WorldWideScience

Sample records for rafts cell surface

  1. Dynamics of putative raft-associated proteins at the cell surface.

    Science.gov (United States)

    Kenworthy, Anne K; Nichols, Benjamin J; Remmert, Catha L; Hendrix, Glenn M; Kumar, Mukesh; Zimmerberg, Joshua; Lippincott-Schwartz, Jennifer

    2004-06-07

    Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.

  2. The stromal cell-surface protease fibroblast activation protein-α localizes to lipid rafts and is recruited to invadopodia.

    Science.gov (United States)

    Knopf, Julia D; Tholen, Stefan; Koczorowska, Maria M; De Wever, Olivier; Biniossek, Martin L; Schilling, Oliver

    2015-10-01

    Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.

  3. Mammalian carboxylesterase (CES) releases GPI-anchored proteins from the cell surface upon lipid raft fluidization.

    Science.gov (United States)

    Orihashi, Kaoru; Tojo, Hiromasa; Okawa, Katsuya; Tashima, Yuko; Morita, Takashi; Kondoh, Gen

    2012-03-01

    Mammalian carboxylesterase (CES) is well known as a biotransformation enzyme for prodrugs and xenobiotics. Here, we purified CES as a GPI-anchored protein (GPI-AP)-releasing factor (GPIase) that releases such protein from the cell surface. All five isoforms of CES showed this activity to various degrees. When the serine residue of the catalytic triad for esterase was replaced by alanine, esterase activity was completely disrupted, while full GPIase activity remained, suggesting that these two activities are exhibited via different mechanisms. CES6, a new class of mammalian CES, exhibited the highest GPIase activity and released specific GPI-APs from the cell surface after lipid raft fluidization. The released product contained a GPI component, indicating that GPI-AP was released by cleavage in GPI. These results revealed for the first time that CES recognizes and catalyzes macromolecule GPI-AP as well as small molecules.

  4. Super-Resolution Imaging and Quantitative Analysis of Membrane Protein/Lipid Raft Clustering Mediated by Cell-Surface Self-Assembly of Hybrid Nanoconjugates.

    Science.gov (United States)

    Hartley, Jonathan M; Chu, Te-Wei; Peterson, Eric M; Zhang, Rui; Yang, Jiyuan; Harris, Joel; Kopeček, Jindřich

    2015-08-17

    Super-resolution imaging was used to quantify organizational changes in the plasma membrane after treatment with hybrid nanoconjugates. The nanoconjugates crosslinked CD20 on the surface of malignant B cells, thereby inducing apoptosis. Super-resolution images were analyzed by using pair-correlation analysis to determine cluster size and to count the average number of molecules in the clusters. The role of lipid rafts was investigated by pre-treating cells with a cholesterol chelator and actin destabilizer to prevent lipid raft formation. Lipid raft cluster size correlated with apoptosis induction after treatment with the nanoconjugates. Lipid raft clusters had radii of ∼ 200 nm in cells treated with the hybrid nanoconjugates. Super-resolution images provided precise molecule location coordinates that could be used to determine density of bound conjugates, cluster size, and number of molecules per cluster.

  5. Modulation of cell surface transport and lipid raft localization by the cytoplasmic tail of the influenza virus hemagglutinin.

    Science.gov (United States)

    Scolari, Silvia; Imkeller, Katharina; Jolmes, Fabian; Veit, Michael; Herrmann, Andreas; Schwarzer, Roland

    2016-01-01

    Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor-binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and

  6. Lipid Rafts in Mast Cell Biology

    Directory of Open Access Journals (Sweden)

    Adriana Maria Mariano Silveira e Souza

    2011-01-01

    Full Text Available Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.

  7. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  8. Using NK Cell Lipid Raft Fractionation to Understand the Role of Lipid Rafts in NK Cell Receptor Signaling.

    Science.gov (United States)

    Serrano-Pertierra, Esther; López-Larrea, Carlos

    2016-01-01

    Lipid rafts were first defined as detergent-resistant membranes (DRMs) due to their relative insolubility in non-ionic detergents. Although they should not be confused with lipid rafts, DRMs are a valuable starting point for the study of these membrane domains and the interactions of proteins with rafts.Here we describe the isolation of DRMs by ultracentrifugation on a sucrose gradient, a method we have used to study the role of lipid rafts in NKG2D-mediated signaling. We also describe raft fractionation of NK cells involving the selective solubility of β-octylglucoside (β-OG). OG is a non-ionic detergent that efficiently dissolves DRMs but does not disrupt protein associations with the cytoskeleton. Using these two techniques may yield useful information about the proteins involved in receptor recruitment into lipid rafts and the interactions of the actin cytoskeleton with lipid rafts.

  9. Lipid raft involvement in yeast cell growth and death.

    Science.gov (United States)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  10. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  11. Modeling Signal Transduction and Lipid Rafts in Immune Cells

    Science.gov (United States)

    Prasad, Ashok

    2011-03-01

    Experimental evidence increasingly suggests that lipid rafts are nanometer sized cholesterol dependent dynamic assemblies enriched in sphingolipids and associated proteins. Lipid rafts are dynamic structures that break-up and reform on a relatively short time-scale, and are believed to facilitate the interactions of raft-associated proteins. The role of these rafts in signaling has been controversial, partly due to controversies regarding the existence and nature of the rafts themselves. Experimental evidence has indicated that in several cell types, especially T cells, rafts do influence signal transduction and T cell activation. Given the emerging consensus on the biophysical character of lipid rafts, the question can be asked as to what roles they possibly play in signal transduction. Here we carry out simulations of minimal models of the signal transduction network that regulates Src-family kinase dynamics in T cells and other cell types. By separately treating raft-based biochemical interactions, we find that rafts can indeed putatively play an important role in signal transduction, and in particular may affect the sensitivity of signal transduction. This illuminates possible functional consequences of membrane heterogeneities on signal transduction and points towards mechanisms for spatial control of signaling by cells.

  12. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  13. The Role of Lipid Rafts in Cancer Cell Adhesion and Migration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Murai

    2012-01-01

    Full Text Available Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.

  14. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells.

    Science.gov (United States)

    Mattei, Vincenzo; Santacroce, Costantino; Tasciotti, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Piccoli, Luca; Misasi, Roberta; Sorice, Maurizio; Garofalo, Tina

    2015-12-10

    Human dental pulp-derived stem cells (hDPSCs) are characterized by a typical fibroblast-like morphology. They express specific markers for mesenchymal stem cells and are capable of differentiation into osteoblasts, adipoblasts and neurons in vitro. Previous studies showed that gangliosides are involved in the induction of early neuronal differentiation of hDPSCs. This study was undertaken to investigate the role of lipid rafts in this process. Lipid rafts are signaling microdomains enriched in glycosphingolipids, cholesterol, tyrosine kinase receptors, mono- or heterotrimeric G proteins and GPI-anchored proteins. We preliminary showed that established cells expressed multipotent mesenchymal stromal-specific surface antigens. Then, we analyzed the distribution of lipid rafts, revealing plasma membrane microdomains with GM2 and EGF-R enrichment. Following stimulation with EGF/bFGF, neuronal differentiation was observed. To analyze the functional role of lipid rafts in EGF/bFGF-induced hDPSCs differentiation, cells were preincubated with lipid raft affecting agents, i.e. [D]-PDMP or methyl-β-cyclodextrin. These compounds significantly prevented neuronal-specific antigen expression, as well as Akt and ERK 1/2 phosphorylation, induced by EGF/bFGF, indicating that lipid raft integrity is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that lipid rafts may represent specific chambers, where multimolecular signaling complexes, including lipids (gangliosides, cholesterol) and proteins (EGF-R), play a role in hDPSCs differentiation.

  15. Role of lipid raft components and actin cytoskeleton in fibronectin-binding, surface expression, and de novo synthesis of integrin subunits in PGE2- or 8-Br-cAMP-stimulated mastocytoma P-815 cells.

    Science.gov (United States)

    Okada, Yasuyo; Nishikawa, Jyun-ichi; Semma, Masanori; Ichikawa, Atsushi

    2014-04-01

    Integrins are heterodimeric adhesion receptors essential for adhesion of non-adherent cells to extracellular ligands such as extracellular matrix components. The affinity of integrins for ligands is regulated through a process termed integrin activation and de novo synthesis. Integrin activation is regulated by lipid raft components and the actin structure. However, there is little information on the relationship between integrin activation and its de novo synthesis. Cancerous mouse mast cells, mastocytoma P-815 cells (P-815 cells) are known to bind to fibronectin through de novo synthesis of integrin subtypes by prostaglandin (PG) E2 stimulation. The purpose of this study was to clarify the relationship between lipid raft components and the actin cytoskeleton, and PGE2-induced P-815 cells adhesion to fibronectin and the increase in surface expression and mRNA and protein levels of αvβ3 and αIIbβ3 integrins. Cholesterol inhibitor 6-O-α-maltosyl-β cyclodextrin, glycosylphosphatidylinositol-anchored proteins inhibitor phosphatidylinositol-specific phospholipase C and actin inhibitor cytochalasin D inhibited PGE2-induced cell adhesion to fibronectin, but did not regulate the surface expression and mRNA and protein levels of αv and αIIb, and β3 integrin subunits. In addition, inhibitor of integrin modulate protein CD47 had no effect on PGE2- and 8-Br-cAMP-induced cell adhesion. These results suggest that lipid raft components and the actin cytoskeleton are directly involved in increasing of adhesion activity of integrin αIIb, αv and β3 subunits to fibronectin but not in stimulating of de novo synthesis of them in PGE2-stimulated P-815 cells. The modulation of lipid rafts and the actin structure is essential for P-815 cells adhesion to fibronectin.

  16. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    Science.gov (United States)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  17. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Science.gov (United States)

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  18. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  19. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Science.gov (United States)

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins.

  20. Further evidence that paroxysmal nocturnal haemoglobinuria is a disorder of defective cell membrane lipid rafts.

    Science.gov (United States)

    Ratajczak, Mariusz Z; Borkowska, Sylwia; Mierzejewska, Kasia; Kucia, Magda; Mendek-Czajkowska, Ewa; Suszynska, Malwina; Sharma, Vivek A; Deptala, Andrzej; Song, Wechao; Platzbecker, Uwe; Larratt, Loree; Janowska-Wieczorek, Anna; Maciejewski, Jarek; Ratajczak, Janina

    2015-09-01

    The glycolipid glycosylphosphatidylinositol anchor (GPI-A) plays an important role in lipid raft formation, which is required for proper expression on the cell surface of two inhibitors of the complement cascade, CD55 and CD59. The absence of these markers from the surface of blood cells, including erythrocytes, makes the cells susceptible to complement lysis, as seen in patients suffering from paroxysmal nocturnal haemoglobinuria (PNH). However, the explanation for why PNH-affected hematopoietic stem/progenitor cells (HSPCs) expand over time in BM is still unclear. Here, we propose an explanation for this phenomenon and provide evidence that a defect in lipid raft formation in HSPCs leads to defective CXCR4- and VLA-4-mediated retention of these cells in BM. In support of this possibility, BM-isolated CD34(+) cells from PNH patients show a defect in the incorporation of CXCR4 and VLA-4 into membrane lipid rafts, respond weakly to SDF-1 stimulation, and show defective adhesion to fibronectin. Similar data were obtained with the GPI-A(-) Jurkat cell line. Moreover, we also report that chimeric mice transplanted with CD55(-/-)  CD59(-/-) BM cells but with proper GPI-A expression do not expand over time in transplanted hosts. On the basis of these findings, we propose that a defect in lipid raft formation in PNH-mutated HSPCs makes these cells more mobile, so that they expand and out-compete normal HSPCs from their BM niches over time.

  1. RAFT microemulsion polymerization with surface-active chain transfer agent

    Science.gov (United States)

    El-Hedok, Ibrahim Adnan

    The work described in this dissertation focuses on enhancing the polymer nanoparticle synthesis using RAFT (reversible-addition fragmentation chain transfer) in microemulsion polymerization in order to achieve predetermined molecular weight with narrow molecular weight polydispersity. The hypothesis is that the use of an amphiphilic chain transfer agent (surface-active CTA) will confine the CTA to the surface of the particle and thermodynamically favor partitioning of the CTA between micelles and particles throughout the polymerization. Thus, the CTA diffusion from micelles to polymer particles would be minimized and the breadth of the CTA per particle distribution would remain low. We report the successful improved synthesis of poly(butyl acrylate), poly(ethyl acrylate), and poly(styrene) nanoparticles using the RAFT microemulsion polymerization with surface-active CTA. The polymerization kinetics, polymer characteristics and latex size experimental data are presented. The data analysis indicates that the CTA remains partitioned between the micelles and particles by the end of the polymerization, as expected. We also report the synthesis of well-defined core/shell poly(styrene)/poly(butyl acrylate) nanoparticle, having polydispersity index value of 1.1, using semi-continuous microemulsion polymerization with the surface-active CTA. The surface-active CTA restricts the polymerization growth to the surface of the particle, which facilitates the formation of a shell block co-polymers with each subsequent second monomer addition instead of discrete homopolymers. This synthesis method can be used to create a wide range of core/shell polymer nanoparticles with well-defined morphology, given the right feeding conditions.

  2. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking.

    Science.gov (United States)

    Ratajczak, M Z; Adamiak, M

    2015-07-01

    Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein microdomains, known as lipid rafts, which float freely in the membrane bilayer. These structures have an important role in assembling signaling molecules (e.g., Rac-1, RhoH and Lyn) together with surface receptors, such as the CXCR4 receptor for α-chemokine stromal-derived factor-1, the α4β1-integrin receptor (VLA-4) for vascular cell adhesion molecule-1 and the c-kit receptor for stem cell factor, which together regulate several aspects of hematopoietic stem/progenitor cell (HSPC) biology. Here, we discuss the role of lipid raft integrity in the retention and quiescence of normal HSPCs in bone marrow niches as well as in regulating HSPC mobilization and homing. We will also discuss the pathological consequences of the defect in lipid raft integrity seen in paroxysmal nocturnal hemoglobinuria and the emerging evidence for the involvement of lipid rafts in hematological malignancies.

  3. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms.

  4. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2012-12-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  5. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Directory of Open Access Journals (Sweden)

    Kennedy Colleen

    2011-12-01

    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  6. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie

    2011-01-01

    corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...... information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly......Our main objective was to analyze the role of lipid rafts in the activation of Valpha-14(-) and Valpha-14(+) T hybridomas by dendritic cells. We showed that activation of Valpha-14(+) hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts...

  7. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  8. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells.

    Science.gov (United States)

    Low, Hann; Mukhamedova, Nigora; Cui, Huanhuan L; McSharry, Brian P; Avdic, Selmir; Hoang, Anh; Ditiatkovski, Michael; Liu, Yingying; Fu, Ying; Meikle, Peter J; Blomberg, Martin; Polyzos, Konstantinos A; Miller, William E; Religa, Piotr; Bukrinsky, Michael; Soderberg-Naucler, Cecilia; Slobedman, Barry; Sviridov, Dmitri

    2016-06-28

    Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

  9. Spatial and temporal control of signaling through lipid rafts.

    Science.gov (United States)

    Golub, Tamara; Wacha, Stefan; Caroni, Pico

    2004-10-01

    Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes and have been implicated in most signaling processes at the cell surface, but the principles and mechanisms through which lipid rafts influence signaling are not well understood. Recent studies have revealed how lipid rafts are rapidly redistributed and assembled locally in response to extracellular signals, and how components of raft-based signaling domains undergo rapid and regulated rearrangements influencing signal quality, duration, and strength. These findings highlight the exquisitely dynamic properties of signaling domains based on lipid rafts, and suggest that processes of raft trafficking and assembly take central roles in mediating spatial and temporal control of signaling.

  10. The Important Role of Lipid Raft-Mediated Attachment in the Infection of Cultured Cells by Coronavirus Infectious Bronchitis Virus Beaudette Strain

    Science.gov (United States)

    Guo, Huichen; Huang, Mei; Yuan, Quan; Wei, Yanquan; Gao, Yuan; Mao, Lejiao; Gu, Lingjun; Tan, Yong Wah; Zhong, Yanxin; Liu, Dingxiang; Sun, Shiqi

    2017-01-01

    Lipid raft is an important element for the cellular entry of some viruses, including coronavirus infectious bronchitis virus (IBV). However, the exact role of lipid rafts in the cellular membrane during the entry of IBV into host cells is still unknown. In this study, we biochemically fractionated IBV-infected cells via sucrose density gradient centrifugation after depleting plasma membrane cholesterol with methyl-β-cyclodextrin or Mevastatin. Our results demonstrated that unlike IBV non-structural proteins, IBV structural proteins co-localized with lipid raft marker caveolin-1. Infectivity assay results of Vero cells illustrated that the drug-induced disruption of lipid rafts significantly suppressed IBV infection. Further studies revealed that lipid rafts were not required for IBV genome replication or virion release at later stages. However, the drug-mediated depletion of lipid rafts in Vero cells before IBV attachment significantly reduced the expression of viral structural proteins, suggesting that drug treatment impaired the attachment of IBV to the cell surface. Our results indicated that lipid rafts serve as attachment factors during the early stages of IBV infection, especially during the attachment stage. PMID:28081264

  11. Are lipid rafts involved in ABC transporter-mediated drug resistance of tumor cells?

    NARCIS (Netherlands)

    Kok, Jan Willem; Klappe, Karin; Hummel, Ina; Kroesen, Bart-Jan; Sietsma, Hannie; Meszaros, Peter

    2008-01-01

    Since their discovery, lipid rafts have been implicated in several cellular functions, including protein transport in polarized cells and signal transduction. Also in multidrug resistance lipid rafts may be important with regard to the localization of ATP-binding cassette (ABC) transporters in these

  12. A novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) reveals different and independent lipid raft domains in living cells.

    Science.gov (United States)

    Asanov, Alexander; Zepeda, Angélica; Vaca, Luis

    2010-02-01

    In the present study we have applied a novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) in combination with fluorescently labeled cholera toxin to the study of lipid rafts dynamics in living cells. We demonstrate the usefulness of such approach by showing the dynamic formation/disaggregation of islands of cholera toxin on the surface of cells. Using multicolor LG-TIRFM with co-localization studies we show for the first time that two receptors previously identified as constituents of lipid rafts are found on different and independent "raft domains" on the cell plasma membrane. Furthermore, LG-TIRFM studies revealed limited association and dissociation of both domains overtime on different areas of the plasma membrane. The implications of different "raft domains" on cell physiology are discussed.

  13. Rapid multiplex analysis of lipid raft components with single-cell resolution.

    Science.gov (United States)

    Schatzlmaier, Philipp; Supper, Verena; Göschl, Lisa; Zwirzitz, Alexander; Eckerstorfer, Paul; Ellmeier, Wilfried; Huppa, Johannes B; Stockinger, Hannes

    2015-09-22

    Lipid rafts, a distinct class of highly dynamic cell membrane microdomains, are integral to cell homeostasis, differentiation, and signaling. However, their quantitative examination is challenging when working with rare cells, developmentally heterogeneous cell populations, or molecules that only associate weakly with lipid rafts. We present a fast biochemical method, which is based on lipid raft components associating with the nucleus upon partial lysis during centrifugation through nonionic detergent. Requiring little starting material or effort, our protocol enabled the multidimensional flow cytometric quantitation of raft-resident proteins with single-cell resolution, thereby assessing the membrane components from a few cells in complex cell populations, as well as their dynamics resulting from cell signaling, differentiation, or genetic mutation.

  14. Thiolated pyrimidine nucleotides may interfere thiol groups concentrated at lipid rafts of HIV-1 infected cells.

    Science.gov (United States)

    Kanizsai, Szilvia; Ongrádi, Joseph; Aradi, János; Nagy, Károly

    2014-12-01

    Upon HIV infection, cells become activated and cell surface thiols are present in increased number. Earlier we demonstrated in vitro anti-HIV effect of thiolated pyrimidine nucleotide UD29, which interferes thiol function. To further analyse the redox processes required for HIV-1 entry and infection, toxicity assays were performed using HIV-1 infected monolayer HeLaCD4-LTR/ β-gal cells and suspension H9 T cells treated with several thiolated nucleotide derivatives of UD29. Selective cytotoxicity of thiolated pyrimidines on HIV-1 infected cells were observed. Results indicate that thiolated pyrimidine derivates may interfere with -SH (thiol) groups concentrated in lipid rafts of cell membrane and interacts HIV-1 infected (activated) cells resulting in a selective cytotoxicity of HIV-1 infected cells, and reducing HIV-1 entry.

  15. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation.

    Science.gov (United States)

    Tanimura, Natsuko; Nagafuku, Masakazu; Minaki, Yasuko; Umeda, Yukio; Hayashi, Fumie; Sakakura, Junko; Kato, Akiko; Liddicoat, Douglas R; Ogata, Masato; Hamaoka, Toshiyuki; Kosugi, Atsushi

    2003-01-06

    Lipid rafts are known to aggregate in response to various stimuli. By way of raft aggregation after stimulation, signaling molecules in rafts accumulate and interact so that the signal received at a given membrane receptor is amplified efficiently from the site of aggregation. To elucidate the process of lipid raft aggregation during T cell activation, we analyzed the dynamic changes of a raft-associated protein, linker for activation of T cells (LAT), on T cell receptor stimulation using LAT fused to GFP (LAT-GFP). When transfectants expressing LAT-GFP were stimulated with anti-CD3-coated beads, LAT-GFP aggregated and formed patches at the area of bead contact. Photobleaching experiments using live cells revealed that LAT-GFP in patches was markedly less mobile than that in nonpatched regions. The decreased mobility in patches was dependent on raft organization supported by membrane cholesterol and signaling molecule binding sites, especially the phospholipase C gamma 1 binding site in the cytoplasmic domain of LAT. Thus, although LAT normally moves rapidly at the plasma membrane, it loses its mobility and becomes stably associated with aggregated rafts to ensure organized and sustained signal transduction required for T cell activation.

  16. Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells.

    Science.gov (United States)

    Stuart, Elizabeth S; Webley, Wilmore C; Norkin, Leonard C

    2003-07-01

    Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C. pneumoniae, an important cause of respiratory infections in humans that additionally is associated with cardiovascular disease, and C. psittaci, an important pathogen in domestic mammals and birds that also infects humans, each enter host cells via cholesterol-rich lipid raft microdomains. Further, we show that C. trachomatis serovars E and F also use these domains to enter host cells. The involvement of these membrane domains in the entry of these organisms was indicated by the sensitivity of their entry to the raft-disrupting agents Nystatin and filipin, and by their intracellular association with caveolin-1, a 22-kDa protein associated with the formation of caveolae in rafts. In contrast, caveolin-marked lipid raft domains do not mediate entry of C. trachomatis serovars A, 36B, and C, nor of LGV serovar L2 and MoPn. Finally, we show that entry of each of these chlamydial strains is independent of cellular expression of caveolin-1. Thus, entry via the Nystatin and filipin-sensitive pathway is dependent on lipid rafts containing cholesterol, rather than invaginated caveolae per se.

  17. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    Science.gov (United States)

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation.

  18. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    Science.gov (United States)

    McCormick, III, Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  19. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  20. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  1. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    Science.gov (United States)

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.

  2. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Directory of Open Access Journals (Sweden)

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  3. Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane.

    Science.gov (United States)

    Feng, Xiuyan; Huang, Haidong; Yang, Yuan; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M; Chen, Guangping

    2009-06-01

    The cell plasma membrane contains specialized microdomains called lipid rafts which contain high amounts of sphingolipids and cholesterol. Lipid rafts are involved in a number of membrane protein functions. The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. In this study, we investigated the possible role of lipid rafts in UT-A1 membrane regulation. Using sucrose gradient cell fractionation, we demonstrated that UT-A1 is concentrated in the caveolae-rich fraction both in stably expressing UT-A1 HEK293 cells and in freshly isolated kidney IMCD suspensions. In these gradients, UT-A1 at the cell plasma membrane is codistributed with caveolin-1, a major component of caveolae. The colocalization of UT-A1 in lipid rafts/caveolae was further confirmed in isolated caveolae from UT-A1-HEK293 cells. The direct association of UT-A1 and caveolin-1 was identified by immunoprecipitation and GST pull-down assay. Examination of internalized UT-A1 in pEGFP-UT-A1 transfected HEK293 cells fluorescent overlap with labeled cholera toxin subunit B, a marker of the caveolae-mediated endocytosis pathway. Disruption of lipid rafts by methyl-beta-cyclodextrin or knocking down caveolin-1 by small-interference RNA resulted in UT-A1 cell membrane accumulation. Functionally, overexpression of caveolin-1 in oocytes decreased UT-A1 urea transport activity and UT-A1 cell surface expression. Our results indicate that lipid rafts/caveolae participate in UT-A1 membrane regulation and this effect is mediated via a direct interaction of caveolin-1 with UT-A1.

  4. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W;

    2005-01-01

    , reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  5. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    Science.gov (United States)

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.

  6. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations.

    Directory of Open Access Journals (Sweden)

    Yong Chen

    Full Text Available Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.

  7. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells

    Directory of Open Access Journals (Sweden)

    Hann Low

    2016-06-01

    Full Text Available Cytomegalovirus (HCMV contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displaced ABCA1 from the cell surface but created new binding sites for apolipoprotein A-I, resulting in enhanced cholesterol efflux. The changes also reduced the inflammatory response in macrophages. HCMV infection modified the host lipidome profile and expression of several genes and microRNAs involved in cholesterol metabolism. In mice, murine CMV infection elevated plasma triglycerides but did not affect the level and functionality of high-density lipoprotein. Thus, HCMV, through its protein US28, reorganizes lipid rafts and disturbs cell cholesterol metabolism.

  8. Rafts - the current picture

    Directory of Open Access Journals (Sweden)

    Aleksander F. Sikorski

    2011-08-01

    Full Text Available Although evidences that cell membrane contains microdomains are accumulating, the exact properties, diversity and levels of organization of small lipid patches built mainly of cholesterol and sphingomyelin, termed rafts, remain to be elucidated. Our understanding of the cell membrane is increasing with each new raft feature discovered. Nowadays rafts are suggested to act as sites of cell signaling events, to be a part of protein sorting machinery but also they are used by several pathogens as gates into the cells. It is still unclear how rafts are connected to the membrane skeleton and cytoskeleton and with how many different types of rafts are we actually dealing with. This review summarizes some of the most recent discoveries trying to make a view of the complex raft properties.

  9. The Functional Roles of Lipid Rafts in T-Cell Activation, Immune Diseases and HIV Infection and Prevention

    Institute of Scientific and Technical Information of China (English)

    Cheng Lou; Kou Wang; Dequan Liu; Yan Li; Qinshi Zhao

    2008-01-01

    The first appearance of lipid rafts, or lipid rafts-like structure, was occasionally observed by cryo-electronic microscopy in 1980s as cavity, such as caveolae. However, the fully understanding of lipid raft was attributed by the studies of T cell activation. virus entry/budding, and other membrane events. During the interaction of T cell and antigen presenting cell, a highly organized structure is formed at the interface of the two cells, where cholesterol and sphingolipids are enriched, and form a liquid ordered phase that facilitates the signaling proteins on and off. Lipid rafts are also involved in virus entry and assembly. In this review, we will discuss cholesterol sphingolipid floating micro domain, the lipid raft as a unique compartment of the plasma membrane, with biological functions that ensure correct intracellular traffic of proteins and lipids, such as protein-protein interactions by concentrating certain proteins in these micro domains, while excluding others. We also discuss the disruption of lipid rafts is re teed to different diseases and aging, and we especially exploit the lipid rafts as pharmaceutical targets for anti-virus and anti-inflammation. Particularly a new approach to control HIV infection for AIDS prevention and perfection by inhibition or disruption of lipid rafts. Cellular & Molecular Immunology 2008;5(1):1-7.

  10. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    proposed for cholesterol's condensing effect: (i) an umbrella mechanism in which the acyl chains and cholesterol become more tightly packed as cholesterol content increases because they share limited space under phospholipid headgroups and (ii) a template mechanism whereby cholesterol functions as a planar hydrophobic template at the membrane surface, thereby maximizing hydrophobic interactions and the hydrophobic effect. Specifically, our NNR experiments rule out the umbrella mechanism and provide strong support for the template mechanism. Similar NNR measurements have also allowed us to address the question of whether the interactions between low-melting kinked phospholipids and cholesterol can play a significant role in the formation of lipid rafts. Specifically, these NNR measurements have led to our discovery of a new physical principle in the lipids and membranes area that must be operating in biological membranes, that is, a "push-pull" mechanism, whereby cholesterol is pushed away from low-melting phospholipids and pulled toward high-melting lipids. Thus, to the extent that lipid rafts play a role in the functioning of cell membranes, low-melting phospholipids must be active participants.

  11. Lipid raft-mediated Fas/CD95 apoptotic signaling in leukemic cells and normal leukocytes and therapeutic implications.

    Science.gov (United States)

    Gajate, Consuelo; Mollinedo, Faustino

    2015-11-01

    Plasma membrane is now recognized to contain tightly packed cholesterol/sphingolipid-rich domains, known as lipid or membrane rafts, which are more ordered than the surrounding lipid bilayer. Lipid rafts are crucial for the compartmentalization of signaling processes in the membrane, mostly involved in cell survival and immune response. However, in the last 15 years, a large body of evidence has also identified raft platforms as scaffolds for the recruitment and clustering of death receptor Fas/CD95 and downstream signaling molecules, leading to the concept of death-promoting lipid rafts. This raft-Fas/CD95 coclustering was first described at the early 2000s as the underlying mechanism for the proapoptotic action of the alkylphospholipid analog edelfosine in leukemic cells, hence facilitating protein-protein interactions and conveying apoptotic signals independently of Fas/CD95 ligand. Edelfosine induces apoptosis in hematologic cancer cells and activated T-lymphocytes. Fas/CD95 raft coclustering is also promoted by Fas/CD95 ligand, agonistic Fas/CD95 antibodies, and additional antitumor drugs. Thus, death receptor recruitment in rafts is a physiologic process leading to cell demise that can be pharmacologically modulated. This redistribution and local accumulation of apoptotic molecules in membrane rafts, which are usually accompanied by displacement of survival signaling molecules, highlight how alterations in the apoptosis/survival signaling balance in specialized membrane regions modulate cell fate. Membrane rafts might also modulate apoptotic and nonapoptotic death receptor signaling. Here, we discuss the role of lipid rafts in Fas/CD95-mediated apoptotic cell signaling in hematologic cancer cells and normal leukocytes, with a special emphasis on their involvement as putative therapeutic targets in cancer and autoimmune diseases.

  12. Disruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells

    Science.gov (United States)

    Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley

    2014-01-01

    The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (MβCD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells. PMID:24734239

  13. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function.

  14. Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib.

    Science.gov (United States)

    Irwin, Mary E; Mueller, Kelly L; Bohin, Natacha; Ge, Yubin; Boerner, Julie L

    2011-09-01

    Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.

  15. Syntaxin and VAMP association with lipid rafts depends on cholesterol depletion in capacitating sperm cells.

    Science.gov (United States)

    Tsai, Pei-Shiue; De Vries, Klaas J; De Boer-Brouwer, Mieke; Garcia-Gil, Nuria; Van Gestel, Renske A; Colenbrander, Ben; Gadella, Bart M; Van Haeften, Theo

    2007-01-01

    Sperm cells represent a special exocytotic system since mature sperm cells contain only one large secretory vesicle, the acrosome, which fuses with the overlying plasma membrane during the fertilization process. Acrosomal exocytosis is believed to be regulated by activation of SNARE proteins. In this paper, we identified specific members of the SNARE protein family, i.e., the t-SNAREs syntaxin1 and 2, and the v-SNARE VAMP, present in boar sperm cells. Both syntaxins were predominantly found in the plasma membrane whereas v-SNAREs are mainly located in the outer acrosomal membrane of these cells. Under non-capacitating conditions both syntaxins and VAMP are scattered in well-defined punctate structures over the entire sperm head. Bicarbonate-induced in vitro activation in the presence of BSA causes a relocalization of these SNAREs to a more homogeneous distribution restricted to the apical ridge area of the sperm head, exactly matching the site of sperm zona binding and subsequent induced acrosomal exocytosis. This redistribution of syntaxin and VAMP depends on cholesterol depletion and closely resembles the previously reported redistribution of lipid raft marker proteins. Detergent-resistant membrane isolation and subsequent analysis shows that a significant proportion of syntaxin emerges in the detergent-resistant membrane (raft) fraction under such conditions, which is not the case under those conditions where cholesterol depletion is blocked. The v-SNARE VAMP displays a similar cholesterol depletion-dependent lateral and raft redistribution. Taken together, our results indicate that redistribution of syntaxin and VAMP during capacitation depends on association of these SNAREs with lipid rafts and that such a SNARE-raft association may be essential for spatial control of exocytosis and/or regulation of SNARE functioning.

  16. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  17. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  18. Detergent-Based Isolation of Yeast Membrane Rafts: An Inquiry-Based Laboratory Series for the Undergraduate Cell Biology or Biochemistry Lab

    Science.gov (United States)

    Willhite, D. Grant; Wright, Stephen E.

    2009-01-01

    Lipid rafts have been implicated in numerous cellular processes including cell signaling, endocytosis, and even viral infection. Isolation of these lipid rafts often involves detergent treatment of the membrane to dissolve nonraft components followed by separation of raft regions in a density gradient. We present here an inquiry-based lab series…

  19. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    Science.gov (United States)

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  20. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids.

    Science.gov (United States)

    Castro, Bruno M; Fedorov, Aleksander; Hornillos, Valentin; Delgado, Javier; Acuña, A Ulises; Mollinedo, Faustino; Prieto, Manuel

    2013-07-03

    Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.

  1. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7.

    Science.gov (United States)

    Staubach, Simon; Razawi, Hanieh; Hanisch, Franz-Georg

    2009-05-01

    Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.

  2. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina;

    2009-01-01

    domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  3. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development.

    Science.gov (United States)

    Zhu, Minghua; Shen, Shudan; Liu, Yan; Granillo, Olivia; Zhang, Weiguo

    2005-01-01

    It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.

  4. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    Science.gov (United States)

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi

    2016-01-19

    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  5. Lipid raft facilitated ligation of K-{alpha}1-tubulin by specific antibodies on epithelial cells: Role in pathogenesis of chronic rejection following human lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Tiriveedhi, Venkataswarup; Angaswamy, Nataraju [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States); Weber, Joseph [Department of Medicine, Washington University School of Medicine, St. Louis, MO (United States); Mohanakumar, T., E-mail: kumart@wustl.edu [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States)

    2010-08-20

    Research highlights: {yields} Addition of KAT Abs (+) sera to NHBE culture causes upregulation of growth factors. {yields} Cholesterol depletion causes down regulation of growth factor expression. {yields} Cholesterol depletion is accompanied by loss of membrane bound caveolin. {yields} Thus, we demonstrate lipid raft are critical for efficient ligation of the KAT Abs. -- Abstract: Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-{alpha}1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 {+-} 1.1-, 3.2 {+-} 0.9-, and 3.4 {+-} 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of {beta}-methyl cyclodextran ({beta}MCD) had significantly reduced growth factor expression (1.3 {+-} 0.3, vs {beta}MCD untreated being 6.4 {+-} 1.1-fold

  6. Lipid rafts as major platforms for signaling regulation in cancer.

    Science.gov (United States)

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  7. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Malnar, Martina, E-mail: martina.malnar@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Goate, Alison, E-mail: goate@icarus.wustl.edu [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States); Hecimovic, Silva, E-mail: silva.hecimovic@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2010-03-12

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  8. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    Science.gov (United States)

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox.

