence data generated in this study provide a cue for future functional and molecular research on wheat-fungus interactions.

  5. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Science.gov (United States)

    Xu, Fei; Yang, Gongqiang; Wang, Junmei; Song, Yuli; Liu, Lulu; Zhao, Kai; Li, Yahong; Han, Zihang

    2018-01-01

    The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum) from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems), Fusarium pseudograminearum (14.9% from roots; 27.8% from stems), Rhizoctonia cerealis (1.7% from roots; 4.4% from stems), and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems). We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4%) or in individual plants (11.6%) was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing guidelines for the management of root and crown rot fungi in wheat in different agronomic zones of the North China Plain. PMID:29887840

  6. Isolation and Purification of Heterotetrameric Catalase from a Desiccation Tolerant Cyanobacterium Lyngbya arboricola

    Directory of Open Access Journals (Sweden)

    Kapoor, Shivali

    2013-02-01

    Full Text Available The desiccation tolerant cyanobacterium Lyngbya arboricola, isolated from bark surfaces of Mangifera indica, possessed up to four stable isoforms of catalase in addition to other antioxidative enzymes, for several years under a dry state. Purification of the two most persistent isoforms of catalase (Cat has been undertaken by employing acetone precipitation, ethanol: chloroform treatment, gel filtration and ion exchange chromatography. The two isoforms of catalase remained almost unchanged on varying matric and osmotic hydration levels of mats of the cyanobacterium. The purification procedures resulted in a 1.3 % yield of purified single isoform (0.22 mg mL-1 protein with 709 Units mg-1 specific activity and a purity index of 0.83. Five millimolar of dithiothreitol (DTT was observed to be pertinent in maintaining the optimum redox state of the enzyme. The purification procedures additionally facilitated the simultaneous elimination and procurement of phycoerythrins (PE and mycosporine-like amino acids (MAA. Each purified isoform gave a single band (~45kDa upon SDS-PAGE and denaturing urea isoelectric focusing (IEF depicted the presence of 2 subunits each of CatA and CatB. The monoisotopic mass and pI value of CatA and CatB as revealed by LC-MS analysis and internal amino acid sequencing was 78.96, 5.89 and 80.77, 5.92, respectively, showing resemblance with CatA of Erysiphe graminis subs. hordei and CatB of Ajellomyces capsulata. The heterotetrameric monofunctional catalase (~320 kDa, due to its stability in the form of resistance to ethanol: chloroform, its thermoalkaliphilic nature and the presence of innumerable hydrophobic amino acid residues (~40%, thus exhibited its potential for biotechnological applications.

  7. Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-02-01

    Full Text Available Three members of the Puccinia genus, Puccinia triticina (Pt, P. striiformis f.sp. tritici (Pst, and P. graminis f.sp. tritici (Pgt, cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs/kb] nearly twice the level detected in Pt (2.57 SNPs/kb and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3 mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS of the HD and STE3 alleles reduced wheat host infection.

  8. Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses

    Directory of Open Access Journals (Sweden)

    Liping Xing

    2017-11-01

    Full Text Available The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14, a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.

  9. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides.

    Directory of Open Access Journals (Sweden)

    Shuhong Ouyang

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90 via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.

  10. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace.

    Science.gov (United States)

    Babiker, E M; Gordon, T C; Chao, S; Newcomb, M; Rouse, M N; Jin, Y; Wanyera, R; Acevedo, M; Brown-Guedira, G; Williamson, S; Bonman, J M

    2015-04-01

    A new gene for Ug99 resistance from wheat landrace PI 374670 was detected on the long arm of chromosome 7A. Wheat landrace PI 374670 has seedling and field resistance to stem rust caused by Puccinia graminis f. sp tritici Eriks. & E. Henn (Pgt) race TTKSK. To elucidate the inheritance of resistance, 216 BC1F2 families, 192 double haploid (DH) lines, and 185 recombinant inbred lines (RILs) were developed by crossing PI 374670 and the susceptible line LMPG-6. The parents and progeny were evaluated for seedling resistance to Pgt races TTKSK, MCCFC, and TPMKC. The DH lines were tested in field stem rust nurseries in Kenya and Ethiopia. The DH lines were genotyped with the 90K wheat iSelect SNP genotyping platform. Goodness-of-fit tests indicated that a single dominant gene in PI 374670 conditioned seedling resistance to the three Pgt races. The seedling resistance locus mapped to the long arm of chromosome 7A and this result was verified in the RIL population screened with the flanking SNP markers using KASP assays. In the same region, a major QTL for field resistance was detected in a 7.7 cM interval and explained 34-54 and 29-36% of the variation in Kenya and Ethiopia, respectively. Results from tests with specific Pgt races and the csIH81 marker showed that the resistance was not due to Sr22. Thus, a new stem rust resistance gene or allele, either closely linked or allelic to Sr15, is responsible for the seedling and field resistance of PI 374670 to Ug99.

  11. Mapping of Powdery Mildew Resistance Gene pmCH89 in a Putative Wheat-Thinopyrum intermedium Introgression Line

    Directory of Open Access Journals (Sweden)

    Liyuan Hou

    2015-07-01

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt, is a globally serious disease adversely affecting wheat production. The Bgt-resistant wheat breeding line CH09W89 was derived after backcrossing a Bgt resistant wheat-Thinopyrum intermedium partial amphiploid TAI7045 with susceptible wheat cultivars. At the seedling stage, CH09W89 exhibited immunity or high resistance to Bgt pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2, similar to its donor line TAI7045 and Th. intermedium. No Th. intermedium chromatin was detected based on genomic in situ hybridization of mitotic chromosomes. To determine the mode of inheritance of the Bgt resistance and the chromosomal location of the resistance gene, CH09W89 was crossed with two susceptible wheat cultivars. The results of the genetic analysis showed that the adult resistance to Bgt E09 in CH09W89 was controlled by a single recessive gene, which was tentatively designated as pmCH89. Two polymorphic SSR markers, Xwmc310 and Xwmc125, were linked to the resistance gene with genetic distances 3.1 and 2.7 cM, respectively. Using the Chinese Spring aneuploid and deletion lines, the resistance gene and its linked markers were assigned to chromosome arm 4BL in the bin 0.68–0.78. Due to its unique position on chromosome 4BL, pmCH89 appears to be a new locus for resistance to powdery mildew. These results will be of benefit for improving powdery mildew resistance in wheat breeding programs.

  12. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356.

    Science.gov (United States)

    Tan, Chengcheng; Li, Genqiao; Cowger, Christina; Carver, Brett F; Xu, Xiangyang

    2018-05-01

    A new powdery mildew resistance gene, designated Pm59, was identified in Afghanistan wheat landrace PI 181356, and mapped in the terminal region of the long arm of chromosome 7A. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important foliar disease of wheat worldwide. In the Great Plains of the USA, Bgt isolates virulent to widely used powdery mildew resistance genes, such as Pm3a, were previously identified. The objectives of this study were to characterize the powdery mildew resistance gene in Afghanistan landrace PI 181356, which exhibited high resistance to Bgt isolates collected in southern Great Plains, and identify molecular markers for marker-assisted selection. An F 2 population and F 2:3 lines derived from a cross between PI 181356 and OK1059060-126135-3 were used in this study. Genetic analysis indicated that PI 181356 carries a single dominant gene, designated Pm59, in the terminal region of the long arm of chromosome 7A. Pm59 was mapped to an interval between sequence tag site (STS) markers Xmag1759 and Xmag1714 with genetic distances of 0.4 cM distal to Xmag1759 and 5.7 cM proximal to Xmag1714. Physical mapping suggested that Pm59 is in the distal bin 7AL 0.99-1.00. Pm59 is a novel powdery mildew resistance gene, and confers resistance to Bgt isolates collected from the Great Plains and the state of Montana. Therefore, Pm59 can be used to breed powdery mildew-resistant cultivars in these regions. Xmag1759 is ideal for marker-assisted selection of Pm59 in wheat breeding.

  13. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  14. QTL Analysis and Nested Association Mapping for Adult Plant Resistance to Powdery Mildew in Two Bread Wheat Populations

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2017-07-01

    Full Text Available CIMMYT wheat (Triticum aestivum L. lines Francolin#1 and Quaiu#3 displayed effective and stable adult plant resistance (APR to Chinese Blumeria graminis f. sp. tritici isolates in the field. To elucidate their genetic basis of resistance, two recombinant inbred line (RIL populations of their crosses with Avocet, the susceptible parent, were phenotyped in Zhengzhou and Shangqiu in the 2014–2015 and 2015–2016 cropping seasons. These populations were also genotyped with SSR (simple sequence repeat markers and DArT (diversity arrays technology markers. Two common significant quantitative trait loci (QTL on wheat chromosomes 1BL and 4BL were detected in both populations by joint and individual inclusive composite interval mapping, explaining 20.3–28.7% and 9.6–15.9% of the phenotypic variance in Avocet × Francolin#1 and 4.8–11.5% and 10.8–18.9% in Avocet × Quaiu#3, respectively. Additional QTL were mapped on chromosomes 1DL and 5BL in Avocet × Francolin#1 and on 2DL and 6BS in Avocet × Quaiu#3. Among these, QPm.heau-1DL is probably a novel APR gene contributing 6.1–8.5% of total phenotypic variance. The QTL on 1BL corresponds to the pleiotropic multi-pathogen resistance gene Yr29/Lr46/Pm39, whereas the QTL on 2DL maps to a similar region where stripe rust resistance gene Yr54 is located. The QTL identified can potentially be used for the improvement of powdery mildew and rust resistance in wheat breeding.

  15. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.

    Science.gov (United States)

    Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.