  9. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    Science.gov (United States)

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells.

  10. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.

    Science.gov (United States)

    Round, June L; Tomassian, Tamar; Zhang, Min; Patel, Viresh; Schoenberger, Stephen P; Miceli, M Carrie

    2005-02-07

    Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems.

  11. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization

    Directory of Open Access Journals (Sweden)

    Wang B

    2016-12-01

    Full Text Available Bailiang Wang,1,2 Zi Ye,1 Yihong Tang,1 Yuemei Han,1 Quankui Lin,1,2 Huihua Liu,2 Hao Chen,1,2 Kaihui Nan1,2 1School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 2Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, People’s Republic of China Abstract: Infections after surgery or endophthalmitis are potentially blinding complications caused by bacterial adhesion and subsequent biofilm formation on the intraocular lens. Neither single-function anti-adhesion surface nor contacting killing surface can exhibit ideal antibacterial function. In this work, a novel (2-(dimethylamino-ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine (p (DMAEMA-co-MPC brush was synthesized by “grafting from” method through reversible–addition fragmentation chain transfer polymerization. 1-Bromoheptane was used to quaternize the p (DMAEMA-co-MPC brush coating and to endow the surface with bactericidal function. The success of the surface functionalization was confirmed by atomic force microscopy, water contact angle, and spectroscopic ellipsometry. The quaternary ammonium salt units were employed as efficient disinfection that can eliminate bacteria through contact killing, whereas the 2-methacryloyloxyethyl phosphorylcholine units were introduced to suppress unwanted nonspecific adsorption. The functionalized poly(dimethyl siloxane surfaces showed efficiency in reducing bovine serum albumin adsorption and in inhibiting bacteria adhesion and biofilm formation. The copolymer brushes also demonstrated excellent bactericidal function against gram-positive (Staphylococcus aureus bacteria measured by bacteria live/dead staining and shake-flask culture methods. The surface biocompatibility was evaluated by morphology and activity measurement with human lens epithelial cells in vitro. The achievement of the p (DMAEMA+-co-MPC copolymer brush coating with nonfouling, bactericidal, and

  12. Multidrug resistance protein 1 localization in lipid raft domains and prostasomes in prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gomà A

    2014-12-01

    Full Text Available Alba Gomà,1,* Roser Mir,1–3,* Fina Martínez-Soler,1,4 Avelina Tortosa,4 August Vidal,5,6 Enric Condom,5,6 Ricardo Pérez–Tomás,6 Pepita Giménez-Bonafé1 1Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Barcelona, Spain; 2División de Investigación Básica, Instituto Nacional de Cancerología, México DF, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México (UNAM, México DF, Mexico; 4Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, 5Department of Pathology, Hospital Universitari de Bellvitge, 6Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Barcelona, Spain*These authors contributed equally to this work Background: One of the problems in prostate cancer (CaP treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1 play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent in order to understand its possible role in CaP chemoresistance.Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy.Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59

  13. TNAP, an Essential Player in Membrane Lipid Rafts of Neuronal Cells.

    Science.gov (United States)

    Ermonval, Myriam; Baychelier, Florence; Fonta, Caroline

    2015-01-01

    The tissue non-specific alkaline phosphatase (TNAP) is a glycosyl-phosphatidylinositol (GPI) anchored glycoprotein which exists under different forms and is expressed in different tissues. As the other members of the ecto-phosphatase family, TNAP is targeted to membrane lipid rafts. Such micro domains enriched in particular lipids, are involved in cell sorting, are in close contact with the cellular cytoskeleton and play the role of signaling platform. In addition to its location in functional domains, the extracellular orientation of TNAP and the fact this glycoprotein can be shed from plasma membranes, contribute to its different phosphatase activities by acting as a phosphomonoesterase on various soluble substrates (inorganic pyrophosphate -PPi-, pyridoxal phosphate -PLP-, phosphoethanolamine -PEA-), as an ectonucleotidase on nucleotide-phosphate and presumably as a phosphatase able to dephosphorylate phosphoproteins and phospholipids associated to cells or to extra cellular matrix. More and more data accumulate on an involvement of the brain TNAP both in physiological and pathological situations. This review will summarize what is known and expected from the TNAP localization in lipid rafts with a particular emphasis on the role of a neuronal microenvironment on its potential function in the central nervous system.

  14. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  15. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  16. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  17. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    Science.gov (United States)

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dual-switchable surfaces between hydrophobic and superhydrophobic fabricated by the combination of click chemistry and RAFT

    Directory of Open Access Journals (Sweden)

    M. S. Han

    2014-07-01

    Full Text Available A dual-switchable surface between hydrophobic and superhydrophobic has been fabricated successfully by combining reversible addition-fragmentation chain transfer polymerization (RAFT polymeric technology and thiol-NCO click chemistry. Well-defined block copolymer, poly(7-(6-(acryloyloxy hexyloxy coumarin-b-poly(N-Isopropylacryl amide, was synthesized by RAFT, and then the block copolymer was grafted onto the surface of SiO2 modified by toluene disocynate (TDI via thiol-NCO click chemistry. The results of nuclear magnetic resonance (NMR and Fourier Transform Infrared (FTIR spectroscopies confirmed that the block copolymer (Number average molecular weight (Mn = 9400, polydispersity index (PDI = 1.22 has been synthesized successfully. The static contact angle (CA of the surface prepared by SiO2/P (7-6-AC-b-PNIPAAm switches from 98±2 to 137±2° by adjusting the temperature. Furthermore, the contact angle can also oscillate between 137±2 and 157±2° on the irradiation of UV light at 365 and 254 nm, respectively. The dual-switchable surfaces exhibit high stability between hydrophilicity and superhydrophobicity. Therefore, the method provides a new method to fabricate the dual-stimuli-responsive surface with tunable wettability, reversible switching, and also be easily extended to other dual-responsive surfaces. This ability to control the wettability by the adjustment of the temperature and UV light has applications in a broad range of fields.

  19. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    Science.gov (United States)

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  20. The Actin Cytoskeleton Is Involved in Glial Cell Line-Derived Neurotrophic Factor (GDNF-Induced Ret Translocation into Lipid Rafts in Dopaminergic Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-09-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF, a potential therapeutic factor for Parkinson’s disease (PD, exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. The purpose of our study was to further explore the signaling mechanisms of GDNF and to determine whether the actin cytoskeleton is involved in the GDNF-induced Ret translocation into lipid rafts. In MN9D dopaminergic neuronal cells, we used density gradient centrifugation and immunofluorescence confocal microscopy to separate and visualize lipid rafts, co-immunoprecipitation to analyze protein-protein interactions, and latrunculin B (Lat B and jasplakinolide (Jas to disrupt and enhance the polymerization of the actin cytoskeleton, respectively. The results showed that Ret translocated into lipid rafts and coimmunoprecipitated with actin in response to GDNF treatment. After Lat B or Jas treatment, the Ret–F-actin association induced by GDNF was impaired or enhanced respectively and then the levels of Ret translocated into lipid rafts were correspondingly inhibited or promoted. These data indicate that actin polymerization and cytoskeletal remodeling are integral to GDNF-induced cell signaling in dopaminergic cells and define a new role of the actin cytoskeleton in promoting Ret redistribution into lipid rafts.

  1. Synthesis and property of polymer nanospheres with Pd/P4VP shells via surface RAFT polymerization

    Directory of Open Access Journals (Sweden)

    2009-07-01

    Full Text Available A reversible addition-fragmentation chain transfer (RAFT agent with carbazole as Z-group was immobilized on the surfaces of the cross-linked poly (4-vinylbenzyl chloride-co-styrene (PVBCS nanospheres with a diameter of about 70 nm by the reaction of benzyl chloride groups in the PVBCS between carbazole and carbon sulfide. Then surface RAFT polymerization of 4-vinylpyridine (4VP was used to modify the nanospheres to produce a well-defined and covalently tethered P4VP shell. By surface activation in a PdCl2 solution and then reduction by hydrazine hydrate (N2H4•H2O, the P4VP composite shells were obtained containing densely palladium metal nanoparticles. The chemical composition of the nanosphere surfaces at various stages of the surface modification was characterized by X-ray photoelectron spectroscopy (XPS. Transmission electron microscopy (TEM was used to characterize the morphology of the hybrid nanospheres. The Pd/P4VP shell nanospheres were also applied to the catalytic reaction and proved to be efficient and reusable for the Heck reaction.

  2. RaftProt: mammalian lipid raft proteome database.

    Science.gov (United States)

    Shah, Anup; Chen, David; Boda, Akash R; Foster, Leonard J; Davis, Melissa J; Hill, Michelle M

    2015-01-01

    RaftProt (http://lipid-raft-database.di.uq.edu.au/) is a database of mammalian lipid raft-associated proteins as reported in high-throughput mass spectrometry studies. Lipid rafts are specialized membrane microdomains enriched in cholesterol and sphingolipids thought to act as dynamic signalling and sorting platforms. Given their fundamental roles in cellular regulation, there is a plethora of information on the size, composition and regulation of these membrane microdomains, including a large number of proteomics studies. To facilitate the mining and analysis of published lipid raft proteomics studies, we have developed a searchable database RaftProt. In addition to browsing the studies, performing basic queries by protein and gene names, searching experiments by cell, tissue and organisms; we have implemented several advanced features to facilitate data mining. To address the issue of potential bias due to biochemical preparation procedures used, we have captured the lipid raft preparation methods and implemented advanced search option for methodology and sample treatment conditions, such as cholesterol depletion. Furthermore, we have identified a list of high confidence proteins, and enabled searching only from this list of likely bona fide lipid raft proteins. Given the apparent biological importance of lipid raft and their associated proteins, this database would constitute a key resource for the scientific community.

  3. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Science.gov (United States)

    Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological imaging and controlled drug delivery applications.

  4. Properties of glycolipid-enriched membrane rafts in antigen presentation.

    Science.gov (United States)

    Rodgers, William; Smith, Kenneth

    2005-01-01

    Presentation of antigen to T cells represents one of the central events in the engagement of the immune system toward the defense of the host against pathogens. Accordingly, understanding the mechanisms by which antigen presentation occurs is critical toward our understanding the properties of host defense against foreign antigen, as well as insight into other features of the immune system, such as autoimmune disease. The entire antigen-presentation event is complex, and many features of it remain poorly understood. However, recent studies have provided evidence showing that glycolipid-enriched membrane rafts are important for efficient antigen presentation; the studies suggest that one such function of rafts is trafficking of antigen-MHC II complexes to the presentation site on the surface of the antigen-presenting cell. Here, we present a critical discussion of rafts and their proposed functions in antigen presentation. Emerging topics of rafts and antigen presentation that warrant further investigation are also highlighted.

  5. Remodelling of Membrane Rafts Expression in Lung Cells as an Early Sign of Mechanotransduction-Signalling in Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Paola Palestini

    2011-01-01

    Full Text Available Membrane rafts (MRs are clusters of lipids, organized in a “quasicrystalline” liquid-order phase, organized on the cell surface and whose pattern of molecules and physicochemical properties are distinct from those of the surrounding plasma membrane. MRs may be considered an efficient and fairly rapid cell-activated mechanism to express or mask surface receptors aimed at triggering specific response pathways. This paper reports observations concerning the role of MRs in the control of lung extravascular water that ought to be kept at minimum to assure gas diffusion, supporting the hypothesis that MRs expression is a potential mechanism of sensing minor changes in the volume of extravascular water. We present the evidence that MRs expression specifically relates to signal-transduction processes evoked by mechanical stimuli arising in the interstitial lung compartment when a small increase in extravascular volume occurs. We further hypothesize that a differential expression of MRs might also reflect the damage to precise components of the extracellular matrix caused by the perturbation in water balance and thus can trigger a molecule-oriented specific matrix remodelling.

  6. L-plastin is involved in NKG2D recruitment into lipid rafts and NKG2D-mediated NK cell migration.

    Science.gov (United States)

    Serrano-Pertierra, Esther; Cernuda-Morollón, Eva; Brdička, Tomáš; Hoøejši, Václav; López-Larrea, Carlos

    2014-09-01

    Membrane rafts are microdomains of the plasma membrane that have multiple biological functions. The involvement of these structures in the biology of T cells, namely in signal transduction by the TCR, has been widely studied. However, the role of membrane rafts in immunoreceptor signaling in NK cells is less well known. We studied the distribution of the activating NKG2D receptor in lipid rafts by isolating DRMs in a sucrose density gradient or by raft fractionation by β-OG-selective solubility in the NKL cell line. We found that the NKG2D-DAP10 complex and pVav are recruited into rafts upon receptor stimulation. Qualitative proteomic analysis of these fractions showed that the actin cytoskeleton is involved in this process. In particular, we found that the actin-bundling protein L-plastin plays an important role in the clustering of NKG2D into lipid rafts. Moreover, coengagement of the inhibitory receptor NKG2A partially disrupted NKG2D recruitment into rafts. Furthermore, we demonstrated that L-plastin participates in NKG2D-mediated inhibition of NK cell chemotaxis.

  7. A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Roghani-Mamaqani, Hossein, E-mail: r.mamaghani@sut.ac.ir [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Khezri, Khezrollah [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Graphical abstract: (3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. - Highlights: • A RAFT agent grafted GO was used in grafting from RAFT polymerization of styrene. • The efficiency of RAFT agent attachment at the surface of GO is 41.12% for high density sample. • Polystyrene molecular weight is decreased by the addition of graphene content and also graft density of RAFT agent. - Abstract: (3-Aminopropyl) triethoxysilane was grafted at the surface of GO in low and high different graft densities to yield GOHAL and GOHAH, respectively. Subsequently, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (RA) was attached at the surface of GOHAL and GOHAH by an amidation reaction to yield GOHRL and GOHRH, respectively. Then, GOHRL and GOHRH were used in grafting from RAFT polymerization of styrene. Grafting of APTES and RA was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene were calculated using gas chromatography. Molecular weight and PDI values of attached polystyrene (PS) chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents of modifiers and PS chains. GOHRH and GOHRL reach to char content of 55.3 and 45.2% at 600 °C, which shows that weight ratio of modifier (APTES and RA moieties) is 15.3 and 5.2%, respectively. Scanning and transmission electron microscopies show that

  8. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Science.gov (United States)

    de Turris, Valeria; Teloni, Raffaela; Chiani, Paola; Bromuro, Carla; Mariotti, Sabrina; Pardini, Manuela; Nisini, Roberto; Torosantucci, Antonella; Gagliardi, Maria Cristina

    2015-01-01

    Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  9. Candida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Valeria de Turris

    Full Text Available Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.

  10. Proteomic identification of VEGF-dependent protein enrichment to membrane caveolar-raft microdomains in endothelial progenitor cells.

    Science.gov (United States)

    Chillà, Anastasia; Magherini, Francesca; Margheri, Francesca; Laurenzana, Anna; Gamberi, Tania; Bini, Luca; Bianchi, Laura; Danza, Giovanna; Mazzanti, Benedetta; Serratì, Simona; Modesti, Alessandra; Del Rosso, Mario; Fibbi, Gabriella

    2013-07-01

    Endothelial cell caveolar-rafts are considered functional platforms that recruit several pro-angiogenic molecules to realize an efficient angiogenic program. Here we studied the differential caveolar-raft protein composition of endothelial colony-forming cells following stimulation with VEGF, which localizes in caveolae on interaction with its type-2 receptor. Endothelial colony-forming cells are a cell population identified in human umbilical blood that show all the properties of an endothelial progenitor cell and a high proliferative rate. Two-dimensional gel electrophoresis analysis was coupled with mass spectrometry to identify candidate proteins. The twenty-eight differentially expressed protein spots were grouped according to their function using Gene Ontology classification. In particular, functional categories relative to cell death inhibition and hydrogen peroxide metabolic processes resulted enriched. In these categories, Peroxiredoxin-2 and 6, that control hydrogen peroxide metabolic processes, are the main enriched molecules together with the anti-apoptotic 78 kDa glucose regulated protein. Some of the proteins we identified had never before identified as caveolar-raft components. Other identified proteins include calpain small subunit-1, known to mediates angiogenic response to VEGF, gelsolin, which regulates stress fiber assembly, and annexin A3, an angiogenic mediator that induces VEGF production. We validated the functional activity of the above proteins, showing that the siRNA silencing of these resulted in the inhibition of capillary morphogenesis. Overall, our data show that VEGF stimulation triggers the caveolar-raft recruitment of proteins that warrant a physiological amount of reactive oxygen species to maintain a proper angiogenic function of endothelial colony-forming cells and preserve the integrity of the actin cytoskeleton.

  11. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells.

    Science.gov (United States)

    Hage-Sleiman, Rouba; Hamze, Asmaa B; El-Hed, Aimée F; Attieh, Randa; Kozhaya, Lina; Kabbani, Sarah; Dbaibo, Ghassan

    2016-08-01

    Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.

  12. Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids.

    Science.gov (United States)

    Tsanova, Asya; Jordanova, A; Lalchev, Z

    2016-06-01

    During the last decades opioid peptides, like enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are subject to extensive studies due to their antinociceptive action in organism. According to the membrane catalysis theory, in order to adopt a proper conformation for binding to their receptors, opioid peptides interact with the lipid phase of the membrane receptor surrounding. With this regard, the aim of the present work was to study the effects of synthetic leucine-enkephalin and leucine-enkephalinamide on surface characteristics and morphology of lipid monolayers, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol alone and with their mixtures. The lipids were chosen to represent a model of a membrane raft, since it is known that G-protein-coupled receptors, including opioid receptors, are located preferably in membrane rafts. By using Langmuir's monolayer method, the change in surface pressure of the model membranes before and after the addition of the synthetic enkephalins was studied, and the compressional moduli of the lipids and lipid-peptides monolayers were determined. In addition, by Brewster angle microscopy, the surface morphology of the lipid monolayers alone and after the injection of both enkephalins was monitored. Our results showed that both leucine-enkephalins affected the lipid monolayers surface characteristics, and led to an increase in surface density of the mixed surface lipids/enkephalins films at loose lipid packing. This effect was more pronounced for the enkephalinamide, suggesting a different mechanism of interaction for the amidated enkephalin with the lipid phase, as compared to leucine-enkephalin.

  13. Lipid rafts promote liver cancer cell proliferation and migration by up-regulation of TLR7 expression

    Science.gov (United States)

    Liu, Yuan; Guo, Xiaodong; Wu, Liyuan; Yang, Mei; Li, Zhiwei; Gao, Yinjie; Liu, Shuhong; Zhou, Guangde; Zhao, Jingmin

    2016-01-01

    Hepatocellular carcinoma (HCC) occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Toll-like receptors (TLRs) play an important role in innate immune responses and TLR signaling has been associated with various chronic liver diseases. Lipid rafts provide the necessary microenvironment for certain specialized signaling events to take place, such as the innate immune recognition. The purpose of this study was to determine the pattern of TLR7 expression in HCC, how to recruit TLR7 into lipid rafts responded to ligands and whether targeting TLR7 might have beneficial effects. The study group was comprised of 130 human liver tissues: 23 chronic hepatitis B (CHB), 18 liver cirrhosis (LC), 68 HCC and 21 normal livers. The expression of TLR7 was evaluated using immunohistochemistry, western blotting, and flow cytometry. Proliferation and migration of human HepG2 cells were studied following stimulation of TLR7 using the agonist gardiquimod and inhibition with a specific antagonist 20S-protopanaxadiol (aPPD). The activation of lipid raft-associated TLR7 signaling was measured using western blotting, double immunohistochemistry and immunoprecipitation in liver tissues and HepG2 cells. TLR7 expression was up-regulated in human HCC tissues and hepatoma cell line. Proliferation and migration of HepG2 cells in vitro increased significantly in response to stimulation of TLR7. TLR7 inhibition using aPPD significantly reduced HepG2 cell migration in vitro. The lipid raft protein caveolin-1 and flotillin-1 were involved with enhanced TLR7 signaling in HCC. Conclusions The data suggest that inhibiting TLR7 with antagonists, like aPPD, could potentially be used as a novel therapeutic approach for HCC. PMID:27588480

  14. Lipid raft localization of epidermal growth factor receptor alters matrix metalloproteinase-1 expression in SiHa cells via the MAPK/ERK signaling pathway

    Science.gov (United States)

    Zhang, Zongfeng; Wang, Lina; Du, Juan; Li, Yuanbo; Yang, Huilun; Li, Chenxi; Li, Hui; Hu, Haiyang

    2016-01-01

    Matrix metalloproteinase-1 (MMP-1) has been identified as an important participant in tumor invasion, metastasis and angiogenesis. The purpose of the present study was to investigate the effects of epidermal growth factor receptor (EGFR) localization to lipid rafts on signaling pathways involved in the regulation of MMP-1 expression in SiHa cells, a cervical cancer cell line. EGFR activation by EGF specifically induced MMP-1 expression at both the messenger RNA and protein levels. Additionally, it was observed that EGFR localized to lipid rafts, and that the redistribution of EGFR induced by lipid raft disruption strengthened EGF-induced MMP-1 expression. MMP-1 induction was blocked by the mitogen-activated protein kinase (MAPK) kinase inhibitors PD98059 and U0126. Our results suggested that lipid rafts provide a platform to inhibit EGFR regulation of MMP-1 in SiHa cells through the MAPK/extracellular signal-regulated kinase signaling pathway.

  15. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain.

    Science.gov (United States)

    Hauser, Julian T; Lindner, Robert

    2014-11-01

    The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.

  16. Raft-dependent endocytosis of autocrine motility factor/phosphoglucose isomerase: a potential drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Liliana D Kojic

    Full Text Available BACKGROUND: Autocrine motility factor/phosphoglucose isomerase (AMF/PGI is the extracellular ligand for the gp78/AMFR receptor overexpressed in a variety of human cancers. We showed previously that raft-dependent internalization of AMF/PGI is elevated in metastatic MDA-435 cells, but not metastatic, caveolin-1-expressing MDA-231 cells, relative to non-metastatic MCF7 and dysplastic MCF10A cells suggesting that it might represent a tumor cell-specific endocytic pathway. METHODOLOGY/PRINCIPAL FINDINGS: Similarly, using flow cytometry, we demonstrate that raft-dependent endocytosis of AMF/PGI is increased in metastatic HT29 cancer cells expressing low levels of caveolin-1 relative to metastatic, caveolin-1-expressing, HCT116 colon cells and non-metastatic Caco-2 cells. Therefore, we exploited the raft-dependent internalization of AMF/PGI as a potential tumor-cell specific targeting mechanism. We synthesized an AMF/PGI-paclitaxel conjugate and found it to be as efficient as free paclitaxel in inducing cytotoxicity and apoptosis in tumor cells that readily internalize AMF/PGI compared to tumor cells that poorly internalize AMF/PGI. Murine K1735-M1 and B16-F1 melanoma cells internalize FITC-conjugated AMF/PGI and are acutely sensitive to AMF/PGI-paclitaxel mediated cytotoxicity in vitro. Moreover, following in vivo intratumoral injection, FITC-conjugated AMF/PGI is internalized in K1735-M1 tumors. Intratumoral injection of AMF/PGI-paclitaxel induced significantly higher tumor regression compared to free paclitaxel, even in B16-F1 cells, known to be resistant to taxol treatment. Treatment with AMF/PGI-paclitaxel significantly prolonged the median survival time of tumor bearing mice. Free AMF/PGI exhibited a pro-survival role, reducing the cytotoxic effect of both AMF/PGI-paclitaxel and free paclitaxel suggesting that AMF/PGI-paclitaxel targets a pathway associated with resistance to chemotherapeutic agents. AMF/PGI-FITC uptake by normal murine spleen

  17. Lipid Rafts and Signal Transduction of Cell%脂筏与细胞信号转导

    Institute of Scientific and Technical Information of China (English)

    范玉贞

    2011-01-01

    论述了脂筏的组成、结构与功能,脂筏在细胞信号转导正负调控、T细胞的信号转导、精子膜的信号转导过程中的作用及其机制.小窝蛋白及其参与的信号转导过程与葡萄糖运输、糖尿病及其并发症有密切关系.%This article discusses the composition,structure and function of lipid rafts and the mechanism of lipid rafts in signal transduction plus or minus regulation,T cell signal transduction,signal transduction process of sperm membrane.Caveolins and its partic

  18. Diminished Lipid Raft SNAP23 Increases Blood Pressure by Inhibiting the Membrane Fluidity of Vascular Smooth-Muscle Cells.

    Science.gov (United States)

    Yoon, Mi So; Won, Kyung-Jong; Kim, Do-Yoon; Hwang, Dae Il; Yoon, Seok Won; Jung, Seung Hyo; Lee, Kang Pa; Jung, Dongju; Choi, Wahn Soo; Kim, Bokyung; Lee, Hwan Myung

    2015-01-01

    Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.

  19. Synthetic Bichalcone TSWU-BR23 Induces Apoptosis of Human Colon Cancer HT-29 Cells by p53-Mediated Mitochondrial Oligomerization of BAX/BAK and Lipid Raft Localization of CD95/FADD.

    Science.gov (United States)

    Lin, Meng-Liang; Chen, Shih-Shun; Wu, Tian-Shung

    2015-10-01

    A synthetic bichalcone analog, (E)-1-(3-((4-(4-acetylphenyl)piperazin-1-yl)methyl)-4-hydroxy-5-methoxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one (TSWU-BR23), has been shown to induce apoptosis in human colon cancer HT-29 cells involving the induction of CD95 and FAS-associated protein death domain (FADD), but its precise mechanism of action has not been fully elucidated. Using cell-surface biotinylation and sucrose density-gradient-based membrane flotation techniques, we showed that the disruption of TSWU-BR23-induced lipid raft localization of CD95/FADD by cholesterol-depleting agent (methyl-β-cyclodextrin) was reversed by cholesterol replenishment. Blockade of p53 expression by short-hairpin RNA (shRNA) suppressed oligomeric Bcl-2-associated x protein (BAX)/Bcl-2 antagonist killer 1 (BAK)-mediated mitochondrial apoptosis but did not inhibit lipid raft localization of CD95/FADD and pro-caspase-8 cleavage induced by TSWU-BR23. Co-expression of p53 shRNA and dominant-negative mutant of FADD completely inhibited TSWU-BR32-induced mitochondrial apoptotic cell death. Collectively, these data demonstrate that TSWU-BR23 leads to HT-29 cell apoptosis by inducing p53-mediated mitochondrial oligomerization of BAX/BAK and the localization of CD95/FADD with lipid rafts at the cell surface.

  20. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Long Min

    2012-02-01

    Full Text Available Abstract Background Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC, is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown. Methods In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1 of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated. Results We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network. Conclusion These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.

  1. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Science.gov (United States)

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2015-02-01

    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin.

  2. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation

    Directory of Open Access Journals (Sweden)

    C. Chhuon

    2016-12-01

    We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article “Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells” (Chhuon et al., in press [1].

  3. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    Science.gov (United States)

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  4. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  5. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  6. Dataset of differential lipid raft and global proteomes of SILAC-labeled cystic fibrosis cells upon TNF -α stimulation.

    Science.gov (United States)

    Chhuon, C; Pranke, I; Borot, F; Tondelier, D; Lipecka, J; Fritsch, J; Chanson, M; Edelman, A; Ollero, M; Guerrera, I C

    2016-12-01

    Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane regulator (CFTR), F508del-CFTR being the most frequent. Lipid raft-like microdomains (LRM) are regions of the plasma membrane that present a high cholesterol content and are insoluble to non-ionic detergents. LRM are essential functional and structural platforms that play an important role in the inflammatory response. CFTR is a known modulator of inflammation in LRM. Here we provide mass spectrometry data on the global impact of CFTR mutation and TNF-a stimulation on the LRM proteome. We used the Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) approach to quantify and identify 332 proteins in LRM upon TNF-a stimulation in CF cells and 1381 for the global proteome. We report two detailed tables containing lists of proteins obtained by mass spectrometry and the immunofluorescence validation results for one of these proteins, the G-protein coupled receptor 5A. These results are associated with the article "Changes in lipid raft proteome upon TNF-α stimulation of cystic fibrosis cells" (Chhuon et al., in press [1]).

  7. Response of human limbal epithelial cells to wounding on 3D RAFT tissue equivalents: effect of airlifting and human limbal fibroblasts.

    Science.gov (United States)

    Massie, Isobel; Levis, Hannah J; Daniels, Julie T

    2014-10-01

    Limbal epithelial stem cell deficiency can cause blindness but may be treated by human limbal epithelial cell (hLE) transplantation, normally on human amniotic membrane. Clinical outcomes using amnion can be unreliable and so we have developed an alternative tissue equivalent (TE), RAFT (Real Architecture for 3D Tissue), which supports hLE expansion, and stratification when airlifted. Human limbal fibroblasts (hLF) may be incorporated into RAFT TEs, where they support overlying hLE and improve phenotype. However, the impact of neither airlifting nor hLF on hLE function has been investigated. hLE on RAFT TEs (±hLF and airlifting) were wounded using heptanol and re-epithelialisation (fluorescein diacetate staining), and percentage putative stem cell marker p63α and proliferative marker Ki67 expression (wholemount immunohistochemistry), measured. Airlifted, hLF- RAFT TEs were unable to close the wound and p63α expression was 7 ± 0.2% after wounding. Conversely, non-airlifted, hLF- RAFT TEs closed the wound within 9 days and p63α expression was higher at 22 ± 5% (p < 0.01). hLE on both hLF- and hLF+ RAFT TEs (non-airlifted) closed the wound and p63α expression was 26 ± 8% and 36 ± 3% respectively (ns). Ki67 expression by hLE increased from 1.3 ± 0.5% before wounding to 7.89 ± 2.53% post-wounding for hLF- RAFT TEs (p < 0.01), and 0.8 ± 0.08% to 17.68 ± 10.88% for hLF+ RAFT TEs (p < 0.05), suggesting that re-epithelialisation was a result of proliferation. These data suggest that neither airlifting nor hLF are necessarily required to maintain a functional epithelium on RAFT TEs, thus simplifying and shortening the production process. This is important when working towards clinical application of regenerative medicine products.

  8. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.

    Science.gov (United States)

    Tsui, Cynthia C; Gabreski, Nicole A; Hein, Sarah J; Pierchala, Brian A

    2015-09-23

    Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex

  9. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    Science.gov (United States)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  10. Caveolin interaction governs Kv1.3 lipid raft targeting.

    Science.gov (United States)

    Pérez-Verdaguer, Mireia; Capera, Jesusa; Martínez-Mármol, Ramón; Camps, Marta; Comes, Núria; Tamkun, Michael M; Felipe, Antonio

    2016-03-02

    The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel's spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.

  11. Saikosaponin a inhibits lipopolysaccharide-oxidative stress and inflammation in Human umbilical vein endothelial cells via preventing TLR4 translocation into lipid rafts.

    Science.gov (United States)

    Fu, Yunhe; Hu, Xiaoyu; Cao, Yongguo; Zhang, Zecai; Zhang, Naisheng

    2015-12-01

    Saikosaponin a (SSa), the major triterpenoid saponin derivatives from Radix bupleuri (RB), has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effects of SSa on lipopolysaccharide (LPS)-induced oxidative stress and inflammatory response in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with LPS in the presence or absence of SSa. The levels of TNF-α and IL-8 were detected by ELISA. The expression of COX-2 and iNOS, NF-κB and IκB protein were determined by Western blotting. To investigate the protective mechanisms of SSa, TLR4 expression was detected by Western blotting and membrane lipid rafts were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The results showed that SSa dose-dependently inhibited the production of ROS, TNF-α, IL-8, COX-2 and iNOS in LPS-stimulated HUVECs. Western blot analysis showed that SSa suppressed LPS-induced NF-κB activation. SSa did not affect the expression of TLR4 induced by LPS. However, translocation of TLR4 into lipid rafts and oligomerization of TLR4 induce by LPS was inhibited by SSa. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol. Moreover, SSa activated LXRα-ABCA1 signaling pathway, which could induce cholesterol efflux from lipid rafts. Knockdown of LXRα abrogated the anti-inflammatory effects of SSa. In conclusion, the effects of SSa is associated with activating LXRα-ABCA1 signaling pathway which results in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts and oligomerization of TLR4, thereby attenuating LPS mediated oxidative and inflammatory responses.

  12. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.

    Science.gov (United States)

    Fantini, Jacques; Garmy, Nicolas; Yahi, Nouara

    2006-09-12

    Protein-glycolipid interactions mediate the attachment of various pathogens to the host cell surface as well as the association of numerous cellular proteins with lipid rafts. Thus, it is of primary importance to identify the protein domains involved in glycolipid recognition. Using structure similarity searches, we could identify a common glycolipid-binding domain in the three-dimensional structure of several proteins known to interact with lipid rafts. Yet the three-dimensional structure of most raft-targeted proteins is still unknown. In the present study, we have identified a glycolipid-binding domain in the amino acid sequence of a bacterial adhesin (Helicobacter pylori adhesin A, HpaA). The prediction was based on the major properties of the glycolipid-binding domains previously characterized by structural searches. A short (15-mer) synthetic peptide corresponding to this putative glycolipid-binding domain was synthesized, and we studied its interaction with glycolipid monolayers at the air-water interface. The synthetic HpaA peptide recognized LacCer but not Gb3. This glycolipid specificity was in line with that of the whole bacterium. Molecular modeling studies gave some insights into this high selectivity of interaction. It also suggested that Phe147 in HpaA played a key role in LacCer recognition, through sugar-aromatic CH-pi stacking interactions with the hydrophobic side of the galactose ring of LacCer. Correspondingly, the replacement of Phe147 with Ala strongly affected LacCer recognition, whereas substitution with Trp did not. Our method could be used to identify glycolipid-binding domains in microbial and cellular proteins interacting with lipid shells, rafts, and other specialized membrane microdomains.

  13. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids

    Science.gov (United States)

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2016-01-01

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study’s objective was to determine the effects of the epigenetic drug 5-aza-2′-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of Cholesterol-Sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  14. The influence of an antitumor lipid - erucylphosphocholine - on artificial lipid raft system modeled as Langmuir monolayer.

    Science.gov (United States)

    Wnętrzak, Anita; Łątka, Kazimierz; Makyła-Juzak, Katarzyna; Zemla, Joanna; Dynarowicz-Łątka, Patrycja

    2015-01-01

    Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called 'lipid rafts', which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts. To get a deeper insight into this issue, interactions between representative APC: erucylphosphocholine, and artificial lipid raft system, modeled as Langmuir monolayer (composed of cholesterol and sphingomyelin mixed in 1:2 proportion) were investigated. The Langmuir monolayer experiments, based on recording surface pressure-area isotherms, were complemented with Brewster angle microscopy results, which enabled direct visualization of the monolayers structure. In addition, the investigated monolayers were transferred onto solid supports and studied with AFM. The interactions between model raft system and erucylphosphocholine were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with ΔG(exc) function). The obtained results indicate that erucylphosphocholine introduced to raft-mimicking model membrane causes fluidizing effect and weakens the interactions between cholesterol and sphingomyelin, which results in phase separation at high surface pressures. This leads to the redistribution of cholesterol molecules in model raft, which confirms the results observed in biological studies.