  16. Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat

    Science.gov (United States)

    Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang

    2016-01-01

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724

  17. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii*

    Science.gov (United States)

    Das, Subha Narayan; Wagenknecht, Martin; Nareddy, Pavan Kumar; Bhuvanachandra, Bhoopal; Niddana, Ramana; Balamurugan, Rengarajan; Swamy, Musti J.; Moerschbacher, Bruno M.; Podile, Appa Rao

    2016-01-01

    We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici. Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction. PMID:27405759

  18. Genetic, Physical and Comparative Mapping of the Powdery Mildew Resistance Gene Pm21 Originating from Dasypyrum villosum

    Directory of Open Access Journals (Sweden)

    Huagang He

    2017-11-01

    Full Text Available Pm21, originating from wheat wild relative Dasypyrum villosum, confers immunity to all known races of Blumeria graminis f. sp. tritici (Bgt and has been widely utilized in wheat breeding. However, little is known on the genetic basis of the Pm21 locus. In the present study, four seedling-susceptible D. villosum lines (DvSus-1 ∼ DvSus-4 were identified from different natural populations. Based on the collinearity among genomes of Brachypodium distachyon, Oryza, and Triticeae, a set of 25 gene-derived markers were developed declaring the polymorphisms between DvRes-1 carrying Pm21 and DvSus-1. Fine genetic mapping of Pm21 was conducted by using an extremely large F2 segregation population derived from the cross DvSus-1/DvRes-1. Then Pm21 was narrowed to a 0.01-cM genetic interval defined by the markers 6VS-08.4b and 6VS-10b. Three DNA markers, including a resistance gene analog marker, were confirmed to co-segregate with Pm21. Moreover, based on the susceptible deletion line Y18-S6 induced by ethyl methanesulfonate treatment conducted on Yangmai 18, Pm21 was physically mapped into a similar interval. Comparative analysis revealed that the orthologous regions of the interval carrying Pm21 were narrowed to a 112.5 kb genomic region harboring 18 genes in Brachypodium, and a 23.2 kb region harboring two genes in rice, respectively. This study provides a high-density integrated map of the Pm21 locus, which will contribute to map-based cloning of Pm21.

  19. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Hagedorn, Peter; De Torres-Zabala, Marta

    2008-01-01

    -representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner...

  20. Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods

    Directory of Open Access Journals (Sweden)

    Conversano F

    2012-08-01

    Full Text Available Francesco Conversano,1 Giulia Soloperto,1 Antonio Greco,1 Andrea Ragusa,1,2 Ernesto Casciaro,1 Fernanda Chiriacò,1 Christian Demitri,3 Giuseppe Gigli,2–5 Alfonso Maffezzoli,3 Sergio Casciaro11National Research Council, Institute of Clinical Physiology, Lecce, Italy; 2National Nanotechnology Laboratory of CNR-NANO, Lecce, Italy; 3University of Salento, Department of Engineering for Innovation, Lecce, Italy; 4Italian Institute of Technology – Center for Biomolecular Nanotechnology (CBN-IIT, Arnesano, Italy; 5University of Salento, Department of Mathematics and Physics ‘Ennio De Giorgi’, Lecce, ItalyPurpose: To evaluate the diagnostic performance of gold nanorod (GNR-enhanced optoacoustic imaging employing a conventional echographic device and to determine the most effective operative configuration in order to assure optoacoustic effectiveness, nanoparticle stability, and imaging procedure safety.Methods: The most suitable laser parameters were experimentally determined in order to assure nanoparticle stability during the optoacoustic imaging procedures. The selected configuration was then applied to a novel tissue-mimicking phantom, in which GNR solutions covering a wide range of low concentrations (25–200 pM and different sample volumes (50–200 µL were exposed to pulsed laser irradiation. GNR-emitted optoacoustic signals were acquired either by a couple of single-element ultrasound probes or by an echographic transducer. Off-line analysis included: (a quantitative evaluation of the relationships between GNR concentration, sample volume, phantom geometry, and amplitude of optoacoustic signals propagating along different directions; (b echographic detection of “optoacoustic spots,” analyzing their intensity, spatial distribution, and clinical exploitability. MTT measurements performed on two different cell lines were also used to quantify biocompatibility of the synthesized GNRs in the adopted doses.Results: Laser irradiation at

  1. Emergency thoracic ultrasound and clinical risk management

    Directory of Open Access Journals (Sweden)

    Interrigi MC

    2017-02-01

    Full Text Available Maria Concetta Interrigi,1 Francesca M Trovato,2,3 Daniela Catalano,3,4 Guglielmo M Trovato3,5 1Accident and Emergency Department, Ospedale Cannizzaro, Catania, 2Accident and Emergency Department, Ospedale Civile, Ragusa, 3Department of Clinical and Experimental Medicine, The School of Medicine, University of Catania, 4Postgraduate School of Clinical Ultrasound, Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria Policlinico, University of Catania, 5Postgraduate School of e-Learning and ICT in Health Sciences, The School of Medicine, University of Catania, Catania, Italy Purpose: Thoracic ultrasound (TUS has been proposed as an easy-option replacement for chest X-ray (CXR in emergency diagnosis of pneumonia, pleural effusion, and pneumothorax. We investigated CXR unforeseen diagnosis, subsequently investigated by TUS, considering its usefulness in clinical risk assessment and management and also assessing the sustainability of telementoring. Patients and methods: This observational report includes a period of 6 months with proactive concurrent adjunctive TUS diagnosis telementoring, which was done using freely available smartphone applications for transfer of images and movies. Results: Three hundred and seventy emergency TUS scans (excluding trauma patients were performed and telementored. In 310 cases, no significant chest pathology was detected either by CXR, TUS, or the subsequent work-up; in 24 patients, there was full concordance between TUS and CXR (ten isolated pleural effusion; eleven pleural effusion with lung consolidations; and three lung consolidation without pleural effusion; in ten patients with lung consolidations, abnormalities identified by CXR were not detected by TUS. In 26 patients, only TUS diagnosis criteria of disease were present: in 19 patients, CXR was not diagnostic, ie, substantially negative, but TUS detected these conditions correctly, and these were later confirmed by computed

  2. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile

    Directory of Open Access Journals (Sweden)

    Ernesto Moya-Elizondo

    2015-03-01

    Full Text Available Crown rot pathogens are associated with higher losses for wheat crop farmers, but information about the distribution and prevalence of these pathogens in Chile is inadequate. Distribution and prevalence of wheat (Triticum aestivum L. crown rot pathogens were examined in a survey of 48 commercial fields from December 2011 to February 2012 in southern Chile. These fields were located between Collipulli (37°56'00" S; 72°26'39" W and Purranque (40°50'30" S; 73°22'03" W. Severity of crown rot disease was determined through visual assessment of the first internode of 20 tillers obtained from each field. Incidence of crown rot pathogens per field was determined by plating the 20 tillers on Petri plates with 20% potato dextrose agar amended with lactic acid (aPDA medium. Resulting fungal colonies from monoxenic culture were identified by morphological or molecular-assisted identification. Severity of crown rot varied between 11.3% and 80% for individual fields. Culture plate analysis showed 72.2% of stems were infected with some fungus. Fusarium avenaceum, F. graminearum, and F. culmorum, pathogens associated with Fusarium crown rot disease were isolated from 13.5% of tillers. Gaeumannomyces graminis, causal agent of take-all disease in cereals, was isolated from 11.1% of culms. Phaeosphaeria sp., an endophyte and possibly a non-pathogenic fungus, was isolated from 13.9% of tillers. Pathogenic fungi such as Rhizoctonia spp. and Microdochium nivale, other saprophyte, and several unidentified non-sporulating fungi were isolated at frequencies lower than 3% of the total. Fusarium crown rot and take-all were the most prevalent and distributed crown rot diseases present in wheat crops in southern Chile.

  3. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Science.gov (United States)

    Surana, Priyanka; Xu, Ruo; Fuerst, Gregory; Chapman, Antony V. E.; Nettleton, Dan; Wise, Roger P.

    2017-01-01

    Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios. PMID:28790145

  4. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.

    Science.gov (United States)

    Ventimiglia, Giusi; Alfonzo, Antonio; Galluzzo, Paola; Corona, Onofrio; Francesca, Nicola; Caracappa, Santo; Moschetti, Giancarlo; Settanni, Luca

    2015-10-01

    Fifteen sourdoughs produced in western Sicily (southern Italy) were analysed by classical methods for their chemico-physical characteristics and the levels of lactic acid bacteria (LAB). pH and total titratable acidity (TTA) were mostly in the range commonly reported for similar products produced in Italy, but the fermentation quotient (FQ) of the majority of samples was above 4.0, due to the low concentration of acetic acid estimated by high performance liquid chromatography (HPLC). Specific counts of LAB showed levels higher than 10(8) CFU g(-1) for many samples. The colonies representing various morphologies were isolated and, after the differentiation based on phenotypic characteristics, divided into 10 groups. The most numerous group was composed of facultative heterofermentative isolates, indicating a relevance of this bacterial group during fermentation. The genetic analysis by randomly amplified polymorphic DNA (RAPD)-PCR, 16S rRNA gene sequencing and species-specific PCRs identified 33 strains as Lactobacillus plantarum, Lactobacillus curvatus and Lactobacillus graminis. Due to the consistent presence of L. plantarum, it was concluded that this species codominates with obligate heterofermentative LAB in sourdough production in this geographical area. In order to evaluate the performances at the basis of their fitness, the 29 L. plantarum strains were investigated for several technological traits. Twelve cultures showed good acidifying abilities in vitro and L. plantarum PON100148 produced the highest concentrations of organic acids. Eleven strains were positive for extracellular protease activity. Bacteriocin-like inhibitory substances (BLIS) production and antifungal activity was scored positive for several strains, included L. plantarum PON100148 which was selected as starter for experimental sourdough production. The characteristics of the sourdoughs and the resulting breads indicated that the best productions were obtained in presence of L

  5. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  6. Khorasan wheat population researching (Triticum turgidum, ssp. Turanicum (McKey in the minimum tillage conditions

    Directory of Open Access Journals (Sweden)

    Ikanović Jela

    2014-01-01

    Full Text Available Khorasan wheat occupies a special place in the group of new-old cereals (Triticum turgidum, ssp. Turanicum McKey. It is an ancient species, native to eastern Persia, that is very close to durum wheat by morphological characteristics. Investigations were carried out in agro ecological conditions of the eastern Srem, with two wheat populations with dark and bright awns as objects of study. The following morphological and productive characteristics were investigated: plant height (PH, spike length (SH, number of spikelets per spike (NSS, absolute weight (AW and grain weight per spike (GW, seed germination (G and grains yield (YG. Field micro-experiments were set on the carbonate chernozem soil type on loess plateau in 2011 and 2012. Hand wheat sowing was conducted in early March with drill row spacing of 12 cm. The experiment was established as complete randomized block system with four replications. Tending crops measures were not applied during the growing season. Plants were grown without usage of NPK mineral nutrients. Chemical crop protection measures were not applied, although powdery mildew (Erysiphe graminis was appeared before plants spike formation in a small extent. The results showed that both populations have a genetic yield potential. In general, both populations manifested a satisfactory tolerance on lodging and there was no seed dispersal. Plants from bright awns population were higher, had longer spikes and larger number of spikelet’s per spike. However, plants from dark awns population had higher absolute weight and grains weight per spike, as well as grain yield per plant. Strong correlation connections were identified among the investigated characteristics. The determination of correlations, as well as direct and indirect affects, enabled easier understanding of the mutual relationships and their balancing in order to improve the yield per unit area. [Projekat Ministarstva nauke Republike Srbije, br. TR 31078 i br. TR 31022

  7. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    Science.gov (United States)

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  8. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field.

    Science.gov (United States)

    Koller, Teresa; Brunner, Susanne; Herren, Gerhard; Hurni, Severine; Keller, Beat

    2018-04-01

    The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.

  10. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  11. Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene.

    Science.gov (United States)

    Chen, Ming; Sun, Liying; Wu, Hongya; Chen, Jiong; Ma, Youzhi; Zhang, Xiaoxiang; Du, Lipu; Cheng, Shunhe; Zhang, Boqiao; Ye, Xingguo; Pang, Junlan; Zhang, Xinmei; Li, Liancheng; Andika, Ida B; Chen, Jianping; Xu, Huijun

    2014-05-01

    Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat-growing areas in China. Because it is vectored by the fungus-like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co-transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12-1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12-1 showed broad-spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild-type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus-derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad-spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field.

    Science.gov (United States)

    Brunner, Susanne; Stirnweis, Daniel; Diaz Quijano, Carolina; Buesing, Gabriele; Herren, Gerhard; Parlange, Francis; Barret, Pierre; Tassy, Caroline; Sautter, Christof; Winzeler, Michael; Keller, Beat

    2012-05-01

    Resistance (R) genes protect plants very effectively from disease, but many of them are rapidly overcome when present in widely grown cultivars. To overcome this lack of durability, strategies that increase host resistance diversity have been proposed. Among them is the use of multilines composed of near-isogenic lines (NILs) containing different disease resistance genes. In contrast to classical R-gene introgression by recurrent backcrossing, a transgenic approach allows the development of lines with identical genetic background, differing only in a single R gene. We have used alleles of the resistance locus Pm3 in wheat, conferring race-specific resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), to develop transgenic wheat lines overexpressing Pm3a, Pm3c, Pm3d, Pm3f or Pm3g. In field experiments, all tested transgenic lines were significantly more resistant than their respective nontransformed sister lines. The resistance level of the transgenic Pm3 lines was determined mainly by the frequency of virulence to the particular Pm3 allele in the powdery mildew population, Pm3 expression levels and most likely also allele-specific properties. We created six two-way multilines by mixing seeds of the parental line Bobwhite and transgenic Pm3a, Pm3b and Pm3d lines. The Pm3 multilines were more resistant than their components when tested in the field. This demonstrates that the difference in a single R gene is sufficient to cause host-diversity effects and that multilines of transgenic Pm3 wheat lines represent a promising strategy for an effective and sustainable use of Pm3 alleles. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Science.gov (United States)

    Wu, Jirong; Yu, Mingzheng; Xu, Jianhong; Du, Juan; Ji, Fang; Dong, Fei; Li, Xinhai; Shi, Jianrong

    2014-01-01

    The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is

  15. Transgene x environment interactions in genetically modified wheat.

    Science.gov (United States)

    Zeller, Simon L; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-07-12

    The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  16. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil.

    Directory of Open Access Journals (Sweden)

    Jirong Wu

    Full Text Available The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage. We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages. Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the

  17. Transgene x environment interactions in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Simon L Zeller

    Full Text Available BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  18. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien

    2016-03-19

    Reactive oxygen species (ROS), including superoxide (O2-HO2) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2-HO2 to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  19. Antibacterial activity and optimisation of bacteriocin producing lactic acid bacteria isolated from beef (red meat) samples

    International Nuclear Information System (INIS)

    Ali, N.M.; Mazhar, B.; Khadija, I.; Kalim, B.

    2016-01-01

    Bacteriocin producing bacteria are commonly found in meat products to enhance their shelf-life. In the present study, bacterial species were isolated from meat samples (beef) from different localities of Lahore, Pakistan. MRS agar medium was used to isolate lactic acid bacteria (LAB) through spread and streak methods (incubated for 72 h at 37 degree C). Identification of bacteriocinogenic LAB strains was done by using staining techniques, morphology based characteristics and biochemical tests. These strains were BSH 1b, BSH 3a, BIP 4a, BIP 3a, BIP 1b and BRR 3a. Antibacterial activity of LAB was performed against food borne pathogens viz., Escherichia coli and Staphylococcus aureus through paper disc diffusion method. Three bacterial strains showed maximum inhibition and characterised by ribotyping viz., BIP 4a was identified as Lactobacillus curvatures, BIP 3a was Staphylococcus warneri and BIP 1b was Lactobacillus graminis . Optimum pH 5-6.5 and 30-37 degree C temperature for isolated bacterial strains was recorded. Protein concentration measured was 0.07 mg/mL for BSH 1b, 0.065 mg/mL for BSH 3a, 0.057 mg/mL for BIP 4a, 0.062 mg/mL for BIP 1b, 0.065 mg/mL for BIP 3a and for BRR 3a 0.078 mg/mL, respectively. Bacteriocin of all isolates except BIP 3a was found to be sensitive towards pepsin and resistant towards Rnase. Bacteriocin production was stable at between pH 5.0 and 6.0 and resistant temperature was 40 degree C. It was concluded that lactic acid bacteria (LAB) from meat can be helpful as antibacterial agents against food-borne bacterial pathogens because of thermostable producing bacteriocin. (author)

  20. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-06-01

    Full Text Available In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis or leaf rust (Puccinia hordei. Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of

  1. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74.

    Science.gov (United States)

    Lu, Yuqing; Yao, Miaomiao; Zhang, Jinpeng; Song, Liqiang; Liu, Weihua; Yang, Xinming; Li, Xiuquan; Li, Lihui

    2016-09-01

    A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.

  2. Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat.

    Science.gov (United States)

    Petersen, Stine; Lyerly, Jeanette H; Worthington, Margaret L; Parks, Wesley R; Cowger, Christina; Marshall, David S; Brown-Guedira, Gina; Murphy, J Paul

    2015-02-01

    A powdery mildew resistance gene was introgressed from Aegilops speltoides into winter wheat and mapped to chromosome 5BL. Closely linked markers will permit marker-assisted selection for the resistance gene. Powdery mildew of wheat (Triticum aestivum L.) is a major fungal disease in many areas of the world, caused by Blumeria graminis f. sp. tritici (Bgt). Host plant resistance is the preferred form of disease prevention because it is both economical and environmentally sound. Identification of new resistance sources and closely linked markers enable breeders to utilize these new sources in marker-assisted selection as well as in gene pyramiding. Aegilops speltoides (2n = 2x = 14, genome SS), has been a valuable disease resistance donor. The powdery mildew resistant wheat germplasm line NC09BGTS16 (NC-S16) was developed by backcrossing an Ae. speltoides accession, TAU829, to the susceptible soft red winter wheat cultivar 'Saluda'. NC-S16 was crossed to the susceptible cultivar 'Coker 68-15' to develop F2:3 families for gene mapping. Greenhouse and field evaluations of these F2:3 families indicated that a single gene, designated Pm53, conferred resistance to powdery mildew. Bulked segregant analysis showed that multiple simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers specific to chromosome 5BL segregated with the resistance gene. The gene was flanked by markers Xgwm499, Xwmc759, IWA6024 (0.7 cM proximal) and IWA2454 (1.8 cM distal). Pm36, derived from a different wild wheat relative (T. turgidum var. dicoccoides), had previously been mapped to chromosome 5BL in a durum wheat line. Detached leaf tests revealed that NC-S16 and a genotype carrying Pm36 differed in their responses to each of three Bgt isolates. Pm53 therefore appears to be a new source of powdery mildew resistance.

  3. Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL.

    Science.gov (United States)

    Chhuneja, Parveen; Yadav, Bharat; Stirnweis, Daniel; Hurni, Severine; Kaur, Satinder; Elkot, Ahmed Fawzy; Keller, Beat; Wicker, Thomas; Sehgal, Sunish; Gill, Bikram S; Singh, Kuldeep

    2015-10-01

    A novel powdery mildew resistance gene and a new allele of Pm1 were identified and fine mapped. DNA markers suitable for marker-assisted selection have been identified. Powdery mildew caused by Blumeria graminis is one of the most important foliar diseases of wheat and causes significant yield losses worldwide. Diploid A genome species are an important genetic resource for disease resistance genes. Two powdery mildew resistance genes, identified in Triticum boeoticum (A(b)A(b)) accession pau5088, PmTb7A.1 and PmTb7A.2 were mapped on chromosome 7AL. In the present study, shotgun sequence assembly data for chromosome 7AL were utilised for fine mapping of these Pm resistance genes. Forty SSR, 73 resistance gene analogue-based sequence-tagged sites (RGA-STS) and 36 single nucleotide polymorphism markers were designed for fine mapping of PmTb7A.1 and PmTb7A.2. Twenty-one RGA-STS, 8 SSR and 13 SNP markers were mapped to 7AL. RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were linked to the PmTb7A.1 and PmTb7A.2, at a genetic distance of 0.6 and 6.0 cM, respectively. The present investigation established that PmTb7A.1 is a new powdery mildew resistance gene that confers resistance to a broad range of Bgt isolates, whereas PmTb7A.2 most probably is a new allele of Pm1 based on chromosomal location and screening with Bgt isolates showing differential reaction on lines with different Pm1 alleles. The markers identified to be linked to the two Pm resistance genes are robust and can be used for marker-assisted introgression of these genes to hexaploid wheat.