  15. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    Science.gov (United States)

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.

  16. Lipid raft organization and function in the small intestinal brush border

    DEFF Research Database (Denmark)

    Danielsen, E M; Hansen, Gert Helge

    2008-01-01

    The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids...... (approximately 30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids...... proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry...

  17. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories

    Science.gov (United States)

    Hess, Samuel T.; Gould, Travis J.; Gudheti, Manasa V.; Maas, Sarah A.; Mills, Kevin D.; Zimmerberg, Joshua

    2007-01-01

    Organization in biological membranes spans many orders of magnitude in length scale, but limited resolution in far-field light microscopy has impeded distinction between numerous biomembrane models. One canonical example of a heterogeneously distributed membrane protein is hemagglutinin (HA) from influenza virus, which is associated with controversial cholesterol-rich lipid rafts. Using fluorescence photoactivation localization microscopy, we are able to image distributions of tens of thousands of HA molecules with subdiffraction resolution (≈40 nm) in live and fixed fibroblasts. HA molecules form irregular clusters on length scales from ≈40 nm up to many micrometers, consistent with results from electron microscopy. In live cells, the dynamics of HA molecules within clusters is observed and quantified to determine an effective diffusion coefficient. The results are interpreted in terms of several established models of biological membranes. PMID:17959773

  18. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts.

    Science.gov (United States)

    Caroni, P

    2001-08-15

    The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.

  19. NADPH OXIDASE AND LIPID RAFT-ASSOCIATED REDOX SIGNALING ARE REQUIRED FOR PCB153-INDUCED UPREGULATION OF CELL ADHESION MOLECULES IN HUMAN BRAIN ENDOTHELIAL CELLS

    Science.gov (United States)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  20. You Sank My Lipid Rafts!

    Science.gov (United States)

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  1. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  2. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Li Ying [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Li Xin, E-mail: lixin@hit.edu.c [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Chu Jia; Dong Cunku [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Qi Jingyao; Yuan Yixing [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-06-15

    In this study, we present a general protocol for the making of surface-imprinted core-shell magnetic beads via reversible addition-fragmentation chain transfer (RAFT) polymerization using RAFT agent functionalized iron oxide nanoparticles as the chain transfer agent. The resulting composites were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface-imprinted magnetic beads were demonstrated with a homogeneous polymer films (thickness of about 22 nm), spherical shape, and exhibited magnetic property (Ms = 0.41 mA m{sup 2} g{sup -1}) and thermal stability. Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The as-synthesized surface-imprinted core-shell magnetic beads showed outstanding affinity and selectivity towards bisphenol A over structurally related compounds, and easily reach the magnetic separation under an external magnetic field. In addition, the resulting composites reusability without obviously deterioration in performance was demonstrated at least five repeated cycles. - Magnetic molecular imprinted polymers have potential as adsorptive materials in water treatment.

  3. An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.

    Science.gov (United States)

    Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Li, Chenxi; Zhang, Huiqi

    2010-11-15

    A new and efficient approach to obtaining molecularly imprinted polymers (MIPs) with both pure water-compatible (i.e., applicable in the pure aqueous environments) and stimuli-responsive binding properties is described, whose proof-of-principle is demonstrated by the facile modification of the preformed MIP microspheres via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAAm). The presence of poly(NIPAAm) (PNIPAAm) brushes on the obtained MIP microspheres was confirmed by FT-IR as well as the water dispersion and static contact angle experiments, and some quantitative information including the molecular weights and polydispersities of the grafted polymer brushes, the thickness of the polymer brush layers, and their grafting densities was provided. In addition, the binding properties of the ungrafted and grafted MIPs/NIPs in both methanol/water (4/1, v/v) and pure water solutions were also investigated. The introduction of PNIPAAm brushes onto the MIP microspheres has proven to significantly improve their surface hydrophilicity and impart stimuli-responsive properties to them, leading to their pure water-compatible and thermo-responsive binding properties. The application of the facile surface-grafting approach, together with the versatility of RAFT polymerization and the availability of many different functional monomers, makes the present methodology a general and promising way to prepare water-compatible and stimuli-responsive MIPs for a wide range of templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway.

    Science.gov (United States)

    Song, Eun Ju; Lee, Sei-Jung; Lim, Hyeon Su; Kim, Jun Sung; Jang, Kyung Ku; Choi, Sang Ho; Han, Ho Jae

    2016-06-02

    VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation.

  5. The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Mandy J. Ludford-Menting

    2011-01-01

    Full Text Available Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.

  6. The consolidation of rafted sea ice

    Science.gov (United States)

    Bailey, E.; Feltham, D.; Sammonds, P.

    2009-04-01

    Rafting is an important process in the deformation of sea ice that occurs when two ice sheets collide. This process is particularly common in the North Caspian Sea, where ice floes override one another multiple times to produce thick sea ice features. To date, rafting has received little attention in the literature perhaps because in most regions pressure ridges produce the greatest loads on offshore structures. In the North Caspian Sea the shallow waters constrain the size to which pressure ridges can grow and the low salinity seems to favor rafting over ridging. Therefore it is likely that multiply-rafted sea ice may be the governing design feature for ice loads in the Caspian Sea. Here we present a one-dimensional, thermal-consolidation model for rafted sea ice. This is of interest because the degree of consolidation will affect the strength of a rafted structure, and therefore may be of value for modeling rafted ice loads. Results show that the thickness of the liquid layers reduces asymptotically with time, such that there always remains a thin liquid layer. We propose that when the liquid layer is equal to the surface roughness the adjacent layers can be considered consolidated. Using parameters specific to the North Caspian Sea, calculations show that it took 1hr, 14mins for the ice sheets to consolidate. To test the accuracy of the model concurrent experiments were carried out in the HSVA ice basin. During an experiment, equally sized portions of level ice were manually piled on top of one another to produce a rafted section. The rate of consolidation or bonding of the layers was then monitored by coring and using thermistors that were frozen into the level ice prior to rafting. Once consolidated, strength tests were carried out on the rafted ice and compared with those of level ice.

  7. Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md. Rafiqul; Bach, Long Giang; Lim, Kwon Taek, E-mail: ktlim@pknu.ac.kr

    2013-07-01

    A fluorescent nanohybrid complex comprising of halloysite nanotubes (HNTs), poly(2-hydroxyethyl methacrylate) (PHEMA), and europium ions (Eu{sup 3+}) was synthesized by the combination of surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and coordination chemistry. Initially, PHEMA was grafted from the HNTs by SI-RAFT and then reacted with succinic anhydride to provide carboxyl acid groups on the external layers of HNTs-g-PHEMA nanohybrids. The subsequent coordination of the nanohybrids with Eu{sup 3+} ions afforded photoluminescent Eu{sup 3+} tagged HNTs-g-PHEMA nanohybrid complexes (HNTs-g-PHEMA-Eu{sup 3+}). The structure, morphology, and fluorescence properties of the Eu{sup 3+} coordinated nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR, XPS, and EDS analyses suggested the formation of the HNTs-g-PHEMA-Eu{sup 3+} nanohybrids. FE-SEM images indicated the immobilization of polymer layers on HNTs. TGA scans further demonstrated the grafting of PHEMA onto HNTs surface. The optical properties of HNTs-g-PHEMA-Eu{sup 3+} nanohybrid complexes were investigated by photoluminescence spectroscopy.

  8. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways.

    Science.gov (United States)

    Li, Wenjing; Liu, Honghong; Liu, Pingping; Yin, Deling; Zhang, Shangli; Zhao, Jing

    2016-07-01

    Resident cardiac Sca-1-positive (+) stem cells may differentiate into cardiomyocytes to improve the function of damaged hearts. However, little is known about the inducers and molecular mechanisms underlying the myogenic conversion of Sca-1(+) stem cells. Here we report that sphingosylphosphorylcholine (SPC), a naturally occurring bioactive lipid, induces the myogenic conversion of Sca-1(+) stem cells, as evidenced by the increased expression of cardiac transcription factors (Nkx2.5 and GATA4), structural proteins (cardiac Troponin T), transcriptional enhancer (Mef2c) and GATA4 nucleus translocation. First, SPC activated JNK and STAT3, and the JNK inhibitor SP600125 or STAT3 inhibitor stattic impaired the SPC-induced expression of cardiac transcription factors and GATA4 nucleus translocation, which suggests that JNK and STAT3 participated in SPC-promoted cardiac differentiation. Moreover, STAT3 activation was inhibited by SP600125, whereas JNK was inhibited by β-cyclodextrin as a lipid raft breaker, which indicates a lipid raft/JNK/STAT3 pathway involved in SPC-induced myogenic transition. β-Catenin, degraded by activated GSK3β, was inhibited by SPC. Furthermore, GSK3β inhibitors weakened but the β-catenin inhibitor promoted SPC-induced differentiation. We found no crosstalk between the lipid raft/JNK/STAT3 and β-catenin pathway. Our study describes a lipid, SPC, as an endogenic inducer of myogenic conversion in Sca-1(+) stem cells with low toxicity and high efficiency for uptake.

  9. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells

    OpenAIRE

    2016-01-01

    Cytomegalovirus (HCMV) contains cholesterol, but how HCMV interacts with host cholesterol metabolism is unknown. We found that, in human fibroblasts, HCMV infection increased the efflux of cellular cholesterol, despite reducing the abundance of ABCA1. Mechanistically, viral protein US28 was acting through CDC42, rearranging actin microfilaments, causing association of actin with lipid rafts, and leading to a dramatic change in the abundance and/or structure of lipid rafts. These changes displ...

  10. Ca2+ -regulated lysosome fusion mediates angiotensin II-induced lipid raft clustering in mesenteric endothelial cells.

    Science.gov (United States)

    Han, Wei-Qing; Chen, Wen-Dong; Zhang, Ke; Liu, Jian-Jun; Wu, Yong-Jie; Gao, Ping-Jin

    2016-04-01

    It has been reported that intracellular Ca2+ is involved in lysosome fusion and membrane repair in skeletal cells. Given that angiotensin II (Ang II) elicits an increase in intracellular Ca2+ and that lysosome fusion is a crucial mediator of lipid raft (LR) clustering, we hypothesized that Ang II induces lysosome fusion and activates LR formation in rat mesenteric endothelial cells (MECs). We found that Ang II acutely increased intracellular Ca2+ content, an effect that was inhibited by the extracellular Ca2+ chelator ethylene glycol tetraacetic acid (EGTA) and the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release inhibitor 2-aminoethoxydiphenyl borate (2-APB). Further study showed that EGTA almost completely blocked Ang II-induced lysosome fusion, the translocation of acid sphingomyelinase (ASMase) to LR clusters, ASMase activation and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activation. In contrast, 2-APB had a slight inhibitory effect. Functionally, both the lysosome inhibitor bafilomycin A1 and the ASMase inhibitor amitriptyline reversed Ang II-induced impairment of vasodilation. We conclude that Ca2+ -regulated lysosome fusion mediates the Ang II-induced regulation of the LR-redox signaling pathway and mesenteric endothelial dysfunction.

  11. Life raft stabilizer

    Science.gov (United States)

    Radnofsky, M. I.; Barnett, J. H., Jr.; Harrison, F. L.; Marak, R. J. (Inventor)

    1973-01-01

    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft.

  12. Lipid raft: A floating island of death or survival

    Energy Technology Data Exchange (ETDEWEB)

    George, Kimberly S. [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States); Department of Chemistry, Marietta College, Marietta, OH 45750 (United States); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701 (United States)

    2012-03-15

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid raft microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid raft disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. -- Highlights: ► The role of lipid rafts in apoptosis ► The pro- and anti-apoptotic effects of lipid raft disruption ► Cancer treatments targeting lipid rafts.

  13. Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast*

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M.; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A. Ulises; McMaster, Christopher R.; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-01-01

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane. PMID:23335509

  14. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.

    Science.gov (United States)

    Cuesta-Marbán, Álvaro; Botet, Javier; Czyz, Ola; Cacharro, Luis M; Gajate, Consuelo; Hornillos, Valentín; Delgado, Javier; Zhang, Hui; Amat-Guerri, Francisco; Acuña, A Ulises; McMaster, Christopher R; Revuelta, José Luis; Zaremberg, Vanina; Mollinedo, Faustino

    2013-03-22

    The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.

  15. Drop floating on a granular raft

    Science.gov (United States)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie

    2015-11-01

    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  16. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    Full Text Available DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1(+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.

  17. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.

    Science.gov (United States)

    Gaigg, Barbara; Toulmay, Alexandre; Schneiter, Roger

    2006-11-10

    The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid "rafts") already in the ER, and a lack of raft association correlates with mistargeting of the protein to the vacuole, where it is degraded. We are analyzing the role of specific lipids in membrane domain formation and have previously shown that surface transport of Pma1p is independent of newly synthesized sterols but that sphingolipids with C26 very long chain fatty acid are crucial for raft association and surface transport of Pma1p (Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) J. Biol. Chem. 280, 22515-22522). We now describe a more detailed analysis of the function that sphingolipids play in this process. Using a yeast strain in which the essential function of sphingolipids is substituted by glycerophospholipids containing C26 very long chain fatty acids, we find that sphingolipids per se are dispensable for raft association and surface delivery of Pma1p but that the C26 fatty acid is crucial. We thus conclude that the essential function of sphingolipids for membrane domain formation and stable surface delivery of Pma1p is provided by the C26 fatty acid that forms part of the yeast ceramide.

  18. T Cell Lipid Rafts and Complement Ligands for Diagnosis and Monitoring of SLE

    Science.gov (United States)

    2011-05-01

    activation occurs at a low grade under physiological conditions and is necessary to fend off infections, eliminate tumor cell growth and participate in the...3H-thymidine and harvested using a semiautomatic cell harvester (Tomtec Harvester) onto glass fiber filters. 3H-thymidine incorporated by

  19. Effect of lipid raft on the growth of cervical cancer cells%脂筏对子宫颈癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    程艳香; 徐红; 周利梅; 黄金玲; 李秉枢; 胡敏

    2012-01-01

    目的 探讨脂筏对子宫颈癌细胞生长的影响并初步探讨其作用机制.方法 将HeLa细胞系分为不处理对照组、脂筏干扰剂组及NADPH氧化酶抑制剂组,四甲基偶氮唑蓝(MTT)法测定各组培养24h后的细胞存活率,Western blot法检测各组细胞内缺氧诱导因子1α(HIF-1α)蛋白相对含量.结果 与对照组相比脂筏干扰剂组细胞的生长速度明显减慢(0.612±0.051与0.984±0.034),NADPH氧化酶抑制剂组显示了类似的效应(0.591±0.074与0.984±0.034),差异有统计学意义(t=4.062,P< 0.05).与对照组相比脂筏干扰剂组及NADPH氧化酶抑制剂组HIF-1α的表达量也明显降低(1.79±0.14与2.56±0.22; 1.54±0.12与2.56±0.22),差异有统计学意义(t=2.423,P< 0.05).结论 脂筏可能通过NADPH氧化酶激活途径激活HIF-1α及其下游原癌基因促进子宫颈癌细胞的生长,脂筏干扰剂及NADPH氧化酶抑制剂可能成为子宫颈癌药物治疗新的研究方向.%Objective To explore the effect of lipid raft on cervical cancer cell growth and its mechanisms Methods HeLa cells in logarithmic phase were divided into three groups including control group, lipid raft interference agent group,and NADPH oxidase inhibitors group.Cells were treated with fre sh medium,3 μmol/L Apocynin and 1 mmol/L M-beta CD, respectively, for 24 h.Cell survival rate was detected using the MTT method, and the HIF-1α level was examined by Western-blot. Results Cell growths of the lipid raft interference agent group and NADPH oxidase inhibitors group were significantly slower than control group,(0.612±0.051 vs 0.984±0.034,0.591 ±0.074 vs 0.984±0.034,t=4.062,P<0.05).HIF-1α expression in the lipid raft interference agent group and NADPH oxidase inhibitors group was also significantly reduced compared with control group (1.79±0.14 vs 2.56±0.22 and 1.54±0.12 vs 2.56±0.22) and the difference was significant (t=2.423,P<0.05). Conclusion Lipid raft-NADPH oxidase pathway may

  20. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Peuschel Henrike

    2012-12-01

    Full Text Available Abstract Background Particulate air pollution in lung epithelial cells induces pathogenic endpoints like proliferation, apoptosis, and pro-inflammatory reactions. The activation of the epidermal growth factor receptor (EGFR is a key event responsible for signalling events involving mitogen activated protein kinases specific for these endpoints. The molecular events leading to receptor activation however are not well understood. These events are relevant for the toxicological evaluation of inhalable particles as well as for potential preventive strategies in situations when particulate air pollution cannot be avoided. The current study therefore had the objective to elucidate membrane-coupled events leading to EGFR activation and the subsequent signalling cascade in lung epithelial cells. Furthermore, we aimed to identify the molecular target of ectoine, a biophysical active substance which we described to prevent carbon nanoparticle-induced lung inflammation. Methods Membrane signalling events were investigated in isolated lipid rafts from lung epithelial cells with regard to lipid and protein content of the signalling platforms. Using positive and negative intervention approaches, lipid raft changes, subsequent signalling events, and lung inflammation were investigated in vitro in lung epithelial cells (RLE-6TN and in vivo in exposed animals. Results Carbon nanoparticle treatment specifically led to an accumulation of ceramides in lipid rafts. Detailed analyses demonstrated a causal link of ceramides and subsequent EGFR activation coupled with a loss of the receptor in the lipid raft fractions. In vitro and in vivo investigations demonstrate the relevance of these events for carbon nanoparticle-induced lung inflammation. Moreover, the compatible solute ectoine was able to prevent ceramide-mediated EGFR phosphorylation and subsequent signalling as well as lung inflammation in vivo. Conclusion The data identify a so far unknown event in pro

  1. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin.

    NARCIS (Netherlands)

    Salzer, U.; Zhu, R.; Luten, M.; Isobe, H.; Pastushenko, V.; Perkmann, T.; Hinterdorfer, P.; Bosman, G.J.C.G.M.

    2008-01-01

    BACKGROUND: The release of vesicles by red blood cells (RBCs) occurs in vivo and in vitro under various conditions. Vesiculation also takes place during RBC storage and results in the accumulation of vesicles in RBC units. The membrane protein composition of the storage-associated vesicles has not b

  2. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin.

    NARCIS (Netherlands)

    Salzer, U.; Zhu, R.; Luten, M.; Isobe, H.; Pastushenko, V.; Perkmann, T.; Hinterdorfer, P.; Bosman, G.J.C.G.M.

    2008-01-01

    BACKGROUND: The release of vesicles by red blood cells (RBCs) occurs in vivo and in vitro under various conditions. Vesiculation also takes place during RBC storage and results in the accumulation of vesicles in RBC units. The membrane protein composition of the storage-associated vesicles has not

  3. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR

    Directory of Open Access Journals (Sweden)

    Lu Ying-Che

    2011-10-01

    Full Text Available Abstract Background Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Methods Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR. The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. Results We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction, their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction. Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Conclusions

  4. Lipid rafts in immune signalling: current progress and future perspective.

    Science.gov (United States)

    Varshney, Pallavi; Yadav, Vikas; Saini, Neeru

    2016-09-01

    Lipid rafts are dynamic assemblies of proteins and lipids that harbour many receptors and regulatory molecules and so act as a platform for signal transduction. They float freely within the liquid-disordered bilayer of cellular membranes and can cluster to form larger ordered domains. Alterations in lipid rafts are commonly found to be associated with the pathogenesis of several human diseases and recent reports have shown that the raft domains can also be perturbed by targeting raft proteins through microRNAs. Over the last few years, the importance of lipid rafts in modulating both innate and acquired immune responses has been elucidated. Various receptors present on immune cells like B cells, T cells, basophils and mast cells associate with lipid rafts on ligand binding and initiate signalling cascades leading to inflammation. Furthermore, disrupting lipid raft integrity alters lipopolysaccharide-induced cytokine secretion, IgE signalling, and B-cell and T-cell activation. The objective of this review is to summarize the recent progress in understanding the role of lipid rafts in the modulation of immune signalling and its related therapeutic potential for autoimmune diseases and inflammatory disorders.

  5. Erythropoietin receptor signaling is membrane raft dependent.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Upon erythropoietin (Epo engagement, Epo-receptor (R homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE vs. 25.6±3.2 aggregates/cell; p≤0.001, accompanied by a >3-fold increase in cluster size (p≤0.001. Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.

  6. Ethanol Enhances TGF-β Activity by Recruiting TGF-β Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains.

    Science.gov (United States)

    Huang, Shuan Shian; Chen, Chun-Lin; Huang, Franklin W; Johnson, Frank E; Huang, Jung San

    2016-04-01

    Regular consumption of moderate amounts of ethanol has important health benefits on atherosclerotic cardiovascular disease (ASCVD). Overindulgence can cause many diseases, particularly alcoholic liver disease (ALD). The mechanisms by which ethanol causes both beneficial and harmful effects on human health are poorly understood. Here we demonstrate that ethanol enhances TGF-β-stimulated luciferase activity with a maximum of 0.5-1% (v/v) in Mv1Lu cells stably expressing a luciferase reporter gene containing Smad2-dependent elements. In Mv1Lu cells, 0.5% ethanol increases the level of P-Smad2, a canonical TGF-β signaling sensor, by ∼ 2-3-fold. Ethanol (0.5%) increases cell-surface expression of the type II TGF-β receptor (TβR-II) by ∼ 2-3-fold from its intracellular pool, as determined by I(125) -TGF-β-cross-linking/Western blot analysis. Sucrose density gradient ultracentrifugation and indirect immunofluorescence staining analyses reveal that ethanol (0.5% and 1%) also displaces cell-surface TβR-I and TβR-II from lipid rafts/caveolae and facilitates translocation of these receptors to non-lipid raft microdomains where canonical signaling occurs. These results suggest that ethanol enhances canonical TGF-β signaling by increasing non-lipid raft microdomain localization of the TGF-β receptors. Since TGF-β plays a protective role in ASCVD but can also cause ALD, the TGF-β enhancer activity of ethanol at low and high doses appears to be responsible for both beneficial and harmful effects. Ethanol also disrupts the location of lipid raft/caveolae of other membrane proteins (e.g., neurotransmitter, growth factor/cytokine, and G protein-coupled receptors) which utilize lipid rafts/caveolae as signaling platforms. Displacement of these membrane proteins induced by ethanol may result in a variety of pathologies in nerve, heart and other tissues.

  7. Lipid Rafts Disruption Increases Ochratoxin A Cytotoxicity to Hepatocytes.

    Science.gov (United States)

    Zhang, Yu; Qi, Xiaozhe; Zheng, Juanjuan; Luo, Yunbo; Zhao, Changhui; Hao, Junran; Li, Xiaohong; Huang, Kunlun; Xu, Wentao

    2016-02-01

    Lipid rafts are microdomains in plasma membrane and can mediate cytotoxicity. In this study, the role of lipid rafts in ochratoxin A-induced toxicity was investigated using Hepatoblastoma Cell Line HepG-2 cells. Disruption of cholesterol-containing lipid rafts enhanced Ochratoxin A (OTA) toxicity, as shown by increased lactate dehydrogenase leakage, increased reactive oxygen species level and reduction of superoxide dismutase activity in a time-dependent manner. Isobaric tags for relative and absolute quantitation-based proteomics of the cell membranes showed that nearly 85.5% proteins were downregulated by OTA, indicating that OTA inhibited the membrane protein synthesis. Most of altered proteins were involved in Gene Ontology "transport", "cell adhesion" and "vesicle-mediated transport". In conclusion, lipid rafts play a key role in OTA-induced cytotoxicity. This study provides insight into how OTA toxicity is regulated by the plasma membrane, especially the lipid rafts.

  8. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content

    Science.gov (United States)

    Nowyhed, Heba N.; Chandra, Shilpi; Kiosses, William; Marcovecchio, Paola; Andary, Farah; Zhao, Meng; Fitzgerald, Michael L.; Kronenberg, Mitchell; Hedrick, Catherine C.

    2017-01-01

    ABCA7 is an ABC transporter expressed on the plasma membrane, and actively exports phospholipid complexes from the cytoplasmic to the exocytoplasmic leaflet of membranes. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid antigens in the context of CD1d-mediated antigen presentation. In this study, we demonstrate that ABCA7 regulates the development of NKT cells in a cell-extrinsic manner. We found that in Abca7−/− mice there is reduced expression of CD1d accompanied by an alteration in lipid raft content on the plasma membrane of thymocytes and antigen presenting cells. Together, these alterations caused by absence of ABCA7 negatively affect NKT cell development and function. PMID:28091533

  9. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    Science.gov (United States)

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases.

  10. Cell confluence induces switching from proliferation to migratory signaling by site-selective phosphorylation of PDGF receptors on lipid raft platforms.

    Science.gov (United States)

    Szöőr, Árpád; Ujlaky-Nagy, László; Tóth, Gábor; Szöllősi, János; Vereb, György

    2016-02-01

    Platelet derived growth factor receptors (PDGFR) play an important role in tumor pathogenesis and are frequently overexpressed in glioblastoma. Earlier we have shown that only confluent glioblastoma cell cultures exhibit a biphasic calcium transient upon PDGF stimulation. Here, we examined how the change in cell density leads to differential cellular responses to the same PDGF stimulus. PDGF beta receptors and their specific phosphotyrosine residues were fluorescently co-labeled on A172 and T98G glioblastoma cells. The distribution in cell membrane microdomains (lipid rafts) and the phosphorylation state of PDGFR was measured by confocal microscopy and quantitated by digital image processing. Corresponding bulk data were obtained by Western blotting. Activation of relevant downstream signaling pathways was assessed by immunofluorescence in confocal microscopy and by Western blot analysis. Functional outcomes were confirmed with bulk and single cell proliferation assays and motility measurements. In non-confluent (sparse) cultures PDGF-BB stimulation significantly increased phosphorylation of Tyr716 specific for the Ras/MAPK pathway and Tyr751 specific for the phosphoinositide 3-kinase/Akt pathway. As cell monolayers reached confluence, Tyr771 and Tyr1021 were the prominently phosphorylated residues. Tyr771 serves as adaptor for Ras-GAP, which inactivates the MAPK pathway, and Tyr1021 feeds into the phospholipase C-gamma/PKC pathway. Coherent with this, MAPK phosphorylation, Ki-67 positivity and proliferation dominated in dispersed cells, and could be abolished with inhibitors of the MAPK pathway. At the same time, RhoA activation, redistribution of cortactin to leading edges, and increased motility were the prominent output features in confluent cultures. Importantly, the stimulus-evoked confluence-specific changes in the phosphorylation of tyrosine residues occurred mainly in GM1-rich lipid microdomains (rafts). These observations suggest that the same stimulus is

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  12. Regulation of the high-affinity choline transporter activity and trafficking by its association with cholesterol-rich lipid rafts.

    Science.gov (United States)

    Cuddy, Leah K; Winick-Ng, Warren; Rylett, Rebecca Jane

    2014-03-01

    The sodium-coupled, hemicholinium-3-sensitive, high-affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts in both SH-SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH-SY5Y cells expressing rat CHT with filipin, methyl-β-cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol-saturated MβC. Kinetic analysis of binding of [(3)H]hemicholinium-3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax ); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol-rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis. The sodium-coupled choline transporter CHT moves choline into cholinergic nerve terminals to serve as substrate for acetylcholine synthesis. We show for the first time that CHT is concentrated in cholesterol-rich lipid rafts, and decreasing membrane cholesterol significantly reduces both choline uptake activity and cell surface CHT protein levels. CHT association with cholesterol-rich rafts is critical for its function, and alterations in plasma membrane cholesterol could diminish cholinergic

  13. Lipid rafts and detergent-resistant membranes in epithelial keratinocytes.

    Science.gov (United States)

    McGuinn, Kathleen P; Mahoney, Mỹ G

    2014-01-01

    Our understanding of the plasma membrane has markedly increased since Singer and Nicolson proposed the fluid mosaic model in 1972. While their revolutionary theory of the lipid bilayer remains largely valid, it is now known that lipids and proteins are not randomly dispersed throughout the plasma membrane but instead may be organized within membrane microdomains, commonly referred to as lipid rafts. Lipid rafts are highly dynamic, detergent resistant, and enriched with both cholesterol and glycosphingolipids. The two main types are flotillin-rich planar lipid rafts and caveolin-rich caveolae. It is proposed that flotillin and caveolin proteins regulate cell communication by compartmentalizing and interacting with signal transduction proteins within their respective lipid microdomains. Consequently, membrane rafts play an important role in vital cellular functions including migration, invasion, and signaling; thus, alterations in their microenvironment can initiate signaling pathways that affect cellular function and behavior. Therefore, the identification of lipid rafts and their associated proteins is integral to the study of transmembrane signaling. Here, we review the current standard protocols and biochemical approaches used to isolate and define raft proteins from epithelial cells and tissues. Furthermore, in Section 3 of this chapter, detailed protocols are offered for isolating lipid rafts by subjection to detergent and sucrose density centrifugation, as well as an approach for selectively isolating caveolae. Methods to manipulate rafts with treatments such as methyl-β-cyclodextrin and flotillin III are also described.

  14. Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts.

    Science.gov (United States)

    Locke, Darren; Liu, Jade; Harris, Andrew L

    2005-10-04

    Cell extraction with cold nonionic detergents or alkaline carbonate prepares an insoluble membrane fraction whose buoyant density permits its flotation in discontinuous sucrose gradients. These lipid "rafts" are implicated in protein sorting and are attractive candidates as platforms that coordinate signal transduction pathways with intracellular substrates. Gap junctions form a direct molecular signaling pathway by end-to-end apposition of hemichannels containing one (homomeric) or more (heteromeric) connexin isoforms. Residency of channels composed of Cx26 and/or Cx32 in lipid rafts was assessed by membrane insolubility in alkaline carbonate or different concentrations of Triton X100, Nonidet P40 and Brij-58 nonionic detergents. Using Triton X100, insoluble raft membranes contained homomeric Cx32 channels, but Cx26-containing channels only when low detergent concentrations were used. Results were similar using Nonidet P40, except that Cx26-containing channels were excluded from raft membranes at all detergent concentrations. In contrast, homomeric Cx26 channels were enriched within Brij-58-insoluble rafts, whereas Cx32-containing channels partitioned between raft and nonraft membranes. Immunofluorescence microscopy showed prominent colocalization only of nonjunctional connexin channels with raft plasma membrane; junctional plaques were not lipid rafts. Rafts prepared by different extraction methods had considerable quantitative and qualitative differences in their lipid compositions. That functionally different nonjunctional connexin channels partition among rafts with distinct lipid compositions suggests that unpaired Cx26 and/or Cx32 channels exist in membrane domains of slightly different physicochemical character. Rafts may be involved in trafficking of plasma membrane connexin channels to gap junctions.

  15. Oxidized LDL lipids increase β-amyloid production by SH-SY5Y cells through glutathione depletion and lipid raft formation.

    Science.gov (United States)

    Dias, Irundika H K; Mistry, Jayna; Fell, Shaun; Reis, Ana; Spickett, Corinne M; Polidori, Maria C; Lip, Gregory Y H; Griffiths, Helen R

    2014-10-01

    Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4μg oxLDL and 25µM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells.

  16. Dynamic Reorganization and Correlation among Lipid Raft Components.

    Science.gov (United States)

    Lozano, Mónica M; Hovis, Jennifer S; Moss, Frank R; Boxer, Steven G

    2016-08-10

    Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.

  17. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP

    2004-07-01

    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  18. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Joeelle V., E-mail: joelle.fritz@med.uni-heidelberg.de; Tibroni, Nadine, E-mail: nadine.tibroni@med.uni-heidelberg.de; Keppler, Oliver T., E-mail: oliver.keppler@med.uni-heidelberg.de; Fackler, Oliver T., E-mail: oliver.fackler@med.uni-heidelberg.de

    2012-03-01

    HIV-1 Vpu antagonizes the block to particle release mediated by CD317 (BST-2/HM1.24/Tetherin) via incompletely understood mechanisms. Vpu and CD317 partially reside in cholesterol-rich lipid rafts where HIV-1 budding preferentially occurs. Here we find that lipid raft association of ectopically expressed or endogenous CD317 was unaltered upon co-expression with Vpu or following HIV-1 infection. Similarly, Vpu's lipid raft association remained unchanged upon expression of CD317. We identify amino acids V25 and Y29 of Vpu as crucial for microdomain partitioning and single substitution of these amino acids resulted in Vpu variants with markedly reduced or undetectable lipid raft association. These mutations did not affect Vpu's subcellular distribution and binding capacity to CD317, nor its ability to downmodulate cell surface CD317 and promote HIV-1 release from CD317-positive cells. We conclude that (i) lipid raft incorporation is dispensable for Vpu-mediated CD317 antagonism and (ii) Vpu does not antagonize CD317 by extraction from lipid rafts.

  19. Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling.

    Science.gov (United States)

    Gajate, Consuelo; Mollinedo, Faustino

    2015-05-01

    Membrane lipid rafts are highly ordered membrane domains enriched in cholesterol, sphingolipids and gangliosides that have the property to segregate and concentrate proteins. Lipid and protein composition of lipid rafts differs from that of the surrounding membrane, thus providing sorting platforms and hubs for signal transduction molecules, including CD95 death receptor-mediated signaling. CD95 can be recruited to rafts in a reversible way through S-palmitoylation following activation of cells with its physiological cognate ligand as well as with a wide variety of inducers, including several antitumor drugs through ligand-independent intracellular mechanisms. CD95 translocation to rafts can be modulated pharmacologically, thus becoming a target for the treatment of apoptosis-defective diseases, such as cancer. CD95-mediated signaling largely depends on protein-protein interactions, and the recruitment and concentration of CD95 and distinct downstream apoptotic molecules in membrane raft domains, forming raft-based supramolecular entities that act as hubs for apoptotic signaling molecules, favors the generation and amplification of apoptotic signals. Efficient CD95-mediated apoptosis involves CD95 and raft internalization, as well as the involvement of different subcellular organelles. In this review, we briefly summarize and discuss the involvement of lipid rafts in the regulation of CD95-mediated apoptosis that may provide a new avenue for cancer therapy.

  20. Lipid Raft Alterations in Aged-Associated Neuropathologies.

    Science.gov (United States)

    Marin, Raquel; Fabelo, Noemí; Fernández-Echevarría, Cecilia; Canerina-Amaro, Ana; Rodríguez-Barreto, Deiene; Quinto-Alemany, David; Mesa-Herrera, Fátima; Díaz, Mario

    2016-01-01

    Lipid rafts are membrane microdomains particularly enriched in cholesterol, sphingolipids and saturated fatty acids. These microstructures play a key role in a plethora of mechanisms involved in cell signaling, synapsis, cell-cell communication and cell survival. In the last years, increasing evidence indicate that lipid rafts may be altered in age-related neuropathologies, such as Alzheimer's disease and Parkinson disease even at asymptomatic stages. In particular, important changes in raft lipid composition are observed with the progression of these diseases, then inducing alterations in their physicochemical properties. Furthermore, these phenomena contribute to neuropathological events related to amyloidogenesis, aberrant protein aggregation and toxic cell signalling. In this review, we discuss some relevant data on the age-related molecular changes occurring in lipid rafts since the first stages of these neurodegenerative diseases. Further characterization of specific parameters associated with alterations of these microdomains may provide potential tools of diagnosis and prediction of these neuropathologies.