  4. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306.

    Science.gov (United States)

    Li, Quanquan; Niu, Zubiao; Bao, Yinguang; Tian, Qiuju; Wang, Honggang; Kong, Lingrang; Feng, Deshun

    2016-09-15

    Wheat powdery mildew, which is mainly caused by Blumeria graminis f. sp. tritici (Bgt), seriously damages wheat production. The wheat-Thinopyrum intermedium alien addition disomic line germplasm SN6306, being one of the important sources of genes for wheat resistance, is highly resistant to Bgt E09 and to many other powdery mildew physiological races. However, knowledge on the resistance mechanism of SN6306 remains limited. Our study employed high-throughput RNA sequencing based on next-generation sequencing technology (Illumina) to obtain an overview of the transcriptome characteristics of SN6306 and its parent wheat Yannong 15 (YN15) during Bgt infection. The sequencing generated 104,773 unigenes, 9909 of which showed varied expression levels. Among the 9909 unigenes, 1678 unigenes showed 0 reads in YN15. The expression levels in Bgt-inoculated SN6306 and YN15 of exactly 39 unigenes that showed 0 or considerably low reads in YN15 were validated to identify the genes involved in Bgt resistance. Among the 39 unigenes, 12 unigenes were upregulated in SN6306 by 3-45 times. These unigenes mainly encoded kinase, synthase, proteases, and signal transduction proteins, which may play an important role in the resistance against Bgt. To confirm whether the unigenes that showed 0 reads in YN15 are really unique to SN6306, 8 unigenes were cloned and sequenced. Results showed that the selected unigenes are more similar to SN6306 and Th. intermedium than to the wheat cultivar YN15. The sequencing results further confirmed that the unigenes showing 0 reads in YN15 are unique to SN6306 and are most likely derived from Th. intermedium (Host) Nevski. Thus, the genes from Th. intermedium most probably conferred the resistance of SN6306 to Bgt. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen

    Directory of Open Access Journals (Sweden)

    Priyanka Surana

    2017-10-01

    Full Text Available Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh, causes powdery mildew disease in barley (Hordeum vulgare L.. Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa and H. vulgare cv. Algerian (Mla1, which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE complex with SYP121 (PEN1, which is engaged in pathogen associated molecular pattern (PAMP-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios.

  6. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538

    Science.gov (United States)

    Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs. PMID:27755575

  7. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    Science.gov (United States)

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  8. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat.

    Science.gov (United States)

    Liu, Wenxuan; Koo, Dal-Hoe; Xia, Qing; Li, Chunxin; Bai, Fuqiang; Song, Yuli; Friebe, Bernd; Gill, Bikram S

    2017-04-01

    Pm57, a novel resistant gene against powdery mildew, was transferred into common wheat from Ae. searsi and further mapped to 2S s #1L at an interval of FL0.75 to FL0.87. Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, is one of the most severe foliar diseases of wheat causing reduction in grain yield and quality. Host plant resistance is the most effective and environmentally safe approach to control this disease. Tests of a set of Chinese Spring-Ae. searsii (S s S s , 2n = 2x = 14) Feldman & Kislev ex K. Hammer disomic addition lines with a mixed isolate of the powdery mildew fungus identified a novel resistance gene(s), designed as Pm57, which was located on chromosome 2S s #1. Here, we report the development of ten wheat-Ae. searsii recombinants. The wheat chromosomes involved in five of these recombinants were identified by FISH and SSR marker analysis and three of them were resistant to powdery mildew. Pm57 was further mapped to the long arm of chromosome 2S s #1 at a fraction length interval of FL 0.75 to FL 0.87. The recombinant stocks T2BS.2BL-2S s #1L 89-346 (TA5108) with distal 2S s #1L segments of 28% and 89(5)69 (TA5109) with 33% may be useful in wheat improvement. The PCR marker X2L4g9p4/HaeIII was validated to specifically identify the Ae. searsii 2S s #1L segment harboring Pm57 in T2BS.2BL-2S s #1L against 16 wheat varieties and advanced breeding lines, and the development of more user-friendly KASP markers is underway.

  9. Strategies for improving rust resistance in oats

    International Nuclear Information System (INIS)

    Harder, D.E.; McKenzie, R.I.H.; Martens, J.W.; Brown, P.D.

    1977-01-01

    During the history of breeding oats for rust resistance in Canada the known sources of resistance proved inadequate to counter the virulence potential of both stem rust (Puccinia graminis avenae) and crown rust (P. coronata avenae). A major programme to overcome the rust problem was undertaken at Winnipeg, involving four alternate approaches: (1) A search for new resistance in wild oat species, particularly Avena sterilis, has provided a wealth of good resistance to crown rust, but less to stem rust. Much of the A. sterilis-derived crown rust resistance is now being used world-wide; (2) Efforts at synthesizing new resistance by mutation breeding methods have not been successful. Of about seven million plants examined, only one showed significant new resistance, but this was associated with poor plant type; (3) Resistance with low levels of expression but which appears broadly effective has been observed against both stem and crown rusts. It appears that numbers of these low-level genes exist, and that they can be accumulated to provide increasingly effective resistance. Problems in using this type of resistance in a practical way are discussed; (4) Excellent rust resistance has been found in lower ploidy species such as A. barbata, but it was not previously possible to stabilize this resistance in hexaploid species. By using mutagenic treatments attempts have been made to translocate smaller portions of the A. barbata chromosome carrying the resistance to the hexaploid cultivar Rodney. In conclusion, mutation breeding methods at present appear to have limited application in synthesizing new rust-resistant genotypes in oats. The search for already existing genetic resistance and its synthesis into multi-genic resistant lines appears to be the most effective way at present of resolving the rust problem in oats. (author)

  10. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming

    Directory of Open Access Journals (Sweden)

    Lars Matthias Voll

    2011-08-01

    Full Text Available During compatible interactions with their host plants, biotrophic plant pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism towards colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, the corn smut fungus Ustilago maydis and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment.Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. Increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during

  11. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.

    Science.gov (United States)

    Mavrodi, Olga V; Mavrodi, Dmitri V; Weller, David M; Thomashow, Linda S

    2006-11-01

    Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.

  12. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum.

    Science.gov (United States)

    Chen, Shisheng; Guo, Yan; Briggs, Jordan; Dubach, Felix; Chao, Shiaoman; Zhang, Wenjun; Rouse, Matthew N; Dubcovsky, Jorge

    2018-03-01

    The new stem rust resistance gene Sr60 was fine-mapped to the distal region of chromosome arm 5A m S, and the TTKSK-effective gene SrTm5 could be a new allele of Sr22. The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the Ug99 race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat Triticum monococcum accession PI 306540. We mapped SrTm5, a previously postulated gene effective to Ug99, on chromosome arm 7A m L, completely linked to Sr22. SrTm5 displayed a different race specificity compared to Sr22 indicating that they are distinct. Sequencing of the Sr22 homolog in PI 306540 revealed a novel haplotype. Characterization of the segregating populations with Pgt race QFCSC revealed an additional resistance gene on chromosome arm 5A m S that was assigned the official name Sr60. This gene was also effective against races QTHJC and SCCSC but not against TTKSK (a Ug99 group race). Using two large mapping populations (4046 gametes), we mapped Sr60 within a 0.44 cM interval flanked by sequenced-based markers GH724575 and CJ942731. These two markers delimit a 54.6-kb region in Brachypodium distachyon chromosome 4 and a 430-kb region in the Chinese Spring reference genome. Both regions include a leucine-rich repeat protein kinase (LRRK123.1) that represents a potential candidate gene. Three CC-NBS-LRR genes were found in the colinear Brachypodium region but not in the wheat genome. We are currently developing a Bacterial Artificial Chromosome library of PI 306540 to determine which of these candidate genes are present in the T. monococcum genome and to complete the cloning of Sr60.

  13. Investigation of seed damaging pathogens associated with wheat crop in bhimber azad kashmir, pakistan and their managements

    International Nuclear Information System (INIS)

    Hussain, T.; Ishtiaq, M.; Azam, S.; Maqbool, M.; Mushtaq, W.

    2017-01-01

    Mycopathogens were explored from wheat germplasm cultivars from District Bhimber of Azad Kashmir. In this study, 10 different seed-borne pathogens were isolated from District of Bhimber, Azad Jammu and Kashmir, Pakistan. The Agar Plate Method (APM) and Towel Paper Method (TPM) were used for detection of seed borne pathogens. The disease incidence (percentage) and disease severity of fungi varied with respect to type of pathogen and seed sampling sites. Kernel bunt caused by Tilletia indica showed highest incidence (67.25%) and severity (7.0) on 0-9 rating scale. Fusarium graminearum showed the highest infection rate in three sub-divisions of district Bhimber as compared to others. The fungal attacking pathogens on wheat crop were control through fungicides treatment and treatments with plant extracts. Maximum germination rates were calculated in three sub-divisions of Bhimber after treatment of Tilt fungicide. As 86% germination rate in Samahni, 87.5% in Bhimber and 84.5% in Bernala was calculated. Antifungal activity of five plant extracts (Acacia nilotica L., Azadirachta indica L. Juss., Eucalyptus citriodora Hook, Ficus bengalensis L. and Allium sativum L.) were evaluated in four different solvents. Highest minimum inhibitory concentration (MIC) was calculated of all plants in methanolic extracts. Maximum MIC (57.38 mcg/ml) exhibited by extracts of Acacia nilotica leaves against ten fungi. Azadirachta indica extracts in different solvents against wheat-seed fungal pathogens was shown more antimicrobial activity as compared to other four plants. Azadirachta indica extract in methanol showed the highest mean of antifungal activity (62.20 mcg/ml) against ten different fungal pathogens. Antimicrobial activity (MIC) of Ficus bengalensis in different solvents against nine wheat-seed fungal pathogens was also investigated. Highest MIC was measured against B. graminis (57.50 mcg/ml) and S. macrospora (57.00 mcg/ml) by using methanolic extract of Ficus bengalensis

  14. Synthesis, biological evaluation and SAR analysis of novel poly-heterocyclic compounds containing pyridylpyrazole group.