  1. Surface modification of porous polypropylene membrane by plasma-initiated RAFT graft polymerization%等离子体引发的RAFT接枝聚合对聚丙烯多孔膜的表面改性

    Institute of Scientific and Technical Information of China (English)

    周月; 汪思孝; 黄健; 王晓琳

    2012-01-01

    采用可逆加成-断裂链转移(RAFT)可控/活性自由基聚合方法,以二硫代苯甲酸-2-腈基异丙酯(CPDB)为RAFT链转移剂并以丙烯酸(AA)为单体,在聚丙烯(PP)多孔膜表面进行了等离子体引发的RAFT接枝聚合改性.聚合动力学研究结果表明:聚合反应具有RAFT聚合动力学特征,等离子体处理可以引发RAFT自由基聚合.以傅立叶红外光谱仪(FT- IR)、扫描电子显微镜(SEM)、压汞、水通量等方法,研究了改性多孔膜的表面化学与形态结构及孔结构特征.改性多孔膜表面的接枝率随单体转化率的提高呈线性增长,表面亲水性得到显著改善,同时膜孔径及水通量随接枝聚合时间的提高持续减小.其趋势符合RAFT可控/活性自由基聚合机制,实现了多孔膜膜孔径控制的目的.%A reversible addition-fragment chain transfer (RAFT) graft polymerization method, initiated by the pulsed plasma, was used to modify the surface of porous polypropylene ( PP) membrane, with 2-cyanoprop-2-yl dithiobenzoate (CPDB) used as the RAFT agent and acrylic acid as the monomer. The result of the graft polymerization kinetics was in agreement with that of the RAFT polymerization, and the plasma-initiated method was feasible. The surface chemistry, the surface morphology and the porous structure of modified PP membranes were evaluated by Fourier transform minfrared spectroscopy ( FT-IR) , scanning electron microscope (SEM) ,mercury intrusion, and water flux measurements. Graft amounts of modified membranes exhibited a linear increase with the increase of the conversion, while pore sizes and water fluxes were decreased continuously with the prolonging of polymerization time. The pore size of the porous PP membrane was regulated by a simple tune of the polymerization time or the monomer conversion by the RAFT graft polymerization.

  2. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?

    Science.gov (United States)

    Rosetti, Carla M; Mangiarotti, Agustín; Wilke, Natalia

    2017-01-28

    In model lipid membranes with phase coexistence, domain sizes distribute in a very wide range, from the nanometer (reported in vesicles and supported films) to the micrometer (observed in many model membranes). Domain growth by coalescence and Ostwald ripening is slow (minutes to hours), the domain size being correlated with the size of the capture region. Domain sizes thus strongly depend on the number of domains which, in the case of a nucleation process, depends on the oversaturation of the system, on line tension and on the perturbation rate in relation to the membrane dynamics. Here, an overview is given of the factors that affect nucleation or spinodal decomposition and domain growth, and their influence on the distribution of domain sizes in different model membranes is discussed. The parameters analyzed respond to very general physical rules, and we therefore propose a similar behavior for the rafts in the plasma membrane of cells, but with obstructed mobility and with a continuously changing environment.

  3. Effects of RAFT Agent on the Selective Approach of Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Saliza Asman

    2015-03-01

    Full Text Available Two types of reversible addition-fragmentation chain transfer molecularly imprinted polymers (RAFT-MIPs were synthesized using different monomers, which were methacrylic acid functionalized β-cyclodextrin (MAA-β-CD and 2-hydroxyethyl methacrylate functionalized β-cyclodextrin (HEMA-β-CD, via reversible addition-fragmentation chain transfer (RAFT polymerization, and were represented as RAFT-MIP(MAA-β-CD and RAFT-MIP(HEMA-β-CD, respectively. Both RAFT-MIPs were systematically characterized using Fourier Transform Infrared Spectroscopy (FTIR, Field Emission Scanning Electron Microscopy (FESEM, Brunauer-Emmett-Teller (BET, and rebinding experimental study. The results were compared with MIPs synthesized via the traditional radical polymerization (TRP process, and were represented as MIP(MAA-β-CD and MIP(HEMA-β-CD. Morphology results show that RAFT-MIP(MAA-β-CD has a slightly spherical feature with a sponge-like form, while RAFT-MIP(HEMA-β-CD has a compact surface. BET results show that the surface area of RAFT-MIP(MAA-β-CD is higher than MIP(MAA-β-CD, while the RAFT-MIP(HEMA-β-CD surface area is lower than that of MIP(HEMA-β-CD. Rebinding experiments indicate that the RAFT agent increased the binding capacity of RAFT-MIP(MAA-β-CD, but not of RAFT-MIP(HEMA-β-CD, which proves that a RAFT agent does not always improve the recognition affinity and selective adsorption of MIPs. The usability of a RAFT agent depends on the monomer used to generate potential MIPs.

  4. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    Science.gov (United States)

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  5. Localization and signaling of GPCRs in lipid rafts.

    Science.gov (United States)

    Villar, Van Anthony M; Cuevas, Santiago; Zheng, Xiaoxu; Jose, Pedro A

    2016-01-01

    The understanding of how biological membranes are organized and how they function has evolved. Instead of just serving as a medium in which certain proteins are found, portions of the lipid bilayer have been demonstrated to form specialized platforms that foster the assembly of signaling complexes by providing a microenvironment that is conducive for effective protein-protein interactions. G protein-coupled receptors (GPCRs) and relevant signaling molecules, including the heterotrimeric G proteins, key enzymes such as kinases and phosphatases, trafficking proteins, and secondary messengers, preferentially partition to these highly organized cell membrane microdomains, called lipid rafts. As such, lipid rafts are crucial for the trafficking and signaling of GPCRs. The study of GPCR biology in the context of lipid rafts involves the localization of the GPCR of interest in lipid rafts, at the basal state and upon receptor agonism, and the evaluation of the biological functions of the GPCR in appropriate cell lines. The lack of standardized methodology to study lipid rafts, in general, and of the workings of GPCRs in lipid rafts, in particular, and the inherent drawbacks of current methods have hampered the complete understanding of the underlying molecular mechanisms. Newer methodologies that allow the study of GPCRs in their native form are needed. The use of complementary approaches that produce mutually supportive results appear to be the best way for drawing conclusions with regards to the distribution and activity of GPCRs in lipid rafts.

  6. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts.

    Directory of Open Access Journals (Sweden)

    Mathew G Lyman

    2008-05-01

    Full Text Available The pseudorabies virus (PRV Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF. In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs. Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.

  7. A flow-cytometry method for analyzing the composition of membrane rafts.

    Science.gov (United States)

    Morales-García, M Guadalupe; Fournié, Jean-Jacques; Moreno-Altamirano, M Maximina Bertha; Rodríguez-Luna, Gabriela; Flores, Ricardo-Mondragón; Sánchez-García, F Javier

    2008-10-01

    Membrane rafts are involved in a broad variety of biological processes. Their protein composition under growth factor stimulation, anti-inflammatory or proinflammatory microenvironments, or in the course of pathogenic infections still remains to be determined. However, current techniques aimed at the identification of particular proteins on membrane rafts are not devoid of pitfalls. Membrane rafts were obtained by detergent-free based differential centrifugation from Jurkat T cells and J774 macrophages. Membrane rafts were labeled with fluorochrome-labeled antibodies directed against different cell membrane molecules, and with fluorochrome-labeled cholera toxin B that targets GM1 and analyzed by flow cytometry. CD3, CD11a, and GM1 were shown to be differentially expressed on Jurkat T cell-derived membrane rafts, indicating heterogeneity in membrane rafts composition. On the other hand, it was shown in J774 cell-derived membrane rafts that most but not all CD14 is present in the GM1-containing membrane fragments, thus confirming the heterogeneity of membrane rafts composition in other cell lines. The method described here allows the fluorometric assessment of the relative expression of more than one membrane raft component at a time, and at a single vesicle level in a fast and sensitive manner. This method seems to be a suitable approach to evaluate the molecular heterogeneity in membrane rafts composition.

  8. Plasma membrane organization and function: moving past lipid rafts.

    Science.gov (United States)

    Kraft, Mary L

    2013-09-01

    "Lipid raft" is the name given to the tiny, dynamic, and ordered domains of cholesterol and sphingolipids that are hypothesized to exist in the plasma membranes of eukaryotic cells. According to the lipid raft hypothesis, these cholesterol- and sphingolipid-enriched domains modulate the protein-protein interactions that are essential for cellular function. Indeed, many studies have shown that cellular levels of cholesterol and sphingolipids influence plasma membrane organization, cell signaling, and other important biological processes. Despite 15 years of research and the application of highly advanced imaging techniques, data that unambiguously demonstrate the existence of lipid rafts in mammalian cells are still lacking. This Perspective summarizes the results that challenge the lipid raft hypothesis and discusses alternative hypothetical models of plasma membrane organization and lipid-mediated cellular function.

  9. Functional Proteomic Analysis of Lipid Raft Kinase Complexes

    Science.gov (United States)

    2009-08-01

    distinct modes. J Cell Sci 2006;119:3833–44. Supplemental Data Proteome-scale Characterization of Human S-acylated Proteins in Lipid Raft...enriched and Non-raft Membrane Domains Wei Yang, Dolores Di Vizio, Marc Kirchner, Hanno Steen, and Michael R. Freeman Supplemental Tables include: 1...Carboxypeptidase M precursor Raft 2 18/443 – 0.5 0.5 1.0 1 1 1.0 0 0 0.0 181 + + IPI00032038 CPT1A Isoform 1 of Carnitine O-palmitoyltransferase I, liver isoform

  10. Mini-Raft Backpack Development.

    Science.gov (United States)

    1983-01-01

    AD-R14i 301 MINI-RAFT BACKPACK DEVELOPMENT(U) NAVAL AIRil IIIDEVELOPMENT CENTER WARMINSTER PA AIRCRAFT AND CREW SYSTEMS TECHNOLOGY DIRECTORATE G P...GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NADC-83097-60 4. TITLE (and Sublitle) S. TYPE OF REPORT & PERIOD COVERED MINI-RAFT BACKPACK ...number) Mini-Raft, Backpack , Mini-Boat, Life Raft, One !-an, Vee Bottom RW" 24. ABSTRACT (Contnue on revere eld* i necessary and Identify by block number

  11. The Continuing Mystery of Lipid Rafts.

    Science.gov (United States)

    Levental, Ilya; Veatch, Sarah L

    2016-12-04

    Since its initial formalization nearly 20 years ago, the concept of lipid rafts has generated a tremendous amount of attention and interest and nearly as much controversy. The controversy is perhaps surprising because the notion itself is intuitive: compartmentalization in time and space is a ubiquitous theme at all scales of biology, and therefore, the partitioning of cellular membranes into lateral subdivision should be expected. Nevertheless, the physicochemical principles responsible for compartmentalization and the molecular mechanisms by which they are functionalized remain nearly as mysterious today as they were two decades ago. Herein, we review recent literature on this topic with a specific focus on the major open questions in the field including: (1) what are the best tools to assay raft behavior in living membranes? (2) what is the function of the complex lipidome of mammalian cells with respect to membrane organization? (3) what are the mechanisms that drive raft formation and determine their properties? (4) how can rafts be modulated? (5) how is membrane compartmentalization integrated into cellular signaling? Despite decades of intensive research, this compelling field remains full of fundamental questions.

  12. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  13. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  14. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane.

    Directory of Open Access Journals (Sweden)

    E Michael Danielsen

    Full Text Available The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs, was absent from detergent resistant membranes (DRMs, implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.

  15. CD4 down regulation and raft dissociation by the non-depleting YTS177 antibody hinder murine T helper cell activities

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Jang [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Lu, Chun-Hao [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chen, Li-Chen [Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Nguyen, Duc T. [Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093 (United States); Huang, Yi-Shu [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, Hsi-Hsien [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Lin, Chun-Yen [Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China); Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Kuo, Ming-Ling, E-mail: mingling@mail.cgu.edu.tw [Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan (China); Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan (China); Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan, Taiwan (China)

    2016-05-13

    Non-depleting YTS177 anti-CD4 monoclonal antibody (MoAb) has been reported to lead to antigen-specific immunotolerance in allograft transplantation and autoimmune diabetes, as well as possibly to inhibition of allergic inflammation in mice. However, the molecular mechanisms underlying hyporesponsive T cell responses induced by YTS177 MoAb remain elusive. Herein, we demonstrate that the YTS177 MoAb increases the levels of anergy factors p27{sup kip1} and Cbl-b, inhibits IL-2 production, and impairs calcium mobilization in activated T cells in vitro. YTS177 MoAb suppresses OVA-driven proliferation of DO11.10 CD4{sup +} T cells in vivo as well. Mechanistically, YTS177 MoAb induces tolerance by causing CD4 down-regulation through clathrin-dependent and raft dissociation. The results obtained in this study lead us to propose novel protective or curative approaches to CD4 T cell-mediated diseases.

  16. Lipid Rafts Mediate Viruses Entering into Mammalian Cells%脂筏介导的病毒内吞

    Institute of Scientific and Technical Information of China (English)

    隋文; 黄敏; 孙长凯

    2007-01-01

    近几年的研究表明,病毒内吞进入细胞的途径是多样化的.除了经典的网格蛋白介导的病毒内吞,还有小窝(caveolae)或脂筏(1ipid raft)介导的病毒内吞.在研究过程中还发现了新的细胞器小窝体(caveosome).小窝体甚至还与网格蛋白介导的内吞相关的细胞器(如内体)存在着联系.这些研究加深了我们对病毒的认识,为我们发现新的抗病毒药物打下基础.同时病毒可以作为一个有用的工具来研究细胞内吞的路径和与之相关的细胞器,使人类更加了解细胞本身的奥秘.

  17. Extensive sphingolipid depletion does not affect lipid raft integrity or lipid raft localization and efflux function of the ABC transporter MRP1

    NARCIS (Netherlands)

    Klappe, Karin; Dijkhuis, Anne-Jan; Hummel, Ina; van Dam, Annie; Ivanova, Pavlina T.; Milne, Stephen B.; Myers, David S.; Brown, H. Alex; Permentier, Hjalmar; Kok, Jan W.

    2010-01-01

    We show that highly efficient depletion of sphingolipids in two different cell lines does not abrogate the ability to isolate Lubrol-based DRMs (detergent-resistant membranes) or detergent-free lipid rafts from these cells. Compared with control, DRM/detergent-free lipid raft fractions contain equal

  18. MILD CHOLESTEROL DEPLETION REDUCES AMYLOID-β PRODUCTION BY IMPAIRING APP TRAFFICKING TO THE CELL SURFACE

    Science.gov (United States)

    Guardia-Laguarta, Cristina; Coma, Mireia; Pera, Marta; Clarimón, Jordi; Sereno, Lidia; Agulló, José M.; Molina-Porcel, Laura; Gallardo, Eduard; Deng, Amy; Berezovska, Oksana; Hyman, Bradley T.; Blesa, Rafael; Gómez-Isla, Teresa; Lleó, Alberto

    2009-01-01

    It has been suggested that cellular cholesterol levels can modulate the metabolism of the amyloid precursor protein (APP) but the underlying mechanism remains controversial. In the current study, we investigate in detail the relationship between cholesterol reduction, APP processing and γ-secretase function in cell culture studies. We found that mild membrane cholesterol reduction led to a decrease in Aβ40 and Aβ42 in different cell types. We did not detect changes in APP intracellular domain or Notch intracellular domain generation. Western blot analyses showed a cholesterol-dependent decrease in the APP C-terminal fragments and cell surface APP. Finally, we applied a fluorescence resonance energy transfer (FRET)-based technique to study APP-Presenilin 1 (PS1) interactions and lipid rafts in intact cells. Our data indicate that cholesterol depletion reduces association of APP into lipid rafts and disrupts APP-PS1 interaction. Taken together, our results suggest that mild membrane cholesterol reduction impacts the cleavage of APP upstream of γ-secretase and appears to be mediated by changes in APP trafficking and partitioning into lipid rafts. PMID:19457132

  19. Anesthetics interacting with lipid rafts.

    Science.gov (United States)

    Bandeiras, Cátia; Serro, Ana Paula; Luzyanin, Konstantin; Fernandes, Anabela; Saramago, Benilde

    2013-01-23

    The exact mechanism by which anesthetics induce cell membrane-mediated modifications is still an open question. Although the fluidization effect of the anesthetic molecules on the cellular membrane is widely recognized, it is not known if anesthetics show any preference for specific membrane domains, namely the lipid rafts. The importance of these membrane micro-domains derives from the fact that they have been associated with cell signaling pathways, as well as with specific drug interactions. The objective of this work is to contribute for the elucidation of this question through the comparison of the anesthetic interactions with membranes of various lipid compositions. Liposomes prepared with an equimolar mixture of POPC, sphingomyelin and cholesterol, were chosen as models for lipid rafts. The interactions of these liposomes with two local anesthetics, tetracaine and lidocaine, and one general anesthetic, propofol, were studied. The effect of cholesterol was investigated by comparing anesthetic interactions with POPC/SM liposomes and POPC/SM/CHOL liposomes. The following experimental techniques were used: quartz crystal microbalance with dissipation, differential scanning calorimetry and phosphorus nuclear magnetic resonance. Although the liposomes investigated by the different techniques are not in the same conditions, it is possible to assemble the information obtained from all experimental techniques employed to reach a general conclusion. Tetracaine interacts more with raftlike domains, lidocaine induces stronger modifications on POPC/SM liposomes and the results for propofol are not fully conclusive but it seems to be the least prone to lipid interactions. The results were compared with those obtained with DMPC-containing liposomes, reported in a previous work.

  20. Adenylate cyclase toxin promotes internalisation of integrins and raft components and decreases macrophage adhesion capacity.

    Directory of Open Access Journals (Sweden)

    César Martín

    Full Text Available Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis.

  1. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Science.gov (United States)

    McGraw, Kathy L; Basiorka, Ashley A; Johnson, Joseph O; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.

  2. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS. Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size. Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q MDS.

  3. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    Science.gov (United States)

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-09

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth.

  4. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    Science.gov (United States)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  5. Abnormal lipid rafts related ganglioside expression and signaling in T lymphocytes in immune thrombocytopenia patients.

    Science.gov (United States)

    Zhang, Xian; Zhang, Donglei; Liu, Wenjie; Li, Huiyuan; Fu, Rongfeng; Liu, Xiaofan; Xue, Feng; Yang, Renchi

    2016-01-01

    Aberrant T lymphocytes signaling is considered to play a crucial role in the abnormal immune state of primary immune thrombocytopenia (ITP). Lipid raft has been verified to engage in the T cell receptor (TCR)-mediated T lymphocytes signal transduction. Whether lipid raft-associated T cells signal transduction has impact on the pathogenesis of ITP is still unconfirmed. In this study, we aimed to reveal the abnormality in structure and function of lipid rafts (LRs) in CD4(+) and CD8(+) T lymphocytes of patients with ITP. Our results showed that there was an increased lipid raft aggregation in ITP patients, while this kind of increase would not be influenced by platelet counts or therapeutic regimes. Stimulation by anti-CD3/CD28 monoclonal antibodies promoted enhanced lipid raft clustering in T lymphocytes of ITP patients compared with negative controls. Methyl-β-cyclodextrin (MβCD) could block the abnormal lipid raft aggregation and disrupt the TCR-mediated T cells proliferation and cytokines secretion, including both proinflammatory cytokines and anti-inflammatory cytokines. The spontaneous activation of T lymphocytes from ITP patients might be due to the elevated co-localization of protein tyrosine phosphatase (PTP) CD45 and lipid rafts in patients' CD4(+) and CD8(+) T lymphocytes. These findings suggest that the autoactivation of T lymphocytes from ITP patients may lead to the abnormality in lipid raft structure and raft-anchored proteins, and the changes conversely promote the TCR-mediated T cells activation of ITP patients.

  6. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  7. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.

    Directory of Open Access Journals (Sweden)

    Timothy J LaRocca

    Full Text Available Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010 Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET. Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.

  8. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.

    Science.gov (United States)

    Dubois, Louise; Ronquist, Karl K Göran; Ek, Bo; Ronquist, Gunnar; Larsson, Anders

    2015-11-01

    Prostasomes are exosomes derived from prostate epithelial cells through exocytosis by multivesicular bodies. Prostasomes have a bilayered membrane and readily interact with sperm. The membrane lipid composition is unusual with a high contribution of sphingomyelin at the expense of phosphatidylcholine and saturated and monounsaturated fatty acids are dominant. Lipid rafts are liquid-ordered domains that are more tightly packed than the surrounding nonraft phase of the bilayer. Lipid rafts are proposed to be highly dynamic, submicroscopic assemblies that float freely within the liquid disordered membrane bilayer and some proteins preferentially partition into the ordered raft domains. We asked the question whether lipid rafts do exist in prostasomes and, if so, which proteins might be associated with them. Prostasomes of density range 1.13-1.19g/ml were subjected to density gradient ultracentrifugation in sucrose fabricated by phosphate buffered saline (PBS) containing 1% Triton X-100 with capacity for banding at 1.10 g/ml, i.e. the classical density of lipid rafts. Prepared prostasomal lipid rafts (by gradient ultracentrifugation) were analyzed by mass spectrometry. The clearly visible band on top of 1.10g/ml sucrose in the Triton X-100 containing gradient was subjected to liquid chromatography-tandem MS and more than 370 lipid raft associated proteins were identified. Several of them were involved in intraluminal vesicle formation, e.g. tetraspanins, ESCRTs, and Ras-related proteins. This is the first comprehensive liquid chromatography-tandem MS profiling of proteins in lipid rafts derived from exosomes. Data are available via ProteomeXchange with identifier PXD002163.

  9. Aminopeptidase N/CD13 is associated with raft membrane microdomains in monocytes

    DEFF Research Database (Denmark)

    Navarrete Santos, A; Roentsch, J; Danielsen, E M;

    2000-01-01

    of monocytes were characterized by the presence of GM1 ganglioside as raft marker molecule and by the high level of tyrosine-phosphorylated proteins. Furthermore, similar to polarized cells, rafts in monocytic cells lack Na(+), K(+)-ATPase. Cholesterol depletion of monocytes by methyl-beta-cyclodextrin greatly...

  10. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  11. Lipid Rafts: Keys to Sperm Maturation, Fertilization, and Early Embryogenesis

    Directory of Open Access Journals (Sweden)

    Natsuko Kawano

    2011-01-01

    Full Text Available Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are stably or transiently formed. These compartments are called “lipid rafts”. In gamete cells that lack gene transcription, distribution of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early embryogenesis.

  12. Isolation and use of rafts.

    Science.gov (United States)

    Brown, Deborah A

    2002-11-01

    This unit describes methods for isolating and analyzing rafts by detergent insolubility. To distinguish these rafts from raft-like membranes isolated by other methods, they are referred to here as detergent-resistant membranes (DRMs). DRMs can be isolated by flotation on sucrose density gradients or by pelleting after detergent extraction. DRM proteins can be analyzed by SDS-PAGE and immunoblotting. Additionally, radiolabeled DRM proteins can be analyzed, and lipids can be quantitated by high-performance thin layer chromatography. Support protocols needed for the lipid analysis are also provided. Finally, protocols for raft disruption by cholesterol removal and measuring the kinetics of such removal are included together with a method that reverses the cholesterol removal (cholesterol repletion).

  13. Vacuum Packed Mini-Raft.

    Science.gov (United States)

    1974-12-16

    the cloth, seam tapes, and attachments to shrink or pucker at any point on the life raft. —4— The life raft shall be free from any congealed mass of...be cut in strict accordance with the patterns, developed by the Engineering Department, which show seam allowance , size , shape and location of the...to the flow of the carbon dioxide gas or bir restriction by any component . The carbon dioxide shall enter the main tubes only. All the seams

  14. Microdomains Associated to Lipid Rafts.

    Science.gov (United States)

    Pacheco, Jonathan; Ramírez-Jarquín, Josué O; Vaca, Luis

    2016-01-01

    Store Operated Ca(2+) Entry (SOCE), the main Ca(2+) influx mechanism in non-excitable cells, is implicated in the immune response and has been reported to be affected in several pathologies including cancer. The basic molecular constituents of SOCE are Orai, the pore forming unit, and STIM, a multidomain protein with at least two principal functions: one is to sense the Ca(2+) content inside the lumen of the endoplasmic reticulum(ER) and the second is to activate Orai channels upon depletion of the ER. The link between Ca(2+) depletion inside the ER and Ca(2+) influx from extracellular media is through a direct association of STIM and Orai, but for this to occur, both molecules have to interact and form clusters where ER and plasma membrane (PM) are intimately apposed. In recent years a great number of components have been identified as participants in SOCE regulation, including regions of plasma membrane enriched in cholesterol and sphingolipids, the so called lipid rafts, which recruit a complex platform of specialized microdomains, which cells use to regulate spatiotemporal Ca(2+) signals.

  15. 多巴胺受体和脂筏对高血压患者细胞NADPH氧化酶的作用%Dopamine receptor and raft lipids regulate NADPH oxidase activity in hypertensive renal proximal tubule cells

    Institute of Scientific and Technical Information of China (English)

    鹿敏; 刘晓颖; 韩卫星

    2013-01-01

    目的 探讨还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH氧化酶即Nox)亚单位在高血压患者肾脏近曲小管细胞中的表达及其活性变化,以及多巴胺受体和脂筏在其中的调节作用.方法 细胞分为正常组和高血压组,未经任何药物刺激的两组细胞分别作为正常对照组和高血压对照组,采用葡萄糖浓度梯度超速离心法提取细胞膜的脂筏和非脂筏区蛋白,经Western blot检测Nox亚单位蛋白的表达,光泽精化学发光法动态测定细胞膜Nox的活性.结果 多巴胺受体激动剂fenoldopam明显减少gp91phox在正常对照组[(17±3.3)%]和高血压对照组[(20±3.4)%,P<0.05]细胞膜脂筏区域的表达,降低正常对照组p22phox[(15±2.0)%,P<0.05]、p67phox、rac1在脂筏区的表达,但不能减少高血压对照组p22phox、p67phox、rac1蛋白的表达;胆固醇耗竭剂β-CD减少正常对照组gp91phox、p22phox在脂筏区的表达,不能减少高血压对照组Nox亚单位的表达;高血压对照组Nox的基础活性是正常对照组的5倍.结论 高血压患者肾脏近曲小管细胞具有较高的Nox亚单位的活性,多巴胺受体和脂筏对Nox亚单位的抑制作用减弱.%Objective To investigate the expression and activity of NADPH oxidase ( Nox ) subunit in hypertensive renal proximal tubule cells ( HT ) and the regulatory role of dopamine receptors and lipid boat. Methods Cells were seperated into normotensive group( NT ) and hypertensive group ( HT ), and their respective control group was established by learing the cells intact. Glucose concentration gradient was used to extract cell membrane lipid rafts and non-lipid rafts region. The expression levels of Nox subunits were detected by Western blot, and NADPH oxidase activity were measured by Lucigenin Chemiluminescence. Results Compared with control group, dopamine receptor agonist of fenoldopam significantly reduced gp91 expression in membrane lipid raft regions both in NT[ (17 ±3

  16. Effect of docosahexaenoic acid on interleukin-2 receptor signaling pathway in lipid rafts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Recent studies have shown that polyunsaturated fatty acids (PUFA) regulated the functions of membrane receptors in T cells and suppressed T cell -mediated immune responses. But the molecular mechanisms of immune regulation are not yet elucidated. Lipid rafts are plasma membrane microdomains, in which many receptors localized. The purpose of this study was to investigate the effect of DHA on IL-2R signaling pathway in lipid rafts. We isolated lipid rafts by discontinuous sucrose density gradient ultracentrifugation, and found that DHA could change the composition of lipid rafts and alter the distribution of key molecules of IL-2R signaling pathway, which transferred from lipid rafts to detergent-soluble membrane fractions. These results revealed that DHA treatment increased the proportion of polyunsaturated fatty acids especially n(3 polyunsaturated fatty acids in lipid rafts and changed the lipid environment of membrane microdomains in T cells. Compared with controls, DHA changed the localization of IL-2R, STAT5a and STAT5b in lipid rafts and suppressed the expression of JAK1, JAK3 and tyrosine phosphotyrosine in soluble membrane fractions. Summarily, this study concluded the effects of DHA on IL-2R signaling pathway in lipid rafts and explained the regulation of PUFAs in T cell-mediated immune responses.

  17. Evidence that a lipolytic enzyme--hematopoietic-specific phospholipase C-β2--promotes mobilization of hematopoietic stem cells by decreasing their lipid raft-mediated bone marrow retention and increasing the promobilizing effects of granulocytes.

    Science.gov (United States)

    Adamiak, M; Poniewierska-Baran, A; Borkowska, S; Schneider, G; Abdelbaset-Ismail, A; Suszynska, M; Abdel-Latif, A; Kucia, M; Ratajczak, J; Ratajczak, M Z

    2016-04-01

    Hematopoietic stem/progenitor cells (HSPCs) reside in the bone marrow (BM) microenvironment and are retained there by the interaction of membrane lipid raft-associated receptors, such as the α-chemokine receptor CXCR4 and the α4β1-integrin (VLA-4, very late antigen 4 receptor) receptor, with their respective specific ligands, stromal-derived factor 1 and vascular cell adhesion molecule 1, expressed in BM stem cell niches. The integrity of the lipid rafts containing these receptors is maintained by the glycolipid glycosylphosphatidylinositol anchor (GPI-A). It has been reported that a cleavage fragment of the fifth component of the activated complement cascade, C5a, has an important role in mobilizing HSPCs into the peripheral blood (PB) by (i) inducing degranulation of BM-residing granulocytes and (ii) promoting their egress from the BM into the PB so that they permeabilize the endothelial barrier for subsequent egress of HSPCs. We report here that hematopoietic cell-specific phospholipase C-β2 (PLC-β2) has a crucial role in pharmacological mobilization of HSPCs. On the one hand, when released during degranulation of granulocytes, it digests GPI-A, thereby disrupting membrane lipid rafts and impairing retention of HSPCs in BM niches. On the other hand, it is an intracellular enzyme required for degranulation of granulocytes and their egress from BM. In support of this dual role, we demonstrate that PLC-β2-knockout mice are poor mobilizers and provide, for the first time, evidence for the involvement of this lipolytic enzyme in the mobilization of HSPCs.

  18. Single-molecule microscopy reveals heterogeneous dynamics of lipid raft components upon TCR engagement.

    Science.gov (United States)

    Drbal, Karel; Moertelmaier, Manuel; Holzhauser, Christa; Muhammad, Arshad; Fuertbauer, Elke; Howorka, Stefan; Hinterberger, Maria; Stockinger, Hannes; Schütz, Gerhard J

    2007-05-01

    The existence of lipid rafts and their importance for immunoreceptor signaling is highly debated. By non-invasive single molecule imaging, we analyzed the dynamics of the T-cell antigen receptor (TCR), the lipid raft-associated glycosylphosphatidylinositol (GPI) proteins CD48 and CD59 and the major leukocyte phosphatase CD45 in living naive T lymphocytes. TCR triggering induced the immobilization of CD45 and CD48 at different positions within the T-cell interface. The second GPI protein, CD59, did not co-immobilize indicating lipid raft heterogeneity in living T lymphocytes. A novel biochemical approach confirmed that lipid raft components are not associated in the plasma membrane of resting cells, and variably associate with specific receptors to distinct lipid rafts upon activation.

  19. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells

    Science.gov (United States)

    Lin, Hwai-Jeng; Hsu, Fang-Yu; Chen, Wei-Wei; Lee, Che-Hsin; Lin, Ying-Ju; Chen, Yi-Ywan M.; Chen, Chih-Jung; Huang, Mei-Zi; Kao, Min-Chuan; Chen, Yu-An; Lai, Hsin-Chih; Lai, Chih-Ho

    2016-01-01

    Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases. PMID:27667993

  20. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells.

    Science.gov (United States)

    Lin, Hwai-Jeng; Hsu, Fang-Yu; Chen, Wei-Wei; Lee, Che-Hsin; Lin, Ying-Ju; Chen, Yi-Ywan M; Chen, Chih-Jung; Huang, Mei-Zi; Kao, Min-Chuan; Chen, Yu-An; Lai, Hsin-Chih; Lai, Chih-Ho

    2016-01-01

    Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases.

  1. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids.

    Science.gov (United States)

    Webb, Y; Hermida-Matsumoto, L; Resh, M D

    2000-01-07

    The ability of the Src family kinases Fyn and Lck to participate in signaling through the T cell receptor is critically dependent on their dual fatty acylation with myristate and palmitate. Here we identify a palmitate analog, 2-bromopalmitate, that effectively blocks Fyn fatty acylation in general and palmitoylation in particular. Treatment of COS-1 cells with 2-bromopalmitate blocked myristoylation and palmitoylation of Fyn and inhibited membrane binding and localization of Fyn to detergent-resistant membranes (DRMs). In Jurkat T cells, 2-bromopalmitate blocked localization of the endogenous palmitoylated proteins Fyn, Lck, and LAT to DRMs. This resulted in impaired signaling through the T cell receptor as evidenced by reductions in tyrosine phosphorylation, calcium release, and activation of mitogen-activated protein kinase. We also examined the ability of long chain polyunsaturated fatty acids (PUFAs) to inhibit protein fatty acylation. PUFAs have been reported to inhibit T cell signaling by excluding Src family kinases from DRMs. Here we show that the PUFAs arachidonic acid and eicosapentaenoic acid inhibit Fyn palmitoylation and consequently block Fyn localization to DRMs. We propose that inhibition of protein palmitoylation represents a novel mechanism by which PUFAs exert their immunosuppressive effects.

  2. Purification and Preliminary Identification of Seminolipid in the Lipid-raft of Germ Cell Membrane%生殖细胞膜脂筏中精原糖脂质的分离纯化及初步鉴定

    Institute of Scientific and Technical Information of China (English)

    张彦龙

    2011-01-01

    目的 哺乳动物的硫酸化糖脂质由负电荷硫酸离子和两亲性的鞘糖脂组成,硫酸盐半乳糖神经酰胺的硫酸糖脂质和硫酸盐半乳糖烷基甘油酯的精原糖脂质是存在与哺乳动物的两种主要糖脂质,为验证它是否以脂筏形式存在于生殖细胞膜上,提纯生殖细胞的精原糖脂质及其脂筏.方法 应用DEAE-Sephadex A-25和硅胶交替层析法,提纯牛的睾丸中精原糖脂质;在裂解缓冲液下应用匀浆机裂解生殖细胞,在5%~40%的蔗糖密度梯度离心下,提取生殖细胞中的脂筏;在氯仿/甲醇/水=10/20/1溶剂下分离脂筏的脂类和蛋白质,经薄层层析(TLC)和蛋白电泳(SDS-PACE)检测精原糖脂质存在方式.结果 经离子交换层析和硅胶层析,获得高纯度的精原糖脂质;经蔗糖梯度离心,在离心管中可见的脂筏两条带被回收,经薄层层析(TLC)检验,精原糖脂质存在于生殖细胞膜脂筏中.结论 由此推测精原糖脂质在生殖细胞细胞膜内,作为一个为受体信号传导和运输的功能性平台,并作为脂筏的组成部分而发挥关键作用.%Objective The sulfatides of mammals are composed of anionic and amphiphilie glycosphingolipids (GSLs). Sulfated galactosylceramide (galactosylsulfatide,SM4s;Sulfatide) and sulfated galactosylalkylacylglycerol (seminolipid,SM4g) are two major sulfoglycolipids in mammals. To certify the seminolipid in the germ cell membrane as lipid raft,we purified the seminolipid in the germ cells. Methods Seminolipid was purified the bovine testicles by silica gel chromatography and DEAE-Sephadex A-25. The germ cells were separated with a refiner in lysate buffer and the lipid rafts were purified by gradient centrifugation of the 5-40% sucrose density. Finally, protein and lipid of the lipid rafts were separated by the Chloroform / methanol / water = 0/20/1 solvent and then subjected to thin-layer chromatography (TLC)and SDS-PAGE to confirm the existence of the seminolipid

  3. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?