    Science.gov (United States)

    Wang, Bao-Lei; Zhu, Hong-Wei; Li, Zheng-Ming; Wang, Li-Zhong; Zhang, Xiao; Xiong, Li-Xia; Song, Hai-Bin

    2018-03-01

    In recent years, pyridylpyrazole derivatives, such as pyridylpyrazole-containing anthranilic diamide have attracted much attention by virtue of their useful insecticidal properties and unique action mode. Moreover, some pyridylpyrazole-containing compounds have also been found to possess significant fungicidal activities. With the aim of discovering new bioactive agrochemicals for crop protection, a series of poly-heterocyclic compounds containing pyridylpyrazole and aziridine, or β-lactam, or thiazolinone moieties were synthesized. A series of pyridylpyrazole-containing poly-heterocyclic compounds were obtained, and confirmed through IR, 1 H NMR, 13 C NMR, HRMS and elemental analysis. The crystalline structure of 4-(3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl)-3-chloro-1-mesitylazetidin-2-one (compound 13f) was determined to further illustrate a trans- configuration of the β-lactam motif. In addition, bioassays showed that most of these new compounds exhibited modest insecticidal activity towards Mythimna separate Walker at 200 µg mL -1 . Some of the compounds displayed excellent fungicidal activity towards some plant fungi, including Cercospora arachidicola (13j: EC 50 = 14.5 µg mL -1 ), Physalospora piricola (12d and 13d: EC 50 = 10.5 and 9.70 µg mL -1 ), Alternaria solani Sorauer (13j: EC 50 = 7.29 µg mL -1 ), Puccinia sorghi Schw. (13d: control efficacy 99.0 ± 2.1% at 200 µg mL -1 ) and Erysiphe graminis (14d: control efficacy 95.0 ± 1.4% at 200 µg mL -1 ). Compounds 12b-12e, 13a, 13d, 13f, 13j, 13 k and 14d could be considered potential fungicidal lead compounds to do further structural optimization. The structure-activity relationship analysis in this study brings some new understanding to the biological activities of N-pyridylpyrazole-containing compounds, and provides important information for the research and development of novel agricultural fungicides with poly-heterocyclic structures. © 2017 Society of Chemical Industry. © 2017 Society

  15. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

    Directory of Open Access Journals (Sweden)

    Dario Cantu

    Full Text Available BACKGROUND: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130. METHODOLOGY/PRINCIPAL FINDINGS: We obtained nearly 80 million high quality paired-end reads (>50x coverage that were assembled into 29,178 contigs (64.8 Mb, which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase. CONCLUSIONS/SIGNIFICANCE: The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for

  16. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat.

    Science.gov (United States)

    Blanco, Antonio; Gadaleta, A; Cenci, A; Carluccio, A V; Abdelbacki, A M M; Simeone, R

    2008-06-01

    Powdery mildew, caused by Blumeria graminis f.sp. tritici, is one of the most important wheat diseases in many regions of the world. Triticum turgidum var. dicoccoides (2n=4x=AABB), the progenitor of cultivated wheats, shows particular promises as a donor of useful genetic variation for several traits, including disease resistances. The wild emmer accession MG29896, resistant to powdery mildew, was backcrossed to the susceptible durum wheat cultivar Latino, and a set of backcross inbred lines (BC(5)F(5)) was produced. Genetic analysis of F(3) populations from two resistant introgression lines (5BIL-29 x Latino and 5BIL-42 x Latino) indicated that the powdery mildew resistance is controlled by a single dominant gene. Molecular markers and the bulked segregant analysis were used to characterize and map the powdery mildew resistance. Five AFLP markers (XP43M32((250)), XP46M31((410)), XP41M37((100)), XP41M39((250)), XP39M32((120))), three genomic SSR markers (Xcfd07, Xwmc75, Xgwm408) and one EST-derived SSR marker (BJ261635) were found to be linked to the resistance gene in 5BIL-29 and only the BJ261635 marker in 5BIL-42. By means of Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, the polymorphic markers and the resistance gene were assigned to chromosome bin 5BL6-0.29-0.76. These results indicated that the two lines had the same resistance gene and that the introgressed dicoccoides chromosome segment was longer (35.5 cM) in 5BIL-29 than that introgressed in 5BIL-42 (less than 1.5 cM). As no powdery mildew resistance gene has been reported on chromosome arm 5BL, the novel resistance gene derived from var. dicoccoides was designated Pm36. The 244 bp allele of BJ261635 in 5BIL-42 can be used for marker-assisted selection during the wheat resistance breeding process for facilitating gene pyramiding.

  17. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    Science.gov (United States)

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  18. A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat.

    Science.gov (United States)

    Qi, L L; Pumphrey, M O; Friebe, Bernd; Zhang, P; Qian, C; Bowden, R L; Rouse, M N; Jin, Y; Gill, B S

    2011-06-01

    Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat-D. villosum chromosome addition lines revealed that the wheat-D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat-D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST-STS markers were developed for screening F(2) progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F(3) families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.

  19. Competitive performance of transgenic wheat resistant to powdery mildew.

    Directory of Open Access Journals (Sweden)

    Olena Kalinina

    Full Text Available Genetically modified (GM plants offer an ideal model system to study the influence of single genes that confer constitutive resistance to pathogens on the ecological behaviour of plants. We used phytometers to study competitive interactions between GM lines of spring wheat Triticum aestivum carrying such genes and control lines. We hypothesized that competitive performance of GM lines would be reduced due to enhanced transgene expression under pathogen levels typically encountered in the field. The transgenes pm3b from wheat (resistance against powdery mildew Blumeria graminis or chitinase and glucanase genes from barley (resistance against fungi in general were introduced with the ubiquitin promoter from maize (pm3b and chitinase genes or the actin promoter from rice (glucanase gene. Phytometers of 15 transgenic and non-transgenic wheat lines were transplanted as seedlings into plots sown with the same 15 lines as competitive environments and subject to two soil nutrient levels. Pm3b lines had reduced mildew incidence compared with control lines. Chitinase and chitinase/glucanase lines showed the same high resistance to mildew as their control in low-nutrient treatment and slightly lower mildew rates than the control in high-nutrient environment. Pm3b lines were weaker competitors than control lines. This resulted in reduced yield and seed number. The Pm3b line with the highest transgene expression had 53.2% lower yield than the control whereas the Pm3b line which segregated in resistance and had higher mildew rates showed only minor costs under competition. The line expressing both chitinase and glucanase genes also showed reduced yield and seed number under competition compared with its control. Our results suggest that single transgenes conferring constitutive resistance to pathogens can have ecological costs and can weaken plant competitiveness even in the presence of the pathogen. The magnitude of these costs appears related to the degree

  20. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply.

    Science.gov (United States)

    Meyer, M; Cox, J A; Hitchings, M D T; Burgin, L; Hort, M C; Hodson, D P; Gilligan, C A

    2017-10-01

    Infectious crop diseases spreading over large agricultural areas pose a threat to food security. Aggressive strains of the obligate pathogenic fungus Puccinia graminis f.sp. tritici (Pgt), causing the crop disease wheat stem rust, have been detected in East Africa and the Middle East, where they lead to substantial economic losses and threaten livelihoods of farmers. The majority of commercially grown wheat cultivars worldwide are susceptible to these emerging strains, which pose a risk to global wheat production, because the fungal spores transmitting the disease can be wind-dispersed over regions and even continents 1-11 . Targeted surveillance and control requires knowledge about airborne dispersal of pathogens, but the complex nature of long-distance dispersal poses significant challenges for quantitative research 12-14 . We combine international field surveys, global meteorological data, a Lagrangian dispersion model and high-performance computational resources to simulate a set of disease outbreak scenarios, tracing billions of stochastic trajectories of fungal spores over dynamically changing host and environmental landscapes for more than a decade. This provides the first quantitative assessment of spore transmission frequencies and amounts amongst all wheat producing countries in Southern/East Africa, the Middle East and Central/South Asia. We identify zones of high air-borne connectivity that geographically correspond with previously postulated wheat rust epidemiological zones (characterized by endemic disease and free movement of inoculum) 10,15 , and regions with genetic similarities in related pathogen populations 16,17 . We quantify the circumstances (routes, timing, outbreak sizes) under which virulent pathogen strains such as 'Ug99' 5,6 pose a threat from long-distance dispersal out of East Africa to the large wheat producing areas in Pakistan and India. Long-term mean spore dispersal trends (predominant direction, frequencies, amounts) are

  1. Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L.

    Science.gov (United States)

    Chhuneja, Parveen; Kumar, Krishan; Stirnweis, Daniel; Hurni, Severine; Keller, Beat; Dhaliwal, Harcharan S; Singh, Kuldeep

    2012-04-01

    Powdery mildew (PM) caused by Blumeria graminis f. sp. tritici (Bgt), is one of the important foliar diseases of wheat that can cause serious yield losses. Breeding for cultivars with diverse resources of resistance is the most promising approach for combating this disease. The diploid A genome progenitor species of wheat are an important resource for new variability for disease resistance genes. An accession of Triticum boeoticum (A(b)A(b)) showed resistance against a number of Bgt isolates, when tested using detached leaf segments. Inheritance studies in a recombinant inbred line population (RIL), developed from crosses of PM resistant T. boeoticum acc. pau5088 with a PM susceptible T. monococcum acc. pau14087, indicated the presence of two powdery mildew resistance genes in T. boeoticum acc. pau5088. Analysis of powdery mildew infection and molecular marker data of the RIL population revealed that both powdery mildew resistance genes are located on the long arm of chromosome 7A. Mapping was conducted using an integrated linkage map of 7A consisting of SSR, RFLP, STS, and DArT markers. These powdery mildew resistance genes are tentatively designated as PmTb7A.1 and PmTb7A.2. The PmTb7A.2 is closely linked to STS markers MAG2185 and MAG1759 derived from RFLP probes which are linked to powdery mildew resistance gene Pm1. This indicated that PmTb7A.2 might be allelic to Pm1. The PmTb7A.1, flanked by a DArT marker wPt4553 and an SSR marker Xcfa2019 in a 4.3 cM interval, maps proximal to PmT7A.2. PmTb7A.1 is putatively a new powdery mildew resistance gene. The powdery mildew resistance genes from T. boeoticum are currently being transferred to cultivated wheat background through marker-assisted backcrossing, using T. durum as bridging species.