    DEFF Research Database (Denmark)

    Rog, T.; Vattulainen, I.

    2014-01-01

    Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units...... emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible...... with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has...

  4. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  5. y Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts

    Directory of Open Access Journals (Sweden)

    Yamanishi Koichi

    2009-08-01

    Full Text Available Abstract In general, enveloped viruses are highly dependent on their lipid envelope for entry into host cells. Here, we demonstrated that during the course of virus maturation, a significant proportion of human herpesvirus 6 (HHV-6 envelope proteins were selectively concentrated in the detergent-resistant glycosphingolipid- and cholesterol-rich membranes (rafts in HHV-6-infected cells. In addition, the ganglioside GM1, which is known to partition preferentially into lipid rafts, was detected in purified virions, along with viral envelope glycoproteins, gH, gL, gB, gQ1, gQ2 and gO indicating that at least one raft component was included in the viral particle during the assembly process.

  6. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.

    Science.gov (United States)

    Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen

    2016-07-01

    Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also

  7. Cell surface engineering of mesenchymal stem cells.

    Science.gov (United States)

    Sarkar, Debanjan; Zhao, Weian; Gupta, Ashish; Loh, Wei Li; Karnik, Rohit; Karp, Jeffrey M

    2011-01-01

    By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage

  8. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter

    2014-03-01

    Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.

  9. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation.

    Science.gov (United States)

    Chytil, Petr; Etrych, Tomáš; Kříž, Jaroslav; Subr, Vladimír; Ulbrich, Karel

    2010-11-20

    Controlled radical reversible addition-fragmentation chain transfer (RAFT) polymerisation was used to prepare water-soluble polymer-drug carriers based on copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) with a hydrazide group-containing monomer, showing well-defined structure with narrow molecular weight distribution (approx. 1.1-1.2). The anticancer therapeutic doxorubicin was bound to the polymeric carrier by a hydrazone bond, enabling pH-controlled release under mildly acid conditions that mimics the environment in endosomes/lysosomes of tumour cells. RAFT polymerisation facilitated the synthesis of semitelechelic copolymers, which were used in the synthesis of monoclonal anti-CD20 antibody-polymer-drug conjugate designed for cell-specific tumour targeting. They were also used for producing a biodegradable high-molecular-weight graft polymer-drug conjugate that degrade in the presence of glutathione, which is designed for passive targeting to solid tumours. The conjugates exhibited well-defined structures with narrow molecular weight distributions of approx. 1.3 and pH-controlled drug release.

  10. Sphingolipid symmetry governs membrane lipid raft structure.

    Science.gov (United States)

    Quinn, Peter J

    2014-07-01

    Lipid domain formation in membranes underlies the concept of rafts but their structure is controversial because the key role of cholesterol has been challenged. The configuration of glycosphingolipid receptors for agonists, bacterial toxins and enveloped viruses in plasma membrane rafts appears to be an important factor governing ligand binding and infectivity but the details are as yet unresolved. I have used X-ray diffraction methods to examine how cholesterol affects the distribution of glycosphingolipid in aqueous dispersions of an equimolar mixture of cholesterol and egg-sphingomyelin containing different proportions of glucosylceramide from human extracts. Three coexisting liquid-ordered bilayer structures are observed at 37°C in mixtures containing up to 20mol% glycosphingolipid. All the cholesterol was sequestered in one bilayer with the minimum amount of sphingomyelin (33mol%) to prevent formation of cholesterol crystals. The other two bilayers consisted of sphingomyelin and glucosylceramide. Asymmetric molecular species of glucosylceramide with N-acyl chains longer than 20 carbons form an equimolar complex with sphingomyelin in which the glycosidic residues are arranged in hexagonal array. Symmetric molecular species mix with sphingomyelin in proportions less than equimolar to form quasicrystalline bilayers. When the glycosphingolipid exceeds equimolar proportions with sphingomyelin cholesterol is incorporated into the structure and formation of a gel phase of glucosylceramide is prevented. The demonstration of particular structural features of ceramide molecular species combined with the diversity of sugar residues of glycosphingolipid classes paves the way for a rational approach to understanding the functional specificity of lipid rafts and how they are coupled across cell membranes.

  11. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  12. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  13. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  14. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors.

    Science.gov (United States)

    Kaneko, Masahiro; Takimoto, Hiroaki; Sugiyama, Tsuyoshi; Seki, Yoko; Kawaguchi, Kiichiro; Kumazawa, Yoshio

    2008-01-01

    Quercetin (QUER) and luteolin (LUTE) are dietary flavonoids capable of regulating the production of cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). However, their mechanisms of action are not fully understood. In lipopolysaccharide-triggered (LPS)-triggered signaling via Toll-like receptor 4 (TLR4), QUER and LUTE suppresses not only the degradation of the inhibitor of kappaB (IkappaB), with resultant activation of nuclear factor-kappaB (NF-kappaB), but also the phosphorylation of p38 and Akt in bone marrow-derived macrophages that have been stimulated with LPS. We report here that, in TNF-alpha-induced signaling, QUER and LUTE significantly suppressed the production of IL-6 and activation of NF-kappaB. Accumulation of lipid rafts, the initial step in the signaling pathway, was significantly inhibited when macrophages were treated with QUER or with LUTE prior to exposure to LPS. Similarly, the accumulation of lipid rafts was inhibited by the flavonoids when B cells were activated via the membrane IgM and when T cells were activated via CD3. In contrast, QUER and LUTE did not inhibit the activation of phorbol myristate acetate-induced NF-kappaB in macrophages. Our observations suggest that QUER and LUTE interact with receptors on the cell surface and suppress the accumulation of lipid rafts that occurs downstream of the activation of the receptors.

  15. A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes.

    Science.gov (United States)

    Aliche-Djoudi, Fatiha; Podechard, Normand; Collin, Aurore; Chevanne, Martine; Provost, Emilie; Poul, Martine; Le Hégarat, Ludovic; Catheline, Daniel; Legrand, Philippe; Dimanche-Boitrel, Marie-Thérèse; Lagadic-Gossmann, Dominique; Sergent, Odile

    2013-10-01

    Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures.

  16. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jae-Sung; Choo, Hyo-Jung [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Cho, Bong-Rae [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Hwan-Myung [Department of Chemistry, Ajou University, Suwon, Kyunggi-Do 443-749 (Korea, Republic of); Kim, Yong-Nyun [Division of Specific Organs Center, National Cancer Center, Kyunggi-Do 411-769 (Korea, Republic of); Ham, Young-Mi, E-mail: ymham2@hanmail.net [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Ko, Young-Gyu, E-mail: ygko@korea.ac.kr [College of Life Sciences and Biotechnology, Korea University, 1, 5-ka, Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-07-24

    Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity, caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.

  17. Rac1 participates in thermally induced alterations of the cytoskeleton, cell morphology and lipid rafts, and regulates the expression of heat shock proteins in B16F10 melanoma cells.

    Directory of Open Access Journals (Sweden)

    Burcin Gungor

    Full Text Available Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C and severe (43°C heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.

  18. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs.

    Science.gov (United States)

    Erb, Samuel J; Schappi, Jeffrey M; Rasenick, Mark M

    2016-09-16

    Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics.

  19. ApoER2 expression increases Aβ production while decreasing Amyloid Precursor Protein (APP endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of γ-secretase activity

    Directory of Open Access Journals (Sweden)

    Bu Guojun

    2007-07-01

    Full Text Available Abstract Background The generation of the amyloid-β peptide (Aβ through the proteolytic processing of the amyloid precursor protein (APP is a central event in the pathogenesis of Alzheimer's disease (AD. Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing. Results Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production. Conclusion These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.

  20. Study of Raft Domains in Model Membrane of DPPC/PE/Cholesterol

    Science.gov (United States)

    Lor, Chai; Hirst, Linda

    2010-10-01

    Raft domains in bilayer membrane are thought to play an important role in many cell functions such as cell signaling or trans-membrane protein activation. Here we use a model membrane consisting of DPPC/PE/cholesterol to examine the structure of membrane rafts and phase interactions. In particular we are interested in lipids containing the highly polyunsaturated fatty acid DHA. We use both atomic force microscopy (AFM) and fluorescence microscopy to obtain information on the structural properties of raft regions and track cholesterol. As expected, we find phase separation of raft regions between saturated and unsaturated lipids. Moreover, we find that the roughness of the domains change with varying cholesterol concentration possibly due to overpacking. This model study provides further understanding of the role of cholesterol in bilayer membrane leading towards a better knowledge of cell membranes.

  1. O-glycans direct selectin ligands to lipid rafts on leukocytes.

    Science.gov (United States)

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P

    2015-07-14

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.

  2. the role of the actin cytoskeleton and lipid rafts in the localization and function of the ABCC1 transporter

    NARCIS (Netherlands)

    Kok, Jan; Klappe, Katharina; Hummel, Ina

    2014-01-01

    ATP-binding cassette (ABC) transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of A

  3. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization.

    Science.gov (United States)

    Chen, Guangping; Howe, Ashley G; Xu, Gang; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M

    2011-12-01

    The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.

  4. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function.

    Science.gov (United States)

    Raza Shaikh, Saame

    2010-01-01

    Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid (PUFA) that generally suppresses the function of T lymphocytes and antigen presenting cells (APCs). An emerging mechanism by which DHA modifies lymphocyte function is through changes in the organization of sphingolipid/cholesterol lipid raft membrane domains. Two contradictory models have been proposed to explain how DHA exerts its effects through changes in raft organization. The biophysical model, developed in model membranes, shows that DHA-containing phospholipids form unique non-raft membrane domains, that are organizationally distinct from lipid rafts, which serve to alter the conformation and/or lateral organization of lymphocyte proteins. In contrast, the cellular model on DHA and rafts shows that DHA suppresses lymphocyte function, in part, by directly incorporating into lipid rafts and altering protein activity. To reconcile opposing biophysical and cellular viewpoints, a major revision to existing models is presented herein. Based largely on quantitative microscopy data, it is proposed that DHA, consumed through the diet, modifies lymphocyte function, in part, through the formation of nanometer scale DHA-rich domains. These nano-scale domains disrupt the optimal raft-dependent clustering of proteins necessary for initial signaling. The data covered in this review highlights the importance of understanding how dietary n-3 PUFAs modify lymphocyte membranes, which is essential toward developing these fatty acids as therapeutic agents for treating inflammatory diseases.

  5. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains.

    Science.gov (United States)

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R; Tyteca, Donatienne

    2016-04-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Wave propelled ratchets and drifting rafts

    Science.gov (United States)

    Eddi, A.; Terwagne, D.; Fort, E.; Couder, Y.

    2008-05-01

    Several droplets, bouncing on a vertically vibrated liquid bath, can form various types of bound states, their interaction being due to the waves emitted by their bouncing. Though they associate droplets which are individually motionless, we show that these bound states are self-propelled when the droplets are of uneven size. The driving force is linked to the assymetry of the emitted surface waves. The direction of this ratchet-like displacement can be reversed, by varying the amplitude of forcing. This direction reversal occurs when the bouncing of one of the drops becomes sub-harmonic. As a generalization, a larger number of bouncing droplets form crystalline rafts which are also shown to drift or rotate when assymetrical.

  7. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Science.gov (United States)

    Barsbay, Murat; Güven, Olgun

    2009-12-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  8. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    Energy Technology Data Exchange (ETDEWEB)

    Barsbay, Murat [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: mbarsbay@hacettepe.edu.tr; Gueven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey)], E-mail: guven@hacettepe.edu.tr

    2009-12-15

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly {gamma} radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of {gamma} radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of {gamma} radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  9. Lipid raft-dependent plasma membrane repair interferes with the activation of B lymphocytes.

    Science.gov (United States)

    Miller, Heather; Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Maugel, Timothy K; Andrews, Norma W; Song, Wenxia

    2015-12-21

    Cells rapidly repair plasma membrane (PM) damage by a process requiring Ca(2+)-dependent lysosome exocytosis. Acid sphingomyelinase (ASM) released from lysosomes induces endocytosis of injured membrane through caveolae, membrane invaginations from lipid rafts. How B lymphocytes, lacking any known form of caveolin, repair membrane injury is unknown. Here we show that B lymphocytes repair PM wounds in a Ca(2+)-dependent manner. Wounding induces lysosome exocytosis and endocytosis of dextran and the raft-binding cholera toxin subunit B (CTB). Resealing is reduced by ASM inhibitors and ASM deficiency and enhanced or restored by extracellular exposure to sphingomyelinase. B cell activation via B cell receptors (BCRs), a process requiring lipid rafts, interferes with PM repair. Conversely, wounding inhibits BCR signaling and internalization by disrupting BCR-lipid raft coclustering and by inducing the endocytosis of raft-bound CTB separately from BCR into tubular invaginations. Thus, PM repair and B cell activation interfere with one another because of competition for lipid rafts, revealing how frequent membrane injury and repair can impair B lymphocyte-mediated immune responses.

  10. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  11. Simulation of Rate Retardation in RAFT Polymerization of Styrene with Low RAFT-Initiator Ratio

    Institute of Scientific and Technical Information of China (English)

    WANG Yanjun; YUE Liying; CHEN Wenhao; YUAN Caideng

    2005-01-01

    Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K r is BDB

  12. The lipid raft proteome of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Pérez, Alberto; Coleman, James L; Benach, Jorge L

    2015-11-01

    Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).

  13. Chemical driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-15

    Full Text Available The author provides a brief overview of the chemical driving forces for rafting in superalloys. Until recently, all theories of the driving force for rafting have considered the compositions of the two phases to be fixed, although accepting...

  14. Fire ants self-assemble into waterproof rafts to survive floods.

    Science.gov (United States)

    Mlot, Nathan J; Tovey, Craig A; Hu, David L

    2011-05-10

    Why does a single fire ant Solenopsis invicta struggle in water, whereas a group can float effortlessly for days? We use time-lapse photography to investigate how fire ants S. invicta link their bodies together to build waterproof rafts. Although water repellency in nature has been previously viewed as a static material property of plant leaves and insect cuticles, we here demonstrate a self-assembled hydrophobic surface. We find that ants can considerably enhance their water repellency by linking their bodies together, a process analogous to the weaving of a waterproof fabric. We present a model for the rate of raft construction based on observations of ant trajectories atop the raft. Central to the construction process is the trapping of ants at the raft edge by their neighbors, suggesting that some "cooperative" behaviors may rely upon coercion.

  15. Fire ants self-assemble into waterproof rafts to survive floods

    Science.gov (United States)

    Mlot, Nathan J.; Tovey, Craig A.; Hu, David L.

    2011-01-01

    Why does a single fire ant Solenopsis invicta struggle in water, whereas a group can float effortlessly for days? We use time-lapse photography to investigate how fire ants S. invicta link their bodies together to build waterproof rafts. Although water repellency in nature has been previously viewed as a static material property of plant leaves and insect cuticles, we here demonstrate a self-assembled hydrophobic surface. We find that ants can considerably enhance their water repellency by linking their bodies together, a process analogous to the weaving of a waterproof fabric. We present a model for the rate of raft construction based on observations of ant trajectories atop the raft. Central to the construction process is the trapping of ants at the raft edge by their neighbors, suggesting that some “cooperative” behaviors may rely upon coercion. PMID:21518911

  16. RAFT polymers for protein recognition

    Directory of Open Access Journals (Sweden)

    Alan F. Tominey

    2010-06-01

    Full Text Available A new family of linear polymers with pronounced affinity for arginine- and lysine-rich proteins has been created. To this end, N-isopropylacrylamide (NIPAM was copolymerized in water with a binding monomer and a hydrophobic comonomer using a living radical polymerization (RAFT. The resulting copolymers were water-soluble and displayed narrow polydispersities. They formed tight complexes with basic proteins depending on the nature and amount of the binding monomer as well as on the choice of the added hydrophobic comonomer.

  17. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  18. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  19. Tissue Engineering the Cornea: The Evolution of RAFT.

    Science.gov (United States)

    Levis, Hannah J; Kureshi, Alvena K; Massie, Isobel; Morgan, Louise; Vernon, Amanda J; Daniels, Julie T

    2015-01-22

    Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  20. Tissue Engineering the Cornea: The Evolution of RAFT

    Directory of Open Access Journals (Sweden)

    Hannah J. Levis

    2015-01-01

    Full Text Available Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT. The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.

  1. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes

    Directory of Open Access Journals (Sweden)

    Jo V. Rushworth

    2011-01-01

    Full Text Available Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD, namely, in promoting the generation of the amyloid-β (Aβ peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.

  2. Facile Fabrication of Water Dispersible Latex Particles with Homogeneous or Chain-Segregated Surface from RAFT Polymerization Using a Mixture of Two Macromolecular Chain Transfer Agents.

    Science.gov (United States)

    Sun, Li; Hong, Liangzhi; Wang, Chaoyang

    2016-04-01

    Water dispersible latex particles with randomly mixed shells or chain segregated surface are synthesized from one-pot reversible addition-fragmentation chain transfer heterogeneous polymerization of benzyl methacrylate (BzMA) using a mixture of poly(glycerol monomethacrylate) (PGMA) and poly(2,3-bis(succinyloxy)propyl methacrylate) (PBSPMA) macromolecular chain transfer agents. In methanol, the two in situ synthesized PGMA-b-PBzMA and PBSPMA-b-PBzMA diblock copolymers coaggregate into spherical micelles, which contain PBzMA core and discrete PGMA and PBSPMA nanodomains on the shell. In contrast, in water-methanol mixture (V/V = 9/1), latex particles with homogeneous distribution of PGMA and PBSPMA polymer chains on the shell are obtained. The reasons leading to formation of latex particles with homogenous or chain-segregated surface are discussed, and polymerization kinetics and physical state of PBSPMA in methanol and water-methanol mixtures are ascribed. These polymeric micelles with patterned functional group on the surface are potentially important for application in supracolloidal hierarchical assemblies and catalysis.

  3. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    Science.gov (United States)

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  4. 脂筏及其在病原生物感染中的作用概述%A review of lipid rafts and their role in pathogen infection

    Institute of Scientific and Technical Information of China (English)

    吴寒宇

    2011-01-01

    Lipid rafts are microdomains in the cell membrane and are involved in many of a cell's biological activities. These rafts provide the structural platforms for numerous protein-protein and lipid -protein interactions at the cell surface. Lipid rafts play an important role in the process of infection by many pathogenic microorganisms. This paper provides reviews the structure and function of lipid rafts and their role in pathogen infection.%脂筏是细胞膜上的微结构域,参与细胞的多种生物学行为,为细胞表面发生的蛋白质-蛋白质和蛋白质-脂类分子间的相互作用提供了平台.脂筏在多种病原生物的感染过程中发挥着重要作用.本文对脂筏的结构功能及其在病原生物的感染过程中发挥的作用进行了概述.

  5. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Pedersen, Esben D K; Immerdal, Lissi;

    2005-01-01

    The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins...... a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin...... the lipid raft microdomains of the brush border against pathogens....

  6. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  7. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  8. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed.

  9. Castaways can't be choosers - Homogenization of rafting assemblages on floating seaweeds

    Science.gov (United States)

    Gutow, Lars; Beermann, Jan; Buschbaum, Christian; Rivadeneira, Marcelo M.; Thiel, Martin

    2015-01-01

    After detachment from benthic habitats, the epibiont assemblages on floating seaweeds undergo substantial changes, but little is known regarding whether succession varies among different seaweed species. Given that floating algae may represent a limiting habitat in many regions, rafting organisms may be unselective and colonize any available seaweed patch at the sea surface. This process may homogenize rafting assemblages on different seaweed species, which our study examined by comparing the assemblages on benthic and floating individuals of the fucoid seaweeds Fucus vesiculosus and Sargassum muticum in the northern Wadden Sea (North Sea). Species richness was about twice as high on S. muticum as on F. vesiculosus, both on benthic and floating individuals. In both seaweed species benthic samples were more diverse than floating samples. However, the species composition differed significantly only between benthic thalli, but not between floating thalli of the two seaweed species. Separate analyses of sessile and mobile epibionts showed that the homogenization of rafting assemblages was mainly caused by mobile species. Among these, grazing isopods from the genus Idotea reached extraordinarily high densities on the floating samples from the northern Wadden Sea, suggesting that the availability of seaweed rafts was indeed limiting. Enhanced break-up of algal rafts associated with intense feeding by abundant herbivores might force rafters to recolonize benthic habitats. These colonization processes may enhance successful dispersal of rafting organisms and thereby contribute to population connectivity between sink populations in the Wadden Sea and source populations from up-current regions.

  10. Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling.

    Science.gov (United States)

    Chowdhury, Saiful M; Zhu, Xuewei; Aloor, Jim J; Azzam, Kathleen M; Gabor, Kristin A; Ge, William; Addo, Kezia A; Tomer, Kenneth B; Parks, John S; Fessler, Michael B

    2015-07-01

    Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1(-/-) macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1(+/+) and Abca1(-/-) macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1(+/+) macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1(-/-) rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response.

  11. The synaptic recruitment of lipid rafts is dependent on CD19-PI3K module and cytoskeleton remodeling molecules.

    Science.gov (United States)

    Xu, Liling; Auzins, Arturs; Sun, Xiaolin; Xu, Yinsheng; Harnischfeger, Fiona; Lu, Yun; Li, Zhanguo; Chen, Ying-Hua; Zheng, Wenjie; Liu, Wanli

    2015-08-01

    Sphingolipid- and cholesterol-rich lipid raft microdomains are important in the initiation of BCR signaling. Although it is known that lipid rafts promote the coclustering of BCR and Lyn kinase microclusters within the B cell IS, the molecular mechanism of the recruitment of lipid rafts into the B cell IS is not understood completely. Here, we report that the synaptic recruitment of lipid rafts is dependent on the cytoskeleton-remodeling proteins, RhoA and Vav. Such an event is also efficiently regulated by motor proteins, myosin IIA and dynein. Further evidence suggests the synaptic recruitment of lipid rafts is, by principle, an event triggered by BCR signaling molecules and second messenger molecules. BCR-activating coreceptor CD19 potently enhances such an event depending on its cytoplasmic Tyr421 and Tyr482 residues. The enhancing function of the CD19-PI3K module in synaptic recruitment of lipid rafts is also confirmed in human peripheral blood B cells. Thus, these results improve our understanding of the molecular mechanism of the recruitment of lipid raft microdomains in B cell IS.

  12. Raft River Geothermal Aquaculture Experiment. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

    1979-08-01

    Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

  13. Structure and dynamics of nano-sized raft-like domains on the plasma membrane

    Science.gov (United States)

    Herrera, Fernando E.; Pantano, Sergio

    2012-01-01

    Cell membranes are constitutively composed of thousands of different lipidic species, whose specific organization leads to functional heterogeneities. In particular, sphingolipids, cholesterol and some proteins associate among them to form stable nanoscale domains involved in recognition, signaling, membrane trafficking, etc. Atomic-detail information in the nanometer/second scale is still elusive to experimental techniques. In this context, molecular simulations on membrane systems have provided useful insights contributing to bridge this gap. Here we present the results of a series of simulations of biomembranes representing non-raft and raft-like nano-sized domains in order to analyze the particular structural and dynamical properties of these domains. Our results indicate that the smallest (5 nm) raft domains are able to preserve their distinctive structural and dynamical features, such as an increased thickness, higher ordering, lower lateral diffusion, and specific lipid-ion interactions. The insertion of a transmembrane protein helix into non-raft, extended raft-like, and raft-like nanodomain environments result in markedly different protein orientations, highlighting the interplay between the lipid-lipid and lipid-protein interactions.

  14. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

    Science.gov (United States)

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-04-14

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.

  15. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.

    Science.gov (United States)

    Bannunah, Azzah M; Vllasaliu, Driton; Lord, Jennie; Stolnik, Snjezana

    2014-12-01

    This study investigated the effect of nanoparticle size (50 and 100 nm) and surface charge on their interaction with Caco-2 monolayers as a model of the intestinal epithelium, including cell internalization pathways and the level of transepithelial transport. Initially, toxicity assays showed that cell viability and cell membrane integrity were dependent on the surface charge and applied mass, number, and total surface area of nanoparticles, as tested in two epithelial cell lines, colon carcinoma Caco-2 and airway Calu-3. This also identified suitable nanoparticle concentrations for subsequent cell uptake experiments. Nanoparticle application at doses below half maximal effective concentration (EC₅₀) revealed that the transport efficiency (ratio of transport to cell uptake) across Caco-2 cell monolayers is significantly higher for negatively charged nanoparticles compared to their positively charged counterparts (of similar size), despite the higher level of internalization of positively charged systems. Cell internalization pathways were hence probed using a panel of pharmacological inhibitors aiming to establish whether the discrepancy in transport efficiency is due to different uptake and transport pathways. Vesicular trans-monolayer transport for both positively and negatively charged nanoparticles was confirmed via inhibition of dynamin (by dynasore) and microtubule network (via nocodazole), which significantly reduced the transport of both nanoparticle systems. For positively charged nanoparticles a significant decrease in internalization and transport (46% and 37%, respectively) occurred in the presence of a clathrin pathway inhibitor (chlorpromazine), macropinocytosis inhibition (42%; achieved by 5-(N-ethyl-N-isopropyi)-amiloride), and under cholesterol depletion (38%; via methyl-β-cyclodextrin), but remained unaffected by the inhibition of lipid raft associated uptake (caveolae) by genistein. On the contrary, the most prominent reduction in

  16. Research progress on the lipid rafts in plant cells%脂筏及其在植物细胞中的研究进展

    Institute of Scientific and Technical Information of China (English)

    崔亚宁; 李晓娟; 林金星; 李瑞丽

    2014-01-01

    脂筏(lipid rafts)是细胞质膜上富含固醇类和鞘脂类的微结构域,其大小为10~ 200 nm,是一种高度动态的结构.脂筏假说认为,质膜上一些小而动态的纳米级异质性结构可以通过脂类-脂类、蛋白-脂类和蛋白-蛋白之间的相互作用形成大的反应平台,进而可以介导细胞信号的转导过程.研究表明脂筏具有多种重要的生物学功能,其中包括参与信号转导、跨膜转运、胞吞和胞吐平衡调节、细胞骨架组织以及病原菌入侵等.目前对脂筏的研究还只是近几年才得到快速发展的一个领域,但已经受到越来越多的重视,并且取得初步的研究进展.本文主要介绍了脂筏的特性和生物学功能,尤其对脂筏在植物细胞中的研究进展进行了总结,为今后系统开展脂筏的研究提供理论参考.

  17. Transfer of Fas (CD95 protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    Directory of Open Access Journals (Sweden)

    H. Sawai

    2010-02-01

    Full Text Available Mouse monoclonal anti-Fas (CD95 antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  18. Raft River geoscience case study: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The following are included in these appendices: lithology, x-ray analysis, and cores; well construction data; borehole geophysical logs; chemical analyses from wells at the Raft River geothermal site; and bibliography. (MHR)

  19. Metastasis-associated cell surface oncoproteomics

    Directory of Open Access Journals (Sweden)

    Piia-Riitta eKarhemo

    2012-11-01

    Full Text Available Oncoproteomics aims to the discovery of molecular markers, drug targets and pathways by studying cancer specific protein expression, localization, modification and interaction. Cell surface proteins play a central role in several pathological conditions, including cancer and its metastatic spread. However, cell surface proteins are underrepresented in proteomics analyses performed from the whole cell extracts due to their hydrophobicity and low abundance. Different methods have been developed to enrich and isolate the cell surface proteins to reduce sample complexity. Despite the method selected, the primary difficulty encountered is the solubilization of the hydrophobic transmembrane proteins from the lipid bilayer. This review focuses on proteomic analyses of metastasis-associated proteins identified using the cell surface biotinylation method. Interestingly, also certain intracellular proteins were identified from the cell surface samples. The function of these proteins at the cell surface might well differ from their function inside the cell.

  20. A comparative study on the raft chemical properties of various alginate antacid raft-forming products.

    Science.gov (United States)

    Dettmar, Peter W; Gil-Gonzalez, Diana; Fisher, Jeanine; Flint, Lucy; Rainforth, Daniel; Moreno-Herrera, Antonio; Potts, Mark

    2017-09-13

    Research to measure the chemical characterization of alginate rafts for good raft performance and ascertain how formulation can affect chemical parameters. A selection of alginate formulations was investigated all claiming to be proficient raft formers with significance between products established and ranked. Procedures were selected which demonstrated the chemical characterization allowing rafts to effectively impede the reflux into the esophagus or in severe cases to be refluxed preferentially into the esophagus and exert a demulcent effect, with focus of current research on methods which complement previous studies centered on physical properties. The alginate content was analyzed by a newly developed HPLC method. Methods were used to determine the neutralization profile and the acid neutralization within the raft determined along with how raft structure affects neutralization. Alginate content of Gaviscon Double Action (GDA) within the raft was significantly superior (p Alginate formulations require three chemical reactions to take place simultaneously: transformation to alginic acid, sodium carbonate reacting to form carbon dioxide, calcium releasing free calcium ions to bind with alginic acid providing strength to raft formation. GDA was significantly superior (p <.0001) to all other comparators.

  1. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    Science.gov (United States)

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-09-26

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.

  2. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment.

    Science.gov (United States)

    Kerdsakundee, Nattha; Mahattanadul, Sirima; Wiwattanapatapee, Ruedeekorn

    2015-08-01

    Novel raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions were developed to prolong the gastric residence time and provide for a controlled release therapy of curcumin to treat gastric ulcers. The solid dispersions of curcumin with Eudragit® EPO were prepared by the solvent evaporation method at various ratios to improve the solubility and the dissolution of curcumin. The optimum weight ratio of 1:5 for curcumin to Eudragit® EPO was used to incorporate into the raft forming systems. The raft forming formulations were composed of curcumin-Eudragit® EPO solid dispersions, sodium alginate as a gelling polymer and calcium carbonate for generating divalent Ca(2+) ions and carbon dioxide to form a floating raft. All formulations formed a gelled raft in 1min and sustained buoyancy on the 0.1N hydrochloric acid (pH 1.2) surface with a 60-85% release of curcumin within 8h. The curative effect on the acetic acid-induced chronic gastric ulcer in rats was determined. The curcumin raft forming formulations at 40mg/kg once daily showed a superior curative effect on the gastric ulcer in terms of the ulcer index and healing index than the standard antisecretory agent: lansoprazole (1mg/kg, twice daily) and a curcumin suspension (40mg/kg, twice daily). These studies demonstrated that the new raft forming systems containing curcumin solid dispersions are promising carriers for a stomach-specific delivery of poorly soluble lipophilic compounds.

  3. Numerical modeling of fluid flow with rafts: An application to lava flows

    Science.gov (United States)

    Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander

    2016-07-01

    Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.

  4. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.; Wosten, H.A.B.

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the ce

  5. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  6. Cell-surface hydrophobicity of Staphylococcus saprophyticus.

    Science.gov (United States)

    Schneider, P. F.; Riley, T. V.

    1991-01-01

    The cell-surface hydrophobicity of 100 urinary isolates of Staphylococcus saprophyticus, cultured from symptomatic females in the general population, was assessed using a two-phase aqueous:hydrocarbon system. Relatively strong cell-surface hydrophobicity was exhibited by 79 isolates using the criteria employed, while only 2 of the remaining 21 isolates failed to demonstrate any detectable hydrophobicity. Cell-surface hydrophobicity may be a virulence factor of S. saprophyticus, important in adherence of the organism to uroepithelia. Additionally, the data support the concept that cell-surface hydrophobicity may be a useful predictor of clinical significance of coagulase-negative staphylococci isolated from clinical sources. PMID:1993454

  7. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    Science.gov (United States)

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  8. Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes.

    Science.gov (United States)

    Bryant, M R; Marta, C B; Kim, F S; Bansal, R

    2009-07-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) initiate diverse cellular responses that contribute to the regulation of oligodendrocyte (OL) function. To understand the mechanisms by which FGFRs elicit these cellular responses, we investigated the phosphorylation of signal transduction proteins and the role of cholesterol-glycosphingolipid-enriched "lipid raft" microdomains in differentiated OLs. Surprisingly, we found that the most abundant tyrosine-phosphorylated protein in OLs was the 120-kd isoform of FGFR2 and that it was phosphorylated even in the absence of FGF2, suggesting a potential ligand-independent function for this receptor. Furthermore, FGFR2, but not FGFR1, was associated with lipid raft microdomains in OLs and myelin (but not in astrocytes). This provides the first evidence for the association of FGFR with TX-100-insoluble lipid raft fractions. FGFR2 phosphorylated the key downstream target, FRS2 in OLs. Raft disruption resulted in loss of phosphorylated FRS2 from lipid rafts, coupled with the loss of Akt but not of Mek or Erk phosphorylation. This suggests that FGFR2-FRS2 signaling in lipid rafts operates via the PI3-Kinase/Akt pathway rather than the Ras/Mek/Erk pathway, emphasizing the importance of microenvironments within the cell membrane. Also present in lipid rafts in OLs and myelin, but not in astrocytes, was a novel 52-kd isoform of FGFR2 that lacked the extracellular ligand-binding region. These results demonstrate that FGFR2 in OLs and myelin possess unique characteristics that are specific both to receptor type and to OLs and provide a novel mechanism to elicit distinct cellular responses that mediate both FGF-dependent and -independent functions.

  9. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-01

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors.

  10. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  11. Cell attachment on ion implanted titanium surface

    Directory of Open Access Journals (Sweden)

    P.S. Sreejith

    2008-12-01

    Full Text Available Purpose: Of outmost importance for the successful use of an implant is a good adhesion of the surrounding tissue to the biomaterial. In addition to the surface composition of the implant, the surface topography also influences the properties of the adherent cells. In the present investigation, ion implanted and untreated surfaces were compared for cell adhesion and spreading.Design/methodology/approach: The surface topography of the surfaces were analyzed using AFM and the cell studies with SEM.Findings: The results of our present investigation is indicative of the fact that ion implanted titanium surface offer better cell binding affinity compared to untreated/polished surface.Practical implications: Success of non-biodegradable implants will first and foremost depend on biocompatibility, followed by the capacity of the surface topography of the implants to evince desired cell matrix, surface cell matrix interactions. In the present study, the cell growth on ion implanted Ti material is analyzed and discussed.Originality/value: In this paper, we have utilized ion implantation technique, which will produce nano-texturing of the surface without producing any detrimental effects to both the dimensions and properties of the implants.

  12. Stable, inflatable life raft for high seas rescue operations

    Science.gov (United States)

    Barnett, J. H., Jr.; Harrison, F.; Marak, R.; Radnofsky, M. I.

    1971-01-01

    Raft is easily deployed and highly maneuverable in water. It has false bottom of water ballast containers attached to underside, making it exceptionally stable platform from which swimmers can operate. Raft is attachable to external moorings.

  13. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    Science.gov (United States)

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  14. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S;

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  15. Controlled surface chemistries and quantitative cell response

    Science.gov (United States)

    Plant, Anne L.

    2002-03-01

    Living cells experience a large number of signaling cues from their extracellular matrix. As a result of these inputs, a variety of intracellular signaling pathways are apparently initiated simultaneously. The vast array of alternative responses that result from the integration of these inputs suggests that it may be reasonable to look for cellular response not as an 'on' or 'off' condition but as a distribution of responses. A difficult challenge is to determine whether variations in responses from individual cells arise from the complexity of intracellular signals or are due to variations in the cell culture environment. By controlling surface chemistry so that every cell 'sees' the same chemical and physical environment, we can begin to assess how the distribution of cell response is affected strictly by changes in the chemistry of the cell culture surface. Using the gene for green fluorescent protein linked to the gene for the promoter of the extracellular matrix protein, tenascin, we can easily probe the end product in a signaling pathway that is purported to be linked to surface protein chemistry and to cell shape. Cell response to well-controlled, well-characterized, and highly reproducible surfaces prepared using soft lithography techniques are compared with more conventional ways of preparing extracellular matrix proteins for cell culture. Using fluorescence microscopy and image analysis of populations of cells on these surfaces, we probe quantitatively the relationship between surface chemistry, cell shape and variations in gene expression endpoint.

  16. The novel chlamydial adhesin CPn0473 mediates the lipid raft-dependent uptake of Chlamydia pneumoniae.

    Science.gov (United States)

    Fechtner, Tim; Galle, Jan N; Hegemann, Johannes H

    2016-08-01

    Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.

  17. The cell surface of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1984-01-01

    Full Text Available The cell surface of trypanosomatids is formed by the plasma membrane and a layer of sub-pellicular microtubules which are connected to the plasma membrane. The plasma membrane is composed by proteins, lipids and carbohydrates which form the glycocalix. In this paper we will review briefly aspects related to the organization of the cell surface of Trypanosoma cruzi.

  18. The Settlement Behavior of Piled Raft Interaction in Undrained Soil

    DEFF Research Database (Denmark)

    Ghalesari, Abbasali Taghavi; Barari, Amin; Amini, Pedram Fardad

    2013-01-01

    Offshore piled raft foundations are one of the most commonly used foundations in offshore structures. When a raft foundation alone does not satisfy the design requirements, the addition of piles may improve both the ultimate load capacity and the settlement performance of the raft. In this paper,...

  19. Assessing the nature of lipid raft membranes.

    Directory of Open Access Journals (Sweden)

    Perttu S Niemelä

    2007-02-01

    Full Text Available The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL. These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins. However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM, and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide evidence that the presence of PSM and CHOL in raft-like membranes leads to strongly packed and rigid bilayers. We also find that the simulated raft bilayers are characterized by nanoscale lateral heterogeneity, though the slow lateral diffusion renders the interpretation of the observed lateral heterogeneity more difficult. The findings reveal aspects of the role of favored (specific lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of

  20. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  1. Molecularly Imprinted Polymers on Chloromethyl Polystyrene Resin Prepared via RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Surface molecularly imprinted polymers (SMIP) was prepared via the reversible addition-fragmentation chain transfer (RAFT) polymerization on the chloromethyl polystyrene resin (CPR) in the presence of the template D-phenylalanine. The structure of SMIP was characterized by FTIR and SEM. The adsorption behavior of D-phenylalanine of SMIP was preliminarily investigated.

  2. Cell-surface remodelling during mammalian erythropoiesis.

    Science.gov (United States)

    Wraith, D C; Chesterton, C J

    1982-10-15

    Current evidence suggests that the major cell-surface modification occurring during mammalian erythropoiesis could be generated by two separate mechanisms: either selective loss of membrane proteins during enucleation or endocytosis at the subsequent reticulocyte and erythrocyte stages. The former idea was tested by collecting developing rabbit erythroid cells before and after the enucleation step and comparing their cell-surface protein composition via radiolabelling and electrophoresis. Few changes were observed. Our data thus lend support to the endocytosis mechanism.

  3. Role of lipid rafts/caveolae in the anticancer effect of endocannabinoids.

    Science.gov (United States)

    Grimaldi, Claudia; Capasso, Anna

    2012-10-01

    The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids) and the whole apparatus appointed of their synthesis and degradation. Recent studies investigated the possibility that drugs targeting the endocannabinoid system might be used to retard or block cancer growth. CB1, CB2 and metabolic enzymes of endocannabinoids, function in the context of lipid rafts, specialized membrane microdomains enriched in cholesterol, sphingolipids and glycosphingolipids which may be important in modulating signal transduction. Here, we analysed the role of lipid rafts/caveolae in the intracellular signaling and trafficking of cannabinoid receptor agonist in cancer cells. Perturbation of lipid rafts/caveolae may in fact represent a useful tool for the development of a novel therapy for endocannabinoids-related diseases, such as cancer. Also, we report the more recent developments of endocannabinoids in cancer drug discovery.

  4. Cell behaviour on chemically microstructured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Agnese; Priamo, Alfredo; Pasqui, Daniela; Barbucci, Rolando

    2003-03-03

    Micropatterned surfaces with different chemical topographies were synthesised in order to investigate the influence of surface chemistry and topography on cell behaviour. The microstructured materials were synthesised by photoimmobilising natural Hyaluronan (Hyal) and its sulphated derivative (HyalS), both adequately functionalised with a photorective moiety, on glass substrates. Four different grating patterns (10, 25, 50 and 100 {mu}m) were used to pattern the hyaluronan. The micropatterned samples were analysed by Secondary Ions Mass Spectrometry, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy to investigate the chemistry and the topography of the surfaces. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask patterns were well reproduced on the sample surface. The influence of chemical topographies on the cell behaviour was then analysed. Human and 3T3 fibroblasts, bovine aortic and human (HGTFN line) endothelial cells were used and their behaviour on the micropatterned surfaces was analysed in terms of adhesion, proliferation, locomotion and orientation. Both chemical and topographical controls were found to be important for cell guidance. By decreasing the stripe dimensions, a more fusiform shape of cell was observed. At the same time, the cell locomotion and orientation parallel to the structure increased. However, differences in cell behaviour were detected according to both cell type and micropattern dimensions.

  5. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.

    Science.gov (United States)

    Thangavel, Muthusamy; Liu, Xiaoqiu; Sun, Shu Qiang; Kaminsky, Joseph; Ostrom, Rennolds S

    2009-02-01

    Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.

  6. The Inveterate Tinkerer: 6. Bubble Raft

    Indian Academy of Sciences (India)

    Bigyansu Behera; Chirag Kalelkar

    2017-08-01

    In this series of articles, the authors discuss various phenomena in fluid dhynamics, which may be investigated via tabletop experiments using low-cost or home-made instruments. The sixth article in this series explores crystalline defects and motion of dislocations using bubble rafts.

  7. Thermodynamic driving force for rafting in superalloys

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-08-01

    Full Text Available Eshelby’s energy-momentum tensor is used to provide an analytical expression for the driving force for rafting in the elastic regime in a super alloy with a high volume fraction of gamma'. The structure is modeled as a simple cubic array of gamma...

  8. Designing the lipid raft marker protein for synaptic vesicles

    Institute of Scientific and Technical Information of China (English)

    Lv Jihua; Sui Senfang

    2009-01-01

    Lipid rafts are cholesterol-enriched microdomains and implicated in many essential physiological activities such as the neurotransmitter release. Many studies have been carried out on the function of rafts in the plasma membranes, whereas little is known about the information of such microdomains in subcellular compartments especially synaptic vesicles (SVs). In the well-studied plasma membranes, several proteins have been recognized as raft markers, which are used to label or trace rafts. But the raft marker protein on SVs has not been identified yet. Although some SV proteins, including VAMP and CPE, have been found in raft fractions, they cannot be used as markers due to their low abundance in rafts. In this work, we designed several chimera proteins and tested their characteristics for using as SV raft makers. First, we detected whether they located in SVs, and then the chimeras exhibiting the better localization in SVs were further examined for their enrichment in raft using detergent treatment and gradient density floatation analysis. Our results indicate that one of the chimeric proteins is primarily located in SVs and distributed in raft microdomains, which strongly suggests that it could be served as a raft marker for SVs.

  9. 脂筏在CB2受体介导的内源性大麻素AEA抑制大鼠肝星状细胞增殖活性中的作用%Lipid Rafts and Cannabinoid 2 Receptors-mediated Inhibitory Effects of Endogenous AEA on Proliferation of Hepatic Stellate Cells in Rats

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 王密; 刘萍; 阳乔; 唐望先

    2012-01-01

    目的 探讨脂筏在内源性大麻素受体2(CB2)介导的内源性大麻素(AEA)抑制大鼠肝星状细胞(HSC)增殖活性中的作用及作用机制.方法 构建大麻素受体2 shRNA(Cnr2-shRNA)转染HSC细胞,干扰CB2受体的表达,采用MTT法检测转染前后不同浓度的AEA和甲基-β-环糊精(MCD)对HSC的作用效应;采用Western blot检测不同浓度AEA及MCD作用后HSC中P38 丝裂原活化蛋白激酶(p-P38MAPK)和c-Jun氨基端激酶/应激活化蛋白激酶(p-JNK)的表达量;采用激光共聚焦法检测HSC上的脂筏(LRs)以及CB2受体的表达;蔗糖密度梯度离心法提取脂筏,Western blot鉴定脂筏并检测脂筏中CB2受体的表达.结果 成功构建Cnr2-shRNA转染筛选Cnr2-单克隆细胞株,MTT检测发现转染后CB2受体的减少能减弱AEA对HSC细胞增殖的抑制作用,然而用MCD预处理HSC细胞后CB2受体的减少对AEA的效应无明显影响.p-P38MAPK和p-JNK的表达与AEA浓度有依赖关系,且可以被MCD部分拮抗.CB2受体在HSC膜脂筏和胞质中均有表达,但用蔗糖密度梯度离心法提取AEA刺激前HSC细胞脂筏,发现未受AEA刺激时脂筏中含有的CB2受体量很少,CB2受体大部分存在于HSC细胞胞质中.结论 CB2受体参与AEA 抑制HSC细胞增殖的过程与脂筏相偶联,通过脂筏这个信号平台AEA的刺激可能使CB2受体聚集或增多从而发挥级联放大效应,且这一效应与细胞中p-P38MAPK和p-JNK信号途径的激活有关.脂筏和CB2受体介导的信号传导途径可能成为治疗肝纤维化有效的作用靶点.%Objective To investigate the roles of lipid rafts in cannabinoid receptor 2(CB2)-mediated inhibitory effects of endogenous anadamide(AEA)on proliferation of hepatic stellate cells in rats and the action mechanism. Methods Cell viability was measured by using MTT assay. CB2-shRNA(Cnr2-shRNA) was designed to decrease the amount of CB2 and methyl-β-cy-clodextrin(MCD)treatment designed to destroy the lipid rafts in AEA

  10. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L;

    2001-01-01

    from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T...

  11. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Nan [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Shaw, Andrew R.E. [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)], E-mail: andrewsh@cancerboard.ab.ca; Li Nan; Chen Rui [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Mak, Allan; Hu Xiuying [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Young, Nelson; Wishart, David [Department of Computing Science, University of Alberta, Edmonton, Alberta (Canada); Li Liang, E-mail: Liang.Li@ualberta.ca

    2008-10-03

    Lipid rafts are dynamic assemblies of cholesterol and glycolipid that form detergent-insoluble microdomains within membrane lipid bilayers. Because rafts can be separated by flotation on sucrose gradients, interrogation by mass spectrometry (MS) provides a valuable new insight into lipid raft function. Here we combine liquid chromatography (LC) electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) MS/MS to corroborate and extend our previous description of lipid raft proteomes derived from the monocytic cell line THP-1. Interestingly, LC-ESI and MALDI MS/MS identify largely non-overlapping, and therefore, potentially complementary protein populations. Using the combined approach, we detected 277 proteins compared to 52 proteins obtained with the original gel-based MALDI MS. We confirmed the presence of 47 of the original 52 proteins demonstrating the consistency of the lipid raft preparations. We demonstrated by immunoblotting that Rac 1 and Rac 2, two of the 52 proteins we failed to confirm, were indeed absent from the lipid raft fractions. The majority of new proteins were cytoskeletal proteins and their regulators, proteins implicated in membrane fusion and vesicular trafficking or signaling molecules. Our results therefore, confirm and extend previous evidence indicating lipid rafts of monocytic cells are specialized for cytoskeletal assembly and vesicle trafficking. Of particular interest, we detected SNAP-23, basigin, Glut-4 and pantophysin in lipid rafts. Since these proteins are implicated in both vesicular trafficking and gamete fusion, lipid rafts may play a common role in these processes. It is evident that the combination of LC-ESI and LC-MALDI MS/MS increases the proteome coverage which allows better understanding of the lipid raft function.

  12. Glacitectonic rafting and associated deformation of mid-Pleistocene glacigenic sediments, near Central Graben, central North Sea; results of a 2D High-Resolution Geophysical Survey

    Science.gov (United States)

    Vaughan-Hirsch, David

    2013-04-01

    transport for later stages of deformation, resulting in strike-slip basal detachment being associated with the later rafts. Localised distributions of high amplitude surfaces located adjacent to the primary detachment surface are identified through amplitude extraction techniques. These are indicative of migration and collection of gas along the inclined lower surfaces of rafted blocks. They represent a gas risk for drilling operations and demonstrate the significance and possible hazards of glacitectonic deformation to the exploration industry. A model for raft detachment and emplacement is proposed whereby; i) saturated sediments within the palaeo-channel are subject to pressurisation associated with overburden caused by over-riding ice, ii) elevated pore-water pressure develops along the principle detachment surface of the rafts, iii) early stages of deformation consist of ice-distal (southern) blocks becoming emplaced at relatively low angles of inclination, iv) with more proximal blocks accumulating as an imbricate thrust-stack sequence at relatively high angles of elevation. This interpretation suggests a significant subglacial hydrological control upon raft detachment and transport, with fluctuations between an extensional and compressive deformation regime caused by a switch from actively advancing glacial conditions to an oscillating ice-margin at this location. Tectono-stratigraphic evidence indicates that rafting occurring throughout the site is likely to be associated with a glacial advance of the Anglian (MIS 12).

  13. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  14. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells.

    Science.gov (United States)

    Nimri, Lili; Barak, Hossei; Graeve, Lutz; Schwartz, Betty

    2013-11-01

    Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.

  15. The Role of the Actin Cytoskeleton and Lipid Rafts in the Localization and Function of the ABCC1 Transporter

    Directory of Open Access Journals (Sweden)

    Jan Willem Kok

    2014-01-01

    Full Text Available ATP-binding cassette (ABC transporters are known to be important factors in multidrug resistance of tumor cells. Lipid rafts have been implicated in their localization in the plasma membrane, where they function as drug efflux pumps. This specific localization in rafts may support the activity of ABC/Abc transporters. This raises questions regarding the nature and composition of the lipid rafts that harbor ABC/Abc transporters and the dependence of ABC/Abc transporters—concerning their localization and activity—on lipid raft constituents. Here we review our work of the past 10 years aimed at evaluating whether ABC/Abc transporters are dependent on a particular membrane environment for their function. What is the nature of this membrane environment and which of the lipid raft constituents are important for this dependency? It turns out that cortical actin is of major importance for stabilizing the localization and function of the ABC/Abc transporter, provided it is localized in an actin-dependent subtype of lipid rafts, as is the case for human ABCC1/multidrug resistance-related protein 1 (MRP1 and rodent Abcc1/Mrp1 but not human ABCB1/P-glycoprotein (PGP. On the other hand, sphingolipids do not appear to be modulators of ABCC1/MRP1 (or Abcc1/Mrp1, even though they are coregulated during drug resistance development.

  16. The Role of Lipid Rafts in the Early Stage of Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yong-Zhe Zhu

    2015-02-01

    Full Text Available Background/Aims: Although it has been widely accepted that Enterovirus 71 (EV71 enters permissive cells via receptor-mediated endocytosis, the details of entry mechanism for EV71 still need more exploration. This study aimed to investigate the role of lipid rafts in the early stage of EV71 Infection. Methods: The effect of cholesterol depletion or addition of exogenous cholesterol was detected by immunofluorescence assays and quantitative real-time PCR. Effects of cholesterol depletion on the association of EV71 with lipid rafts were determined by flow cytometry and co-immunoprecipitation assays. Localization and internalization of EV71 and its receptor were assayed by confocal microscpoy and sucrose gradient analysis. The impact of cholesterol on the activation of phosphoinositide 3'-kinase/Akt signaling pathway during initial virus infection was analyzed by Western-blotting. Results: Disruption of membrane cholesterol by a pharmacological agent resulted in a significant reduction in the infectivity of EV71. The inhibitory effect could be reversed by the addition of exogenous cholesterol. Cholesterol depletion post-infection did not affect EV71 infection. While virus bound equally to cholesterol-depleted cells, EV71 particles failed to be internalized by cholesterol-depleted cells. EV71 capsid protein co-localized with cholera toxin B, a lipid-raft-dependent internalization marker. Conclusion: Lipid rafts play a critical role in virus endocytosis and in the activation of PI3K/Akt signaling pathway in the early stage of EV71 infection.

  17. NCAM-140 Translocation into Lipid Rafts Mediates the Neuroprotective Effects of GDNF.

    Science.gov (United States)

    Li, Li; Chen, Huizhen; Wang, Meng; Chen, Fangfang; Gao, Jin; Sun, Shen; Li, Yunqing; Gao, Dianshuai

    2017-05-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for substantia nigra dopaminergic (DA) neuronal cells. Recent studies have demonstrated that neural cell adhesion molecule functions as a signal transduction receptor for GDNF. The purpose of this study is to reveal whether neural cell adhesion molecule (NCAM) mediates the protective effects of GDNF on DA neuronal cells and further explore the mechanisms involved. We utilized SH-SY5Y cell line to establish a model of 6-hydroxydopamine (6-OHDA)-injured DA neuronal cells. Lentiviral vectors were constructed to knockdown or overexpress NCAM-140, and a density gradient centrifugation method was employed to separate membrane lipid rafts. 3-(4,5-Dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis, and western blotting were used to evaluate the protective effects of GDNF. The results showed that GDNF could protect 6-OHDA-injured SH-SY5Y cells via improving cell viability and decreasing the cell death rate and cleaved caspase-3 expression. NCAM-140 knockdown decreased cell viability and increased the cell death rate and cleaved caspase-3 expression, while its overexpression had the opposite effects. Notably, the amount of NCAM-140 located in lipid rafts increased after GDNF treatment. Pretreatment with 2-bromopalmitate, a specific inhibitor of protein palmitoylation, suppressed NCAM-140 translocation to lipid rafts and reduced the NCAM-mediated protective effects of GDNF on injured DA neuronal cells. Our results suggest that GDNF have the protective effects on injured DA cells by influencing NCAM-140 translocation into lipid rafts.

  18. Structure and functions of fungal cell surfaces

    Science.gov (United States)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  19. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface.

    Science.gov (United States)

    Sakamoto, Seiichi; Uto, Takuhiro; Shoyama, Yukihiro

    2015-02-01

    To investigate an interfacial behavior of the aglycon of glycyrrhizin (GC), glycyrrhetinic acid (GA), with a lipid raft model consisting of equimolar ternary mixtures of N-palmitoyl sphingomyelin (PSM), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL), Langmuir monolayer techniques were systematically conducted. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms showed that the adsorbed GA at the air/water interface was desorbed into the bulk upon compression of the lipid monolayer. In situ morphological analysis by Brewster angle microscopy and fluorescence microscopy revealed that the raft domains became smaller as the concentrations of GA in the subphase (CGA) increased, suggesting that GA promotes the formation of fluid networks related to various cellular processes via lipid rafts. In addition, ex situ morphological analysis by atomic force microscopy revealed that GA interacts with lipid raft by lying down at the surface. Interestingly, the distinctive striped regions were formed at CGA=5.0 μM. This phenomenon was observed to be induced by the interaction of CHOL with adsorbed GA and is involved in the membrane-disrupting activity of saponin and its aglycon. A quantitative comparison of GA with GC (Sakamoto et al., 2013) revealed that GA interacts more strongly with the raft model than GC in the monolayer state. Various biological activities of GA are known to be stronger than those of GC. This fact allows us to hypothesize that differences in the interactions of GA/GC with the model monolayer correlate to their degree of exertion for numerous activities.

  20. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  1. Nanotomography of Cell Surfaces with Evanescent Fields

    Directory of Open Access Journals (Sweden)

    Michael Wagner

    2008-01-01

    Full Text Available The technique of variable-angle total internal reflection fluorescence microscopy (TIRFM and its application to nanotomography of cell surfaces are described. Present applications include (1 3D imaging of chromosomes in their metaphase to demonstrate axial resolution in the nanometre range, (2 measurements of cell-substrate topology, which upon cholesterol depletion shows some loosening of cell-substrate contacts, and (3 measurements of cell topology upon photodynamic therapy (PDT, which demonstrate cell swelling and maintenance of focal contacts. The potential of the method for in vitro diagnostics, but also some requirements and limitations are discussed.

  2. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  3. Functions of cholera toxin B-subunit as a raft cross-linker.

    Science.gov (United States)

    Day, Charles A; Kenworthy, Anne K

    2015-01-01

    Lipid rafts are putative complexes of lipids and proteins in cellular membranes that are proposed to function in trafficking and signalling events. CTxB (cholera toxin B-subunit) has emerged as one of the most studied examples of a raft-associated protein. Consisting of the membrane-binding domain of cholera toxin, CTxB binds up to five copies of its lipid receptor on the plasma membrane of the host cell. This multivalency of binding gives the toxin the ability to reorganize underlying membrane structure by cross-linking otherwise small and transient lipid rafts. CTxB thus serves as a useful model for understanding the properties and functions of protein-stabilized domains. In the present chapter, we summarize current evidence that CTxB associates with and cross-links lipid rafts, discuss how CTxB binding modulates the architecture and dynamics of membrane domains, and describe the functional consequences of this cross-linking behaviour on toxin uptake into cells via endocytosis.

  4. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells.

    Science.gov (United States)

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-11-10

    There is an accumulation of evidence indicating that the risk of Alzheimer's disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.

  5. Continuity of Monolayer-Bilayer Junctions for Localization of Lipid Raft Microdomains in Model Membranes.

    Science.gov (United States)

    Ryu, Yong-Sang; Wittenberg, Nathan J; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N; Lee, Sin-Doo

    2016-05-27

    We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.

  6. The Structure of Cholesterol in Lipid Rafts

    CERN Document Server

    Toppozini, Laura; Armstrong, Clare L; Yamani, Zahra; Kucerka, Norbert; Schmid, Friederike; Rheinstaedter, Maikel C

    2014-01-01

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to orderin...

  7. Lipid Rafts Identified on Synaptic Vesicles from Rat Brain

    Institute of Scientific and Technical Information of China (English)

    HE Li; L(U) Jihua; ZHOU Qinghua; SUI Senfang

    2006-01-01

    For a long time, lipid rafts have been thought to participate in regulating neurotransmitter release. However,the existence of lipid rafts on synaptic vesicles (SVs) and the mechanism by which exocytosis-relative proteins distribute on this structure have not been fully investigated. There is also much controversial data concerning rafts on SVs and synaptic vesicle proteins which makes the results difficult to interpret. This study systematically analyzed the existence and properties of lipid rafts on purified SVs by sucrose density gradient centrifugation, cholesterol depletion, and temperature variation. The data reveals that typical lipid rafts on SVs are both cholesterol dependent and temperature sensitive. Previous confusing results may have been caused by improper treatment or side effects of particular reagent. We also screened the lateral distribution of major exocytosis-related SV proteins and found that only the synaptobrevin (syb) and synaptotagmin (syt) produce detectable association with lipid rafts in 1% Triton X-100.

  8. Surface cell immobilization within perfluoroalkoxy microchannels

    Science.gov (United States)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  9. Collapse dynamics of bubble raft under compression

    Science.gov (United States)

    Kuo, Chin-Chang; Kachan, Devin; Levine, Alexander; Dennin, Michael; Department of Physics; Astronomy, University of California, Irvine Collaboration; Department of Physics; Astronomy, University of California, Los Angeles Collaboration

    2015-03-01

    We report on the collapse of bubble rafts under compression in a closed rectangular geometry. A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when bubbles submerge beneath the neighboring bubbles under applied compression causing the structure of the bubble raft to go from single-layer to multi-layer. We studied the collapse dynamics as a function of compression velocity. At higher compression velocity we observe a more uniform distribution of collapse events, whereas at lower compression velocities, the collapse events accumulate at the system boundaries. We will present results that compare the distribution of collapse probability in the experiments to simulations based on a one-dimensional Ising model with elastic coupling between spin elements. Both the experimental system and simulations are excellent models for collapse in a number of complex systems. By comparing the two systems, we can tune the simulation to better understand the role of the Ising and elastic couplings in determining the collapse dynamics. We acknowledge DMR-1309402.

  10. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  11. Biocompatible branched copolymer nanoparticles prepared by RAFT polymerization as MRI/PET bimodal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chang-Tong [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Tao, He; Jackson, Alexander W [Institute of Chemical and Engineering Sciences, Agency for Science Technology and Research (Singapore); Chandrasekharan, Prashant [Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (Singapore); Padmanabhan, Parasuraman [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Gulyás, Balázs; Halldin, Christer [Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Karolinska Institutet, Department of Clinical Neuroscience, Stockholm (Sweden)

    2015-05-18

    Stable branched copolymer nanoparticles of varying size (Dh = 20 – 35 nm) have been developed and employed as MRI nano-sized contrast agents. RAFT polymerization has been employed to prepare these novel nanoparticles possessing DO3A macrocycles within their cores and succinimidyl ester benzoate functionalities within their coronas. It has been demonstrated that these nanoparticles can chelate gadolinium and in vitro cytotoxicity studies using HK-2 cells established their negligible toxicity profile. In vivo MRI experiments showed that these nanoparticles have a high relaxivity and a long blood retention time. Xenograft experiments further illustrated the ability of these nanoparticles to perfuse and passively accumulate in tumor cells, presumably through the enhanced EPR effect. The presence of the succinimidyl ester benzoate functionalities within the nanoparticle coronas will permit future surface modification with fluorophores or targeting moieties to generate nanoparticles to study opportunities for bimodal imaging nano-probes or active cell targeting contrast agents. The chelation with PET radioisotopes (68Ga(III) or 64Cu(II)) can afford various PET tracers.

  12. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1.

    Science.gov (United States)

    Yu, Cuijuan; Alterman, Michail; Dobrowsky, Rick T

    2005-08-01

    Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.

  13. Surface Modification of Porous Polypropylene Membrane by Plasma-Initiated RAFT Graft Polymerization of Hydroxyethyl Methacrylate%等离子体引发HEMA的RAFT接枝聚合改性聚丙烯多孔膜

    Institute of Scientific and Technical Information of China (English)

    黄杰; 汪思孝; 黄健; 王晓琳

    2013-01-01

    采用等离子体引发的可逆加成-断裂链转移(RAFT)接枝聚合法,以甲基丙烯酸羟乙酯(HEMA)为单体,对聚丙烯(PP)多孔膜表面作了亲水改性.研究了接枝聚合动力学,并以FT-IR、SEM、压汞、水通量等方法研究了改性膜的表面结构形态及孔结构.结果表明,等离子体引发的RAFT接枝聚合速率显著低于普通等离子体引发的接枝聚合速率.表面接枝率随着接枝聚合时间的延长呈线性增长趋势,同时改性膜的孔径和水通量随之减小.

  14. Planning and execution of Raft River stimulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Verity, R.V.; Crichlow, H.B. (ed.)

    1980-02-07

    The following topics are discussed for two Raft River Valley wells: well characteristics and treatment objectives, treatment selection and design, treatment history, mechanical arrangements and job costs. (MHR)

  15. Synaptic membrane rafts: traffic lights for local neurotrophin signalling?

    Directory of Open Access Journals (Sweden)

    Barbara eZonta

    2013-10-01

    Full Text Available Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signalling, plasticity and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signalling. The tyrosine kinase neurotrophin receptors (Trk and the low-affinity p75 neurotrophin receptor (p75NTR are enriched in neuronal lipid rafts together with the intermediates of downstream signalling pathways, suggesting a possible role of rafts in neurotrophin signalling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

  16. Cell surface engineering with edible protein nanoshells.

    Science.gov (United States)

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  17. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts.

    Directory of Open Access Journals (Sweden)

    Qian Shi

    Full Text Available Glycyrrhetic acid (GA exerts synergistic anti-asthmatic effects via a β₂-adrenergic receptor (β₂AR-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β₂AR-Gs-adenylate cyclase (AC-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β₂AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA was synthesized and applied to human embryonic kidney 293 (HEK293 cells expressing fusion β₂AR, and the electron spin resonance (ESR technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β₂AR and Gαs, as well as in reduced β₂AR internalization. Co-localization of β₂AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β₂AR-protein kinase A (PKA signaling pathway was proposed. The enhanced efficacy of β₂AR agonists by this novel mechanism could prevent tachyphylaxis.

  18. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains.

    Science.gov (United States)

    Ren, T; Takahashi, Y; Liu, X; Loughran, T P; Sun, S-C; Wang, H-G; Cheng, H

    2015-01-15

    The retroviral oncoprotein Tax from human T-cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T-cell leukemia and lymphoma, has a crucial role in initiating T-lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating inhibitor of κB (IκB) kinase (IKK) complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IKK complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells.

  19. Prion protein accumulation in lipid rafts of mouse aging brain.

    Directory of Open Access Journals (Sweden)

    Federica Agostini

    Full Text Available The cellular form of the prion protein (PrP(C is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C. In old mice, this change favors PrP(C accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C translocation into detergent-resistant membranes (DRMs, we looked at PrP(C compartmentalization in hippocampi from acid sphingomyelinase (ASM knockout (KO mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  20. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy.

    Science.gov (United States)

    Wang, S-H; Yuan, S-G; Peng, D-Q; Zhao, S-P

    2010-05-01

    Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.

  1. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids?

    Science.gov (United States)

    Guéguinou, Maxime; Gambade, Audrey; Félix, Romain; Chantôme, Aurélie; Fourbon, Yann; Bougnoux, Philippe; Weber, Günther; Potier-Cartereau, Marie; Vandier, Christophe

    2015-10-01

    Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  2. The cell surface proteome of Entamoeba histolytica.

    Science.gov (United States)

    Biller, Laura; Matthiesen, Jenny; Kühne, Vera; Lotter, Hannelore; Handal, Ghassan; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Schümann, Michael; Roeder, Thomas; Tannich, Egbert; Krause, Eberhard; Bruchhaus, Iris

    2014-01-01

    Surface molecules are of major importance for host-parasite interactions. During Entamoeba histolytica infections, these interactions are predicted to be of prime importance for tissue invasion, induction of colitis and liver abscess formation. To date, however, little is known about the molecules involved in these processes, with only about 20 proteins or protein families found exposed on the E. histolytica surface. We have therefore analyzed the complete surface proteome of E. histolytica. Using cell surface biotinylation and mass spectrometry, 693 putative surface-associated proteins were identified. In silico analysis predicted that ∼26% of these proteins are membrane-associated, as they contain transmembrane domains and/or signal sequences, as well as sites of palmitoylation, myristoylation, or prenylation. An additional 25% of the identified proteins likely represent nonclassical secreted proteins. Surprisingly, no membrane-association sites could be predicted for the remaining 49% of the identified proteins. To verify surface localization, 23 proteins were randomly selected and analyzed by immunofluorescence microscopy. Of these 23 proteins, 20 (87%) showed definite surface localization. These findings indicate that a far greater number of E. histolytica proteins than previously supposed are surface-associated, a phenomenon that may be based on the high membrane turnover of E. histolytica.

  3. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  4. Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes.

    Science.gov (United States)

    Collin, Aurore; Noacco, Audrey; Talvas, Jérémie; Caldefie-Chézet, Florence; Vasson, Marie-Paule; Farges, Marie-Chantal

    2017-01-01

    Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol-rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl-β-cyclodextrin (β-MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1 h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100 ng/ml). Unlike β-MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101-109, 2017. © 2016 Wiley Periodicals, Inc.

  5. Effects of irrigation on crops and soils with Raft River geothermal water

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  6. Insights on raft behavior from minimal phenomenological models

    Science.gov (United States)

    Garbès Putzel, G.; Schick, M.

    2011-07-01

    We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.

  7. Ant workers exhibit specialization and memory during raft formation

    Science.gov (United States)

    Avril, Amaury; Purcell, Jessica; Chapuisat, Michel

    2016-06-01

    By working together, social insects achieve tasks that are beyond the reach of single individuals. A striking example of collective behaviour is self-assembly, a process in which individuals link their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into how individual behavioural variation affects the formation of self-assemblages, we investigated the presence of task specialization and the role of past experience in the construction of ant rafts. We subjected groups of Formica selysi workers to two consecutive floods and monitored the position of individuals in rafts. Workers showed specialization in their positions when rafting, with the same individuals consistently occupying the top, middle, base or side position in the raft. The presence of brood modified workers' position and raft shape. Surprisingly, workers' experience in the first rafting trial with brood influenced their behaviour and raft shape in the subsequent trial without brood. Overall, this study sheds light on the importance of workers' specialization and memory in the formation of self-assemblages.

  8. Predicting the movement of pumice rafts in the South Pacific using GNOME for enhanced navigational warnings and coastal hazard management policies

    Science.gov (United States)

    Kelly, J.; Bender, M.; Kelly, M.; Walters, C.

    2013-12-01

    Pumice rafts formed from explosive shallow submarine eruptions in the South Pacific pose a significant hazard to local maritime transportation and global coastal communities. Local concerns include the possibility of individual pumice clasts blocking seawater intake valves of ships, damaging the hull of smaller vessels, and inundating harbors bringing fishing and transport to a standstill. Additionally, pumice rafts can introduce harmful invasive species to delicate coastal communities around the world as they dramatically increase dispersal distances for otherwise benthic or relatively sedentary organisms. Two volcanoes in this region have recently formed pumice rafts: Home Reef volcano (Tonga) in 2006 and Havre Seamount (Kermadec Islands) in 2012. These raft events were used as case studies to test a trajectory prediction model since they occurred during times at which high spatial and temporal resolution satellite data were being collected and/or have been described in peer reviewed literature, both of which were necessary for providing model validation. The model was created using the General NOAA Observational Modeling Environment (GNOME), which utilizes sea surface winds and sea surface height (SSH) datasets to predict the possible trajectory a pollutant might follow on a body of water. Wind and ocean current data were acquired from the SeaWinds and Poseidon-3 sensors on board the NASA Earth Observing System (EOS) satellites QuikSCAT and Jason-2. Model outputs showed the 2012 Havre Seamount raft rapidly disperse as it drifted in an ENE direction and the 2006 Home Reef raft drifted quickly in a NW direction towards Papua New Guinea. The 2006 Home Reef prediction model was validated by comparing it to another published model that was based on an integrated surface velocity field in addition to in situ observations. The 2012 Havre Seamount prediction model was validated by spatially and temporally correlating the GNOME trajectory output with moderate

  9. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts.