  2. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat.

    Science.gov (United States)

    Zhang, Ruiqi; Sun, Bingxiao; Chen, Juan; Cao, Aizhong; Xing, Liping; Feng, Yigao; Lan, Caixia; Chen, Peidu

    2016-10-01

    Powdery mildew resistance gene Pm55 was physically mapped to chromosome arm 5VS FL 0.60-0.80 of Dasypyrum villosum . Pm55 is present in T5VS·5AL and T5VS·5DL translocations, which should be valuable resources for wheat improvement. Powdery mildew caused by Blumeria graminis f. sp. tritici is a major wheat disease worldwide. Exploiting novel genes effective against powdery mildew from wild relatives of wheat is a promising strategy for controlling this disease. To identify novel resistance genes for powdery mildew from Dasypyrum villosum, a wild wheat relative, we evaluated a set of Chinese Spring-D. villosum disomic addition and whole-arm translocation lines for reactions to powdery mildew. Based on the evaluation data, we concluded that the D. villosum chromosome 5V controls post-seedling resistance to powdery mildew. Subsequently, three introgression lines were developed and confirmed by molecular and cytogenetic analysis following ionizing radiation of the pollen of a Chinese Spring-D. villosum 5V disomic addition line. A homozygous T5VS·5AL translocation line (NAU421) with good plant vigor and full fertility was further characterized using sequential genomic in situ hybridization, C-banding, and EST-STS marker analysis. A dominant gene permanently named Pm55 was located in chromosome bin 5VS 0.60-0.80 based on the responses to powdery mildew of all wheat-D. villosum 5V introgression lines evaluated at both seeding and adult stages. This study demonstrated that Pm55 conferred growth-stage and tissue-specific dependent resistance; therefore, it provides a novel resistance type for powdery mildew. The T5VS·5AL translocation line with additional softness loci Dina/Dinb of D. villosum provides a possibility of extending the range of grain textures to a super-soft category. Accordingly, this stock is a new source of resistance to powdery mildew and may be useful in both resistance mechanism studies and soft wheat improvement.

  3. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  4. Genome-Wide Association Study for Identification and Validation of Novel SNP Markers for Sr6 Stem Rust Resistance Gene in Bread Wheat.

    Science.gov (United States)

    Mourad, Amira M I; Sallam, Ahmed; Belamkar, Vikas; Wegulo, Stephen; Bowden, Robert; Jin, Yue; Mahdy, Ezzat; Bakheit, Bahy; El-Wafaa, Atif A; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat ( Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r 2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene ( Xcfd43 ). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

  5. Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control.

    Science.gov (United States)

    Singh, Ravi P; Hodson, David P; Jin, Yue; Lagudah, Evans S; Ayliffe, Michael A; Bhavani, Sridhar; Rouse, Matthew N; Pretorius, Zacharias A; Szabo, Les J; Huerta-Espino, Julio; Basnet, Bhoja R; Lan, Caixia; Hovmøller, Mogens S

    2015-07-01

    Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the 'Digalu' and 'Robin' varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes-Sr55, Sr56, Sr57, and Sr58-have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best

  6. Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements

    Directory of Open Access Journals (Sweden)

    Fellers John P

    2013-01-01

    Full Text Available Abstract Background Wheat leaf rust (Puccinia triticina Eriks; Pt and stem rust fungi (P. graminis f.sp. tritici; Pgt are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion. Results A bacterial artificial chromosome (BAC library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt. Conclusions The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.

  7. Spatial Distribution of Root and Crown Rot Fungi Associated With Winter Wheat in the North China Plain and Its Relationship With Climate Variables

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2018-05-01

    Full Text Available The distribution frequency of pathogenic fungi associated with root and crown rot of winter wheat (Triticum aestivum from 104 fields in the North China Plain was determined during the period from 2013 to 2016. The four most important species identified were Bipolaris sorokiniana (24.0% from roots; 33.7% from stems, Fusarium pseudograminearum (14.9% from roots; 27.8% from stems, Rhizoctonia cerealis (1.7% from roots; 4.4% from stems, and Gaeumannomyces graminis var. tritici (9.8% from roots; 4.4% from stems. We observed that the recovered species varied with the agronomic zone. Fusarium pseudograminearum was predominant in regions 1 and 3, whereas F. graminearum, F. acuminatum, and R. cerealis were predominant in regions 2 and 4. The incidence of F. pseudograminearum and R. cerealis was significantly different between regions 1 and 4, while no significant association was found in the distribution of the other species and the agronomic zones. A negative correlation between the frequency of occurrence of F. pseudograminearum and mean annual precipitation during 2013–2016 (r = −0.71; P < 0.01 in the North China Plain and a positive correlation between the mean annual precipitation during 2013–2016 and the frequency of occurrence of F. asiaticum (r = 0.74; P < 0.01 were observed. Several Fusarium species were also found with low frequencies of ~2.1%−3.4 % (F. graminearum, F. acuminatum, and F. sinensis and ~0.1%−1.3% (F. equiseti, F. oxysporum, F. proliferatum, F. culmorum, F. avenaceum, and F. asiaticum. In more than 93% of the fields, from the root and crown tissues of wheat, two or more root and crown rot species were isolated. The coexistence of Fusarium spp. and B. sorokiniana in one field (65.4% or in individual plants (11.6% was more common than for the other species combinations. Moreover, this is the first report on the association between F. sinensis and root and crown rot of wheat. Our results would be useful in the framing

  8. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  9. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua

    2018-03-05

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary

  10. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity.

    Science.gov (United States)

    Yue, Jieyu; Sun, Hong; Zhang, Wei; Pei, Dan; He, Yang; Wang, Huazhong

    2015-04-01

    Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are

  11. Characterizing the pathotype structure of barley powdery mildew and effectiveness of resistance genes to this pathogen in Kazakhstan.

    Science.gov (United States)

    Rsaliyev, Aralbek; Pahratdinova, Zhazira; Rsaliyev, Shynbolat

    2017-11-14

    Powdery mildew of barley is a wind-borne and obligate biotrophic pathogen, which ranks among the most widespread barley pathogens worldwide. However, purposeful research towards studying the structure of the barley powdery mildew populations, of their virulence and of effectiveness of certain resistance genes against the infection was not conducted in Kazakhstan till present time. This paper is the first to describe characteristics of the pathotype structure of Blumeria graminis f.sp. hordei (Bgh) population and effectiveness of resistance genes in two regions of barley cultivation in the republic. One hundred and seven isolates of Bgh were obtained from seven populations occurring on cultivated barley at two geographically locations in Kazakhstan during 2015 and 2016. Their virulence frequency was determined on 17 differential lines Pallas. All isolates were virulent on the resistance gene Mla8 and avirulent for the resistance genes Mla9, Mla1 + MlaAl2, Mla6 + Mla14, Mla13 + MlRu3, Mla7 + MlNo3, Mla10 + MlDu2, Mla13 + MlRu3 and Mlo-5. The frequencies of isolates overcoming the genes Mla3, Mla22, Mlat Mlg + MlCP and Mla12 + MlEm2 were 0.0-33.33%, and frequencies of isolates overcoming the genes Mlra, Mlk, MlLa and Mlh ranged from 10.0 to 78.6%. Based on reactions of differential lines possessing the genes Mla22, Mlra, Mlk, Mlat, MlLa and Mlh, pathotypes were identified. In total, 23 pathotypes with virulence complexity ranging from 1 to 6 were identified. During both years in all populations of South Kazakhstan and Zhambyl regions pathotypes 24 and 64 mainly prevailed. Obtained data suggest that low similarity of populations Bgh in Kazakhstan to European, African, Australian and South-East Asian populations. The present study provides a foundation for future studies on the pathogenic variability within of Bgh populations in Kazakhstan and addresses the knowledge gap on the virulence structure of Bgh in Central Asia. Complete effectiveness of the

  12. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes.

    Science.gov (United States)

    Marone, Daniela; Russo, Maria A; Laidò, Giovanni; De Vita, Pasquale; Papa, Roberto; Blanco, Antonio; Gadaleta, Agata; Rubiales, Diego; Mastrangelo, Anna M

    2013-08-19

    Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore

  13. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    Science.gov (United States)

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  14. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    Directory of Open Access Journals (Sweden)

    Roi Ben-David

    2018-02-01

    Full Text Available The biotroph wheat powdery mildew, Blumeria graminis (DC. E.O. Speer, f. sp. tritici Em. Marchal (Bgt, has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant. Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host. Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance. By

  15. Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust.

    Science.gov (United States)

    Li, Tianya; Liao, Kai; Xu, Xiaofeng; Gao, Yue; Wang, Ziyuan; Zhu, Xiaofeng; Jia, Baolei; Xuan, Yuanhu

    2017-01-01

    Ammonium transporter (AMT) proteins have been reported in many plants, but no comprehensive analysis was performed in wheat. In this study, we identified 23 AMT members (hereafter TaAMTs) using a protein homology search in wheat genome. Tissue-specific expression analysis showed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were relatively more highly expressed in comparison with other TaAMTs . TaAMT1;1a, TaAMT1;1b, and TaAMT1;3a-GFP were localized in the plasma membrane in tobacco leaves, and TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a successfully complemented a yeast 31019b strain in which ammonium uptake was deficient. In addition, the expression of TaAMT1;1b in an Arabidopsis AMT quadruple mutant ( qko ) successfully restored [Formula: see text] uptake ability. Resupply of [Formula: see text] rapidly increased cellular [Formula: see text] contents and suppressed expression of TaAMT1;3a , but not of TaAMT;1;1a and TaAMT1;1b expressions. Expression of TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a was not changed in leaves after [Formula: see text] resupply. In contrast, nitrogen (N) deprivation induced TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a gene expressions in the roots and leaves. Expression analysis in the leaves of the stem rust-susceptible wheat line "Little Club" and the rust-tolerant strain "Mini 2761" revealed that TaAMT1;1a, TaAMT1;1b , and TaAMT1;3a were specifically induced in the former but not in the latter. Rust-susceptible wheat plants grown under N-free conditions exhibited a lower disease index than plants grown with [Formula: see text] as the sole N source in the medium after infection with Puccinia graminis f. sp. tritici , suggesting that [Formula: see text] and its transport may facilitate the infection of wheat stem rust disease. Our findings may be important for understanding the potential function TaAMTs in wheat plants.