    Science.gov (United States)

    Cerqueira, Débora M; Tran, Uyen; Romaker, Daniel; Abreu, José G; Wessely, Oliver

    2014-10-01

    The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.

  10. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization

    Science.gov (United States)

    Semsarilar, Mona; Perrier, Sébastien

    2010-10-01

    Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum environmental impact, and follow the principles of 'green' chemistry. In this Review, we summarize some of the green features of the RAFT process, and review the recent advances in the production of degradable polymers obtained from RAFT polymerization. Its use to modify biodegradable and renewable inorganic and organic materials to yield more functional products with enhanced applications is also covered. RAFT is a promising candidate for answering both the increasing need of modern society to employ highly functional polymeric materials and the global requirements for developing sustainable chemicals and processes.

  11. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers

    CERN Document Server

    Meinhardt, Sebastian; Schmid, Friederike

    2013-01-01

    According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer size lo domains in a ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phase induces elastic interactions, which reduce the line tensi...

  12. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  13. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  14. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Science.gov (United States)

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-01-01

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  15. Dynamic Morphological Changes Induced By GM1 and Protein Interactions on the Surface of Cell-Sized Liposomes

    Directory of Open Access Journals (Sweden)

    Masahiro Takagi

    2013-06-01

    Full Text Available It is important to understand the physicochemical mechanisms that are responsible for the morphological changes in the cell membrane in the presence of various stimuli such as osmotic pressure. Lipid rafts are believed to play a crucial role in various cellular processes. It is well established that Ctb (Cholera toxin B subunit recognizes and binds to GM1 (monosialotetrahexosylganglioside on the cell surface with high specificity and affinity. Taking advantage of Ctb-GM1 interaction, we examined how Ctb and GM1 molecules affect the dynamic movement of liposomes. GM1 a natural ligand for cholera toxin, was incorporated into liposome and the interaction between fluorescent Ctb and the liposome was analyzed. The interaction plays an important role in determining the various surface interaction phenomena. Incorporation of GM1 into membrane leads to an increase of the line tension leading to either rupture of liposome membrane or change in the morphology of the membrane. This change in morphology was found to be GM1 concentration specific. The interaction between Ctb-GM1 leads to fast and easy rupture or to morphological changes of the liposome. The interactions of Ctb and the glycosyl chain are believed to affect the surface and the curvature of the membrane. Thus, the results are highly beneficial in the study of signal transduction processes.

  16. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    Science.gov (United States)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  17. Bacterial cell surface structures in Yersinia enterocolitica.

    Science.gov (United States)

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  18. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  19. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    OpenAIRE

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-di...

  20. Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and altering the structure of lipid rafts.

    Science.gov (United States)

    Király, Anna; Váradi, Tímea; Hajdu, Tímea; Rühl, Ralph; Galmarini, Carlos M; Szöllősi, János; Nagy, Peter

    2013-12-02

    The mechanism of action of elisidepsin (PM02734, Irvalec®) is assumed to involve membrane permeabilization via attacking lipid rafts and hydroxylated lipids. Here we investigate the role of hypoxia in the mechanism of action of elisidepsin. Culturing under hypoxic conditions increased the half-maximal inhibitory concentration and decreased the drug's binding to almost all cell lines which was reversed by incubation of cells with 2-hydroxy palmitic acid. The expression of fatty acid 2-hydroxylase was strongly correlated with the efficiency of the drug and inversely correlated with the effect of hypoxia. Number and brightness analysis and fluorescence anisotropy experiments showed that hypoxia decreased the clustering of lipid rafts and altered the structure of the plasma membrane. Although the binding of elisidepsin to the membrane is non-cooperative, its membrane permeabilizing effect is characterized by a Hill coefficient of ~3.3. The latter finding is in agreement with elisidepsin-induced clusters of lipid raft-anchored GFP visualized by confocal microscopy. We propose that the concentration of elisidepsin needs to reach a critical level in the membrane above which elisidepsin induces the disruption of the cell membrane. Testing for tumor hypoxia or the density of hydroxylated lipids could be an interesting strategy to increase the efficiency of elisidepsin.

  1. Cholesterol-rich lipid rafts play an important role in the Cyprinid herpesvirus 3 replication cycle.

    Science.gov (United States)

    Brogden, Graham; Adamek, Mikołaj; Proepsting, Marcus J; Ulrich, Reiner; Naim, Hassan Y; Steinhagen, Dieter

    2015-09-30

    The Cyprinus herpesvirus 3 (CyHV-3) is a member of the new Alloherpesviridae virus family in the Herpesvirales order. CyHV-3 has been implicated in a large number of disease outbreaks in carp populations causing up to 100% mortality. The aim of this study was to investigate the requirement of cholesterol-rich lipid rafts in CyHV-3 entry and replication in carp cells. Plasma membrane cholesterol was depleted from common carp brain (CCB) cells with methyl-β-cyclodextrin (MβCD). Treated and non-treated cells were infected with CyHV-3 and virus binding and infection parameters were assessed using RT-qPCR, immunocytochemistry and virus titration. The effect of cholesterol reduction severely stunted virus entry in vitro, however after cholesterol replenishment virus entry and subsequent replication rates were similar to the control infection. Furthermore, cholesterol depletion did not significantly influence virus binding and the subsequent post-entry replication stage, however had an impact on virus egress. Comparative analysis of the lipid compositions of CyHV-3 and CCB membrane fractions revealed strong similarities between the lipid composition of the CyHV-3 and CCB lipid rafts. The results presented here show that cholesterol-rich lipid rafts are important for the CyHV-3 replication cycle especially during entry and egress.

  2. Grafting amphiphilic brushes onto halloysite nanotubes via a living RAFT polymerization and their Pickering emulsification behavior.

    Science.gov (United States)

    Hou, Yifan; Jiang, Junqing; Li, Kai; Zhang, Yanwu; Liu, Jindun

    2014-02-20

    Amphiphilic brushes of poly(4-vinylpyridine)-block-polystyrene (P4VP-b-PS) and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) are grafted onto halloysite nanotubes (HNTs) via a surface reversible addition-fragmentation chain transfer (RAFT) living polymerization through anchoring R group in RAFT agent S-1-dodecyl-S'-(R,R'-dimethyl-R″-acetic acid) trithiocarbonates (DDMAT). The characterization of TGA, TEM, and GPC show that amphiphilic brushes are successfully grafted onto HNTs in a living manner. To verify the amphiphilicity of HNTs grafted with block copolymers, their Pickering emulsification behavior in water/soybean oil diphase mixture is studied. The results show that modified HNTs can emulsify water/soybean oil diphase mixture and the emulsification performance is dependent on microstructure of amphiphilic brushes such as hydrophilic/hydrophobic segment size and sequence.

  3. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    Science.gov (United States)

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles.

  4. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  5. Role of lipid rafts in liver health and disease

    Institute of Scientific and Technical Information of China (English)

    Angela Dolganiuc

    2011-01-01

    Liver diseases are an increasingly common cause of morbidity and mortality; new approaches for investigation of mechanisms of liver diseases and identification of therapeutic targets are emergent. Lipid rafts (LRs) are specialized domains of cellular membranes that are enriched in saturated lipids; they are small, mobile, and are key components of cellular architecture, protein partition to cellular membranes, and signaling events. LRs have been identified in the membranes of all liver cells, parenchymal and non-parenchymal; more importantly, LRs are active participants in multiple physiological and pathological conditions in individual types of liver cells. This article aims to review experimental-based evidence with regard to LRs in the liver, from the perspective of the liver as a whole organ composed of a multitude of cell types. We have gathered up-to-date information related to the role of LRs in individual types of liver cells, in liver health and diseases, and identified the possibilities of LR-dependent therapeutic targets in liver diseases.

  6. Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Wayne Chadwick

    2010-01-01

    Full Text Available Various animal models of Alzheimer's disease (AD have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice.

  7. Altered Traffic of Cardiolipin during Apoptosis: Exposure on the Cell Surface as a Trigger for “Antiphospholipid Antibodies”

    Directory of Open Access Journals (Sweden)

    Valeria Manganelli

    2015-01-01

    Full Text Available Apoptosis has been reported to induce changes in the remodelling of membrane lipids; after death receptor engagement, specific changes of lipid composition occur not only at the plasma membrane, but also in intracellular membranes. This paper focuses on one important aspect of apoptotic changes in cellular lipids, namely, the redistribution of the mitochondria-specific phospholipid, cardiolipin (CL. CL predominantly resides in the inner mitochondrial membrane, even if the rapid remodelling of its acyl chains and the subsequent degradation occur in other membrane organelles. After death receptor stimulation, CL appears to concentrate into mitochondrial “raft-like” microdomains at contact sites between inner and outer mitochondrial membranes, leading to local oligomerization of proapoptotic proteins, including Bid. Clustering of Bid in CL-enriched contacts sites is interconnected with pathways of CL remodelling that intersect membrane traffic routes dependent upon actin. In addition, CL association with cytoskeleton protein vimentin was observed. Such novel association also indicated that CL molecules may be expressed at the cell surface following apoptotic stimuli. This observation adds a novel implication of biomedical relevance. The association of CL with vimentin at the cell surface may represent a “new” target antigen in the context of the apoptotic origin of anti-vimentin/CL autoantibodies in Antiphospholipid Syndrome.

  8. Frequency Selective Surfaces with Nanoparticles Unit Cell

    Directory of Open Access Journals (Sweden)

    Nga Hung Poon

    2015-09-01

    Full Text Available The frequency selective surface (FSS is a periodic structure with filtering performance for optical and microwave signals. The general periodic arrays made with patterned metallic elements can act as an aperture or patch on a substrate. In this work, two kinds of materials were used to produce unit cells with various patterns. Gold nanoparticles of 25 nm diameter were used to form periodic monolayer arrays by a confined photocatalytic oxidation-based surface modification method. As the other material, silver gel was used to create multiple layers of silver. Due to the ultra-thin nature of the self-assembled gold nanoparticle monolayer, it is very easy to penetrate the FSS with terahertz radiation. However, the isolated silver islands made from silver gel form thicker multiple layers and contribute to much higher reflectance. This work demonstrated that multiple silver layers are more suitable than gold nanoparticles for use in the fabrication of FSS structures.

  9. Soft X-ray Laser Microscopy of Lipid Rafts towards GPCR-Based Drug Discovery Using Time-Resolved FRET Spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Kodama

    2011-03-01

    Full Text Available Many signaling molecules involved in G protein-mediated signal transduction, which are present in the lipid rafts and believed to be controlled spatially and temporally, influence the potency and efficacy of neurotransmitter receptors and transporters. This has focus interest on lipid rafts and the notion that these microdomains acts as a kind of signaling platform and thus have an important role in the expression of membrane receptor-mediated signal transduction, cancer, immune responses, neurotransmission, viral infections and various other phenomena due to specific and efficient signaling according to extracellular stimuli. However, the real structure of lipid rafts has not been observed so far due to its small size and a lack of sufficiently sophisticated observation systems. A soft X-ray microscope using a coherent soft X-ray laser in the water window region (2.3–4.4 nm should prove to be a most powerful tool to observe the dynamic structure of lipid rafts of several tens of nanometers in size in living cells. We have developed for the X-ray microscope a new compact soft X-ray laser using strongly induced plasma high harmonic resonance. We have also developed a time-resolved highly sensitive fluorescence resonance energy transfer (FRET system and confirmed protein-protein interactions coupled with ligands. The simultaneous use of these new tools for observation of localization of G-protein coupled receptors (GPCRs in rafts has become an important and optimum tool system to analyze the dynamics of signal transduction through rafts as signaling platform. New technology to visualize rafts is expected to lead to the understanding of those dynamics and innovative development of drug discovery that targets GPCRs localized in lipid rafts.

  10. Aβ promotes VDAC1 channel dephosphorylation in neuronal lipid rafts. Relevance to the mechanisms of neurotoxicity in Alzheimer's disease.

    Science.gov (United States)

    Fernandez-Echevarria, C; Díaz, M; Ferrer, I; Canerina-Amaro, A; Marin, R

    2014-10-10

    Voltage-dependent anion channel (VDAC) is a mitochondrial protein abundantly found in neuronal lipid rafts. In these membrane domains, VDAC is associated with a complex of signaling proteins that trigger neuroprotective responses. Loss of lipid raft integrity may result in disruption of multicomplex association and alteration of signaling responses that may ultimately promote VDAC activation. Some data have demonstrated that VDAC at the neuronal membrane may be involved in the mechanisms of amyloid beta (Aβ)-induced neurotoxicity, through yet unknown mechanisms. Aβ is generated from amyloid precursor protein (APP), and is released to the extracellular space where it may undergo self-aggregation. Aβ aggregate deposition in the form of senile plaques may lead to Alzheimer's disease (AD) neuropathology, although other pathological hallmarks (such as hyper-phosphorylated Tau deposition) also participate in this neurodegenerative process. The present study demonstrates that VDAC1 associates with APP and Aβ in lipid rafts of neurons. Interaction of VDAC1 with APP was observed in lipid rafts from the frontal and entorhinal cortex of human brains affected by AD at early stages (I-IV/0-B of Braak and Braak). Furthermore, Aβ exposure enhanced the dephosphorylation of VDAC1 that correlated with cell death. Both effects were reverted in the presence of tyrosine phosphatase inhibitors. VDAC1 dephosphorylation was corroborated in lipid rafts of AD brains. These results demonstrate that Aβ is involved in alterations of the phosphorylation state of VDAC in neuronal lipid rafts. Modulation of this channel may contribute to the development and progression of AD pathology.

  11. DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes.

    Science.gov (United States)

    Kim, Kwang Soo; Kim, Jin Soo; Park, Ji-Young; Suh, Young Ho; Jou, Ilo; Joe, Eun-Hye; Park, Sang Myun

    2013-12-01

    Parkinson's disease (PD) is the second most common progressive neurodegenerative disease. Several genes have been associated with familial type PD, providing tremendous insights into the pathogenesis of PD. Gathering evidence supports the view that these gene products may operate through common molecular pathways. Recent reports suggest that many PD-associated gene products, such as α-synuclein, LRRK2, parkin and PINK1, associate with lipid rafts and lipid rafts may be associated with neurodegeneration. Here, we observed that DJ-1 protein also associated with lipid rafts. Palmitoylation of three cysteine residues (C46/53/106) and C-terminal region of DJ-1 were required for this association. Lipopolysaccharide (LPS) induced the localization of DJ-1 into lipid rafts in astrocytes. The LPS-TLR4 signaling was more augmented in DJ-1 knock-out astrocytes by the impairment of TLR4 endocytosis. Furthermore, lipid rafts-dependent endocytosis including the endocytosis of CD14, which play a major role in regulating TLR4 endocytosis was also impaired, but clathrin-dependent endocytosis was not. This study provides a novel function of DJ-1 in lipid rafts, which may contribute the pathogenesis of PD. Moreover, it also provides the possibility that many PD-related proteins may operate through common molecular pathways in lipid rafts.

  12. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of certain classes of membrane proteins is regulated by changes in the lateral pressure profile, which can be altered by a change in lipid content....... of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins....... However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom...

  13. Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane

    Directory of Open Access Journals (Sweden)

    Soon Sim Tan

    2013-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC was previously shown to secrete lipid vesicles that when purified by high performance liquid chromatography as a population of homogenously sized particles with a hydrodynamic radius of 55–65 nm reduce infarct size in a mouse model of myocardial ischemia/reperfusion injury. As these vesicles exhibit many biophysical and biochemical properties of exosomes, they were identified as exosomes. Here we investigated if these lipid vesicles were indeed exosomes that have an endosomal biogenesis. Method: In most cells, endocytosis is thought to occur at specialized microdomains known as lipid rafts. To demonstrate an endosomal origin for MSC exosomes, MSCs were pulsed with ligands e.g. transferrin (Tfs and Cholera Toxin B (CTB that bind receptors in lipid rafts. The endocytosed ligands were then chased to determine if they were incorporated into the exosomes. Results: A fraction of exogenous Tfs was found to recycle into MSC exosomes. When MSCs were pulsed with labelled Tfs in the presence of chlorpromazine, an inhibitor of clathrin-mediated endocytosis, Tf incorporation in CD81-immunoprecipitate was reduced during the chase. CTB which binds GM1 gangliosides that are enriched in lipid rafts extracted exosome-associated proteins, CD81, CD9, Alix and Tsg101 from MSC-conditioned medium. Exogenous CTBs were pulse-chased into secreted vesicles. Extraction of Tf- or CTB-binding vesicles in an exosome preparation mutually depleted each other. Inhibition of sphingomyelinases reduced CTB-binding vesicles. Conclusion: Together, our data demonstrated that MSC exosomes are derived from endocytosed lipid rafts and that their protein cargo includes exosome-associated proteins CD81, CD9, Alix and Tsg101.

  14. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R L; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes; van Apeldoorn, Aart A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  15. Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    NARCIS (Netherlands)

    Lourenco, B.N.; Marchioli, G.; Song, W; Reis, R.L.; Blitterswijk, van C.A.; Karperien, H.B.J.; Apeldoorn, van A.A.; Mano, J.F.

    2012-01-01

    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavi

  16. Sphingolipid signalling domains floating on rafts or buried in caves?

    Science.gov (United States)

    Dobrowsky, R T

    2000-02-01

    Ceramide is a novel lipid mediator involved in regulating cell growth, cell differentiation and cell death. Many studies have focused on characterizing the stimulus-induced production of ceramide and identifying putative downstream molecular targets. However, little remains known about the localization of the regulated production of ceramide through sphingomyelin metabolism in the plasma membrane. Additionally, it is unclear whether a localized increase in ceramide concentration is necessary to facilitate downstream signalling events initiated by this lipid. Recent studies have suggested that detergent-insoluble plasma membrane domains may be highly localized sites for initiating signal transduction cascades by both tyrosine kinase and sphingolipid signalling pathways. These domains are typically enriched in both sphingolipids and cholesterol and have been proposed to form highly ordered lipid rafts floating in a sea of glycerophospholipids. Alternatively, upon integration of the cholesterol binding protein caveolin, these domains may also form small cave-like structures called caveolae. Emerging evidence suggests that the enhanced sphingomyelin content of these lipid domains make them potential substrate pools for sphingomyelinases to produce a high local concentration of ceramide. The subsequent formation of ceramide microdomains in the plasma membrane may be a critical factor in regulating downstream signalling through this lipid messenger.

  17. TLR4 facilitates translocation of bacteria across renal collecting duct cells.

    Science.gov (United States)

    Chassin, Cécilia; Vimont, Sophie; Cluzeaud, Françoise; Bens, Marcelle; Goujon, Jean-Michel; Fernandez, Béatrice; Hertig, Alexandre; Rondeau, Eric; Arlet, Guillaume; Hornef, Mathias W; Vandewalle, Alain

    2008-12-01

    Uropathogenic Escherichia coli (UPEC) are the most frequent causes of urinary tract infections and pyelonephritis. Renal medullary collecting duct (MCD) cells are the intrarenal site to which UPEC strains prefer to adhere and initiate an inflammatory response, but the ability of UPEC strains to translocate across impermeant MCD cells has not been demonstrated definitively. Here, several UPEC strains adhered to the apical surface and translocated across confluent murine inner MCD cells grown on filters. UPEC strains expressing cytolytic and vacuolating cytotoxins disrupted the integrity of cell layers, whereas noncytolytic UPEC strains passed through the cell layers without altering tight junctions. Apical-to-basal transcellular translocation was dramatically reduced after extinction of Toll-like receptor 4 (TLR4) and the lipid raft marker caveolin-1 by small interfering RNA. Furthermore, disruption of lipid raft integrity by filipin III and methyl-beta-cyclodextrin significantly reduced both the transcellular translocation of UPEC across murine inner MCD cell layers and the stimulation of proinflammatory mediators. Bacterial translocation was also significantly reduced in primary cultures of TLR4-deficient mouse MCD cells compared with MCD cells from wild-type mice. Benzyl alcohol, an anesthetic that enhances membrane fluidity, favored the recruitment of caveolin-1 in lipid rafts and increased the translocation of UPEC across cultured TLR4-deficient MCD cells. These findings demonstrate that the transcellular translocation of UPEC strains across impermeant layers of MCD cells may occur through lipid rafts via a TLR4-facilitated process.

  18. Use of social information in seabirds: compass rafts indicate the heading of food patches.

    Directory of Open Access Journals (Sweden)

    Henri Weimerskirch

    Full Text Available Ward and Zahavi suggested in 1973 that colonies could serve as information centres, through a transfer of information on the location of food resources between unrelated individuals (Information Centre Hypothesis. Using GPS tracking and observations on group movements, we studied the search strategy and information transfer in two of the most colonial seabirds, Guanay cormorants (Phalacrocorax bougainvillii and Peruvian boobies (Sula variegata. Both species breed together and feed on the same prey. They do return to the same feeding zone from one trip to the next indicating high unpredictability in the location of food resources. We found that the Guanay cormorants use social information to select their bearing when departing the colony. They form a raft at the sea surface whose position is continuously adjusted to the bearing of the largest returning columns of cormorants. As such, the raft serves as a compass signal that gives an indication on the location of the food patches. Conversely, Peruvian boobies rely mainly on personal information based on memory to take heading at departure. They search for food patches solitarily or in small groups through network foraging by detecting the white plumage of congeners visible at long distance. Our results show that information transfer does occur and we propose a new mechanism of information transfer based on the use of rafts off colonies. The use of rafts for information transfer may be common in central place foraging colonial seabirds that exploit short lasting and/or unpredictably distributed food patches. Over the past decades Guanay cormorants have declined ten times whereas Peruvian boobies have remained relatively stable. We suggest that the decline of the cormorants could be related to reduced social information opportunities and that social behaviour and search strategies have the potential to play an important role in the population dynamics of colonial animals.

  19. Lipid rafts, caveolae and GPI-linked proteins.

    NARCIS (Netherlands)

    Reeves, V.L.; Thomas, C.M.G.; Smart, E.J.

    2012-01-01

    Lipid rafts and caveolae are specialized membrane microdomains enriched in sphingolipids and cholesterol. They function in a variety of cellular processes including but not limited to endocytosis, transcytosis, signal transduction and receptor recycling. Here, we outline the similarities and differe

  20. Atom-scale molecular interactions in lipid raft mixtures

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo

    2009-01-01

    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecul....... As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation.......We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...

  1. Environmental physiology of raft-grown mussels in Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Dalal, S.G.; Ansari, Z.A.; Harkantra, S.N.

    Mussels (@iPerna viridis@@ L.) transplanted from a marine intertidal region and grown under water in the estuarine environment (on a floating raft) display a wide array of physiological adaptations in growth, osmoregulation and annual reproduction...

  2. Knowledge discovery of cell-cell and cell-surface interactions

    Science.gov (United States)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  3. Insights on raft behavior from minimal phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Garbes Putzel, G; Schick, M [Department of Physics, University of Washington, Box 351560, Seattle, WA 98195-1560 (United States)

    2011-07-20

    We construct a simple phenomenological theory of phase separation in ternary mixtures of cholesterol and saturated and unsaturated lipids. Such separation is relevant to the formation of 'rafts' in the plasma membrane. We also show how simple cross-linking of proteins which prefer one form of lipid to the other can trigger raft-formation, the first step in a signaling pathway.

  4. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  5. Chemistry and material science at the cell surface

    Directory of Open Access Journals (Sweden)

    Weian Zhao

    2010-04-01

    Full Text Available Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic applications. In this review, we summarize the most recent advances in the engineering of the cell surface. In particular, we focus on the potential applications of surface engineered cells for 1 targeting cells to desirable sites in cell therapy, 2 programming assembly of cells for tissue engineering, 3 bioimaging and sensing, and ultimately 4 manipulating cell biology.

  6. Localization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Koushik, Amrita B; Powell, Rhonda R; Temesvari, Lesly A

    2013-06-01

    Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton. In other systems, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is known to regulate a wide variety of cellular functions, including signal transduction, actin remodeling, and cell motility. Little is known about the role of PI(4,5)P2 in E. histolytica pathogenicity. In this study, we demonstrate that PI(4,5)P2 is localized to cholesterol-rich microdomains, lipid rafts, and the actin-rich fractions of the E. histolytica membrane. Microscopy revealed that the trailing edge of polarized trophozoites, uroids, are highly enriched in lipid rafts and their constituent lipid, PI(4,5)P2. Polarization and enrichment of uroids and rafts with PI(4,5)P2 were enhanced upon treatment of E. histolytica cells with cholesterol. Exposure to cholesterol also increased intracellular calcium, which is a downstream effector of PI(4,5)P2, with a concomitant increase in motility. Together, our data suggest that in E. histolytica, PI(4,5)P2 may signal from lipid rafts and cholesterol may play a role in triggering PI(4,5)P2-mediated signaling to enhance the motility of this pathogen.

  7. Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane.

    Science.gov (United States)

    Starr, Francis W; Hartmann, Benedikt; Douglas, Jack F

    2014-05-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient "islands" of enhanced mobility having a size and time scale compatible with lipid "rafts," dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. We also show that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes.

  8. Native low density lipoprotein promotes lipid raft formation in macrophages.

    Science.gov (United States)

    Song, Jian; Ping, Ling-Yan; Duong, Duc M; Gao, Xiao-Yan; He, Chun-Yan; Wei, Lei; Wu, Jun-Zhu

    2016-03-01

    Oxidized low‑density lipoprotein (LDL) has an important role in atherogenesis; however, the mechanisms underlying cell‑mediated LDL oxidation remain to be elucidated. The present study investigated whether native‑LDL induced lipid raft formation, in order to gain further insight into LDL oxidation. Confocal microscopic analysis revealed that lipid rafts were aggregated or clustered in the membrane, which were colocalized with myeloperoxidase (MPO) upon native LDL stimulation; however, in the presence of methyl‑β‑cyclodextrin (MβCD), LDL‑stimulated aggregation, translocation, and colocalization of lipid rafts components was abolished.. In addition, lipid raft disruptors MβCD and filipin decreased malondialdehyde expression levels. Density gradient centrifugation coupled to label‑free quantitative proteomic analysis identified 1,449 individual proteins, of which 203 were significantly upregulated following native‑LDL stimulation. Functional classification of the proteins identified in the lipid rafts revealed that the expression levels of translocation proteins were upregulated. In conclusion, the results of the present study indicated that native‑LDL induced lipid raft clustering in macrophages, and the expression levels of several proteins were altered in the stimulated macrophages, which provided novel insights into the mechanism underlying LDL oxidation.

  9. A Novel RAFT Polymerization under UV Radiation at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Nianfa Yang; Lican Lu; Yuanli Cai

    2005-01-01

    @@ 1Introduction Reversible Addition Fragmentation chain Transfer (RAFT) polymerization has become a highly versatile technique for the controlled/"living" radical polymerization of a wide range of monomers under various conditions[1,2]. The RAFT polymerization was carried out using a dithiocarboxylate or trithiocarbonate as a Chain Transfer Agent (CTA), which mediates the growing chain radicals via an equilibrium[1,2]. From both academic and industrial standpoints, it is clearly desirable to develop a RAFT process under mild conditions. Rizzardo, et al [3] and McCormick's group[4] have respectively reported RAFT polymerization using conventional radical initiators at ambient temperature by adjusting the structure of CTA. The RAFT Polymerization initiated by γ-radiation has also reported recently[5]. Quinn, et al [6] have reported the RAFT polymerization under UV radiation using CTA as the source of primary radicals at 42 ℃, which was well controlled at low conversions (below 20% ) but less controlled at higher conversions (over 20% ) due to the photolysis of CTA residues under UV radiation.

  10. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    Science.gov (United States)

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  11. Generation of stable lipid raft microdomains in the enterocyte brush border by selective endocytic removal of non-raft membrane

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H

    2013-01-01

    multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process...... major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present....... In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature...

  12. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection.

    Science.gov (United States)

    Yang, Qian; Zhang, Qiong; Tang, Jun; Feng, Wen-Hai

    2015-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significantly economical challenge to the swine industry worldwide. In this study, we investigated the importance of cellular and viral lipid rafts in PRRSV infection. First, we demonstrated that PRRSV glycoproteins, Gp3 and Gp4, were associated with lipid rafts during viral entry, and disruption of cellular lipid rafts inhibited PRRSV entry. We also showed the raft-location of CD163, which might contribute to the glycoproteins-raft association. Subsequently, raft disruption caused a significant reduction of viral RNA production. Moreover, Nsp9 was shown to be distributed in rafts, suggesting that rafts probably serve as a platform for PRRSV replication. Finally, we confirmed that disassembly of rafts on the virus envelope may affect the integrity of PRRSV particles and cause the leakage of viral proteins, which impaired PRRSV infectivity. These findings might provide insights on our understanding of the mechanism of PRRSV infection.

  13. Controlling cell-cell interactions using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  14. Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts.

    Science.gov (United States)

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S

    2008-06-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for beta-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5'-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of beta-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

  15. 抗体交联作用促进Nephrin簇集于细胞膜脂筏微区%Nephrin Clustered in Lipid Raft-associated Microdomain on the Cell Membrane by Antibody Induced Cross-linking

    Institute of Scientific and Technical Information of China (English)

    秦晓松; 刘勇; 佟威威; 岳丹; 刘建华; 刘岩

    2010-01-01

    为研究nephrin在细胞膜上的表达特点,构建nephrin和podocin的表达质粒,转染COS-7细胞.采用胞吞摄取和抗体交联实验,发现nephrin的内吞囊泡与GM1神经节苷脂的十价配体CTxB及podocin囊泡共存;特异性抗体交联促进nephrin与脂筏(lipid raft)标记物CTxB共同聚集于脂筏微区;蔗糖密度梯度离心显示无论是表达nephrin的COS-7细胞还是大鼠肾小球细胞中部分nephrin与脂筏标志物小窝蛋白(caveolin)等均存在于去污剂抵抗膜成分中.结果提示nephrin为脂筏相关蛋白,并且特异抗体交联促进nephrin聚集于脂筏微区.

  16. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts

    Directory of Open Access Journals (Sweden)

    Herrmann Thomas

    2008-08-01

    Full Text Available Abstract Background Mechanisms of long chain fatty acid uptake across the plasma membrane are important targets in treatment of many human diseases like obesity or hepatic steatosis. Long chain fatty acid translocation is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but certain membrane proteins can also accelerate the transport. However, we now can provide further evidence that not only proteins but also lipid microdomains play an important part in the regulation of the facilitated uptake process. Methods Dynamic association of FAT/CD36 a candidate fatty acid transporter with lipid rafts was analysed by isolation of detergent resistant membranes (DRMs and by clustering of lipid rafts with antibodies on living cells. Lipid raft integrity was modulated by cholesterol depletion using methyl-β-cyclodextrin and sphingolipid depletion using myriocin and sphingomyelinase. Functional analyses were performed using an [3H]-oleate uptake assay. Results Overexpression of FAT/CD36 and FATP4 increased long chain fatty acid uptake. The uptake of long chain fatty acids was cholesterol and sphingolipid dependent. Floating experiments showed that there are two pools of FAT/CD36, one found in DRMs and another outside of these domains. FAT/CD36 co-localized with the lipid raft marker PLAP in antibody-clustered domains at the plasma membrane and segregated away from the non-raft marker GFP-TMD. Antibody cross-linking increased DRM association of FAT/CD36 and accelerated the overall fatty acid uptake in a cholesterol dependent manner. Another candidate transporter, FATP4, was neither present in DRMs nor co-localized with FAT/CD36 at the plasma membrane. Conclusion Our observations suggest the existence of two pools of FAT/CD36 within cellular membranes. As increased raft association of FAT/CD36 leads to an increased fatty acid uptake, dynamic association of FAT/CD36 with lipid rafts might regulate the process. There is no

  17. Structure of Cholesterol in Lipid Rafts

    Science.gov (United States)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  18. Nanofabrication of Nonfouling Surfaces for Micropatterning of Cell and Microtissue

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2010-08-01

    Full Text Available Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.

  19. Rac1-mediated membrane raft localization of PI3K/p110β is required for its activation by GPCRs or PTEN loss

    Science.gov (United States)

    Cizmecioglu, Onur; Ni, Jing; Xie, Shaozhen; Zhao, Jean J; Roberts, Thomas M

    2016-01-01

    We aimed to understand how spatial compartmentalization in the plasma membrane might contribute to the functions of the ubiquitous class IA phosphoinositide 3-kinase (PI3K) isoforms, p110α and p110β. We found that p110β localizes to membrane rafts in a Rac1-dependent manner. This localization potentiates Akt activation by G-protein-coupled receptors (GPCRs). Thus genetic targeting of a Rac1 binding-deficient allele of p110β to rafts alleviated the requirement for p110β-Rac1 association for GPCR signaling, cell growth and migration. In contrast, p110α, which does not play a physiological role in GPCR signaling, is found to reside in nonraft regions of the plasma membrane. Raft targeting of p110α allowed its EGFR-mediated activation by GPCRs. Notably, p110β dependent, PTEN null tumor cells critically rely upon raft-associated PI3K activity. Collectively, our findings provide a mechanistic account of how membrane raft localization regulates differential activation of distinct PI3K isoforms and offer insight into why PTEN-deficient cancers depend on p110β. DOI: http://dx.doi.org/10.7554/eLife.17635.001

  20. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  1. Role of the lipid rafts in the life cycle of canine coronavirus.

    Science.gov (United States)

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  2. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts.

    Science.gov (United States)

    Nikolaeva, Svetlana; Bayunova, Lubov; Sokolova, Tatyana; Vlasova, Yulia; Bachteeva, Vera; Avrova, Natalia; Parnova, Rimma

    2015-03-01

    Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.

  3. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers.

    Science.gov (United States)

    Nguyen, Duc; Zondanos, Hollie S; Farrugia, Jason M; Serelis, Algirdas K; Such, Chris H; Hawkett, Brian S

    2008-03-04

    A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.

  4. Interaction of chiral rafts in self-assembled colloidal membranes

    Science.gov (United States)

    Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.

    2016-03-01

    Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.

  5. Calreticulin: Roles in Cell-Surface Protein Expression

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2014-09-01

    Full Text Available In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.

  6. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  7. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  8. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  9. Lipid rafts and their possible involvements in neuroimmunological disorders.

    Science.gov (United States)

    Asakura, Kunihiko; Ueda, Akihiro; Mutoh, Tatsuro

    2015-01-01

    Multiple sclerosis (MS) and neuromyelitis optica (NMO) are presumed to be an autoimmune disease in the central nervous system (CNS). Although lipids are most abundant components in the nervous system, it has been believed that cellular and/or humoral immunity to various myelin proteins causes these neuroinflammatory diseases. Recent research advances enable us to study lipids in the membranes and some key molecules involved in various neurological disorders including Guillain-Barré syndrome, Alzheimer's disease, Parkinson's disease, and prion disease, are localized in lipid rafts. In MS and NMO, the key molecules for the pathogenesis or the target molecules for the treatments of MS and NMO are also localized in lipid rafts. Here in this article, we highlight on the possible involvement of lipid rafts in the pathogenesis and treatment of MS and NMO and introduce our recent observation of aquaporin 4 regarding NMO.

  10. Dynamics of surfactant-driven fracture of particle rafts.

    Science.gov (United States)

    Vella, Dominic; Kim, Ho-Young; Aussillous, Pascale; Mahadevan, L

    2006-05-05

    We investigate the dynamic fracture of a close-packed monolayer of particles, or particle raft, floating at a liquid-gas interface induced by the localized addition of surfactant. Unusually for a two-dimensional solid, our experiments show that the speed of crack propagation here is not affected by the elastic properties of the raft. Instead it is controlled by the rate at which surfactant is advected to the crack tip by means of the induced Marangoni flows. Further, the velocity of propagation is not constant in time and the length of the crack scales as t(3/4). More broadly, this surfactant-induced rupture of interfacial rafts suggests ways to manipulate them for applications.

  11. Poly(2-hydroxyethyl methacrylate) (PHEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fabric by γ-initiation: Synthesis, characterization and benefits of RAFT mediation

    Science.gov (United States)

    Kodama, Yasko; Barsbay, Murat; Güven, Olgun

    2014-12-01

    Polyethylene/polypropylene (PE/PP) nonwoven fabrics were functionalized by γ-initiated RAFT mediated grafting of 2-hydroxyethyl methacrylate (HEMA), and the characterization of the grafted samples was carried out using various techniques. FTIR and XPS analysis showed an increase in the oxygenated content till a certain degree of grafting. The results implied a grafting process following the concept of ‘front mechanism’. The initial grafting occurred on the topmost surface layer, and then moved further into the bulk of the polymer matrix. Reversible addition-fragmentation chain transfer (RAFT) mediated grafting yielded a better controlled grafting when compared to those obtained in conventional grafting.

  12. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  13. 脂筏在阿尔茨海默症中的作用%Emerging Roles of Lipid Rafts in Alzheimer's Disease

    Institute of Scientific and Technical Information of China (English)

    郑毅; 马芙蓉; 吉尚戎

    2012-01-01

    Lipid rafts are cholesterol-enriched micro-domains in cell membranes with critical functions in cellular signaling and transportation. Accumulating evidence indicates lipid rafts are intimately associated with the pathogenesis of Alzheimer's disease (AD). Because the abnormal metabolism and aggregation of amyloid p-peptide (Ap) is causally involved in the initiation and development of AD, lipid rafts regulate the production, aggregation and toxicity of A3, thus pinpointing a critical role of lipid rafts in AD.%脂筏(lipid raft)是细胞膜中富含胆固醇的功能性微区,在信号转导、物质运输等方面发挥着重要作用.大量证据显示脂筏与阿尔茨海默症(Alzheimer's disease,AD)的致病机理密切相关.β-淀粉样肽(amyloid β-peptide,Aβ)的异常代谢和聚集可能是AD的致病主因,而脂筏不但是Aβ产生的主要场所,还能调节Aβ的聚集行为及神经毒性,因而在AD的病理过程中扮演着关键角色.

  14. A plus-end raft to control microtubule dynamics and function.

    Science.gov (United States)

    Galjart, Niels; Perez, Franck

    2003-02-01

    Cells require a properly oriented and organised microtubule array to transmit positional information. Recent data have revealed a heterogeneous population of microtubule-binding proteins that accumulates mainly at distal ends of polymerising microtubules. Two mechanisms may account for this concentration: transient immobilisation, which involves association of proteins with growing ends, followed by release more proximally; and deposition at ends via a molecular motor. As with lipid rafts, protein concentration at distal ends may allow a cascade of interactions in the restricted area of a microtubule plus end. This may, in turn, control the dynamic behaviour of this cytoskeletal network and its anchoring to other structures.

  15. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  16. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains.

    Science.gov (United States)

    Casado, María Emilia; Huerta, Lydia; Ortiz, Ana Isabel; Pérez-Crespo, Mirian; Gutiérrez-Adán, Alfonso; Kraemer, Fredric B; Lasunción, Miguel Ángel; Busto, Rebeca; Martín-Hidalgo, Antonia

    2012-12-01

    There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.

  17. Cell Surface-based Sensing with Metallic Nanoparticles

    OpenAIRE

    Jiang, Ziwen; Le, Ngoc D. B.; Gupta, Akash; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed.

  18. [Cell surface RNA--a possible molecular receptor of adaptogens].

    Science.gov (United States)

    Malenkov, A G; Kolotygina, I M

    1984-01-01

    When RNA of the cell surface is destroyed with RNAase, the effect of adaptogenes is removed. Such effect is produced by introduction of actinomycin D 30 minutes before intake of adaptogene. Destruction of surface RNA stimulates protein synthesis. Comparison of these facts permits a hypothesis to be advanced saying that surface RNA is a receptor of adaptogenes obtained from plants of Aralia family.

  19. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  20. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    Science.gov (United States)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  1. Attachment of human primary osteoblast cells to modified polyethylene surfaces.

    Science.gov (United States)

    Poulsson, Alexandra H C; Mitchell, Stephen A; Davidson, Marcus R; Johnstone, Alan J; Emmison, Neil; Bradley, Robert H

    2009-04-09

    Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more

  2. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  3. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  4. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    Science.gov (United States)

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed.

  5. Development of optimum design from static response of pile–raft interaction

    DEFF Research Database (Denmark)

    Taghavi Ghalesari, A; Barari, Amin; Fardad Amini, P;

    2015-01-01

    Piled raft foundations are among the most commonly used support structures for offshore projects. When a raft foundation alone does not satisfy the design requirements, piles may be added to improve the ultimate load capacity and the settlement performance of the raft. In this study, design...... for the piled raft were highly influenced by the number of piles and the raft thickness. Optimal design configurations of piles for cohesive soils are discussed. Increasing the pile spacing decreased the pile butt load ratio by allowing for a more uniform load distribution between the piles....

  6. Cell multiplication following partial enzymatic removal of surface coat.

    Science.gov (United States)

    Wyroba, E

    1978-08-01

    Treatment of Paramecium aurelia with trypsin or pronase (1 mg per 10(5) cells, at 0 to 4 degrees C) partially removes the surface coat and modifies significantly multiplication of cells. The division rate after 24 hours of cultivation is diminished approximately twice in the case of pronase-treated cells and 1.5 for tyrpsin-digested ciliates as compared with the control. On the second day the division rate increases rapidly and number of cell divisions exceeds the values observed in the control. After 72 hours of cultivation the division rate in both untreated and enzyme-treated cells is almost the same. It is concluded that the observed inhibition of cell fission results from the enzymatic removal of the surface coat--the integrity of this surface coat seems to be necessary in the process of cell division. The influence of environmental factors on the rate of growth is presented.

  7. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  8. Interaction of Epithelial Cells with Surfaces and Surfaces Decorated by Molecules

    CERN Document Server

    Martini, Daniele; Beil, Michael; Paust, T; Huang, C; Moosmann, M; Jin, J; Heiler, T; Gröger, R; Schimmel, Thomas; Walheim, Stefan

    2013-01-01

    A detailed understanding of the interface between living cells and substrate materials is of rising importance in many fields of medicine, biology and biotechnology. Cells at interfaces often form epithelia. The physical barrier that they form is one of their main functions. It is governed by the properties of the networks forming the cytoskeleton systems and by cell-to-cell contacts. Different substrates with varying surface properties modify the migration velocity of the cells. On the one hand one can change the materials composition. Organic and inorganic materials induce differing migration velocities in the same cell system. Within the same class of materials, a change of the surface stiffness or of the surface energy modifies the migration velocity, too. For our cell adhesion studies a variety of different, homogeneous substrates were used (polymers, bio-polymers, metals, oxides). In addition, an effective lithographic method, Polymer Blend Lithography (PBL), is reported, to produce patterned Self-Assem...

  9. Soil-Structure Interaction Analysis of Tall Reinforced Concrete Chimney with Piled Raft and Annular Raft under Along-Wind Load

    Directory of Open Access Journals (Sweden)

    B. R. Jayalekshmi

    2013-01-01

    Full Text Available A three-dimensional (3D soil-structure interaction (SSI analysis of 300 m high reinforced concrete chimneys having piled annular raft and annular raft foundations subjected to along-wind load is carried out in the present study. To understand the significance of SSI, four types of soils were considered based on their flexibility. The effect of stiffness of the raft was evaluated using three different ratios of external diameter to thickness of the annular raft. The along-wind load was computed according to IS:4998 (Part 1-1992. The integrated chimney-foundation-soil system was analysed by commercial finite element (FE software ANSYS, based on direct method of SSI assuming linear elastic behaviour. FE analyses were carried out for two cases of SSI (I chimney with annular raft foundation and (II chimney with piled raft foundation. The responses in chimney such as tip deflection, bending moments, and base moment and responses in raft such as bending moments and settlements were evaluated for both cases and compared to that obtained from the conventional method of analysis. It is found that the responses in chimney and raft depend on the flexibility of the underlying soil and thickness of the raft.

  10. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  11. Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.

    Science.gov (United States)

    da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi

    2011-01-01

    The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.

  12. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W;

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  13. Cholesterol lipids and cholesterol-containing lipid rafts in bacteria.

    Science.gov (United States)

    Huang, Zhen; London, Erwin

    2016-09-01

    Sterols are important components of eukaryotic membranes, but rare in bacteria. Some bacteria obtain sterols from their host or environment. In some cases, these sterols form membrane domains analogous the lipid rafts proposed to exist in eukaryotic membranes. This review describes the properties and roles of sterols in Borrelia and Helicobacter.

  14. Commercialization of raft oyster culture in Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Watters, K.W.

    1975-01-01

    The Oyster Culture Project of the Puerto Rico Nuclear Center has been investigating the feasibility of raft-culturing the local mangrove oyster (Crassostrea rhizophorae) for the past two years. Attempts to start culture efforts on a commercial scale are described. (CH)

  15. Raft River well stimulation experiments: geothermal reservoir well stimulation program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

  16. FEA for designing of floating raft shock-resistant system

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ying-long; HE Lin; HUANG Ying-yun; WANG Yu

    2003-01-01

    Choosing the equipment with good shock-resistant performance and taking shock protection measures while designing the onboard settings, the safety of onboard settings can be assured when warships, especially submarine subjected to non-contact underwater explosion, that is, these means can be used to limit the rattlespace (i.e., the maximum displacement of the equipment relative to the base) and the peak acceleration experienced by the equipment. Using shock-resistant equipments is one of shock protection means. The shock-resistant performance of the shock-resistant equipments should be verified in the design phase of the equipments. The FEA (finite element analysis) software, for example, MSC.NASTRAN(R), can be used to verify the shock-resistant performance. MSC.PATRAN(R) and MSC.NASTRAN are used for modeling and analyzing the floating raft vibration isolating equipment. The model of the floating raft and the floating raft vibration isolating system are theoretically analyzed and calculated, and the analysis results are in agreement with the test results. The transient response analysis of the system model follows the modal analysis of the floating raft vibration isolating system. And it is used to verify the shock-resistant performance. The analysis and calculation method used in this paper can be used to analyze the shock-resistant performance of onboard shock-resistant equipments.

  17. High resolution imaging of surface patterns of single bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Dominik; Wesner, Daniel [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Regtmeier, Jan, E-mail: jan.regtmeier@physik.uni-bielefeld.de [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany); Anselmetti, Dario [Experimental Biophysics and Applied Nanoscience, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld (Germany)

    2010-09-15

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  18. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  19. C2 domain of synaptotagminⅠassociates with lipid rafts of plasma membrane

    Institute of Scientific and Technical Information of China (English)

    L(U) JiHua; HE Li; SUI SenFang

    2008-01-01

    In this paper we report that the C2 domain of synaptotagmin I (syt I) could associate with lipid rafts of plasma membrane. We demonstrate that phosphatidylinositol 4,5-bisphosphate (PIP2) in the target membrane and Ca2+ are the key factors to enhance the raft association of the C2 domain. We also found that the raft association of the C2 domain could be fulfilled by either C2A or C2B alone, suggesting that their raft association might be complementary. Finally, we indicate that destroying lipid rafts or blocking syt I-raft association could significantly reduce the Ca2+-driven release of glutamates. Our data indicate that the raft association of the C2 domain might play an important role in the regulated exocytosis.

  20. Ligand binding alters dimerization and sequestering of urokinase receptors in raft-mimicking lipid mixtures.

    Science.gov (United States)

    Ge, Yifan; Siegel, Amanda P; Jordan, Rainer; Naumann, Christoph A

    2014-11-01

    Lipid heterogeneities, such as lipid rafts, are widely considered to be important for the sequestering of membrane proteins in plasma membranes, thereby influencing membrane protein functionality. However, the underlying mechanisms of such sequestration processes remain elusive, in part, due to the small size and often transient nature of these functional membrane heterogeneities in cellular membranes. To overcome these challenges, here we report the sequestration behavior of urokinase receptor (uPAR), a glycosylphosphatidylinositol-anchored protein, in a planar model membrane platform with raft-mimicking lipid mixtures of well-defined compositions using a powerful optical imaging platform consisting of confocal spectroscopy XY-scans, photon counting histogram, and fluorescence correlation spectroscopy analyses. This methodology provides parallel information about receptor sequestration, oligomerization state, and lateral mobility with single molecule sensitivity. Most notably, our experiments demonstrate that moderate changes in uPAR sequestration are not only associated with modifications in uPAR dimerization levels, but may also be linked to ligand-mediated allosteric changes of these membrane receptors. Our data show that these modifications in uPAR sequestration can be induced by exposure to specific ligands (urokinase plasminogen activator, vitronectin), but not via adjustment of the cholesterol level in the planar model membrane system. Good agreement of our key findings with published results on cell membranes confirms the validity of our model membrane approach. We hypothesize that the observed mechanism of receptor translocation in the presence of raft-mimicking lipid mixtures is also applicable to other glycosylphosphatidylinositol-anchored proteins.

  1. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2009-02-01

    Full Text Available Abstract Background Campylobacter enteritis represents a risk factor for the development of inflammatory bowel disease (IBD via unknown mechanisms. As IBD patients exhibit inflammatory responses to their commensal intestinal microflora, factors that induce translocation of commensal bacteria across the intestinal epithelium may contribute to IBD pathogenesis. This study sought to determine whether Campylobacter induces translocation of non-invasive intestinal bacteria, and characterize underlying mechanisms. Methods Mice were infected with C. jejuni and translocation of intestinal bacteria was assessed by quantitative bacterial culture of mesenteric lymph nodes (MLNs, liver, and spleen. To examine mechanisms of Campylobacter-induced bacterial translocation, transwell-grown T84 monolayers were inoculated with non-invasive Escherichia coli HB101 ± wild-type Campylobacter or invasion-defective mutants, and bacterial internalization and translocation were measured. Epithelial permeability was assessed by measuring flux of a 3 kDa dextran probe. The role of lipid rafts was assessed by cholesterol depletion and caveolin co-localization. Results C. jejuni 81–176 induced translocation of commensal intestinal bacteria to the MLNs, liver, and spleen of infected mice. In T84 monolayers, Campylobacter-induced internalization and translocation of E. coli occurred via a transcellular pathway, without increasing epithelial permeability, and was blocked by depletion of epithelial plasma membrane cholesterol. Invasion-defective mutants and Campylobacter-conditioned cell culture medium also induced E. coli translocation, indicating that C. jejuni does not directly 'shuttle' bacteria into enterocytes. In C. jejuni-treated monolayers, translocating E. coli associated with lipid rafts, and this phenomenon was blocked by cholesterol depletion. Conclusion Campylobacter, regardless of its own invasiveness, promotes the translocation of non-invasive bacteria across

  2. Multijunction Solar Cell Technology for Mars Surface Applications

    Science.gov (United States)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  3. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

    Science.gov (United States)

    Nag, Okhil K; Naciri, Jawad; Oh, Eunkeu; Spillmann, Christopher M; Delehanty, James B

    2016-04-20

    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

  4. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  5. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

    Science.gov (United States)

    Dong, C; Lei, X X

    2000-01-01

    The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the characteristic adhesion binding time, cell-surface contact and cell rolling velocity. A 2-D model indicated that cell-substrate contact area under a high wall shear stress (20 dyn/cm2) could be nearly twice of that under a low stress (0.5 dyn/cm2) due to shear flow-induced cell deformation. An increase in contact area resulted in more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy that inputs to a cell decreased due to a flattened cell shape. The model also predicted a plateau of WBC rolling velocity as flow shear stresses further increased. Both experimental and computational studies have described how WBC deformation influences the WBC-EC adhesion process in shear flow.

  7. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  8. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14.

    Science.gov (United States)

    Curwin, Amy J; Leblanc, Marissa A; Fairn, Gregory D; McMaster, Christopher R

    2013-01-01

    The Sec14 protein domain is a conserved tertiary structure that binds hydrophobic ligands. The Sec14 protein from Saccharomyces cerevisiae is essential with studies of S. cerevisiae Sec14 cellular function facilitated by a sole temperature sensitive allele, sec14(ts). The sec14(ts) allele encodes a protein with a point mutation resulting in a single amino acid change, Sec14(G266D). In this study results from a genome-wide genetic screen, and pharmacological data, provide evidence that the Sec14(G266D) protein is present at a reduced level compared to wild type Sec14 due to its being targeted to the proteosome. Increased expression of the sec14(ts) allele ameliorated growth arrest, but did not restore the defects in membrane accumulation or vesicular transport known to be defective in sec14(ts) cells. We determined that trafficking and localization of two well characterized lipid raft resident proteins, Pma1 and Fus-Mid-GFP, were aberrant in sec14(ts) cells. Localization of both lipid raft proteins was restored upon increased expression of the sec14(ts) allele. We suggest that a major function provided by Sec14 is trafficking and localization of lipid raft proteins.

  9. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  10. Lipid rafts control P2X3 receptor distribution and function in trigeminal sensory neurons of a transgenic migraine mouse model

    Directory of Open Access Journals (Sweden)

    Fabbretti Elsa

    2011-09-01

    Full Text Available Abstract Background A genetic knock-in mouse model expressing the R192Q mutation of the α1-subunit of the CaV2.1 channels frequently found in patients with familial hemiplegic migraine shows functional upregulation of ATP-sensitive P2X3 receptors of trigeminal sensory neurons that transduce nociceptive inputs to the brainstem. In an attempt to understand the basic mechanisms linked to the upregulation of P2X3 receptor activity, we investigated the influence of the lipid domain of these trigeminal sensory neurons on receptor compartmentalization and function. Results Knock-in neurons were strongly enriched with lipid rafts containing a larger fraction of P2X3 receptors at membrane level. Pretreatment with the CaV2.1 channel blocker ω-agatoxin significantly decreased the lipid raft content of KI membranes. After pharmacologically disrupting the cholesterol component of lipid rafts, P2X3 receptors became confined to non-raft compartments and lost their functional potentiation typically observed in KI neurons with whole-cell patch-clamp recording. Following cholesterol depletion, all P2X3 receptor currents decayed more rapidly and showed delayed recovery indicating that alteration of the lipid raft milieu reduced the effectiveness of P2X3 receptor signalling and changed their desensitization process. Kinetic modeling could reproduce the observed data when slower receptor activation was simulated and entry into desensitization was presumed to be faster. Conclusions The more abundant lipid raft compartment of knock-in neurons was enriched in P2X3 receptors that exhibited stronger functional responses. These results suggest that the membrane microenvironment of trigeminal sensory neurons is an important factor in determining sensitization of P2X3 receptors and could contribute to a migraine phenotype by enhancing ATP-mediated responses.

  11. In vivo imaging of tumour angiogenesis in mice with the {alpha}{sub v}{beta}{sub 3} integrin-targeted tracer {sup 99m}Tc-RAFT-RGD

    Energy Technology Data Exchange (ETDEWEB)

    Sancey, Lucie; Ardisson, Valerie; Ahmadi, Mitra; Marti-Batlle, Daniele; Fagret, Daniel; Ghezzi, Catherine; Vuillez, Jean-Philippe [Radiopharmaceutiques Biocliniques, INSERM, U877, La Tronche (France); Universite Joseph Fourier, Grenoble (France); Riou, Laurent M. [Radiopharmaceutiques Biocliniques, INSERM, U877, La Tronche (France); Universite Joseph Fourier, Grenoble (France); Universite de Grenoble, INSERM, U877, Radiopharmaceutiques Biocliniques, Faculte de Medecine, 38700, La Tronche (France); Boturyn, Didier; Dumy, Pascal [Universite Joseph Fourier, Grenoble (France); CNRS, UMR-5250, Departement de Chimie Moleculaire, Grenoble (France)

    2007-12-15

    The molecular imaging of tumour neoangiogenesis currently represents a major field of research for the diagnostic and treatment strategy of solid tumours. Endothelial cells from tumour neovessels overexpress the {alpha}{sub v}{beta}{sub 3} integrin, which selectively binds to Arg-Gly-Asp (RGD)-containing peptides. We evaluated the potential of the novel radiotracer {sup 99m}Tc-RAFT-RGD for the non-invasive molecular imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in mice models of tumour development. {sup 99m}Tc-RAFT-RGD, {sup 99m}Tc-cRGD (specific control) and {sup 99m}Tc-RAFT-RAD (non-specific control) were injected intravenously to mice bearing B16F0 or TS/A-pc tumours. In vivo whole-body tomographic imaging and post-mortem biodistribution studies were performed 60 min following tracer injection. Adjacent tumour slices were used to compare the localisation of neovessels from immunostaining and the pattern of {sup 99m}Tc-RAFT-RGD uptake from autoradiographic ex vivo imaging. Biodistribution studies indicated that {sup 99m}Tc-RAFT-RGD tumour uptake was significantly higher than that of {sup 99m}Tc-RAFT-RAD in B16F0 (2.4{+-}0.5 vs 1.0{+-}0.1%ID/g, respectively) and in TS/A-pc tumours (2.7{+-}0.8 vs 0.7{+-}0.1%ID/g, respectively). Immunohistochemical and autoradiographic studies indicated that {sup 99m}Tc-RAFT-RGD intratumoural uptake preferentially occurred in angiogenic areas. Tomographic imaging allowed tumour visualisation following injection of {sup 99m}Tc-RAFT-RGD and {sup 99m}Tc-cRGD with similar tumour-to-contralateral muscle (T/CM) ratios in B16F0 and in TS/A-pc tumours whereas {sup 99m}Tc-RAFT-RAD T/CM ratios did not allow tumour imaging. In accordance with the higher level of {alpha}{sub v}{beta}{sub 3} integrin expression on TS/A-pc tumours than on B16F0 tumours as determined from western blot and immunoprecipitation analyses, the {sup 99m}Tc-RAFT-RGD T/CM ratio was significantly higher in TS/A-pc than in B16F0 tumours. {sup 99m}Tc-RAFT

  12. Clustering of Helicobacter pylori VacA in lipid rafts, mediated by its receptor, receptor-like protein tyrosine phosphatase beta, is required for intoxication in AZ-521 Cells

    DEFF Research Database (Denmark)

    Nakayama, Masaaki; Hisatsune, Jyunzo; Yamasaki, Eiki;

    2006-01-01

    Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation of proinflamm......Helicobacter pylori vacuolating cytotoxin, VacA, induces multiple effects on epithelial cells through different cellular events: one involves pore formation, leading to vacuolation, mitochondrial damage, and apoptosis, and the second involves cell signaling, resulting in stimulation...

  13. Cholesterol-lowering drugs inhibit lectin-like oxidized low-density lipoprotein-1 receptor function by membrane raft disruption.

    Science.gov (United States)

    Matarazzo, Sara; Quitadamo, Maria Chiara; Mango, Ruggiero; Ciccone, Sarah; Novelli, Giuseppe; Biocca, Silvia

    2012-08-01

    Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is up-regulated in atherosclerotic lesions. Statins are the principal therapeutic agents for cardiovascular diseases and are known to down-regulate LOX-1 expression. Whether the effect on the LOX-1 receptor is related to statin-mediated cholesterol-lowering activity is unknown. We investigate the requirement of cholesterol for LOX-1-mediated lipid particle internalization, trafficking, and processing and the role of statins as inhibitors of LOX-1 function. Disruption of cholesterol-rich membrane microdomains by acute exposure of cells to methyl-β-cyclodextrin or chronic exposure to different statins (lovastatin and atorvastatin) led to a spatial disorganization of LOX-1 in plasma membranes and a marked loss of specific LOX-1 function in terms of ox-LDL binding and internalization. Subcellular fractionation and immunochemical studies indicate that LOX-1 is naturally present in caveolae-enriched lipid rafts and, by cholesterol reduction, the amount of LOX-1 in this fraction is highly decreased (≥60%). In contrast, isoprenylation inhibition had no effect on the distribution and function of LOX-1 receptors. Furthermore, in primary cultures from atherosclerotic human aorta lesions, we confirm the presence of LOX-1 in caveolae-enriched lipid rafts and demonstrate that lovastatin treatment led to down-regulation of LOX-1 in lipid rafts and rescue of the ox-LDL-induced apoptotic phenotype. Taken together, our data reveal a previously unrecognized essential role of membrane cholesterol for LOX-1 receptor activity and suggest that statins protect vascular endothelium against the adverse effect of ox-LDL by disruption of membrane rafts and impairment of LOX-1 receptor function.

  14. Cell surface engineering of industrial microorganisms for biorefining applications.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  16. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  17. The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga.

    Science.gov (United States)

    Muhlin, J F; Engel, C R; Stessel, R; Weatherbee, R A; Brawley, S H

    2008-03-01

    Understanding the dispersal processes that influence genetic structure in marine species requires estimating gene flow in a dynamic, fluid environment that is often poorly characterized at scales relevant to multiple dispersive stages (e.g. spores, gametes, zygotes, larvae, adults). We examine genetic structure in the marine alga Fucus vesiculosus L., which inhabits moderately exposed shores in the northern Atlantic but releases gametes only under sunny, calm conditions. We predicted genetic structure would correlate with coastal topography because weather frequently varies across coastal promontories on the Maine shore when F. vesiculosus is reproductive, which causes one side to experience high levels of water motion (= no gamete release) while one side is calm (= gamete release). Furthermore, we expected that the effect of low dispersal capacities of gametes and zygotes would result in spatial genetic structure over short distances. Using surface drifters, we characterized near-shore circulation patterns around the study sites to investigate whether directionality of gene flow was correlated with directionality of currents. We found significant genetic differentiation among sites sampled at two different peninsulas, but patterns of differentiation were unrelated to coastal topography and there was no within-site spatial structuring. Our genetic and near-shore circulation data, combined with an examination of gamete longevity, support the dependency of gene flow on storm-detached, rafting, reproductive adults. This study highlights the significance of rafting as a mechanism for structuring established populations of macroalgae and associated biota and demonstrates the importance of coupling population genetics' research with relevant hydrodynamic studies.

  18. Membrane Tether Formation on a Cell Surface with Reservoir

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qiang; GUO Hong-Lian; LIU Chun-Xiang; LI Zhao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong; JIA Suo-Tang

    2004-01-01

    @@ We propose a mathematical model to analyse the membrane tether formation process on a cell surface with reservoir. Based on the experimental results, the membrane reservoir density of breast cancer cell was obtained,p = 8.02. The membrane surface viscosity between membrane and environment η is 0.021(pN.s/μm3), and the static force F0 = 5.71 pN.

  19. Microfabricated surface designs for cell culture and diagnosis.

    Science.gov (United States)

    Matsuda, T; Chung, D J

    1994-01-01

    Grooved and holed surfaces with a well fabricated design may serve as microsubstrates for cell culture and microreactors for diagnosis. In this study, the authors prepared chemically treated, micrometer scale grooved and holed glass surfaces by combined surface modification and ultraviolet (UV) excimer laser ablation techniques, as follows. 1) Microcell-culture substrate: Amino group attached glass surfaces, prepared by the treatment with an aminopropylsilane, were condensed with a carboxylated radical initiator. Subsequently, polyacrylamide was grafted by surface initiated radical polymerization to create a very hydrophilic surface layer. Ultraviolet excimer laser beams (KrF: 248 nm) were irradiated through a microscope onto surfaces to create grooves or holes that were 10 and 50 microns in width or diameter, respectively. The depth, depending on the irradiation light strength, ranged from a few to several tenths of a micrometer. On endothelial cell (EC) seeding, ECs adhered and grew on the bottoms of the grooved or holed surface where glass was exposed on ablation. Little cell adhesion was observed on non ablated, grafted surfaces. Endothelial cells aligned along the groove, resulting in very narrow tube like tissue formation, whereas ECs tended to form a multilayered spherical aggregate in a hole. A single cell resided in a 10 microns square hole. 2) Microreactor for diagnosis: The glass surface, treated with a fluorinated silane, was ablated to create round holes. On addition of a few microliters of water, water could be quantitatively transferred into a hole because of the water repellent characteristics of non ablated, fluorinated glass. As a model of a microreactor, enzyme reactions to affect different levels of glucose were carried out in tiny holed surfaces.

  20. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  1. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  2. Cell orientation on a stripe-micropatterned surface

    Institute of Scientific and Technical Information of China (English)

    SUN JianGuo; TANG Jian; DING JianDong

    2009-01-01

    Stripe-micropatterned surfaces have recently been a unique tool to study cell orientation. In this paper,we prepared,by the photolithography transfer technique,stable gold (Au) micropatterns on PEG hydrogel surfaces with defined cell-resistant (PEG hydrogel) and cell-adhesive (gold microstripes) proparties. 3T3 fibroblasts were cultured on Au-microstripe surfaces to observe cell adhesion and orientation. Five statistical parameters were defined and used to describe cell orientation on micropatterns.With the increase of inter-stripe distance,the orientational order parameter,the ratio of long and short axes of a cell,and the occupation fraction of cells on stripes increased gradually,whereas the spreading area of a single cell decreased. The abrupt changes of these four parameters did not happen at the same inter-distance. The adhesion ratio of a cell on Au stripes over cell spreading area did not change monotonically as a function of inter-stripe distance. The combination of the 5 statistical parameters represented well the cell orientation behaviors semi-quantitatively.

  3. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  4. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.

    2013-01-01

    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced rad

  5. Fabrication of cell container arrays with overlaid surface topographies.

    NARCIS (Netherlands)

    Truckenmuller, R.; Giselbrecht, S.; Escalante-Marun, M.; Groenendijk, M.; Papenburg, B.; Rivron, N.; Unadkat, H.; Saile, V.; Subramaniam, V.; Berg, A. van den; Blitterswijk, C. Van; Wessling, M.; Boer, J. den; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  6. Fabrication of cell container arrays with overlaid surface topographies

    NARCIS (Netherlands)

    Truckenmüller, R.K.; Giselbrecht, S.; Escalante, M.; Groenendijk, M.N.W.; Papenburg, B.J.; Rivron, N.C.; Unadkat, H.V.; Saile, V.; Subramaniam, V.; Blitterswijk, van C.A.; Wessling, M.; Boer, de J.; Stamatialis, D.

    2012-01-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a

  7. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose.

    Science.gov (United States)

    Hatton, Fiona L; Ruda, Marcus; Lansalot, Muriel; D'Agosto, Franck; Malmström, Eva; Carlmark, Anna

    2016-04-11

    Herein, we report a novel class of latex particles composed of a hemicellulose, xyloglucan (XG), and poly(methyl methacrylate) (PMMA), specially designed to enable a biomimetic modification of cellulose. The formation of the latex particles was achieved utilizing reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization employing XG as a hydrophilic macromolecular RAFT agent (macroRAFT). In an initial step, XG was functionalized at the reducing chain end to bear a dithioester. This XG macroRAFT was subsequently utilized in water and chain extended with methyl methacrylate (MMA) as hydrophobic monomer, inspired by a polymerization-induced self-assembly (PISA) process. This yielded latex nanoparticles with a hydrophobic PMMA core stabilized by the hydrophilic XG chains at the corona. The molar mass of PMMA targeted was varied, resulting in a series of stable latex particles with hydrophobic PMMA content between 22 and 68 wt % of the total solids content (5-10%). The XG-PMMA nanoparticles were subsequently adsorbed to a neutral cellulose substrate (filter paper), and the modified surfaces were analyzed by FT-IR and SEM analyses. The adsorption of the latex particles was also investigated by quartz crystal microbalance with dissipation monitoring (QCM-D), where the nanoparticles were adsorbed to negatively charged model cellulose surfaces. The surfaces were analyzed by atomic force microscopy (AFM) and contact angle (CA) measurements. QCM-D experiments showed that more mass was adsorbed to the surfaces with increasing molar mass of the PMMA present. AFM of the surfaces after adsorption showed discrete particles, which were no longer present after annealing (160 °C, 1 h) and the roughness (Rq) of the surfaces had also decreased by at least half. Interestingly, after annealing, the surfaces did not all become more hydrophobic, as monitored by CA measurements, indicating that the surface roughness was an important factor to

  8. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  9. Expanding the diversity of unnatural cell surface sialic acids

    Energy Technology Data Exchange (ETDEWEB)

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  10. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  11. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    -derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally, membrane-bound Hsp70 can stimulate antigen presenting cells to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells...... frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...... cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 cell surface expression was confined...

  12. Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.

    Science.gov (United States)

    Heberle, Frederick A; Doktorova, Milka; Goh, Shih Lin; Standaert, Robert F; Katsaras, John; Feigenson, Gerald W

    2013-10-01

    Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.

  13. Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Frederick A [ORNL; Doktorova, Milka [Cornell University; Goh, Shih Lin [Cornell University; Standaert, Robert F [ORNL; Katsaras, John [ORNL; Feigenson, Gerald [Cornell University

    2013-01-01

    Nanometer-scale domains in cholesterolrich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chainasymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.

  14. Zinc uptake by brain cells: `surface' versus `bulk'

    Science.gov (United States)

    DeStasio, Gelsomina; Pochon, S.; Lorusso, G. F.; Tonner, B. P.; Mercanti, Delio; Ciotti, M. Teresa; Oddo, Nino; Galli, Paolo; Perfetti, P.; Margaritondo, G.

    1996-08-01

    The uptake of zinc by cerebellar rat cultures upon exposure to 0022-3727/29/8/023/img12 solutions was comparatively investigated using two well known condensed matter physics techniques: synchrotron photoelectron spectromicroscopy and inductively coupled plasma atomic emission spectroscopy. The objective was to apply a strategy - well known in surface physics - to distinguish between `surface' and `bulk' phenomena. The results clearly demonstrate that exposure significantly enhances the bulk (cell cytoplasm) Zn concentration with respect to the physiological level, whereas the effect on the surface (cell membrane) is negligible.

  15. Transforming ocular surface stem cell research into successful clinical practice

    Directory of Open Access Journals (Sweden)

    Virender S Sangwan

    2014-01-01

    Full Text Available It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.

  16. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  17. Surface modified stainless steels for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  18. 脂筏结构在细胞内蛋白质运输中的作用%Function of lipid raft in protein transport

    Institute of Scientific and Technical Information of China (English)

    刘卫霞; 祝贺; 邢艳霞

    2015-01-01

    在细胞膜中存在由胆固醇、鞘糖脂以及蛋白质等成分组成的液态有序的结构,叫做脂筏.从内质网到高尔基体再到细胞质膜,脂筏结构在细胞膜中所占的比例越来越高.脂筏在高尔基体到细胞质膜的物质转运以及细胞内吞、再循环过程中发挥着重要的作用.本文将就脂筏结构在物质从高尔基体到质膜的转运和细胞内吞过程中的作用及其分子机制做一综述.%The ordered liquid structure composed of cholesterol, glycosphingolipid and protein in cell mem-brane is called lipid raft. The proportion of lipid raft in cell membrane bec