  16. The IPM Wheat Model--results of a three-year study in North Rhine-Westphalia, Lower Saxony and Schleswig-Holstein.

    Science.gov (United States)

    Verreet, J A; Heger, M; Oerke, E; Dehne, H W; Finger, I; Busse, C; Klink, H

    2003-01-01

    Under the primary utilisation of phytosanitary production factors such as selection of variety, crop rotation and N fertilisation according to plant requirements, the IPM Wheat Model comprises the elements diagnosis (qualitative = type of pathogen, quantitative = disease severity), scientifically grounded treatment thresholds which, as critical values in pathogen development, can be applied to define the optimum time of fungicide application, and pathogen-specific effective fungicides and application amounts. This leads to the location and year-specific optimised control of the pathogen and of the associated yield performance. After several years of development in Bavaria (from 1985 on) and Schleswig-Holstein (1993-1999), the model was tested as part of a project involving the Universities of Bonn and Kiel and the plant protection services of the German states of Lower Saxony, North Rhine-Westphalia and Schleswig-Holstein in a three-year study (1999-2001) in interregional locations (usually nine per state) with the winter wheat variety Ritmo (interregional indicator variety) and a further variety of regional importance in different variations (untreated control, three to four times growth stage-oriented variants for the determination of the absolute damage potential, IPM-variant). In exact records (approx. 12 dates per vegetation period), the disease epidemics were recorded weekly. With the genetically uniform indicator variety Ritmo, the results documented substantially differing year- and location-specific disease and yield patterns. Interregionally, a broad wheat pathogen spectrum (Puccinia striiformis, P. recondita, Septoria tritici, Stagonospora (syn. Septoria) nodorum, Blumeria (syn. Erysiphe) graminis, Pseudocercosporella herpotrichoides, Drechslera tritici-repentis) in differing composition, disease severity and damage effect was demonstrated. The heterogeneity of the infection and damage patterns was increased in the case of the second variety, in

  17. Differential disease resistance response in the barley necrotic mutant nec1

    Directory of Open Access Journals (Sweden)

    Kunga Laura

    2011-04-01

    Full Text Available Abstract Background Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR, retarded growth, a constitutively active salicylic acid (SA-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. Results nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh, the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Conclusions Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance

  18. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat.

    Science.gov (United States)

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b , originating from Triticum persicum , is effective against the prevalent Blumeria graminis f. sp. tritici ( Bgt ) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F 2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7 ∗ Bainong 3217 F 4 (carrying Pm4b ) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F 2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b -linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13 , Xics43 , and Xics76 , were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with

  19. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    Science.gov (United States)

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  20. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq in Wheat

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2018-02-01

    Full Text Available Powdery mildew resistance gene Pm4b, originating from Triticum persicum, is effective against the prevalent Blumeria graminis f. sp. tritici (Bgt isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS. The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq was applied in an F2:3 mapping population (237 families derived from a pair of isogenic lines VPM1/7∗Bainong 3217 F4 (carrying Pm4b and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13, Xics43, and Xics76, were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with

  1. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Science.gov (United States)

    2011-01-01

    Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar

  2. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.).

    Science.gov (United States)

    Elkot, Ahmed Fawzy Abdelnaby; Chhuneja, Parveen; Kaur, Satinder; Saluja, Manny; Keller, Beat; Singh, Kuldeep

    2015-01-01

    Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA)-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS), the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection) and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in several BC2F1 plants

  3. Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi

    Directory of Open Access Journals (Sweden)

    Wynhoven Brian

    2011-03-01

    Full Text Available Abstract Background Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology. Results To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt, we have generated Expressed Sequence Tags (ESTs by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores and asexual (germinated urediniospores stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum, 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs. Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt and stripe rust, P. striiformis f. sp

  4. Marker Assisted Transfer of Two Powdery Mildew Resistance Genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss. to Triticum aestivum (L..

    Directory of Open Access Journals (Sweden)

    Ahmed Fawzy Abdelnaby Elkot

    Full Text Available Powdery mildew (PM, caused by Blumeria graminis f. sp. tritici, is one of the important wheat diseases, worldwide. Two PM resistance genes, designated as PmTb7A.1 and PmTb7A.2, were identified in T. boeoticum acc. pau5088 and mapped on chromosome 7AL approximately 48cM apart. Two resistance gene analogue (RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were identified to be linked to the PmTb7A.1 and PmTb7A.2, at a distance of 0.6cM and 6.0cM, respectively. In the present study, following marker assisted selection (MAS, the two genes were transferred to T. aestivum using T. durum as bridging species. As many as 12,317 florets of F1 of the cross T. durum /T. boeoticum were pollinated with T. aestivum lines PBW343-IL and PBW621 to produce 61 and 65 seeds, respectively, of three-way F1. The resulting F1s of the cross T. durum/T. boeoticum//T. aestivum were screened with marker flanking both the PM resistance genes PmTb7A.1 and PmTb7A.2 (foreground selection and the selected plants were backcrossed to generate BC1F1. Marker assisted selection was carried both in BC1F1 and the BC2F1 generations. Introgression of alien chromatin in BC2F1 plants varied from 15.4-62.9 percent. Out of more than 110 BC2F1 plants showing introgression for markers linked to the two PM resistance genes, 40 agronomically desirable plants were selected for background selection for the carrier chromosome to identify the plants with minimum of the alien introgression. Cytological analysis showed that most plants have chromosome number ranging from 40-42. The BC2F2 plants homozygous for the two genes have been identified. These will be crossed to generate lines combining both the PM resistance genes but with minimal of the alien introgression. The PM resistance gene PmTb7A.1 maps in a region very close to Sr22, a stem rust resistance gene effective against the race Ug99. Analysis of selected plants with markers linked to Sr22 showed introgression of Sr22 from T. boeoticum in

  5. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy)

    Science.gov (United States)

    Liguori, V.; Manno, G.

    2009-04-01

    The coast of Sicily region stretches about 1400 km, bathing three different seas: the North tract, from Messina to Capo San Vito wash to the Tyrrhenian Sea, the oriental side, from Messina to Capo Passero, wash to the Ionian Sea, and finally the southern side wash to the Mediterranean. Of these, 395 km are made up of beaches and 970 km from rocky shores. The coastal morph-type were analyzed in relation to their evolutionary trend (backspace or advancement of the seaside), can be summarized as follows: a low shores of torrent plain (Messina), low shores with salt (Trapani), low shores beaches edged with dunal systems, subject to backspace, where urbanization has reduced or eliminated the internal sand dunes, shores on marine terraces, with beaches at the foot (Agrigento) and high shores non-affected of real phenomena of backspace, but subject to often dangerous events of detachment and collapse of blocks (high rocky shores). The marine and coastal environment is a complex and articulated, in balance with the Earth's environment, in which live together, but through different dynamics strongly interacting, ecosystems and marine ecosystems typically transition. The increasing density of population concentrated along the shores, the gradual expansion of activities related to the use of marine and coastal resources, are some of the issues that threaten the delicate balance of nature and the sea coast. The sicilian coastal areas most subject to erosion are those in Ragusa shores areas in south-eastern of Sicily, where the critical areas interesting low coastline and high shores. Following the coast, between Capo Peloro and Milazzo (Messina),where the erosion affects the coast with a low of about 23 km. In the coastal between Capo St. Marco and Capo Feto (Trapani) the critical areas interesting the low coastline and, in part erodible bluffs. One of this case is localized in the town of Mazara del Vallo. In general, the phenomenon erosive affects almost all the sicilian

  6. Effect of proquinazid and copper hydroxide on homeostasis of anions in winter wheat plants in generative phase of development

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-03-01

    Full Text Available The study deals with the effect of proquinazid and copper oxide application on structural characteristics and resistance of wheat to powdery mildew, as well as remobilisation and redistribution of anions pools at generative stage of development. The trial series was conducted in the experimental agricultural production of the Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine. Field experiments were carried out with Smuglyanka variety of winter wheat. The trial series included the application of fungicides such as Talius (proquinazid, 200 g/L 0,25 L/ha and Kocide 2000 (copper hydroxide, 350 g/kg 150 and 300 g/ha, and combination of both fungicides. Sprays were applied at tillering stage in autumn in the first trial series and at tillering-booting stage in spring in the second one. Assessment of affected plants by powdery mildew was carried out visually in points. Anion concentration was determined with the use of ion chromatography. Application of fungicides at tillering stage increases the amount of productive stems in wheat plants. The highest effect was recorded for application of copper hydroxide at dose of 300 g/ha in autumn. Analysis of plants affected by powdery mildew shows that application of proquinazid and its composition with copper hydroxide provides sustained protection against Blumeria graminis (DC Speer. Application of fungicides at tillering stage contributes to increase of the pool of free nitrogen, phosphorus and sulfur anions in leaf tissues compared to control. These changes in anion composition may be caused by fungicide effect on activity of N, P, S transporters, as well as internal regulatory mechanisms of elements’ uptake by plants. Comparing the results of the autumn and spring application of fungicides should note the increase in concentration of free phosphates in wheat leaves in the 2nd trial with proquinazid and its composition with copper hydroxide. Accumulation of nitrogen in the

  7. Triticale: avaliação de linhagens em diferentes regiões paulistas Triticale: evaluation on inbred lines in different regions of the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1989-01-01

    Full Text Available Compararam-se entre si vinte e quatro linhagens de triticale e o cultivar de trigo IAC-21, através de ensaios em diferentes localidades do Estado de São Paulo, nos anos de 1986 e 1987, analisando-se os seguintes parâmetros: rendimento de grãos, altura de plantas, ciclo em dias da emergência ao florescimento, porcentagem de plantas acamadas, peso de cem grãos e resistência à ferrugem-da-folha e às manchas-foliares em condições de campo. A linhagem de triticale Nutria 7272 foi a mais produtiva (3.098kg/ha, diferindo do 'IAC-21' (2.241 kg/ha e das demais linhagens de triticale, com exceção da Merino"S" - JLO"S" (T-20 e 21, Nutria 440 e Juanillo 159, com 2.891, 2.870, 2.805 e 2.645kg/ha respectivamente. As linhagens de triticale exibiram maior resistência à ferrugem-da-folha com relação ao 'IAC-21'. A Panche 7287 mostrou-se moderadamente resistente às manchas-foliares e, as demais, suscetíveis. As linhagens M2A-KLA"S" x MA (T-6, Faro"S" e Panche 7287 apresentaram ciclo da emergência ao florescimento significativamente maior que o 'IAC-21', e M2A-CML 360 x M2A (T-2, Turk DWF-V 127 x 6TA 204/IA 146, M2A-CML x IA, TCEP 77138, BGL "S"-IGA x PND"S" e BCM"S"-Addax"S" exibiram plantas significativamente mais baixas. A Juanillo 159 apresentou o maior peso de cem grãos, diferindo do 'IAC-21' e das demais linhagens, com exceção da Nutria 7272 e Merino"S" - JLO"S" (T-21.Twenty four triticale inbred lines and the wheat cultivar IAC-21 were evaluated in field experiments carried out at different locations of the State of São Paulo, Brazil, during the years of 1986 and 1987. Grain yield, plant height, number of days from emergence to flowering, percentage of layed plants, weight of 100 grains, resistance to leaf rust (Puccinia graminis sp. tritici and to leaf spots (Helminthosporium sp. and Septoria sp. were evaluated under field conditions. The triticale inbred line Nutria 7272 pre-sented the best grain yield (3,098 kg/ha, showing

  8. Melhoramento do trigo: XII. Comportamento de novas linhagens e cultivares no Estado de São Paulo Wheat breeding: XII. Evaluation of new inbred lines for the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1985-01-01

    Full Text Available Foram comparadas entre si vinte e uma linhagens e quatro cultivares comerciais de trigo através de ensaios instalados em diferentes localidades paulistas, analisando-se os seguintes parâmetros: rendimento de grãos, altura de plantas, ciclo em dias da emergência ao florescimento e da emergência à maturação, porcentagem de plantas acamadas, comprimento da espiga, número de grãos por espiga e por espigueta, número de espiguetas por espiga, peso de cem grãos, resistência à ferrugem do-colmo e da-folha em condições de campo e de casa de vegetação. Em condições de laboratório, foram realizados estudos da tolerância ao alumínio, em soluções nutritivas. Nos ensaios conduzidos em Campinas, em condição de irrigação por aspersão, destacaram-se, quanto à produção de grãos, as linhagens IAC-60 e IAC-67, e, nos de Capão Bonito, IAC-66, IAC-60 e IAC-69 apresentaram maior produtividade. As linhagens IAC-64, IAC-68, IAC-71 e IAC-60 destacaram-se em Tietê, e as linhagens IAC-67, IAC-63 e IAC-64 evidenciaram alta produção de grãos em Maracaí. As linhagens IAC-52, IAC-53, IAC-54, IAC-55, IAC-56, IAC-57, IAC-58, IAC-60, IAC-64, IAC-65, IAC-67, IAC-71 e o 'Alondra-S-46' mostraram plantas de porte semi-anão, diferindo significativamente do 'BH-1146', de porte alto. Em relação à ferrugem-do-colmo (Puccinia graminis f. sp. fruir, as linhagens IAC-62 e IAC-65 e o cultivar Alondra-S-46 foram resistentes às sete raças testadas em estádio de plântula em casa de vegetação e também em condições de campo. Em casa de vegetação, a linhagem IAC-64 foi resistente a quatro raças de P. recondita, agente da ferrugem-da-folha, e IAC-52 e IAC-55, a três raças desse patógeno. Em condição de infecção natural no estádio de planta adulta, as linhagens IAC-51, IAC-56, IAC-61, IAC-62, IAC-63 e IAC-67 apresentaram menor grau de infecção dessa ferrugem, enquanto IAC-51, IAC-60, IAC-63, IAC-68 e IAC-70, bem como 'BH-1146' e 'IAC

  9. Selected Lectures of the 12th International Workshop on Neonatology; Cagliari (Italy; October 19-22, 2016

    Directory of Open Access Journals (Sweden)

    --- Various Authors

    2016-10-01

    , R. Origa, M. Mingoia, G. MariniLECT 58. VITAMIN D DEFICIENCY: WHAT'S NEW? • R. Antonucci, C. Locci, E. Chicconi, L. AntonucciLECT 59. METABOLOMICS AND AGGRESSION (ACTION PROJECT • M. Manchia, A. NotoLECT 60. DOCEMUS FOUNDATION: A CONTRIBUTION FOR FINANCING NEW CLINICAL LABORATORIES AND SCHOOL TRAINING PROGRAMS IN LOW-INCOME COUNTRIES • G. NubileLECT 61. NEW NMR BASED TOOLS FOR CLINICAL AND TRANSLATIONAL RESEARCH WITH FOCUS ON NEWBORNS AND CHILDREN • M. Spraul, C. Cannet, F. Fang, H. Schäfer, F. TrefzLECT 62. METABOLOMICS AND AUTISM • M. Mussap, C. Moretti, A. Noto, V. FanosLECT 63. BIG DATA, METABOLOMICS AND MICROBIOMICS FROM THE FETUS TO THE ADULT: TOWARDS 10 P PEDIATRICS • V. Fanos, M. MussapLECT 64. MICROBIOTA AND ASTHMA: "HOT TOPIC" VS. IMPLICATIONS FOR THE PRACTITIONERS • C. Gheonea, M. GheoneaLECT 65. ADDING VALUE TO OBSTETRICS, FROM GENOMICS TO EPIGENETICS: AN ECOLOGICAL PERSPECTIVE • A. Ragusa, A. SvelatoLECT 66. IMPLICATION OF METABOLOMICS FOR MATERNAL-FETAL MEDICINE • D. Dudzik, M. Skotnicki, M. Żórawski, R. Revello, J. L. Bartha, A. García, C. BarbasLECT 67. AN ETHICS FOR RELATIONSHIPS IN NEONATOLOGY • J.P. RességuierLECT 68. DO THE NEW EUROPEAN REGULATIONS HELP NURSES? • R. GalavernaLECT 69. BIRTH AND DEVELOPMENT OF A NEONATAL RESPIRATORY ECMO CENTER: NURSING ASPECTS • C. Baracetti, G. Cavallaro, L. Plevani, F. MoscaLECT 70. LATCH SCORE, MATERNAL PERCEPTION AND SUCCESS OF EXCLUSIVE BREASTFEEDING: THE NURSERY EXPERIENCE IN CAGLIARI • B. Baldussu, A. Fenu, D. Pireddu, D. Lampis, R. Pintus, A. DessìLECT 71. PRESSURE ULCERS IN THE HOSPITALIZED PRETERM INFANT • E. Dioni, S. TuccioLECT 72. STABILIZATION AND TRANSPORT OF ASPHYXIATed NEWBORNS TO THE REFERENCE CENTER • S. AlteaLECT 73. PERINATAL ASPHYXIA: LESSONS FROM METABOLOMICS • E. d'AlojaLECT 74. NEWS ON THE TREATMENT OF GENETIC DISEASES • A. SelicorniLECT 75. EXPANDED NEWBORN SCREENING FOR INBORN ERRORS OF METABOLISM: THE LYSOSOMAL DISEASES • A.B. Burlina, G. Polo

  10. Vessels from Late Medieval cemeteries in the Central Balkans

    Directory of Open Access Journals (Sweden)

    Bikić Vesna

    2011-01-01

    the glass fragments there were parts of bottles with a ring around the neck and a ribbed body (Rippenflaschen, generally known in domestic scholarship under the term Panik type bottle (fig. 10/8. Also identifiable among the recovered glass fragments are drinking vessels of several types, beakers with small or large prunts (Nuppenbecher and Krautstrunk and ribbed (Rippenbecher, common especially in the 15th and 16th centuries (figs. 12/1, 3, 5, 6. There are also pieces with a blue thread applied around the rim and body, similar to the examples from Stalać reproduced herein (fig. 12/3. Quite rarely found are drinking vessels of cobalt blue glass, which are mostly small, except for a few examples of up to 14 cm in height, which is also the height of the abovementioned bottles. Apart from Venice and Dubrovnik (Ragusa, glassware was imported from Hungary. The discovered pottery vessels show a greater diversity, mostly in terms of shape. In addition to liquid containers - jugs, pitchers and beakers, there occur bowls, pots and even apothecary vessels. A vast majority belong to the Serbian ware of the 14th and 15th centuries. Most are glazed, and frequently painted with spirals, bands and blotches in white, green and dark brown or decorated with simple sgrafitto patterns, such as the finds from Novo Brdo (fig. 1, St Peter’s (figs 9; 13/1, 4 and the monastery of Gradac. By far the most interesting of them is the beaker from Končulić with an openwork edge around the base (fig. 12/2, which is commonly found in glass beakers of the same period. Deserving of particular attention are three cylindrical ceramic bottles from Novo Brdo (fig. 2. The presented material allows us to recognize the central issues surrounding the occurrence of vessels in the cemeteries of the 14th to 17th century in Serbia. Given the small number of recorded cases, the presence of vessels in graves as grave goods appears to have been utterly sporadic. Being based on the processed and published results